
Towards a Conditional Logic of Actions and Causation

Laura Giordano
Dipartimento di Informatica

Universit̀a del Piemonte Orientale
Corso Borsalino 54 - 15100 Alessandria, Italy

E-mail: laura@di.unito.it

Camilla Schwind
MAP, UMR CNRS - MCC N 694
183 Avenue de Luminy, Case 901
13288 Marseille Cedex 9, France,

E-mail: Camilla.Schwind@gamsau.map.archi.fr

Abstract

In this paper we present a new approach to reason
about actions and causation which is based on a
conditional logic. The conditional implication is
interpreted as causal implication. This makes it
possible to formalize in a uniform way causal de-
pendencies between actions and their immediate
and indirect effects. Furthermore, this new ap-
proach provides a natural formalization of con-
current actions and causal dependencies between
actions. An abductive semantics is adopted for
dealing with the frame problem.

1 Introduction

Causality plays a prominent role in the context of reason-
ing about actions, as the ramification effects of actions
can be regarded as causal dependencies. Many approaches
for reasoning about actions have been proposed which al-
low causal dependencies to be captured [5, 13, 16, 21, 1].
Schwind [18] has studied how causal inferences have been
integrated and used in action theories by analyzing four
formalisms, which are approaches to action and causality,
and comparing them with respect to criteria she established
for causality. Namely, the article analyses Lin’s approach
[12, 13], McCain and Turner’s causal theory for action and
change [16, 22], Thielscher’s theory of ramification and
causation [21], and Giordano, Martelli and Schwind’s dy-
namic causal action logic [6]. More recently, Zhang and
Foo [23, 2, 3] propose to extend propositional dynamic
logic, where actions are modalities, by introducing modal-
ities which are propositions. Sentence “φ causesψ” is rep-
resented by the formula[φ]ψ, where[φ] is a new modality.
Note that this representation corresponds to a conditional
logic approach, since EPDL formula[φ]ψ is interpreted as
conditional formulaφ > ψ. Zhang and Foo’s approach has
the merit of providing a clean representation of causation

as well as a uniform representation of direct and indirect
effects of actions. But the notion of causality as defined
in EPDL is too strong since it entails material implication.
This property,[φ]ψ → (φ → ψ), comes from a crucial ax-
iom introduced for actions in EPDL, and is motivated by
the fact that when ”φ causesψ” then the state constraint
φ → ψ must also hold. While we agree with this argu-
ment, we may object that the status of causal laws (and
consequently of material implications) in [23] is not that
of domain constraints. Instead, causal laws are regarded
as domain axioms, which gives the corresponding material
implications also the status of domain axioms, so that they
can be used for inference in all possible states. In particu-
lar, this allows a contrapositive use of material implications
φ → ψ, which may lead to unintended conclusions. There-
fore, though EPDL preserves the directionality of causation
(from [φ]ψ we cannot conclude that[¬ψ]¬φ), the fact that
causation entails material implication (from[φ]ψ we can
conclude thatφ → ψ and thus that¬ψ → ¬φ) anyhow
leads to unwanted conclusions when reasoning about the
effects of actions. Another difference with our present ap-
proach is due to the different modelization of actions. In
EPDL, syntactically, actions are not formulas. This makes
it impossible to combine assertions about actions with as-
sertions about causality. Concurrent actions cannot be con-
structed from single actions. It is not possible to express
for example that actiona and factB cause the effectC.

We propose to represent causality by a binary logical oper-
ator. Our causality operator has the properties of causality
relations as discussed in [18] and -perhaps more important-
does not have some of the undesired (or doubtful) proper-
ties many other approaches have. Our causal operator is not
monotonic and does not entail material implication which
makes it weaker than the one proposed in [23]. Tradition-
ally, considering a conditional as a causal implication has
frequently attracted the attention of logicians in conditional
logic ([10, 11]. It allows to model both causal laws and ac-
tion laws: the causal law “φ causesψ” is represented by
the conditional formulaφ > ψ and the action law “actiona



causes propositionψ” is represented by the conditional for-
mulado(a) > ψ, wheredo(a) is a special atomic proposi-
tion associated with each actiona. This uniform represen-
tation of the causal relationship between actions and their
results as well as between facts and their effects gives us
a great flexibility for handling both concepts in an simple
way when representing actions. For example, in this set-
ting, concurrent execution of actions is naturally modelled
by conjunctions of the formdo(a1)∧. . .∧do(an) in the an-
tecedents of conditionals. It is also very natural to express
dependency (and independency) relations between actions
and actions, actions and propositions, etc.

2 The Causal Action Logic AC

The language,L>, of our action logic is that of proposi-
tional logic augmented with a conditional operator>. The
set of propositional variables inL>, V ar, includes the set
{do(a) : a ∈ ∆0}, where∆0 is a set ofelementary ac-
tions including the “empty” actionε. Formulas are de-
fined as usual and the modalities2 and3 are defined by
2A ≡ (¬A > ⊥) and3A ≡ ¬2¬A. Intuitively, 2A
means thatA necessarily holds, while3A means thatA
is possible. IfA is an action propositiondo(a), 3do(a)
means thata is executable. In order to express that a propo-
sitionalwaysholds, we introduce the additional operator2:
2A ≡ (2A ∧ A). The following is an axiom system for
logic AC.

We define an axiom system for logicAC as follows:

Definition 1 (AC) The conditional logic AC is the smallest
logic containing the following axioms and deduction rules:

(CLASS) All classical propositional axioms and inference
rules

(CV) (¬(A > ¬C) ∧ (A > B)) → (A ∧ C) > B)

(CA) (A > C) ∧ (B > C) → ((A ∨B) > C)

(CE)(do(a) > B)∧(do(a) > (B > C)) → (do(a) > C)
wherea ∈ ∆0

(MOD) 2A → (do(a) > A) wherea ∈ ∆0

(RCEA) if` A ↔ B, then` (A > C) ≡ (B > C)

(RCK) if` A1 ∧ . . . ∧An → B, then
` (C > A1) ∧ . . . ∧ (C > An) → (C > B).

Note that all axioms and inference rules are standard in
conditional logics and, in particular, they belong to the ax-
iomatization of Lewis’s logicV C (see [17]). However,
we have excluded several of the standard axioms of condi-
tional logics such as (ID), (MP) and (CS) since they model

unwanted properties of causality. Reflexivity axiom (ID)
A > A is excluded since a proposition (or an action) should
not cause itself. Axiom (MP)(A > B) → (A → B)
should not hold for causal implication, because we do not
want to be able to infer the material implication from a
causal rule, since the former is stronger and would give
undesired properties to the latter. (CS)A ∧B → (A > B)
should not be a property of causal implication sinceA and
B could both hold conjunctively withoutA being a cause
of B.

Axiom (CE) allows action laws and causal laws to inter-
act, it provides the chain effects between causal laws and
action laws. (CE) says that the causal consequences of ac-
tion effects are in turn action effects: if executing actiona
(in a stateS) causesB in the next state S’ (do(a) > B),
and the causal lawB > C holds in S′, then executing
action a (in S) causesC to hold in S′. (CE) weakens
(MP) as it is clear form the following formulation of (CE)
(do(a) > (B > C)) → ((do(a) > B) → (do(a) > C)),
which is obtained from(MP ) by (RCK). (CE) has simi-
larities with the property of transitivity (TRANS)(do(a) >
B) ∧ (B > C) → (do(a) > C)1, which however requires
that the causal lawB > C holds in the stateS in which
the action is executed. As we will see in our action theory
causal laws do not necessarily hold in all possible states,
as they may have preconditions which make them hold in
some states only.2

(MOD) allows to deduce2A → (do(a1) > . . . >
(do(an) > A) . . .) for any finite sequence of actions
a1, . . . an (n ≥ 0) including the empty sequence and mean-
ing that a formulaA which is true in every state is also true
after the occurrence of any finite sequence of actions. So,
the subsequent occurrence of actions structures a world and
its subsequent states according to time, although time is not
represented explicitly in our formalism.

Entailment̀ is defined as usual and given a set of formulas
E, the deductive closure ofE is denoted byTh(E). AC
is characterized semantically in terms of selection function
models.

Definition 2 An AC-structureM is a triplet 〈W, f, [[ ]]〉,
where W is a non-empty set, whose elements are called pos-
sible worlds,f , calledthe selection function, is a function
of typeL> ×W→ 2W , [[]], called the evaluation function,
is a function of typeL> → 2W that assigns a subset of W,

1For standard conditional logic with reflexivity, adding
TRANS would collapse the conditional to material implication.
But this is not the case for our causal action logic AC, since re-
flexivity A > A is not an axiom.

2As an example of causal law with precondition consider the
following one: 2(at(y, r) → (at(z, r) > at(y, next(r))) used
in Example 4 below, which says that if blocky is atr then moving
blockz to positionr causesy to move to a next position.



[[A]] to each formulaA. The following conditions have to
be fulfilled by[[ ]]:

(1) [[A ∧B]] = [[A]] ∩ [[B]]
(2) [[¬A]] = W − [[A]]3

(3) [[A > B]] = {w : f(A,w) ⊆ [[B]]}

We assume that the selection functionf satisfies the follow-
ing properties which correspond to the axioms of our logic
AC:

(S-RCEA) if[[A]] = [[B]] thenf(A,w) = f(B, w)

(S-CV) iff(A,w)∩[[C]] 6= ∅ thenf(A∧C, w) ⊆ f(A,w)

(S-CA)f(A ∨B, w) ⊆ f(A,w) ∪ f(B, w)

(S-CE) iff(do(a), w) ⊆ [[B]]
thenf(do(a), w) ⊆ f(B, f(do(a), w))

(S-MOD) iff(B, w) ∩ [[do(a)]] 6= ∅
thenf(do(a), w) 6= ∅,

wherea ∈ ∆0 andf(B, f(do(a), w)) represents the set of
worlds{z ∈ f(B, x) : x ∈ f(do(a), w)}.

We say that a formulaA is true in a AC-structureM =
〈W, f, [[]]〉 if [[A]] = W . We say that a formulaα is AC-
valid (|= A )if it is true in every AC-structure. We also
introduce the following notationS |=M A to say that, given
a AC-structure M, a set of formulasS and a formulaA, for
all w ∈ M if w ∈ [[B]] for all B ∈ S, thenw ∈ [[A]].

The above axiom system is sound and complete with re-
spect to this semantics.

Theorem 1 |= A iff ` A

The completeness proof is shown by the canonical model
construction [19] and can be found in the appendix. More-
over, the axiomatization is consistent and the logic is de-
cidable. Since the logic AC is weaker than VC, each VC-
structure is an AC-structure, which shows that the logic AC
is ”non-trivial” in some sense.

3 Action Theories

3.1 Domain descriptions

We use atomic propositionsf, f1, f2, . . . ∈ V ar for fluent
names. A fluent literal, denoted byl , is a fluent namef
or its negation¬f . Given a fluent literall, such thatl = f

3Using the standard boolean equivalences, we obtain[[A ∨
B]] = [[A]]∪[[B]], [[A → B]] = (W−[[A]])∪[[B]], [[>]] = W ,
[[⊥]] = ∅.

or l = ¬f , we define|l| = f . Moreover, we will denote
byF the set of all fluent names, byLit the set of all fluent
literals, and by small greek lettersα, β, . . . any formula not
containing conditional formulas.

We define adomain descriptionas a tuple(Π, F rame0,
Obs). Π is a set ofaction laws, causal laws, precon-
dition laws, domain constraintsandcausal independency
constraints.

Action lawshave the form:

2(π → (do(a) > ρ)),

for an actiona with preconditionπ and effectρ: executing
actiona in a state whereπ holds causesρ to hold in the
resulting state. For action laws with no precondition, i. e.
π = true, we just obtain2(do(a) > ρ).

Causal lawshave the form:

2(π → (α > β)),

meaning that “ifπ holds, thenα causesβ”.

Precondition lawshave the form:

2(π ≡ ¬(do(a) > ⊥)),

meaning that “actiona is executable iffπ holds”. Accord-
ing to the definition of3, this is equivalent to2(π ≡
3do(a)).

Domain constraintsinclude formulas of the form:

2α,

(meaning that “α always holds”).

Causal independency constraintshave the form:

2(¬(A > ¬B)),

meaning thatA does not cause¬B (that is,B might be true
in a possible situation caused byA). In particular, when
the above constraints concern action execution, we have
2¬(do(a) > ¬do(b)), meaning that the execution of action
a does not prevent actionb from being executed (does not
interfere with its execution). Note that as a consequence
of this constraint we have, by (CV), that(do(a) > C) →
(do(a) ∧ do(b) > C), namely, the effects of actiona are
also effects of the concurrent execution ofa and b, asa
does not interfere withb. Moreover, from(do(a) > ⊥) →
(do(a) ∧ do(b) > ⊥), we have that ifa is not executable it
cannot be executed concurrently withb.

Frame0 is a set of pairs(f, do(a)), wheref ∈ F is a
fluent anda ∈ ∆0 is an elementary action, meaning thatf
is a frame fluentfor actiona, that is,f is a fluent to which
persistency applies whena is executed. Fluents which are



non-frame with respect toa do not persist and may change
in a nondeterministic way whena occurs.

The setFrame0 defines a sort ofindependencerela-
tionship between elementary actions and fluents. It is
closely related to dependency (and influence) relations that
have been used and studied by several authors includ-
ing Thielscher [21], Giunchiglia and Lifschitz [7], and
Castilho, Gasquet and Herzig [14]. We useFrame0 for
defining persistency rules of the formA1 > . . . > An >
(l → (do(a) > l)) for every literall, such that(|l|, a) ∈
Frame0. These persistency rules behave likedefaults:
they belong to an “action extension” whenever no incon-
sistency arises. TheFrame0-relationship is extended to
concurrent actions. Let us denote byFrame the exten-
sion of Frame0 to concurrent actions. (i)Frame0 ⊂
Frame; (ii) If (f, do(a1)), . . . , (f, do(an)) ∈ Frame
then(f, do(a1) ∧ . . . ∧ do(an)) ∈ Frame.

Obs is a set of observations about the value of fluents in
different stateswhich we identify with action sequences.
Though our language does not provide an explicit repre-
sentation of time, as we abandon (MP), time can be em-
bedded in the operator>. Given the properties of> we
assume a delay between happening of an action and oc-
currence of its effects, while we do not assume any delay
between causes and their effects in causal laws. Observa-
tions are formulas of the form:A1 > . . . > Aj > α (where
eachAi is a possibly concurrent action formula of the form
do(a1)∧ . . .∧do(an)), meaning thatα holds after the con-
current execution of the actions inA1, then those inA2,
. . . , then those of inAn. So, every acction occurrence leads
from one state to the new state. In particular, we assume an
initial state characterized by the occurrence of the empty
actionε. If Obs contains observationsα about fluents in
the initial state this is written asdo(ε) > α4.

Sometimes, when we do not want to consider observations,
we will then use the notion ofdomain frame, which is a
pair (Π, F rame0).

Let us consider the following example from [23], which
formalizes an electrical circuit with two serial switches.

Example 1 There is a circuit with two switches and a
lamp. If both switches are on, the lamp is alight. One of the
switches being off causes the lamp not to be alight. There
are two actions of toggling each of the switches. The do-
main description is the following (fori = 1, 2):

Π: 2(¬swi → (do(tgi) > swi))
2(swi → (do(tgi) > ¬swi))

4In the following, when identifying a state with an action se-
quenceA1, . . . , Aj , we will implicitly assume thatA1 = do(ε).
Also, in a conditional formulaA1 > . . . > Aj > α, we will
assume thatA1 = do(ε).

2(sw1 ∧ sw2 > light)
2(¬sw1 ∨ ¬sw2 > ¬light)
2(¬(do(tg1) > ¬do(tg2)))
2(¬(do(tg2) > ¬do(tg1)))

Obs: do(ε) > (¬sw1 ∧ ¬sw2 ∧ ¬light)
Frame0 = {(f, a) : a ∈ ∆0, f ∈ F}.

The first two rules inΠ describe the immediate effects
of the action of toggling a switch. The third and forth
rule are causal laws which describe the dependencies of
the light on the status of the switches. The last two laws
are constraints saying that the two actionstg1 and tg2

do not interfere. All fluents are supposed to be persis-
tent and the actionstg1 and tg2 are independent. As we
will see, from the above domain description we can de-
rive do(tg1) > ¬light, do(tg1) > do(tg2) > light and
do(tg1)∧do(tg2) > (sw1∧sw2∧light) (as actionsdo(tg1)
anddo(tgi) are independent).

Observe that we could have avoided introducing¬light in
the initial state, as it can be derived, for instance, from
¬sw1: from do(ε) > ¬sw1 and the forth action law we
can derivedo(ε) > ¬light by (CE).

The axiom (CA) makes it possible to deduce consequences
of actions even when it is not deterministically known
which action occurs.

Example 2 If the temperature is low, then going to swim
causes you to get a cold. If you have no umbrella, then rain-
ing causes you to get cold. We have the following domain
description:

Π: 2(cold → (do(swim) > get cold))
2(no umbrella → (do(rain) > get cold))

Obs: do(ε) > (cold ∧ no umbrella)
Frame0= {(f, a) : a ∈ ∆0, f ∈ F}

From this theory, we can derivedo(swim) ∨ do(rain) >
get cold.

The following example is inspired by one discussed by
Halpern and Pearl in [8]. Suppose that heavy rain occurred
in April causing wet forests in May and electrical storms in
May and June. The lightning in May did not cause forest
fires since the forests were still wet. But the lightning in
June did since the forest dried in the meantime. Pearl and
Halpern argue that the April rain caused that the fire did not
occur in May and occurred in June instead. We think rather
that the April rain prevents the fire from occurring in may
which is expressed by the precondition of the action law.

Example 3 i is ranging over months, such thati+1 is the
month followingi.

Π:2(do(raini) > wet foresti+1)



2(do(raini) > (do(lightningi+1) ∧ do(lightningi+2)))
2(wet foresti → (do(lightningi) > ¬forest firei))
2(¬wet foresti → (do(lightningi) > forest firei))
2(do(suni) > ¬wet foresti+1)
2(¬(do(suni) > ¬do(rainj))) (for i 6= j)
2(¬(do(rainj) > ¬do(suni))) (for i 6= j)

Obs: {}
Frame0= {(f, a) : a ∈ ∆0, f ∈ F}.

The second action law allows to say that rain in April
causes electrical storms in May and June.

From the first two action laws we derive
do(rainApril) > (wet forestMay ∧ do(lightningMay)∧
do(lightningJune)). Then by (CE), from the third
action law (for i = May) we get do(rainApril) >
¬forest fireMay.

Moreover, it hods that 2(do(sunMay) >
¬wet forestJune) (fifth action law) and, as ac-
tions do(rainApril) and do(sunMay) are indepen-
dent, we can derivedo(rainApril) ∧ do(sunMay) >
(¬wet forestJune ∧ do(lightningJune)). Then, by (CE),
from the forth action law (fori = June), we conclude:
do(rainApril) ∧ do(sunMay) > forest fireJune.

Therefore, we have thatdo(rainApril) ∧ do(sunMay) >
¬forest fireMay ∧forest fireJune.

The following example, taken from [5], involves causal
laws with preconditions.

Example 4 Consider the following scenario, where a
number of blocks are in a sequence: when the first block,
a, is pushed from the placep1 to the placep2, all other
blocks move also to the next place. Letp1, . . . pn be places
and a, b, c be blocks, and letpush(x, p) be the action
which consists in pushing the blockx from the placep to
the next placenext(p).

Π: 2(at(x, p) → (do(push(x, p)) > at(x, next(p))))
2(at(y, r) ∧ (at(z, r) > at(y, next(r)))), for z 6= y
2(at(x, p) > ¬at(x, q)), for p 6= q

Obs: do(ε) > (at(a, p1) ∧ at(b, p2) ∧ at(c, p3))
Frame0= {(f, a) : a ∈ ∆0, f ∈ F}

The first (action) law says that, if blockx is in p, pushing
x from the placep moves it to the next placenext(p). The
second (causal) law says that if blocky is atr then moving
block z to positionr causesy to move to a next position.
The third laws causes blockx not to be atq if it is at p
(different from q).

Given the initial state, it holds that:do(push(a, p1)) >
(at(a, p2) ∧ at(b, p3) ∧ at(c, p4)).

3.2 Extensions for a domain description

In order to address the frame problem, we introduce a set of
persistency laws, which can be assumed in each extension.
Persistency laws are essentially frame axioms. They are
used, in addition to the formulas inΠ, to determine the next
state when an action is performed. As a difference with
the formulas inΠ, persistency laws aredefeasible. They
are regarded as assumptions to be maximized. Changes in
the world are minimized by maximizing these assumptions.
Moreover, persistency laws have to be assumed if this does
not lead to inconsistencies.

Let A1, . . . , An be (possibly) concurrent actions of the
form do(a1)∧ . . .∧ do(am) (for m = 1 we have an atomic
action). We introduce a set ofpersistency lawsof the form
A1 > . . . > An > (l → (A > l)) for every sequence
of (concurrent) actionsA1, . . . , An and for every fluent lit-
eral l which is a frame fluent with respect to the (concur-
rent) actionA (according to the definition ofFrame in the
last subsection), that is, for every fluent literall which is
frame forevery elementary actionin A. The persistency
law says, that, “ifl holds in the state obtained by executing
the sequence of actionsA1, . . . , An, then l persists after
executing actionA in that state”5.

Our notion of extension will require to introduce two dif-
ferent kinds of assumptions. The first kind of assumptions,
as we have seen, are persistency assumptions. Given a set
Frame of frame fluents, the set of persistency assumptions
WPA1,...,An is defined as follows:

WPA1,...,An = {A1 > . . . > An > (l → (A > l))) :
(|l|, A) ∈ Frame}.

Note that the set of persistency assumptions has been de-
fined relative to a sequence of (concurrent) actions, that is,
a state.

In addition to persistency assumptions, we introduce an-
other kind of assumptions, which are needed to deal with
non frame fluents. If a fluentf is not persistent with re-
spect to a concurrent actionA then, in the state obtained
after executingA, the value off might be either true or
false. Hence, we introduce assumptions which allow to as-
sume, in any state, the value true or false for each nonframe
fluent f , as well as assumptions for all fluents in the ini-
tial state. Given a setFrame of frame fluents, we define
the set of assumptionsAssA1,...,An (relative to a sequence
A1, . . . , An) as follows:

AssA1,...,An = {A1 > . . . > An > l : (|l|, An) 6∈
Frame} ∪ {do(ε) > l : l ∈ Lit}

5Notice that introducing persistency laws of the form2(l →
(A > l)) wouldn’t be enough to deal with the persistency of lit-
erals at each different state.



We represent a generic assumption in this set byA1 >
. . . > An > l, which includes assumptions on the initial
state (forn = 0).

Now we can introduce our notion of extension, first for do-
main frames(Π, F rame0), and then for domain descrip-
tions (Π, F rame0, Obs). An extensionE of a domain
frame is obtained by augmentingΠ by as many as possi-
ble persistency laws, such thatE is consistent. We define
an extensionrelative to a state, which can be identified by
the sequence of actionsA1, . . . , An leading to that state.

Definition 3 An extension of a domain frameD =
(Π, F rame) relative to the action sequenceA1, . . . , An

is a setE = Th(Π ∪ WP ′ ∪ F ), such thatWP ′ ⊆
WPA1,...,An , F ⊆ AssA1,...,An and

a) if A1 > . . . > An−1 > (l → (An > l)) ∈ WPA1,...,An

then:
A1 > . . . > An−1 > (l → (An > l)) ∈ WP ′

⇐⇒ A1 > . . . > An > ¬l 6∈ E

b) if A1 > . . . > An > l ∈ AssA1,...,An then
A1 > . . . > An > l ∈ F ⇐⇒ A1 > . . . > An >
¬l 6∈ E.

The ⇒-part of condition a) is a consistency condition,
which guarantees that a persistency axiomA1 > . . . >
An−1 > (l → (An > l)) cannot be assumed inWP ′ if
¬l can be deduced as an immediate or indirect effect of the
actionAn. We say that the formulaA1 > . . . > An > ¬l
blocks the persistency axiom. The⇐-part of condition a) is
a maximality condition which forces the persistency axiom
to be assumed inWP ′, if the formulaA1 > . . . > An >
¬l is not proved. Condition b) forces each state of an ex-
tension to be complete: for all finite sequences of actions
A1, . . . , An each non persistent fluent must be assumed to
be true or false in the state obtained after executing them. In
particular, since the sequence of actions may be empty, the
initial state has to be complete in a given extensionE. This
is essential for dealing with domain descriptions in which
the initial state is incompletely specified and with postdic-
tion. The conditions above have a clear similarity with the
applicability conditions for a default rule in an extension.

Definition 4 E is an extension for a domain descrip-
tion (Π, F rame,Obs) relative to the action sequence
A1, . . . , An if it is an extension for the domain frame
(Π, F rame) relative to the action sequenceA1, . . . , An

andE ` Obs.

Notice that first we have defined extensions of a domain
frame (Π, F rame); then we have used the observations
in Obs to filter out those extensions which do not satisfy
them. As a difference with [4, 5] an extension only de-

scribes a single course of actions, and assumptions are lo-
calized to that sequence of actions. In this way, we deal
with concurrent actions without the need of introducing
two different modalities for actions, which in [4] are called
open and closed modalities and they are introduced to avoid
that the (AND) law (do(a) > C → do(a) ∧ do(b) > C)
is applied to the non-monotonic consequences of actions,
derived by means of the persistency assumptions. In our
present approach, we can derivedo(a) ∧ do(b) > C from
do(a) > C using the axiom (CV) provideda and b are
independent. Independency is formulated in the action lan-
guage by¬(do(a) > ¬do(b)) ∧ ¬(do(b) > ¬do(a)).

Let us consider again Example 1. Relative to the action
sequence{do(ε)}, {do(tg1)}, {do(tg2)} we get one exten-
sionE containing the frame laws

¬light → (do(tg1) > ¬light,
¬sw2 → (do(tg1) > ¬sw2,
do(tg1) > (sw1 → (do(tg2) > sw1)),

in which the following sentences hold:

(1) do(tg1) > ¬light,
(2) do(tg1) > (do(tg2) > light),
(3) do(tg1) ∧ do(tg2) > light,
(4) do(tg1) > ((do(tg1) ∧ do(tg2)) > ¬light).

An extensionE relative toA1, . . . , An determines an initial
state and a transition function among the states obtained
by executing actionsA1, . . . , An. In particular, thestate
reachable through an action sequenceA1, . . . , Aj (0 ≤ j ≤
n) in E can be defined as :

SE
A1,...,Aj

= {l : E ` A1 > . . . > Aj > l}

(whereSE
ε represents the initial state). Due to condition

(b) of definition 3, we can prove that each stateSE
A1;...;Aj

is complete: for each fluentf , it contains eitherf or ¬f .
Moreover, it can be shown that the state obtained after ex-
ecution of the sequence of actionsA1, . . . , An, is only de-
termined by the assumptions made from the initial state up
to that state.

Referring to Example 1,the extensionE above relative to
the action sequence{do(ε)}, {do(tg1)}, {do(tg2)} deter-
mines the following states:

SE
ε = {¬sw1,¬sw2,¬light}

SE
{do(ε)},{do(tg1)} = {sw1,¬sw2,¬light}

SE
{do(ε)},{do(tg1)},{do(tg2)} = {sw1, sw2, light}

Observe that for the domain description in Example 1 we
do not obtain the unexpected extension in whichdo(tg1) >



(do(tg2) > (¬sw1∧sw2∧¬light) holds: we do not want to
accept that togglingsw2 in the state{sw1,¬sw2,¬light}
mysteriously changes the position ofsw1 and lets¬light
persist. To avoid this extension it is essential that causal
rules are directional (see [1, 15, 12, 21]). Indeed, the causal
rules in Π are different from the constraint2((sw1 ↔
sw2) → light) and, in particular, they do not entail the
formula¬sw1 ∧ ¬light → sw2. As observed in [12] and
[21], though this formula must be clearly true in any state,
it should not be applied for making causal inferences. In
our formalism, contraposition of causal implication is ruled
out by the fact that the conditional> is not reflexive: from
2(α > β) and2¬β we cannot conclude2¬α. On the
other hand, it is easy to see that, in any state of any exten-
sion, if α > β holds, andα holds,β also holds.

Our solution to the frame problem is an abductive solution
and is very different from the solution proposed for EPDL
in [3]. There persistency laws of the forml → [a]l are
added explicitly at every state. In EPDL, persistency laws
are not global to an extension but they have to be added
state by state, according to which action is expected. In
our theory, the frame problem is solved globally by mini-
mizing changes modulo causation. As a further difference,
in [3] unexpected solutions can be obtained by adding per-
sistency laws as above to the domain description. As ob-
served by Zhang and Foo (see [3], Example 4.1) in the cir-
cuit example above the stateS1 = {sw1,¬sw2,¬light}
has two possible next states under actiontoggle2, namely
S′2 = {sw1, sw2, light} andS′′2 = {¬sw1, sw2,¬light}.
The second one is unexpected.

This behaviour is a side effect of (MP), which holds for
EPDL and allows the material implication to be derived
form the causal implication. To overcome this problem,
Zhang and Foo propose an alternative approach to define
the next-state function which makes use of a fixpoint prop-
erty in the style of McCain and Turner’s fixpiont property
[15]. Their definition employs the causal operator for deter-
mining whether the indirect effects of the action are caused
by its immediate effects together with the unchanged part
of the state, according to the causal laws. It has to be ob-
served, that this definition of the next state function does
not require any integrated use of causal laws and action
laws in the theory. In fact, “if the direct effects of an ac-
tion have been given,EPDL− [that is, the logic obtained
from EPDL when the set of action symbols is empty] is
enough to determine how effects of actions are propagated
by causal laws” [3]. On the contrary, our solution to the
frame problem in the conditional logic CA relies on an in-
tegrated use of action laws and causal laws to derive con-
clusion about actions effects.

A domain description may have extensions containing a
formulaA > ⊥. Consider the following example also men-

tioned by [15]:

Π: 2(do(a) > p) 2(q > ¬p)
Obs: do(ε) > (q ∧ ¬p)
Frame0 = {(f, a) : a ∈ ∆0, f ∈ F}.

If q ∧ ¬p holds in the initial state, performing actiona
makesp true, but this cannot block the persistency ofq
since¬q cannot be derived fromp since the causal rule is
not contrapositive. However, assuming thatq persists after
the action leads todo(a) > q , sinceq > ¬p, by (CE),
we derivedo(a) > ¬p from which we get together with
do(a) > p, do(a) > ⊥. This means that the execution
of actiona leads to an inconsistent state, i.e.a cannot be
executed in the state in whichq ∧ ¬p holds.

Another situation which can lead to an inconsistent state
can occur when two conflicting actions are executed simul-
taneously. In [4], conflicting actions could occur leading
to inconsistent states. In this present theory, the concur-
rent application of two actionsa and b is only possible
when these actions are independent, i.e. whenΠ contains
2(¬(do(a) > ¬do(b)) ∧ ¬(do(b) > ¬do(a))).

Example 5 Consider a swinging door and two actions
push in andpush out the first one opening the door by
pushing from out-side to open it and the second by pushing
it in the opposite direction. We get the following formal-
ization:

Π:2(do(push in) > open in)
2(do(push out) > open out)
2(open in > ¬open out)
2(open out > ¬open in)
2(¬(do(push in) > ¬do(push out)))
2(¬(do(push out) > ¬do(push in)))

Frame0= {(f, a) : a ∈ ∆0, f ∈ F}.

Both actions are independent. But when trying to perform
them at the same moment, nothing would happen, because
there is a conflict between the effects of the two actions.
The door stays in the same position. All the extensions of
the theory contain the formulas:

(1) do(push in) > open in,
(2) do(push out) > open out,
(3) do(push in) ∧ do(push out) > ⊥.

Let us reconsider example 1 modified such that the two
switches form a two-way wiring.

Example 6 There is a two-way wiring circuit with two
two-way switches and a lamp. There are two actions of
toggling each of the switches and the lamp is alight when
the two switches are in the same position. Toggling any



of the switches changes the light (from on to off or vice-
versa). We have, fori = 1, 2:

Π: 2(¬swi → (do(tgi) > swi))
2(swi → (do(tgi) > ¬swi))
2(sw1 ↔ sw2 > light)
2(¬(sw1 ↔ sw2) > ¬light)
2(¬(do(tg1) > ¬do(tg2)))
2(¬(do(tg2) > ¬do(tg1)))

Obs: do(ε) > (sw1 ∧ ¬sw2 ∧ ¬light)
Frame0 = {(f, a) : a ∈ ∆0, f ∈ F}.

As before, the first four rules inΠ describe the immedi-
ate effects of the action of toggling one of the switches.
All fluents are regarded as being persistent and the two
toggling actions are independent. The domain description
(Π, F rame0, Obs) has one extensionE relative to the ac-
tion sequence{do(tg1)}, {do(tg2)} containing the frame
axioms:

¬sw2 → (do(tg1) > ¬sw2)
do(tg1) > (¬sw1 → (do(tg2) > ¬sw1).

The following formulas are derivable inE:

(1) do(tg1) > light,
(2) do(tg1) > (do(tg2) > ¬light),
(3) (do(tg1) ∧ do(tg2)) > ¬light,
(4) do(tg1) > ((do(tg1) ∧ do(tg2)) > light),
(5) 2(light → (do(tg1) ∧ do(tg2) > light)),
(6) 2(¬light → (do(tg1)∧do(tg2) > ¬light)).

We can see that the concurrent execution of both toggling
actions never changes the status of the lamp, who remains
alight (5) or not alight (6). This is true in the domain frame
independently of specific observations. Moreover, (3), (5)
and (6) are monotonically derivable from the domain de-
scription and they hold in all extensions.

4 Conclusion

We have presented a new logical approach to actions and
causality which uses a single implication> for causal con-
sequence. Action execution and causal implication are rep-
resented uniformly. This makes it possible to integrate rea-
soning about mutual action dependence or independence
into the language of the logic itself. This possibility distin-
guishes our approach from many other approaches, for ex-
ample [14], who formulate dependencies outside the logic.
Our action language can handle (co-operating, independent
and conflicting) concurrent actions in a natural way with-
out adding extra formal devices, and we believe that the
language can be naturally extended to handle other boolean
expressions concerning action performance.
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Appendix

Proof of the completeness theorem

The completeness is shown by the construction of a canon-
ical model. We construct a model such that for any consis-
tent formulaA (i.e. any formulaA, such that6` ¬A), there
is a world in this model satisfyingA. Moreover, we show
that the semantic properties ofAC (S-CV, S-OR, etc.) hold
in the canonical model.

Definition 5

1. A set of formulasΓ is called inconsistentiff there is
a finite subset ofΓ, {F1, . . . Fn} such that̀ ¬F1 ∨
¬F2 ∨ . . .¬Fn. Γ is calledconsistentif it is not in-
consistent. IfΓ contains only one formulaF , we say
thatF is (in)consistent.

2. A set of formulasΓ is calledmaximal inconsistentiff it
is consistent and if for any formulaF not inΓ, Γ∪{F}
is inconsistent.

We presuppose a number of properties of maximal consis-
tent formula sets the proof of which can be found in most
text books of formal logic (see e.g. [20].

The canonical modelCM is defined by CM =<
W, f, [[]] > where

1. W is the set of all maximal consistent formula sets of
AC.
We set‖A‖ = {w : w ∈ W andA ∈ w} for any
formulaA.

2. f(A,w) = {w′ : w′ ∈ W andwA ⊆ w′},
where, for anyw ∈ W , wA = {B : A > B ∈ w}

3. for any atomp ∈ ATM , [[p]] = {w : p ∈ w}

[[]] is extended to formulas as usual.

We first will show that for any formulaA, ‖A‖ = [[A]].
This is proven by induction on the degree of the conditional
formulas. First we need the following lemma concerning
conditionals.

Lemma 1 For any conditional formula we haveA > B ∈
w iff for all w′ ∈ f(A,w), B ∈ w′

Proof: The first half follows immediately from the defini-
tion of the selection functionf . For the second half, we
first observe thatwA ∪ {¬B} is an inconsistent formula
set. Suppose for the contrary, thatwA ∪ {¬B} is consis-
tent. Then it is included in a maximal consistent formula
set w′ ∈ W , wA ∪ {¬B} ⊆ w′. But thenwA ⊆ w′,
which means thatw′ ∈ f(A, w). From this follows by
our precondition thatB ∈ w′. This is a contradiction to
¬B ∈ w′, sincew′ is consistent. SincewA ∪ {¬B} is
inconsistent, there are formulas{F1, . . . Fn} ⊆ wA such
that` ¬F1 ∨ ¬F2 ∨ . . . ∨B. By the rules of propositional
calculus and rule RCK, we concludè(A > F1) ∧ (A >
F2) ∧ . . . (A > Fn) → (A > B). But A > Fi ∈ w for
1 ≤ i ≤ n, henceA > B ∈ w by the maximality of w.
Q.E.D.

We now proceed proving‖A‖ = [[A]] for arbitrary formula
A. This is shown by induction on the degree ofA.

• If A is a classical formula (degree(A) = 0), then by
construction of the canonical model and the definition



of the valuation function[[]], we get straightforwardly
thatw ∈ ‖A‖ iff w ∈ [[A]], which means that‖A‖ =
[[A]].

• Suppose, that we have‖F‖ = [[F ]] for all formulasF
which have a degree less thann. Let beA > B a for-
mula of degreen. Let bew ∈ ‖A > B‖. By the defi-
nition of ‖A > B‖, this is equivalent toA > B ∈ w.
By lemma 1, this is the case iff for allw′ ∈ f(A,w),
B ∈ w. By the definition of‖B‖, we get equivalently
∀w′ ∈ f(A, w), w ∈ ‖B‖. By induction hypothe-
sis, sincedegree(B) < n, we can replace‖B‖ by
[[B]] and we get∀w′ ∈ f(A,w), w ∈ [[B]]. And
this is the case ifff(A,w) ⊆ [[B]] which means that
w ∈ [[A > B]].

It remains to show that the canonical model CM has the
properties required by our logic AC, provided the corre-
sponding axioms belong to the logic (S-CV, S-CV, . . . )

• S-RCEA if [[A]] = [[B]] thenf(A,w) = f(B,w)
If [[A]] = [[B]] by the maximality ofw, we get that
A ↔ B ∈ w. By RCEA, it follows thatA > C ↔
B > C ∈ w, from which we getf(A, w) = f(B, w).

• (S-CV) if f(A, w) ∩ [[C]] 6= ∅ thenf(A ∧ C, w) ⊆
f(A,w)
Let bew′ ∈ f(A ∧C, w) iff wA∧C ⊆ w′. By precon-
dition, we havef(A,w)∩ [[C]] 6= ∅ which means that
¬(A > ¬C) ∈ w. This yields using axiom CV,(A >
B) → (A ∧ C > B) ∈ w. From this we conclude
{B : A > B ∈ w} ⊆ {B : A ∧ C > B ∈ w} which
means thatwA ⊆ wA∧C . Hence we getwA ⊆ w′, i.e.
w′ ∈ f(A,w).

• (S-CA)f(A ∨B,w) ⊆ f(A,w) ∪ f(B,w)
Suppose for the contrary that there isw1 ∈ W such
thatw1 6∈ f(A,w) andw1 6∈ f(B,w). Then there are
formulasF1 andF2 such thatA > F1 ∈ w andF1 6∈
w1 andB > F2 ∈ w andF2 6∈ w1 by the definition of
the selection function of the canonical model. Since
w1 is maximal consistent, we have that¬F1 ∈ w1 and
¬F2 ∈ w1. By RCK and the maximality ofw1 , we get
A > F1∨F2 ∈ w1 andB > F1∨F2 ∈ w1. By axiom
CA this yieldsA ∨ B > F1 ∨ F2 ∈ w1, from which
follows thatF1 ∨F2 ∈ wA∨B . Hence we cannot have
wA∨B ⊆ w1 because this would contradict¬F1 ∈ w1

and¬F2 ∈ w1 (maximality ofw1). Thereforew1 6∈
f(A ∨B, w).

• (S-CHAINING) if f(A,w) ⊆ [[B]] thenf(A,w) ⊆
f(B, f(A,w))
wheref(B, f(A,w)) represent the set of worlds{z ∈
f(B, x) : x ∈ f(A,w)}.
By the precondition, we haveA > B ∈ w; by axiom

CE, we then get(A > (B > C)) → (A > C) ∈ w.
But this means that{F : B > F ∈ wA} ⊆ {F :
A > F ∈ w}, where{F : A > F ∈ w} = wA.
Let bew′ ∈ f(A,w), i.e. wA ⊆ w′. Then we have
{F : B > F ∈ wA} ⊆ w′. This means thatw′ ∈
f(B, f(A,w)).

• (S-MOD) if f(B,w) ∩ [[A]] 6= ∅ thenf(A,w) 6= ∅
If f(A,w) = ∅ thenA > ⊥ ∈ w, from which follows
that B > ¬A ∈ w by axiom MOD. This is equiv-
alent tof(B,w) ⊆ [[¬A]], which gives equivalently
f(B,w) 6⊆ [[A]], i.e. f(B,w) ∩ [[A]] = ∅.

Proof of the completeness theorem: Proof: Let beA a for-
mula not derivable in AC. Then6` A, i.e. {¬A} is consis-
tent. Then there is a maximal set of formulasw such that
¬A ∈ w. And this means that the canonical model CM
satisfies¬A, i.e. CM, w 6|= A. Q.E.D.


