
Have another look
On Failures and Recovery Planning in Perceptual

Anchoring
Mathias Broxvall and Silvia Coradeschi and Lars Karlsson and Alessandro Saf£otti

Applied Autonomous Sensor Systems, Örebro University, Sweden
{mathias.broxvall,silvia.coradeschi,lars.karlsson,alessandro.saf£otti}@aass.oru.se

Abstract. An important requirement for autonomous systems is
the ability to detect and recover from exceptional situations such as
failures in observations. In this paper we demonstrate how techniques
for planning with sensing under uncertainty can play a major role in
solving the problem of recovering from such situations. In this £rst
step we concentrate on failures in perceptual anchoring, that is how to
connect a symbol representing an object to the percepts of that object.
We provide a classi£cation of failures and present planning-based
methods for recovering from them. We illustrate our approach by
showing tests run on a mobile robot equipped with a color camera.

1 Introduction

There is an increasing demand for intelligent robots capable of robust
operation in unconstrained environments. One of the great challenges
for these robots is the need to cope autonomously with exceptional
situations that arise during the execution of the assigned tasks. Ex-
plicit coding of all the possible exceptions is clearly unfeasible for
environments and tasks of a realistic complexity. A more effective
approch is to endow the system with the ability to use knowledge-
based techniques to reason about the state of the execution, detect
anomalies, and automatically generate a contingency plan.

Most existing systems that take this approach (e.g., [8, 2, 11, 17,
19]) focus on the external state of the world, looking for discrepan-
cies between the observed state and the expected one. Discrepancies
can originate in the failure of actions performed by the robot as well
as in exogenous events. There is however another common cause of
problems in the execution of robot plans, which is more related to
the internal state of the robot: failures in perception, including the
inability to acquire the perceptual data needed to perform the desired
actions. The ability of the robot to detect perceptual failures and to
recover from them is pivotal to its providing autonomous and robust
operation. In this context, Murphy and Hershberger [16] have sug-
gested a two-step approach: a generate and test strategy for classify-
ing sensor failures, and a recovery strategy where the failing sensory
process is replaced with an equivalent process.

Several works in the £eld have addressed the problem of plan-
ning for perceptual actions. Perception planning has been studied as
a means for gathering better visual information [14, 1], for achieving
safer landmark-based navigation [15, 9], for performing tasks that in-
volve sensing actions [10, 13], and for generating image processing
routines [3]. None of these works, however, deal with the problem of
failures in the perceptual actions and of the automatic recovery from

these failures.
We propose to use AI planning techniques to automatically gen-

erate a plan to recover from failures in the perceptual processes. We
focus on one speci£c type of perceptual process: perceptual anchor-
ing. Perceptual anchoring is the process of creating and maintaining
the right correspondence between the symbols used by the planner
to denote objects in the world and the perceptual data in the sensori-
motoric system that refer to the same objects. In a previous paper
[4] a simple case of anchoring failure due to the accumulation of
uncertainty has been investigated. In this paper, we extend that in-
vestigation and analyze all the different cases of ambiguity that can
make the anchoring process fail. For each case, we show how that
situation can be automatically detected and isolated, and how we can
use a planner to generate a sequence of actions to recover from the
failure when possible.

In the next section, we give a brief reminder of perceptual anchor-
ing. In section 3 we classify the different ways in which anchoring
can fail, and explain how they can be detected. In section 4 we show
how the failure situation can be modeled in a planner and a recov-
ery plan generated automatically for those cases that can be £xed.
Finally, we demonstrate our technique by presenting a series of ex-
periments run on a mobile robot equipped with a color camera.

2 Perceptual Anchoring

Autonomous systems embedded in the physical world typically in-
corporate two different types of processes: high-level cognitive pro-
cesses, that perform abstract reasoning and generate plans for ac-
tions; and sensory-motoric processes, that observe the physical world
and act on it. These processes have different ways to refer to physical
objects in the environment. Cognitive processes typically (although
not necessarily) use symbols to denote objects, like ‘b1’. Sensory-
motoric processes typically operate from sensor data that originate
from observing these objects, like a region in a segmented image. If
the overall system has to successfully perform its tasks, it needs to
make sure that these processes “talk about” the same physical ob-
jects. This has been de£ned as the anchoring problem [7], illustrated
in Fig. 1:

Anchoring is the process of creating and maintaining the cor-
respondence between symbols and sensor data that refer to the
same physical objects.

Autonomous SystemPhysical World

Sensori−motoric system

Symbolic reasoning system

table1

room3

Anchoring

observe

denote
cup22 symbols

sensor data

door5

Figure 1. The perceptual anchoring problem.

In our work, we use the computational framework for anchoring
de£ned in [5]. In that framework, the symbol-data correspondence
for a speci£c object is represented by a data structure called an an-
chor. An anchor includes pointers to the symbol and sensor data be-
ing connected, together with a set of properties useful to re-identify
the object, e.g., its color and position. These properties can also be
used as input to the control routines.

Consider for concreteness a mobile robot equipped with a vision
system and with a symbolic planner. Suppose that the planner has
generated the action ‘GoNear(b1)’, where the symbol ‘b1’ denotes
an object described in the planner as ’a tall green gas bottle’.1 The
‘GoNear’ operator is implemented by a sensori-motor loop that con-
trols the robot using the position parameters extracted from a region
in the camera image. In order to execute the ‘GoNear(b1)’ action,
the robot must make sure that the region used in the control loop is
exactly the one generated by observing the object that the planner
calls ‘b1’. Thus, the robot uses a functionality called Find to link the
symbol ‘b1’ to a region in the image that matches the description ’a
tall green gas bottle’. The output of Find is an anchor that contains,
among other properties, the (x, y) position of the gas bottle, which
is used by the ‘GoNear’ routine. While the robot is moving, a func-
tionality called Track is used to update this position using new per-
ceptual data. Should the gas bottle go temporarily out of view, e.g.,
because it is occluded by another object, the Reacquire functionality
would be called to update the anchor as soon as the gas bottle is in
view again. More details about perceptual anchoring can be found in
[5, 6, 7].

A central ingredient in all the anchoring functionalities is the
matching between the symbolic description given by the planner and
the observed properties of the percepts generated by the sensor sys-
tem. Matching is needed to decide which percepts to use to create
or update the anchor for a given symbol. Matching between a sym-
bolic description and a percept can be partial or complete [6]. It is
complete if all the observed properties in the percept match the de-
scription and vice-versa. It is partial if all the observed properties in
the percept match the description, but there is some property in the
description that have not been observed (or not reliably).2 For exam-

1 Throughout this paper, we use examples inspired by an ongoing rescue
project where the robot is supposed to £nd overheated and dangerous gas
bottles in a burnt building.

2 Note that matching does not have to be a binary concept, but can be con-
sidered in degrees. In such cases, we use a threshold to determine what is
partial and what is complete; the threshold can be raised if there are several
matching candidates.

ple, consider the description “a gas bottle with a yellow mark”. A gas
bottle in an image where no mark is visible provides a partial match,
since the mark might not be visible from the current viewpoint.

3 Anchoring with ambiguities

An important challenge in the anchoring process is how to treat am-
biguous cases, that is cases for which it is not clear to what perceptual
data the symbol should be associated. The £rst step to treat ambigui-
ties is to detect that an ambiguity is actually present. The second step
is then to try to resolve the ambiguity if possible or otherwise admit
failure. In this section we concentrate on the detection of ambiguity,
while in the next section we present how some classes of ambiguous
situations can be recovered from using planning techniques.

To better characterize the ambiguous cases we need £rst to clar-
ify the distinction between de£nite and inde£nite descriptions for an
object. A description is de£nite when it denotes an unique object, for
instance ”the cup in my of£ce”, supposing that I have just one cup
in my of£ce. Linguistically one use in this case the article ”the”. An
inde£nite description requires that the object corresponds to the de-
scription, but not that it is unique, for instance ”a red cup”. De£nite
descriptions are especially challenging when an object is conceptu-
ally unique, but its perceptual properties do not characterize it un-
equivocally, for instance ”the cup that I have seen before”. This is
a common event in the Reacquire functionality when more than one
object matches the description of a previously seen object (in Reac-
quire descriptions are always de£nite). An example of this situation
is shown later in this paper.

An important case in anchoring is when we have multiple candi-
date percepts matching the description and by consentrating on this
we can indentify a number of different failures. The important vari-
ables when detecting and identifying an ambiguity in anchoring are
the number of candidate percepts that match a description completely
and partially, and whether the description involved is de£nite or in-
de£nite. In the following, we give a classi£cation of these ambigu-
ities. We also describe what the Find and Reacquire functionalities
return in each case, and what could constitute a recovery from the
situation.

Case 1: no candidates. In this case no object matching the descrip-
tion is found. Therefore, both Find and Reacquire return a failure
message. If the object might be somewhere else we generate a search-
plan. If one has exhausted the search possibilities, there is a failure.

Case 2: one or more partially matching candidates. A partial
matching indicates that one has inadequate information about some
relevant properties of the perceived object(s). When this happens,
both functionalities create temporary anchors for each of the candi-
dates and return these anchors to be used by the recovery planner.
Sometimes, one might still be able to determine whether this is the
requested object - one might e.g. have prior information that there
are no other similar objects around — and in those occasions, the
case turns into one of a complete matching (see below). However,
in most situations one will need to try to acquire more information
about the object(s) in question, in order to get a complete match.
Therefore, one needs to generate a recovery plan. The anchors cre-
ated by the functionalities let the planner access to information about
these objects while the recovery plan is constructed and executed. If
the situation is successfully disambiguated, the planner informs the
anchoring module which of the candidate perceived objects should
be used for anchoring.

Case 3: a single completely matching candidate. This is the ideal

case: one just picks that candidate. Both functionalities create an an-
chor and return it to the planner.

Case 4: one completely matching candidate, and some partially
matching ones. The inde£nite case is simple: one can just pick the
completely matching candidate. For the de£nite case, that is also an
option. However, if one is cautious and wants to ascertain that there is
not an ambiguity hidden here, one might want to acquire more infor-
mation to be able to rule out the candidates with incomplete matches.
In our current implementation in the inde£nite case the Find func-
tionality creates an anchor with the completely matching candidate
and returns it to the planner. In the de£nite case both functionalities
create anchors both for the complete matching candidate and the in-
complete matching ones. They then return the anchors while making
a distinction between the completely and partially matching ones.

Case 5: multiple completely matching candidates. Again, the in-
de£nite case is simple: just pick one of the candidates. The Find
functionality creates an anchor with the completely matching can-
didate and returns it to the planner. In the de£nite case, however, this
constitutes a serious problem: as the matchings are complete, the sit-
uation cannot be resolved by getting more perceptual information.
Instead, the description has to be considered insuf£cient, and needs
to be made more precise. (how to do that is not adressed in this pa-
per).

Finally, we should point to some particular dif£cult situations:
when the description is not only insuf£cient but also wrong; when
important characteristics of the object have changed in a way we
cannot predict (e.g. the shape has been deformed); and when our per-
cepts are not just uncertain but misleading (e.g. a re¤ection is taken
to be a color mark). In such cases, we might get mismatches that
should have been matches, and vice versa, which in turn leads to an
erroneous estimate of the situation and possibly also a misclassi£ca-
tion of what case we have.

4 Recovery planning for anchoring

In order to recover from cases 1, 2 and (optionally) 4 above, we en-
code the situations as planning problems for a conditional possibilis-
tic/probabilistic planner called PTLplan [12]. The other cases either
do not need to be solved (case 3) or cannot be solved (case 5).

PTLplan searches in a space of epistemic states, or e-states for
short, where an e-state represents the agent’s incomplete and uncer-
tain knowledge about the world at some point in time. An e-state can
be considered to represent a set of hypotheses about the actual state
of the world, for instance that a certain gas bottle has a mark on it
or has not a mark on it. The planner can reason about perceptive ac-
tions, such as looking at an object, and these actions have the effect
that the agent makes observations that may help it to distinguish be-
tween the different hypotheses. Each different observation will result
in a separate new and typically smaller e-state, and in each such e-
state the agent will know more than before. For instance, looking at
a gas bottle may result in two observations leading to two possible
e-states: one where the agent knows there is a mark, and one where
it knows there isn’t a mark on that side.

A recovery situation in anchoring typically occurs when the robot
is executing some higher-level plan and encounters one of the am-
biguous but recoverable cases above. Such a situation is handled in
£ve steps:

1. The problematic situation is detected and classi£ed as above, and
the top-level plan is halted.

2. The planner automatically formulates an initial situation by con-
sidering the properties of the requested object and of the perceived
objects, and generating different hypotheses for which of the ob-
jects corresponds to the requested object. It also formulates a goal
that the requested object should be identi£ed if present.

3. The planner searches for a plan taking as parameters the e-state
and the goal.

4. The plan is executed, and either the requested object is found and
identi£ed and can be anchored, or it is established that it cannot
be identi£ed.

5. If recovery was successful, the top-level plan is resumed.

The domain description used for anchoring recovery planning typi-
cally is not the same as is used for top-level plans (although in our
case the planner is the same). Typically, the actions involved would
be restricted to certain perceptual actions, and the description of the
locality may be more detailed to facilitate search.

4.1 Formulating the initial situations and goals

In case 1, where no candidate for the requested object (say b1) has
been found, a search needs to be performed. Therefore, the initial
situation consists of a number of hypotheses of where the object can
be found, including the hypothesis that it is nowhere around. For in-
stance, if there are four places in the room of interest, and we have
already searched at one of them, the hypotheses might be that b1 will
be visible from one of the remaining places, or from none (f below).
Note that the term following the “=” is the value of the property to
the left of the “=”, and the numbers are degrees of possibility associ-
ated with each hypothesis:

1.0 (visible-from b1 = r1 2)
1.0 (visible-from b1 = r1 3)
1.0 (visible-from b1 = r1 4)
0.5 (visible-from b1 = f)

To the above is added information about the topology of the room
that is to be searched, and the description of the object to be an-
chored, e.g. (shape b1 = gasbottle). The goal is formulated as (ex-
ists (?x) (nec (visible-from b1 = ?x))), which means that the agent
has determined from what place the object is visible.

In case 2, where there are one or more partially matching per-
ceived objects, the agent needs to £gure out which of them actually
matches the requested object b1. Thus, the hypotheses consists of the
different ways b1 can be anchored, based on the known properties of
b1 and the perceived properties of the perceived objects. Based on
the descriptions d for the requested object and di for each perceived
object poi, two extra descriptions are formulated for every di: £rst,
a description d+

i which completely matches d; and second, a non-
matching description d−i which contains the different ways in which
at least one incompletely speci£ed property in di may not match with
d. For instance, if d = (mark b1 = t) and d1 = (mark po1 = t f)
(i.e. either true or false), then d+

i = (mark po1 = t) and d−i =
(mark po1 = f). Each hypothesis then consists of the conjunction of
one d+

i for one of the poi and d−j for all remaining j 6= i. To each
hypothesis is also added the statement (anchor b1 = poi) denoting
that b1 should be anchored to the object anchored by poi. There is
also one hypothesis that no object matches: d−j for all j, and (anchor
b1 = f). Finally, if the planner wishes to take a cautious approach and
ascertain that no more than one object is matching, it might also add
a number of hypotheses consisting of d+

i , d+

j for two of the poi, poj

and dk for all remaining k 6= i, j, and (anchor b1 = f).
For instance, if b1 is known to be a green gas bottle with a mark

on it — (mark b1 = t) — and we perceive two green gas bottles po1

and po2 but are not able to see any marks on them from the current
perspective, the (incautious) hypotheses might be:

1.0 (mark po1 = t), (mark po2 = f), (anchor b1 = po1)
1.0 (mark po1 = f), (mark po2 = t), (anchor b1 = po2)
0.5 (mark po1 = f), (mark po2 = f), (anchor b1 = f)

In addition, each of the two hypotheses can be subdivided further
into three different hypotheses regarding from where the mark can
be detected: (mark-visible-from po1 = r1 1) and so on.

The goal is achieved once a speci£c action (anchor b1 x) has
been performed. This action has as a precondition that x is the only
remaining anchor for b1: (nec (anchor b1 = x)). Thus, all other
candidate anchors have to be eliminated before anchor is applied.

Case 4 is quite similar to case 2 above, but consists of one hypoth-
esis where the completely matching percept is chosen for anchoring,
and a number of hypotheses where there are other objects matching
too.

4.2 Generating the recovery plan

After the initial situation and the goal have been established, plan
generation starts, using the appropriate domain description. The fol-
lowing action, for instance, is for looking for marks (and other visual
characteristics) on objects such as gas bottles.

(ptl-action
:name (look-at ?y)
:precond (((?p) (robot-at = ?p)) ((?y) (perceived-object ?y)))
:results (cond

((and (mark ?y = t) (mark-visible-from ?y = ?p))
(obs (mark! ?y = t)))

((not (and (mark ?y = t)
(mark-visible-from ?y = ?p)))

(obs (mark! ?y = f))))
:execute ((aiming-at me ?y)

(anchor-£nd ?y :when (aiming-at me ?y))))

In short, the precond part states that the action requires a per-
ceived object ?y and a current position ?p. The result part states
that if ?y has a mark, and if the robot looks at ?y from the ?p from
which the mark is visible, then the robot will observe the mark (and
thus know that there is a mark), and otherwise it will not observe
any mark. The obs form is the way to encode that the agent makes a
speci£c observation.

The plans generated by PTLplan are conditional: after each action
with observation effects (and with more than one alternative out-
come), the plan branches. The plan below is generated for looking
for marks on a single perceived object from three different positions,
starting from a fourth position. Note how a conditional branching fol-
lows after each application of look-at: the £rst clause “(mark! po-4
= t/f)” of each branch is the observation one should have made in or-
der to enter that branch, and the subsequent clauses are actions. The
action (anchor b1 x) at the end of each branch represents the deci-
sion to anchor b1 to some speci£c perceived object (or to no object
at all, if x = f).

((move r1 2) (look-at po-4)
(cond

((mark! po-4 = f) (move r1 3) (look-at po-4)
(cond

((mark! po-4 = f) (move r1 4) (look-at po-4)
(cond

((mark! po-4 = t) (anchor b1 po-4) :success)
((mark! po-4 = f) (anchor b1 f) :success)))

((mark! po-4 = t) (anchor b1 po-4) :success))
((mark! po-4 = t) (anchor b1 po-4) :success)))

Figure 2. Our robot investigating two bottles

We omit the details of how the plan is generated here, as our ap-
proach is not dependent on the particular planning algorithm. Ac-
tually, another planner with corresponding expressive power could
have been used instead.

4.3 Plan execution

The anchoring plan is then executed: the actions such as (look-at po-
4) are translated into executable perceptive and movement tasks (see
£eld :execute in the de£nition of look-at above). The anchor action
has a special role: it causes the symbol of the requested object to be
anchored to a speci£c perceived object. The robot can then continue
performing the task in its top-level plan that was interrupted.

5 Tests on a robot

To be able to test the methods described above we have implemented
and integrated them with a fuzzy behavior based system, the Think-
ing Cap [18], used for controlling a mobile robot. We have used this
system to run a number of scenarios yielding different kinds of ambi-
guities. We give here a brief description of the system, the scenarios
and the resulting executions.

The platform we have used is a Magellan Pro Research Robot.
equipped with standard sonars, bumpers and IR sensors. In addition
to the standard setup we have connected a camera and use a sim-
ple image recognition system to detect and extract information about
objects matching a number of prede£ned patterns.

Apart from the anchoring, plan execution and planning modules
described in the previous sections the complete system also consists
of a number of other parts which allows the robot to navigate in-
door environments safely and perceive the surroundings. Perception
is accomplished by continuously receiving percepts from the vision
system, associating them with earlier percepts and storing them for
later use by the anchoring system.

In these test the robot operates in a room containing one or more
gas bottles (Figure 2). These bottles can be of various colors and can
optionally have a mark on some side. Typical tasks we have given
the robot is to look for gas bottles matching a speci£c description,
approaching them, moving around in or exiting the room and re-
identifying previously found gas bottles. The actions available to the
robot were to look for a speci£c object at a speci£c place, to look
at a previously seen object, to move to different positions or near to
an object, to select a speci£c object for anchoring, and to perform
self-localization by moving to a £xed position.

Scenario 1: No ambiguity. The £rst and simplest scenario we have
run is when we placed a green gas bottle in the room clearly visible
from the robot’s location and gave the planner the task to look for and
approach b1 with the symbolic description ((color green) (shape
gasbottle)). Initially, the plan executor called the Find functional-
ity. Since there was only one completely matching percept (case 3)
the system anchored b1 to this percept and continued with the plan.
The position property of the b1 anchor was used to approach the gas
bottle and £nish the original task.

Scenario 2: Searching the room. For the next tests we look at case
1, where we have no matching candidates to a Find. We set this up
by partially obstructing the gas bottle so that it could be seen only
from certain positions in the room. Next, we started the robot at a
position where the gas bottle was not visible and gave it again the task
to look for and approach b1 The £rst call to the Find functionality
failed. This triggered the planner to generate a recovery plan from
a description of the current world state, using the information that
there should somewhere be a gas bottle. The result was a conditional
plan that would navigate to different parts of the room, looking for
the gas bottle, and announcing success when it was found. After this,
the original task of approaching b1 could continue.

Scenario 3: Partially matching objects. In this scenario we choose
to look at case 2 were the system perceives one or more objects only
partially matching the description. We did this by using a red gas
bottle with a mark on it which was not visible from the initial posi-
tion. We then asked the system to look for b1 matching ((color red)
(mark t) (shape gasbottle)) and the Find functionality was called.

At this point in time the system perceived a red gas bottle but could
not determine whether it was marked on some side. Thus we had only
one partially matching candidate. The system now created a tempo-
rary anchor Anchor-1 for this object and the planner generated a
recovery plan using the knowledge that Anchor-1 might be the same
as b1 and then should have a mark visible from some side. The plan-
ner produced a conditional plan which would navigate through the
room and observe Anchor-1 to see if a mark was visible from the
different viewpoints and to halt when the mark was found. The robot
navigated through the room, found the mark and concluded that the
observed gas bottle was the right one.

We also successfully ran the same scenario with more advanced
setups where we either had no mark on the gas bottle, or where we
had two gas bottles of which only one was marked.

Scenario 4: Planning to reacquire. In order to test a reacquire ambi-
guity we had to setup a scenario where the position of an object could
not be used to uniquely identify a previously acquired object. To do
this we started with two gas bottles in front of the robot, one of the
gas bottles had a mark on the side facing the robot. Next, we asked
the robot to look for b1 with the inde£nite description ((marked
yes) (shape gasbottle)); to exit to a corridor in the opposite side of
the room; and £nally to again enter the room and reacquire b1.

In the initial Find we got one partial and one completely matching
candidate (case 4) and the marked gas bottle was anchored to b1. Af-
ter this the robot navigated to the opposite side of the room; entered
the corridor and went back into the room again. The accumulated un-
certainty in the robot’s self localization was now so large that when
the robot was doing the £nal reacquire, it failed to determine which
percept corresponded to b1. Since the mark on the initially anchored
gas bottle could not be seen from this position we had an ambiguity
due to multiple partial matchings (case 2). Thus the planner was trig-
gered to resolve the ambiguity and it generated a plan to investigate

both gas bottles to see which one was marked. The result was that
the robot reacquired the right gas bottle.

We also tested alternative versions of this setup where instead of
failing due to bad self localization we either moved the gas bottles
or introduced a new gas bottle before acquiring them again. Moving
without observing, or introducing new bottles always gave ambigui-
ties. Due to the implicit tracking done by the vision system, moving
them while observed gave only ambiguities if the gasbottles over-
lapped from the cameras viewpoint during movement. In either case
these version gave the same kind of ambiguities and was also solved
correctly by observing the gas bottles from different positions until
the mark was found.

Scenario 5: Planning for relocalization. Since our implemented
system mainly uses odometry for localization the degree of uncer-
tainties in the position of objects increases monotonically with move-
ment, unless the objects are observed. This means that even though
we have acquired an object and have a position property we may get
only a partial matching during a later reacquire on the same object.

To see that this case could be handled, we setup a scenario with
two identical gasbottles where we let the robot acquire one of them as
b1. Next, we moved the robot (out of the room and back) and asked
it to go near b1. Because of odometry errors the position property of
b1 could not be used to acquire the right gasbottle and instead we
got an ambiguity (case 2). The solution generated by the planner was
to use a self localization action to remove the odometry error and
acqurie the right gas bottle.

6 Conclusions

There are two main contributions in this paper. Firstly, we have high-
lighted the usefulness of knowledge-based planning in robotics in the
context of autonomous recovery from perceptual errors. Our results
indicate that this direction is very promising for what concerns re-
covery from anchoring failures, in particular as the complexity and
variety of the problems involved motivates the use of on-line plan-
ning as opposed to a hard-coded approach.

Secondly, we have presented a classi£cation of different cases that
can be the outcome when an embedded agent such as a robot is at-
tempting to anchor symbols to percepts. We have also shown how to
use planning techniques to automatically recover from some of these
cases, and we have demonstrated our approach on a mobile robot
confronted with a number of failure situations.

7 Acknowledgements

This work has been supported by The Swedish Research Council
(Vetenskapsrªadet) and by the Swedish KK foundation.

REFERENCES
[1] C. Barrouil, C. Castel, P. Fabiani, R. Mampey, P. Secchi, and C. Tessier.

Perception strategy for a surveillance system. In Proc. of ECAI, pages
627–631, 1998.

[2] M. Beetz and D. McDermott. Expressing transformations of structured
reactive plans. In Proc. of the European Conf. on Planning,, pages 64–
76. Springer, 1997.

[3] Michael Beetz, Tom Arbuckle, Armin B. Cremers, and Markus Mann.
Transparent, ¤exible, and resource-adaptive image processing for au-
tonomous service robots. In Proc. of the 13th European Conference on
Arti£cial Intelligence, pages 158–170. John Wiley and Sons, 1998.

[4] M. Broxvall, L. Karlsson, and A. Saf£otti. Steps toward detecting and
recovering from perceptual failures. In Proc. of the 8th Int. Conf. on
Intelligent Autonomous Systems (IAS), Amsterdam, NL, 2004.

[5] S. Coradeschi and A. Saf£otti. Anchoring symbols to sensor data: pre-
liminary report. In Proc. of the 17th AAAI Conf., pages 129–135, Menlo
Park, CA, 2000. AAAI Press.

[6] S. Coradeschi and A. Saf£otti. Perceptual anchoring of symbols for
action. In Proc. of the 17th IJCAI Conf., pages 407–412.

[7] S. Coradeschi and A. Saf£otti. An introduction to the anchoring prob-
lem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003. Special
issue on perceptual anchoring.

[8] R.E. Fikes, P. Hart, and N.J. Nilsson. Learning and executing general-
ized robot plans. Arti£cial Intelligence, 3(4):251–288, 1972.

[9] J. Gancet and S. Lacroix. PG2P: A perception-guided path planning
approach for long range autonomous navigation in unkown natural en-
vironments. In Proc. of IROS, Las Vegas, NV, 2003. To appear.

[10] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with
sensing for a mobile robot. In Proc. of the 4th European Conf. on
Planning, pages 158–170. Springer, 1997.

[11] K.Z. Haigh and M.M. Veloso. Interleaving planning and robot execu-
tion for asynchronous user requests. Autonomous Robots, 5(1):79–95,
1998.

[12] L. Karlsson. Conditional progressive planning under uncertainty. In
Proc. of the 17th IJCAI Conf., pages 431–438. AAAI Press, 2001.

[13] L. Karlsson and T. Schiavinotto. Progressive planning for mobile
robots: a progress report. In M. Beetz, J. Hertzberg, M. Ghallab, and
M. Pollack, editors, Advances in Plan-Based Control of Robotic Agents,
pages 106–122. Springer, Berlin, DE, 2002.

[14] S. Kovacic, A. Leonardis, and F. Pernus. Planning sequences of views
for 3-D object recognition and pose determination. Pattern Recogni-
tion, 31:1407–1417, 1998.

[15] A. Lazanas and J.C. Latombe. Motion planning with uncertainty: A
landmark approach. Arti£cial Intelligence, 76(1-2):285–317, 1995.

[16] Robin R. Murphy and David Hershberger. Classifying and recovering
from sensing failures in autonomous mobile robots. In Proc. AAAI-96,
pages 922–929, 1996.

[17] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N. Muscettola, P.P. Nayak,
M.D. Wagner, and B.C. Williams. An autonomous spacecraft agent
prototype. Autonomous Robots, 5(1):1–27, 1998.

[18] A. Saf£otti, K. Konolige, and E.H. Ruspini. A multivalued-logic ap-
proach to integrating planning and control. Arti£cial Intelligence, 76(1–
2):481–526, 1995.

[19] L. Seabra-Lopes. Failure recovery planning in assembly based on ac-
quired experience: learning by analogy. In Proc. IEEE Intl. Symp. on
Assembly and Task Planning, Porto, PT, 1999.

