Towards a Conditional Logic of Actions and Causation

Laura Giordano Camilla Schwind
Dipartimento di Informatica MAP, UMR CNRS - MCC N 694
Universitx del Piemonte Orientale 183 Avenue de Luminy, Case 901
Corso Borsalino 54 - 15100 Alessandria, Italy 13288 Marseille Cedex 9, France,
E-mail: laura@di.unito.it E-mail: Camilla.Schwind@gamsau.map.archi.fr
Abstract as well as a uniform representation of direct and indirect

effects of actions. But the notion of causality as defined
in EPDL is too strong since it entails material implication.
This property[¢]Y — (¢ — 1), comes from a crucial ax-
iom introduced for actions in EPDL, and is motivated by
the fact that when $ causes)” then the state constraint
¢ — 1 must also hold. While we agree with this argu-
ment, we may object that the status of causal laws (and
consequently of material implications) in [23] is not that
of domain constraints. Instead, causal laws are regarded
as domain axioms, which gives the corresponding material
implications also the status of domain axioms, so that they
can be used for inference in all possible states. In particu-
lar, this allows a contrapositive use of material implications
¢ — 1, which may lead to unintended conclusions. There-
fore, though EPDL preserves the directionality of causation
1 Introduction (from [¢]+» we cannot conclude thét]—¢), the fact that
causation entails material implication (frofg]:) we can
Causality plays a prominent role in the context of reason<onclude thatp — 1« and thus thaty) — —¢) anyhow
ing about actions, as the ramification effects of actiondeads to unwanted conclusions when reasoning about the
can be regarded as causal dependencies. Many approacledtects of actions. Another difference with our present ap-
for reasoning about actions have been proposed which aproach is due to the different modelization of actions. In
low causal dependencies to be captured [5, 13, 16, 21, 1EPDL, syntactically, actions are not formulas. This makes
Schwind [18] has studied how causal inferences have beeihimpossible to combine assertions about actions with as-
integrated and used in action theories by analyzing fousertions about causality. Concurrent actions cannot be con-
formalisms, which are approaches to action and causalitygtructed from single actions. It is not possible to express
and comparing them with respect to criteria she establishetbr example that action and factB cause the effed’.
for causality. Namely, the article analyses Lin’s approacrw

. . X e propose to represent causality by a binary logical oper-
[12, 13], McCain and Turner’s causal theory for action and . : .
. e tor. lit tor has th t f lit

change [16, 22], Thielscher's theory of ramification anda or. Our causality operator has the properties of causality

. i . ) lati di din [18] and -perh [ tant-
causation [21], and Giordano, Martelli and Schwind’s dy- relations as discussed in [18] and -perhaps more importan

. . _ does not have some of the undesired (or doubtful) proper-
namic causal action logic [6]. More recently, Zhang and v Y ired ( ubtful) prop

Foo 123 2. 3 M tend itional d ._ties many other approaches have. Our causal operator is not
00 [23, 2, 3] propose to extend propositiona YNami€, snotonic and does not entail material implication which

!?glc, vr\]/h(:]re actions artt_a modglltntas, byC:ntrodu?_ng mOdaI'makes it weaker than the one proposed in [23]. Tradition-
ities which are propositions. Sentengecauses)” is rep- ally, considering a conditional as a causal implication has

resented by_the formul{aﬁ]z/)_, where[¢] is a new modallt_y_. frequently attracted the attention of logicians in conditional
Note that this representation corresponds to a cond|t|ona} gic ([10, 11]. It allows to model both causal laws and ac-
logic approach, since EPDL formulajy) is interpreted as tion Iaws:’ the causal law¢' causes)” is represented by

condmonal formqla¢ > 1. Zhang and FOOS_ approach hqs the conditional formul@ > 1) and the action law “action
the merit of providing a clean representation of causation

In this paper we present a new approach to reason
about actions and causation which is based on a
conditional logic. The conditional implication is
interpreted as causal implication. This makes it
possible to formalize in a uniform way causal de-
pendencies between actions and their immediate
and indirect effects. Furthermore, this new ap-
proach provides a natural formalization of con-
current actions and causal dependencies between
actions. An abductive semantics is adopted for
dealing with the frame problem.



causes proposition” is represented by the conditional for- unwanted properties of causality. Reflexivity axiom (ID)
mulado(a) > 1, wheredo(a) is a special atomic proposi- A > Ais excluded since a proposition (or an action) should
tion associated with each actien This uniform represen- not cause itself. Axiom (MPYA > B) — (A — B)
tation of the causal relationship between actions and theishould not hold for causal implication, because we do not
results as well as between facts and their effects gives usant to be able to infer the material implication from a
a great flexibility for handling both concepts in an simple causal rule, since the former is stronger and would give
way when representing actions. For example, in this setundesired properties to the latter. (CS)\ B — (A > B)
ting, concurrent execution of actions is naturally modelledshould not be a property of causal implication sintand

by conjunctions of the formio(a;)A. .. Ado(ay,) inthean- B could both hold conjunctively without being a cause
tecedents of conditionals. It is also very natural to expressf B.

depend_ency (an_d mdependency)_ relations between aCtIOr,l\sxiom (CE) allows action laws and causal laws to inter-
and actions, actions and propositions, etc.

act, it provides the chain effects between causal laws and
action laws. (CE) says that the causal consequences of ac-
2 The Causal Action Logic AC tion effects are in turn action effects: if executing action

(in a stateS) causesB in the next state S'do(a) > B),
The languagef ., of our action logic is that of proposi- and the causal lawB > C holds inS’, then executing
tional logic augmented with a conditional operatarThe  actiona (in S) causesC to hold in S’. (CE) weakens
set of propositional variables ifi-., Var, includes the set (MP) as it is clear form the following formulation of (CE)
{do(a) : a € Ay}, whereA is a set ofelementary ac- (do(a) > (B > C)) — ((do(a) > B) — (do(a) > C)),
tions including the “empty” actione. Formulas are de- which is obtained fron{M P) by (RCK). (CE) has simi-
fined as usual and the modalitiesand <& are defined by larities with the property of transitivity (TRANS)Yo(a) >
0OA = (-A > 1) andCA = —0-A. Intuitively, DA B) A (B > C) — (do(a) > C)*, which however requires
means thatd necessarily holds, whil®& A means thatd  that the causal laws > C holds in the state& in which
is possible. IfA is an action propositiodo(a), ¢do(a)  the action is executed. As we will see in our action theory
means that is executable. In order to express that a propo-causal laws do not necessarily hold in all possible states,
sitionalwaysholds, we introduce the additional operatar ~ as they may have preconditions which make them hold in
OA = (OA A A). The following is an axiom system for some states onf.

logic AC (MOD) allows to deducedA — (do(a;) > ... >
We define an axiom system for logitC' as follows: (do(a,) > A)...) for any finite sequence of actions
ai, . ..a, (n > 0)including the empty sequence and mean-
Definition 1 (AC) The conditional logic AC is the smallest ing that a formulad which is true in every state is also true
logic containing the following axioms and deduction rules: after the occurrence of any finite sequence of actions. So,
the subsequent occurrence of actions structures a world and
(CLASS) All classical propositional axioms and inferenceits subsequent states according to time, although time is not

rules represented explicitly in our formalism.
(CV) (~(A>—~C)A(A> B)) = (AANC) > B) Entailment- is defined as usual and given a set of formulas
E, the deductive closure df is denoted byl'h(E). AC
(CAA(A>C)N(B>C)—((AVvB)>C) is characterized semantically in terms of selection function
models.
(CE)(do(a) > B)A(do(a) > (B > C)) — (do(a) > C)
wherea € Ag Definition 2 An AC-structureM is a triplet (W, £, [[1]),
(MOD) OA — (do(a) > A) wherea € Ag where W is a non-empty set, whose elements are called pos-
sible worlds, f, calledthe selection functignis a function
(RCEA) if+ A «+» B,then- (A > C)= (B > () of typeL~ x W— 2" [[]], called the evaluation function,

(RCK) if- A, A A A B th is a function of typel~. — 2" that assigns a subset of W,
i 1A » — B, then

F(C>A)N...AN(C>A,)— (C>B). 'For standard conditional logic with reflexivity, adding

TRANS would collapse the conditional to material implication.
Note that all axioms and inference rules are standard ifput this is not the case for our causal action logic AC, since re-
conditional logics and, in particular, they belong to the ax_flex2|wty A> Ais notanaxiom. - .
. o -, . As an example of causal law with precondition consider the
iomatization of Lewis’s logicV'C (see [17]). .However, following one: T(at(y, r) — (at(z,r) > at(y, next(r))) used
we ha.Ve eXCIUded Several of the Standard axioms of Cond‘n Examp|e 4 be|0W’ which says that if b|ogks atr then moving
tional logics such as (ID), (MP) and (CS) since they modelblock = to positionr causes; to move to a next position.



[[A]] to each formulaA. The following conditions have to or! = —f, we define|l| = f. Moreover, we will denote
be fulfilled by[[ |]: by F the set of all fluent names, kit the set of all fluent
literals, and by small greek lettess 3, . . . any formula not

(1) [[A A B]] = [[4]] N [[B]] containing conditional formulas.
(2) [-A]] = W — [[A]]® We define adomain descriptioras a tuple(Il, Frameq,
(3) [[A> Bl = {w: f(A,w) C[[B]}} Obs). 1I is a set ofaction laws causal laws precoon-

dition laws domain constraint&nd causal independency

We assume that the selection functjosatisfies the follow- ~ constraints
ing properties which correspond to the axioms of our logic action lawshave the form:
AC:

O(m — (do(a) > p)),
for an actiona with preconditionr and effectp: executing
(S-CV)iff(A,w)N[[C]] # Bthenf(AANC,w) C f(A,w)  actiona in a state wherer holds causeg to hold in the

resulting state. For action laws with no precondition, i. e.
(S-CA)f(AV B,w) C f(A,w)U f(B,w) 7 = true, we just obtaind(do(a) > p).

(S-CE) iff(do(a),w) C [[B]] Causal lawshave the form:
then f(do(a), w) C f(B, f(do(a),w))

(S-MOD) if f(B,w) N [[do(a)]] # 0
then f(do(a), w) # 0, meaning that “ifr holds, ther causess”.

(S-RCEA) if[A]] = [[B]] then f(A, w) = f(B,w)

O — (a > p)),

wherea € Ag and f(B, f(do(a),w)) represents the set of Precondition lawshave the form:

worlds{z € f(B,z) : x € f(do(a), w)}. T(r = —(do(a) > 1)),

We say that a formulal is true in a AC-structuré/ =  meaning that “action is executable iffr holds”. Accord-

(W, £, [0]) if [[A]] = W. We say that a formula is AC-  ing to the definition of<, this is equivalent tad(r =
valid (= A)if it is true in every AC-structure. We also Odo(a)).

introduce the following notatioff =), A to say that, given
a AC-structure M, a set of formulagsand a formula4, for
allw e M if w e [[B]] forall B € S, thenw € [[4]].

Domain constrainténclude formulas of the form:

Do

The above axiom system is sound and complete with re- .
spect to this semantics. (meaning that & always holds”).

) Causal independency constraititave the form:
Theorem1 = Aiff H A

O(-(A > -B)),
The completeness proof is shown by the canonical model
construction [19] and can be found in the appendix. Moresmeaning thatd does not causeB (that is, B might be true
over, the axiomatization is consistent and the logic is dein a possible situation caused bY). In particular, when
cidable. Since the logic AC is weaker than VC, each VC-the above constraints concern action execution, we have
structure is an AC-structure, which shows that the logic ACO—(do(a) > —do(b)), meaning that the execution of action
is "non-trivial” in some sense. a does not prevent actiadnfrom being executed (does not
interfere with its execution). Note that as a consequence
of this constraint we have, by (CV), théio(a) > C) —
(do(a) A do(b) > C), namely, the effects of actiom are
also effects of the concurrent executioncofind b, asa
does not interfere with. Moreover, from(do(a) > 1) —

We use atomic propositiong f1, fa,... € Var for fluent  (do(a) A do(b) > L), we have that i is not executable it
names A fluent literal denoted by , is a fluent namegf  cannot be executed concurrently with
or its negation~f. Given a fluent literal, such that = /' prqme, is a set of pairg f, do(a)), wheref € Fis a

3Using the standard boolean equivalences, we objfainy fluent anda € A is an elementary action, meaning tifat
B]] = [[A]JV[[B]], [[A — B]] = W—[[A])U[[B]},[[T]] =w, isaframe fluenfor actiona, thatis, f is a fluent to which
1] =0. persistency applies whenis executed. Fluents which are

3 Action Theories

3.1 Domain descriptions



non-frame with respect te do not persist and may change
in a nondeterministic way whenoccurs.

The set Frameqy defines a sort ofindependenceela-
tionship between elementary actions and fluents. It i
closely related to dependency (and influence) relations th
have been used and studied by several authors inclu
ing Thielscher [21], Giunchiglia and Lifschitz [7], and
Castilho, Gasquet and Herzig [14]. We uBeame, for
defining persistency rules of the fory > ... > A, >
(I — (do(a) > 1)) for every literall, such that(|i|,a) €
Framey. These persistency rules behave likefaults

they belong to an “action extension” whenever no incon-

sistency arises. Thé&'rameg-relationship is extended to
concurrent actions. Let us denote Byame the exten-
sion of Frameg to concurrent actions. (if'rameg C
Frame; (i) If (f,do(a1)),...,(f,do(an)) € Frame
then(f,do(a1) A ... Ado(ayn)) € Frame.

Obs is a set of observations about the value of fluents in

different stateswhich we identify with action sequences.

Though our language does not provide an explicit repre
sentation of time, as we abandon (MP), time can be em

bedded in the operatas. Given the properties of we

:

swi A sweg > light)

—swy V —swy > —light)

~(doltgn) > ~do(tg2))

~(doltgs) > ~doltgr))

bs:  do(e) > (—swi A —swa A —light)
rameg = {(f,a):a € Ag, f € F}.

The first two rules inIl describe the immediate effects
of the action of toggling a switch. The third and forth
rule are causal laws which describe the dependencies of
the light on the status of the switches. The last two laws
are constraints saying that the two actians and tg,

do not interfere. All fluents are supposed to be persis-
tent and the actiongg; andtg, are independent. As we
will see, from the above domain description we can de-
rive do(tgr) > —light, do(tg1) > do(tga) > light and
do(tgr)Ado(tga) > (sw1AswaAlight) (as actionglo(tg, )
anddo(tg;) are independent).

Observe that we could have avoided introduciigyht in
Ehe initial state, as it can be derived, for instance, from
—swy: from do(e) > —sw; and the forth action law we

can derivedo(e) > —light by (CE).

assume a delay between happening of an action and odhe axiom (CA) makes it possible to deduce consequences
currence of its effects, while we do not assume any delapf actions even when it is not deterministically known
between causes and their effects in causal laws. Observahich action occurs.

tions are formulas of the formd; > ... > A; > a (where
eachA; is a possibly concurrent action formula of the form
do(a1) A...Ado(ay)), meaning thatv holds after the con-
current execution of the actions i, then those inA,,
..., thenthose of inl,,. So, every acction occurrence leads

Example 2 If the temperature is low, then going to swim
causes you to get a cold. If you have no umbrella, then rain-
ing causes you to get cold. We have the following domain
description:

from one state to the new state. In particular, we assume an

initial state characterized by the occurrence of the emptyll:

actione. If Obs contains observations about fluents in
the initial state this is written ago(e) > o*.

. . . T
Sometimes, when we do not want to consider observations,

we will then use the notion oflomain frame which is a
pair (I, Framey).

Let us consider the following example from [23], which
formalizes an electrical circuit with two serial switches.

Example 1 There is a circuit with two switches and a
lamp. If both switches are on, the lamp is alight. One of th
switches being off causes the lamp not to be alight. Ther
are two actions of toggling each of the switches. The do
main description is the following (far= 1, 2):

I: O(—sw; — (do(tg;) > sw;))

O(sw; — (do(tg;) > —sw;))

“In the following, when identifying a state with an action se-
quenceAs, ..., A;, we will implicitly assume thatd; = do(e).
Also, in a conditional formulad; > ... > A; > «, we will
assume thatl; = do(e).

€,

O(cold — (do(swim) > get_cold))
O(no_umbrella — (do(rain) > get_cold))
do(€) > (cold A no_umbrella)

Frameo= {(f,a) :a € Ay, f € F}

Obs:

From this theory, we can derivé(swim) V do(rain) >
get_cold.

The following example is inspired by one discussed by
Halpern and Pearl in [8]. Suppose that heavy rain occurred
in April causing wet forests in May and electrical storms in
May and June. The lightning in May did not cause forest
fires since the forests were still wet. But the lightning in
Sune did since the forest dried in the meantime. Pearl and
Halpern argue that the April rain caused that the fire did not
occur in May and occurred in June instead. We think rather
that the April rain prevents the fire from occurring in may

which is expressed by the precondition of the action law.

Example 3 iisranging over months, such that 1 is the
month following:.

II:T(do(rain;) > wet_forest; 1)



do(rain;) > (do(lightning;y+1) A do(lightning;12)))
wet_forest; — (do(lightning;) > —forest_fire;))
—wet_forest; — (do(lightning;) > forest_fire;))
do(sun;) > —~wet_forest;i1)
=(do(sun;) > —~do(rain;))) (for i # j)
=(do(rain;) > —~do(sun;))) (for i # j)

{
Frameo= {(f,a) : a € Ao, f € F}.

—_— e~~~

(@)
@ O oo dal o

The second action law allows to say that rain in April
causes electrical storms in May and June.

From the first two action laws we derive
do(rain apri) > (wet_forestyray A do(lightningaraey) A
do(lightningjune)). Then by (CE), from the third
action law (fori = May) we getdo(rainapri) >
~forest_firepray.

Moreover, it hods that T(do(sunray) >
—wet_forestune) (fifth action law) and, as ac-
tions do(rainapry) and do(sunp,,) are indepen-
dent, we can derivelo(rainapri) N do(sunnrey) >
(—wet_forest june A do(lightning june)). Then, by (CE),
from the forth action law (fori = June), we conclude:
do(rain apri) A do(sunnrey) > forest_fire june.

Therefore, we have thalo(rain ap,i) A do(sunpzay) >
~forest_firenray Nforest_fire june.

The following example, taken from [5], involves causal
laws with preconditions.

Example 4 Consider the following scenario, where a

3.2 Extensions for a domain description

In order to address the frame problem, we introduce a set of
persistency laws, which can be assumed in each extension.
Persistency laws are essentially frame axioms. They are
used, in addition to the formulas Ih, to determine the next
state when an action is performed. As a difference with
the formulas inIl, persistency laws ardefeasible They

are regarded as assumptions to be maximized. Changes in
the world are minimized by maximizing these assumptions.
Moreover, persistency laws have to be assumed if this does
not lead to inconsistencies.

Let A4,..., A, be (possibly) concurrent actions of the
formdo(ai) A ... Ado(a,) (for m = 1 we have an atomic
action). We introduce a set persistency lawsf the form
A > ...> A, > (I — (A > 1)) for every sequence
of (concurrent) actiongl, ..., A,, and for every fluent lit-
erall which is a frame fluent with respect to the (concur-
rent) actionA4 (according to the definition df rame in the
last subsection), that is, for every fluent litetalhich is
frame forevery elementary actiom A. The persistency
law says, that, “if holds in the state obtained by executing
the sequence of action4,, ..., 4, thenl persists after
executing actiom in that state’.

Our notion of extension will require to introduce two dif-
ferent kinds of assumptions. The first kind of assumptions,
as we have seen, are persistency assumptions. Given a set
Frame of frame fluents, the set of persistency assumptions
W P4, .. a, is defined as follows:

WPa,, oa,={A1>...>A4,>(1— (A>1])):

number of blocks are in a sequence: when the first block, (I1], A) € Frame).

a, is pushed from the placg, to the placep,, all other
blocks move also to the next place. ket ... p, be places
and a,b,c be blocks, and lepush(z,p) be the action
which consists in pushing the bloakfrom the placep to

the next placewezt(p).

I:  O(at(x,p) — (do(push(z,p)) > at(x,next(p))))
O(at(y,r) A (at(z,7) > at(y, next(r)))), for z # y
O(at(z, p) > —at(z,q)), forp # g

Obs: do(e) > (at(a,p1) A at(b,p2) A at(c, ps))

The first (action) law says that, if blockis in p, pushing
a from the placep moves it to the next placeext(p). The
second (causal) law says that if bloghs atr then moving
block z to positionr causeg, to move to a next position.
The third laws causes block not to be atg if it is at p
(different from q).

Given the initial state, it holds thatdo(push(a,p1)) >
(at(a,p2) A at(b, p3) A at(c, pa)).

Note that the set of persistency assumptions has been de-
fined relative to a sequence of (concurrent) actions, that is,
a state.

In addition to persistency assumptions, we introduce an-
other kind of assumptions, which are needed to deal with
non frame fluents. If a fluenf is not persistent with re-
spect to a concurrent actiof then, in the state obtained
after executing4, the value off might be either true or
false. Hence, we introduce assumptions which allow to as-
sume, in any state, the value true or false for each nonframe
fluent f, as well as assumptions for all fluents in the ini-
tial state. Given a sef'rame of frame fluents, we define
the set of assumptiondss 4, ... 4, (relative to a sequence
Aq,..., A,) as follows:

Assay,oa, ={A1>...> A, >1: (|l|,A,) &
Frame} U{do(e) >1: 1 € Lit}

®Notice that introducing persistency laws of the for —
(A > 1)) wouldn’t be enough to deal with the persistency of lit-
erals at each different state.



We represent a generic assumption in this setdpy > scribes a single course of actions, and assumptions are lo-
. > A, > [, which includes assumptions on the initial calized to that sequence of actions. In this way, we deal
state (forn = 0). with concurrent actions without the need of introducing
two different modalities for actions, which in [4] are called
open and closed modalities and they are introduced to avoid
that the (AND) law o(a) > C — do(a) A do(b) > C)
is applied to the non-monotonic consequences of actions,
derived by means of the persistency assumptions. In our
present approach, we can deriga) A do(b) > C from
do(a) > C using the axiom (CV) provided andb are
independent. Independency is formulated in the action lan-
guage by-(do(a) > —=do(b)) A =(do(b) > —do(a)).

Now we can introduce our notion of extension, first for do-
main framey(II, Frameg), and then for domain descrip-
tions (II, Frameg, Obs). An extensionE of a domain
frame is obtained by augmentiig by as many as possi-
ble persistency laws, such thatis consistent. We define
an extensiomelative to a statewhich can be identified by
the sequence of actions, . .., A,, leading to that state.

Definition 3 An extensionof a domain frameD =

(I1, Frame) relative to the action sequencé, ..., A4, Let us consider again Example 1. Relative to the action
is asetll = Th(IlU WP’ U F), such thatWP’ C  sequencddo(e)}, {do(tg:)}, {do(tg2)} we get one exten-
WPa,, . a,, F CAssa, . a,and sion E containing the frame laws
a)ifAy>...>A, 1> (10— (A, >1)) € WPy, . a, =light — (do(tgr) > —light,

then: —swe — (do(tgy) > —sws,

Ay > .. > A1 >0 — (A, >1) e WP do(tgr) > (swy — (do(tge) > swy)),

— A1 >...>A,>-l¢FE

b) if Ay > ... > A, > 1 ¢ Assa, 4. then in which the following sentences hold:

A1 >...> A, >l e F < A >...> A, >

-1 ¢E. (1) do(tg1) > —light,
(2) do(tgr) > (do(tgz) > light),
The =-part of condition a) is a consistency condition, gig 32853 iizﬁz%)gs j\lii}:z;fgz)) > —light).
which guarantees that a persistency axidm > ... >
Ap—1 > (I = (4, > 1)) cannot be assumed i P’ if . _
-l can be deduced as an immediate or indirect effect of th@‘n extensioni relative 04y, ..., A, determines an initial
action 4,,. We say that the formuld; > ... > A, > -l state and a transition funct|on among the states obtained
by executing actionsly, ..., A,. In particular, thestate

blocks the persistency axiom. The-part of condition a) is
a maximality condition which forces the persistency axiom
to be assumed i P’, if the formulad; > ... > A, >
=l is not proved. Condition b) forces each state of an ex- E

: - . ={l: EFA>...>A; >1
tension to be complete: for all finite sequences of actions vty =4 1> >4 >0
Ay, ..., A, each non persistent fluent must be assumed t(@

reachable through an action sequerge. .., 4; (0 < j <
n) in E can be defined as :

be true or false in the state obtained after executing them. | where5.” represents the initial state). Due to condition
particular, since the sequence of actions may be empty, th ) of def|n|t|on 3, we can prove that each stS@ -----

initial state has to be complete in a given extendibiT his ’ complete for each fluentf, it contains eithe or -

. . . ! . o . . Moreover, it can be shown that the state obtained after ex-
is essential for dealing with domain descriptions in which

o o - . . ecution of the sequence of actiods, ..., A,, is only de-
the initial state is incompletely specified and with postdic- . : -
. - S . termined by the assumptions made from the initial state up
tion. The conditions above have a clear similarity with the

S . . . to that state.
applicability conditions for a default rule in an extension.

Referring to Example 1,the extensidghabove relative to

Definition 4 E is an extension for a domain descrip- the action sequencglo(e)}, {do(tg1)}, {do(tg)} deter-
tion (II, Frame, Obs) relative to the action sequence mines the following states:

Aq,..., A, ifitis an extension for the domain frame
(II, Frame) relative to the action sequencé,..., A, SE = {~swr, ~sws, ~light}
andE F Obs. ’ !

S’{do(e)} (do(tgr)} = {sw1, ~swa, ~light}

Notice that first we have defined extensions of a domain S{do(e)} {do(tg1)},{do(tg2)} — = {sw1, swo, light}

frame (II, F'rame); then we have used the observations

in Obs to filter out those extensions which do not satisfy Observe that for the domain description in Example 1 we
them. As a difference with [4, 5] an extension only de-do not obtain the unexpected extension in whioltg, ) >



(do(tge) > (—swiAsweA-light) holds: we do notwantto tioned by [15]:

accept that togglingws, in the state{swq, ~swe, —light} - -

mysteriously changes the position @f; and lets-light 1L O(do(a) > p) T(g > —wp)

persist. To avoid this extension it is essential that causaPbs:  do(e) > (¢ A —p)

rules are directional (see [1, 15, 12, 21]). Indeed, the causdrameo = {(f,a) : a € Ao, f € F}.

rules in1I are different from the constrain@((sw; « ) o ] ]
swy) — light) and, in particular, they do not entail the f ¢ A —p holds in the initial state, performing actian
formula—sw, A —light — sw,. As observed in [12] and makeSp true, but this cannot blopk the persstencygo_f
[21], though this formula must be clearly true in any state,Sinc€—¢ cannot be derived from since the causal rule is
it should not be applied for making causal inferences. InNOt contrapositive. However, assuming thatersists after
our formalism, contraposition of causal implication is ruled the action leads tdo(a) > ¢ , sinceq > —p, by (CE),
out by the fact that the conditional is not reflexive: from ~ We derivedo(a) > —p from which we get together with
T(a > B) andT—3 we cannot conclud&-a. On the do(a)'> p, do(a) > L. ThIS. means that'the execution
other hand, it is easy to see that, in any state of any exter2§ actiona leads to an inconsistent state, i®cannot be
sion, ifa > 3 holds, andx holds, 3 also holds. executed in the state in whighA —p holds.

Our solution to the frame problem is an abductive solutionAnOther situation which can lead to an inconsistent state
and is very different from the solution proposed for EPDL ¢&n occur when two copfllf:tlng actions are executed swpul—
in [3]. There persistency laws of the forin— [a]l are taqeously. In [4], COHﬂICtII’Ig'aCtIOHS could occur leading
added explicitly at every state. In EPDL, persistency lawsl© inconsistent states. In this present theory, the concur-
are not global to an extension but they have to be addetfnt application of two actions andb is only possible
state by state, according to which action is expected. IAvhen these actions are independent, i.e. wiiesontains
our theory, the frame problem is solved globally by mini- T(=(do(a) > =do(b)) A ~(do(b) > —do(a))).

mizing changes modulo causation. As a further difference, ] o )

in [3] unexpected solutions can be obtained by adding perEX@mple S Consider a swinging door and two actions
sistency laws as above to the domain description. As ob2ush-in and push_out the first one opening the door by
served by Zhang and Foo (see [3], Example 4.1) in the Cirpgshmg from o_ut-S|_de tq open it and the secon_d by pushing
cuit example above the staf = {swy, ~sws, ~light} it in the opposite direction. We get the following formal-

has two possible next states under actiogyles, namely ~ ization:
Sh = {swy, swa, light} and Sy = {—swy, swy, ~light}. I

The second one is unexpected. o(push.in) > open-in)

O(d
O(do(push-out) > open_out)
This behaviour is a side effect of (MP), which holds for  T(open_in > —open_out)
EPDL and allows the material implication to be derived T(open_out > —open_in)
form the causal implication. To overcome this problem, T(—(do(push_in) > —do(push_out)))
Zhang and Foo propose an alternative approach to define T(—(do(push_out) > —~do(push_in)))
the next-state function which makes use of a fixpoint prop-Frameo= {(f,a) : a € Ao, f € F}.
erty in the style of McCain and Turner’s fixpiont property
[15]. Their definition employs the causal operator for deter-Both actions are independent. But when trying to perform
mining whether the indirect effects of the action are causedhem at the same moment, nothing would happen, because
by its immediate effects together with the unchanged parthere is a conflict between the effects of the two actions.
of the state, according to the causal laws. It has to be obFhe door stays in the same position. All the extensions of
served, that this definition of the next state function doeghe theory contain the formulas:
not require any integrated use of causal laws and action
laws in the theory. In fact, “if the direct effects of an ac- (1) do(push_in) > open_in,
tion have been given; PD L~ [that is, the logic obtained (2) do(push_out) > open_out,
from EPDL when the set of action symbols is empty] is (3) do(push_in) A do(push_out) > L.
enough to determine how effects of actions are propagated
by causal Iaws'_’ [3]. On the_ contrar_y, our so_lut|0n to t_he Let us reconsider example 1 modified such that the two
frame problem in the conditional logic CA relies on anin- o iches form a two-way wiring.
tegrated use of action laws and causal laws to derive con-

clusion about actions effects. Example 6 There is a two-way wiring circuit with two

A domain description may have extensions containing dwo-way switches and a lamp. There are two actions of

formulaA > L. Consider the following example also men- toggling each of the switches and the lamp is alight when
the two switches are in the same position. Toggling any



of the switches changes the light (from on to off or vice- References
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Appendix

Proof of the completeness theorem

Norman McCain and Hudson Turner, ‘Causal theories

1. A set of formulag® is called inconsisteniff there is
a finite subset of’, {F1,... F,} such that- —F; Vv
—-Fy V ...=F,. I is called consistenif it is not in-
consistent. Ifi" contains only one formul#’, we say
that F' is (in)consistent.

2. Asetof formula$’ is calledmaximal inconsistenff it
is consistent and if for any formul not inT', TU{ F'}
is inconsistent.

We presuppose a number of properties of maximal consis-
tent formula sets the proof of which can be found in most
text books of formal logic (see e.g. [20].

The canonical modelCM is defined by CM
W, f,[[]] > where

=<

1. W is the set of all maximal consistent formula sets of
AC.
We set||4|| = {w : w € W andA € w} for any
formula A.

2. f(Aw) = {w :w' € Wandw? Cw'},
where, foranyw € W, w4 = {B: A > B € w}

3. forany atonp € ATM, [[p]] = {w: p € w}

[[]] is extended to formulas as usual.

We first will show that for any formula, ||A|| = [[A]].
This is proven by induction on the degree of the conditional
formulas. First we need the following lemma concerning
conditionals.

Lemma 1 For any conditional formula we havé > B ¢
wiffforall w’ € f(A,w), B € w

Proof: The first half follows immediately from the defini-
tion of the selection functioyf. For the second half, we
first observe thatv U {=B} is an inconsistent formula
set. Suppose for the contrary, that' U {-B} is consis-
tent. Then it is included in a maximal consistent formula
setw’ € W, w? U {-B} C w'. Butthenw? C w/,
which means that’ € f(A,w). From this follows by
our precondition thatB € w’. This is a contradiction to
-B € W/, sincew’ is consistent. Since* U {-B} is
inconsistent, there are formuldd?, ... F,} € w* such
that - Fy v =F, V...V B. By the rules of propositional
calculus and rule RCK, we conclutle(A > Fy) A (A >
F)YAN...(A>F,) - (A> B). ButA > F, € w for

The completeness is shown by the construction of a canont < ; < n, henceA > B € w by the maximality of w.
ical model. We construct a model such that for any consisq.g.p.

tent formulaA (i.e. any formula4, such that/ - A), there
is a world in this model satisfyingl. Moreover, we show
that the semantic properties at” (S-CV, S-OR, etc.) hold
in the canonical model.

Definition 5

We now proceed provinfjA|| = [[A]] for arbitrary formula
A. This is shown by induction on the degreeAf

e If A is a classical formula (degree(A) = 0), then by
construction of the canonical model and the definition



of the valuation functior]], we get straightforwardly

thatw € || A|| iff w € [[A]], which means thatA|| =
[[A]]-

e Suppose, that we hayg"’|| = [[F]] for all formulasF
which have a degree less thanLet be A > B a for-
mula of degreer. Let bew € ||A > B||. By the defi-
nition of || A > B||, this is equivalent tod > B € w.
By lemma 1, this is the case iff for all’ € f(A4,w),
B € w. By the definition of|| B||, we get equivalently
Yw' € f(A,w), w € ||B]||. By induction hypothe-
sis, sincedegree(B) < n, we can replacd B|| by

CE, we then getA > (B > () — (A > C) € w.
But this means thafF : B > F € w4} C {F :
A > F € w}, where{F : A > F € w} = w’.
Let bew’ € f(A,w), i.e. w* C w'. Then we have
{F: B> F € w?} Cw'. This means that' €
F(B, f(A,w)).

(S-MOD) if f(B,w) N [[A]] # 0 thenf(A,w) # 0

If f(A,w)=0thenA > L € w, from which follows

that B > —-A € w by axiom MOD. This is equiv-
alent tof(B,w) C [[=A]], which gives equivalently
f(B,w) £ [[A]], i.e. f(B,w) N [[A]] = 0.

[[B]] and we getvw’ € f(A,w), w € [[B]]. And
this is the case ifff (4, w) C [[B]] which means that  proof of the completeness theorem: Proof: Letdba for-
w € [[A> BJ|. mula not derivable in AC. Thei 4, i.e. {-A} is consis-
tent. Then there is a maximal set of formutasuch that
It remains to show that the canonical model CM has the-A € w. And this means that the canonical model CM
properties required by our logic AC, provided the corre-satisfies-A, i.e. CM,w [~ A. Q.E.D.
sponding axioms belong to the logic (S-CV, S-CV, ...)

e S-RCEAIf[[A]] = [[B]] thenf(A,w) = f(B,w)
If [[A]] = [[B]] by the maximality ofw, we get that
A «< B € w. By RCEA, it follows thatA > C «
B > C € w, from which we getf (A, w) = f(B,w).

o (S-CV)if f(A,w)N[[C]] # 0 thenf(AAC,w) C
F(A,w)
Letbew’ € f(AAC,w) iff wA¢ C w'. By precon-
dition, we havef (A, w) N[[C]] # @ which means that
—(A > =C) € w. This yields using axiom C\{A >
B) — (ANC > B) € w. From this we conclude
{B:A>Becw}C{B:AANC > B € w}which
means thatv* C w4, Hence we getv* C v/, i.e.
w' € f(A,w).

e (S-CA)f(AV B,w) C f(A,w) U f(B,w)
Suppose for the contrary that thereuis € W such
thatw; ¢ f(A,w) andw; ¢ f(B,w). Then there are
formulasF; andF; such thatd > F; € wandF} ¢
wy andB > F, € w andF, ¢ wy by the definition of
the selection function of the canonical model. Since
wy IS maximal consistent, we have that; € w; and
—Fy € w,. By RCK and the maximality ofy; , we get
A > FVF;, €w andB > F1V Fy € wy. By axiom
CA this yieldsA Vv B > F; V F» € w, from which
follows thatF} v F» € w4YE. Hence we cannot have
wAVE C w, because this would contradief; € w;
and—F, € w; (maximality ofw;). Thereforew,; ¢
f(AV B, w).

e (S-CHAINING) if f(A,w) C [[B]] then f(A,w) C

f(B, f(A,w))
wheref (B, f(A,w)) represent the set of worlds €

f(B,x) : z€ f(Aw)}.

By the precondition, we havg > B € w; by axiom



