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Abstract. An increasing amount of evidence suggests that in human
infants the ability to learn by watching others, and in particular, the
ability to imitate, could be crucial precursors to the development of
appropriate social behavior, and ultimately the ability to reason about
the thoughts, intents, beliefs, and desires of others [6].

We have created a number of imitative characters and robots [2],
the latest of which is Max T. Mouse, an anthropomorphic animated
mouse character who is able to observe the actions he sees his
friend Morris Mouse performing, and compare them to the actions he
knows how to perform himself. This matching process allows Max to
accurately imitate Morris’s gestures and actions, even when provided
with limited synthetic visual input. Furthermore, by using his own
perception, motor, and action systems as models for the behavioral
and perceptual capabilities of others (a process known as Simulation
Theory in the cognitive literature), Max can begin to identify sim-
ple goals and motivations for Morris’s behavior, an important step
towards developing characters with a full theory of mind.

1 INTRODUCTION

Humans (and many other animals), display a remarkably flexible and
rich array of social competencies, demonstrating the ability to inter-
pret, predict and react appropriately to the behavior of others, and to
engage others in a variety of complex social interactions. We believe
that developing systems that have these same sorts of social abili-
ties is a critical step in designing robots, animated characters, and
other computer agents, who appear intelligent and capable in their
interactions with humans (and each other), and who are intuitive and
engaging for humans to interact with.

Since humans provide our inspiration for designing socially intel-
ligent artificial systems, we have approached the challenge by turning
to theories of how the ability to interpret the actions and intentions of
others, often called theory of mind (ToM), develops in humans. Re-
search in the field of cognitive development suggests that the ability
to learn by watching others, and in particular, the ability to imitate,
are not only important components of learning new behaviors (or new
contexts in which to perform existing behaviors), but could be crucial
precursors to the development of appropriate social behavior, and ul-
timately, theory of mind. In particular, Meltzoff ( see [6], [7], [8])
presents a variety of evidence for the presence of imitative abilities
in children from very early infancy, and proposes that this capacity
could be foundational to more sophisticated social learning, and to
ToM. The crux of his hypothesis is that infants’ ability to translate
the perception of anothers action into the production of their own ac-
tion provides a basis for learning about self-other similarities, and the
connection between behaviors and the mental states producing them.
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In previous work, we began to explore this hypothesis by imple-
menting a facial imitation architecture for an interactive humanoid
robot [2]. In this paper, we present a system that expands upon our
prior research, by providing a robust mechanism for observing and
imitating whole gestures and movements. Furthermore, the charac-
ters presented in this paper are able to use their imitative abilities
to bootstrap simple mechanisms for understanding each other’s low-
level goals and motivations, bringing us a step closer to our goal of
creating socially intelligent artificial creatures.

In the next section we briefly explore the cognitive theories moti-
vating our approach in a bit more detail. Subsequently, we describe
our imitation architecture, and in particular, look at Max and Morris
Mouse, two anthropomorphic animated mouse characters who are
able to interact with each other, and observe each other’s behavior.
We will focus especially on Max’s ability to imitate Morris, and on
our ongoing research into giving these characters other social learn-
ing capabilities, including learning about their environment by ob-
serving each other’s behavior, and gaining the knowledge necessary
to engage in cooperative activities.

2 UNDERSTANDING OTHER’S MINDS

For artificial creatures to possess human-like social intelligence, they
must be able to infer the mental states of others (e.g., their thoughts,
intents, beliefs, desires, etc.) from observable behavior (e.g., their
gestures, facial expressions, speech, actions, etc.). In humans, this
competence is referred to as a theory of mind (ToM) [10], folk psy-
chology [5], mindreading [12], or social commonsense [9].

In humans, this ability is accomplished in part by each participant
treating the other as a conspecific—viewing the other as being like
me. Perceiving similarities between self and other is an important
part of the ability to take the role or perspective of another, allowing
people to relate to and to empathize with their social partners. This
sort of perspective shift may help us to predict and explain others
emotions, behaviors and other mental states, and to formulate appro-
priate responses based on this understanding. For instance, it enables
us to infer the intent or goal enacted by anothers behavior—an im-
portant skill for enabling richly cooperative behavior.

2.1 Simulation Theory

Simulation Theory (ST) is one of the dominant hypotheses about the
nature of the cognitive mechanisms that underlie theory of mind [5],
[4]. It can perhaps best be summarized by the clich to know a man is
to walk a mile in his shoes. Simulation Theory posits that by simu-
lating another persons actions and the stimuli they are experiencing
using our own behavioral and stimulus processing mechanisms, hu-
mans can make predictions about the behaviors and mental states of
others based on the mental states and behaviors that we would pos-
sess in their situation. In short, by thinking as if we were the other



person, we can use our own cognitive, behavioral, and motivational
systems to understand what is going on in the heads of others.

From a design perspective, Simulation Theory is appealing be-
cause it suggests that instead of requiring a separate set of mecha-
nisms for simulating other persons, we can make predictions about
others by using our own cognitive mechanisms to recreate how we
would think, feel, and act in their situation—thereby providing us
some insight into their emotions, beliefs, desires, and intentions, etc.
We argue that an ST-based mechanism could also be used by robots
and animated characters to understand humans and each other in a
similar way. Importantly, it is a strategy that naturally lends itself to
representing the internal state of others and of the character itself in
comparable terms. This would facilitate an artificial creature’s ability
to compare its own internal state to that of a person or character it is
interacting with, in order to infer their mental states or to learn from
observing their behavior. Such theories could provide a foothold for
ultimately endowing machines with human-style social skills, learn-
ing abilities, and social understanding.

In the following section, we discuss our Simulation Theory-based
imitation and movement recognition architecture, which we have de-
veloped using two 3D computer animated characters, Max and Mor-
ris Mouse.

3 MAX AND MORRIS

Max and Morris are the latest in long line of interactive animated
characters developed by the Synthetic Characters Group at the MIT
Media Lab [11], [1], [3]. They were built using the Synthetic Char-
acters C5m toolkit, a specialized set of libraries for building au-
tonomous, adaptive characters and robots. The toolkit contains a
complete cognitive architecture for synthetic characters, including
perception, action, belief, motor and navigation systems, as well as a
new, high performance graphics layer for doing Java-based OpenGL
3D Graphics. A brief introduction to a few of these systems will be
given here, but it is beyond the scope of this paper to discuss them
all in detail (for more information please see [1], [3]).

3.1 The Motor System

For most character architectures, including the one implicit in this
work, a creature consists broadly of two components: a behavior sys-
tem and a motor system. Where the behavior system is responsible
for working out what the creature ought to be doing, the motor sys-
tem is responsible for carrying out the behavior systems requests.
The primary task of the motor system for a conventional 3D virtual
character is therefore to generate a coordinated series of animations
that take the character from where his body is now to where the be-
havior system would like it to be.

To approach this problem, we have created multi-resolution, di-
rected, weighted graphs, known asposegraphs. To create a charac-
ter’s posegraph, source animation material is broken up intoposes
corresponding to key-frames from the animation, and into collec-
tions of connected poses known asmovements. Animations can be
generated and played out on the character in real-time by interpolat-
ing down a path of connected pose nodes, with edges between nodes
representing allowable transitions between poses. The graph repre-
sents the possible motion space of a character, and any motor action
the character executes can be represented as a path through its pose-
graph.

Within the posegraph representation,movementsare of particular
importance to us here. Movements generally correspond to things we
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Figure 1. An example graph of movement nodes. Large rectangles
represent movements, small squares represent poses. Stacks represent
movements and poses created by blending multiple source animations

together

might intuitively think of as complete actions (e.g, sitting, jumping,
waving), and therefore often match up closely with requests from
the behavior system. While the pose representation provides us with
greater motor knowledge and flexibility, the movement representa-
tion is often a more natural unit to work with. More critically, because
movements correspond closely to motor primitives, or to simple be-
haviors, they also represent the level at which we would like to parse
observed actions, in order to identify and imitate them. Therefore,
inspired by Simulation Theory, our characters recognize and imitate
actions they observe by comparing them with the movements they
are capable of performing themselves, a process we will discuss in
greater detail in the following section.

3.2 Imitation and Movement Recognition

Max the Mouse is able to observe and imitate his friend Morris’s
movements, by comparing them to the movements he knows how to
perform himself. Max watches Morris through a color-coded syn-
thetic vision system, which uses a graphical camera mounted in
Max’s head to render the world from Max’s perspective. The color-
coding allows Max to visually locate and recognize a number of key
end-effectors on Morris’s body, such as his hands, nose and feet.
Currently, Max is hard-wired to know the correspondence between
his own effectors and Morris’s (e.g. that his right hand is like Mor-
ris’s right hand), but previous projects have featured characters using
learned correspondences [2], and a similar extension is planned for
this research.

As Max watches Morris, he roughly parses Morris’s visible be-
havior into individual movements and gestures. Max locates places
where Morris was momentarily still, or where he passed through a
transitionary pose, such as standing, both of which could signal the
beginning or end of an action. Max then tries to identify the observed



movement, by comparing it to all the movement representations con-
tained within his own movement graph. To do this, Max compares
the trajectories of Morris’s effectors to the trajectories his own limbs
would take while performing a given movement. This process allows
Max to come up with the closest matching motion in his repertoire,
using as few as seven visible effectors (as of writing, we have not
tested the system using fewer than seven). By performing his best
matching movement or gesture, Max can imitate Morris.

Figure 2. First row: Morris (blue) demonstrates an action (covering his
eyes) while Max (brown) watches. Second row: Morris through Maxs eyes.

The colored spheres represent key effectors. Third row: Max reproduces
Morriss action, by performing the movements in his own repertoire that are

closest to what he observed.

3.2.1 Matching Observed Gestures to Movements in the
Graph

As Max watches Morris demonstrate a gesture, he represents each
frame of observed motion by noting the world-space positions of
Morris’s effectors relative to Morris’s ‘root-node’ (the center of Mor-
ris’s body). He then searches his posegraph for the poses (frames)
closest to the beginning of the observed action (e.g. poses with simi-
lar hand, nose, and foot positions to those hes seen), using the Carte-
sian distance between corresponding effectors as his distance metric.
Max uses these best-matching poses as starting places for search-
ing his posegraph, exploring outward along the edges from these
nodes, and discarding paths whose distance from the demonstrated
gesture has become too high. Max can then look at the generated
path through his graph and see whether it corresponds closely to any
of his existing movements, or whether it represents a novel gesture.

One important benefit of using the posegraph to classify observed
motion is that it simplifies the problem of dealing with partially ob-
served (or poorly parsed) input. If Max watches Morris jump, but
doesnt see the first part of the motion, he will still be able to classify
the movement as jumping because the majority of the matching path
in his posegraph will be contained within his own jump movement.

Conversely, if Max has observed a bit of what Morris was doing be-
fore and after jumping, as well as the jump itself, he can use the fact
that the entire jump movement was contained within the matching
path in his graph to infer that this is the important portion of the ob-
served motion. In general, this graph-based matching process allows
observed behaviors to be classified amongst a characters own actions
in real-time without needing any previous examples.

4 IDENTIFYING ACTIONS, MOTIVATIONS
AND GOALS

Max and Morris both choose their actions using a hierarchically or-
ganized action system, composed of individual action units known
as action tuples (detailed in [1]). Each action tuple contains an ac-
tion to perform, trigger contexts in which to perform the action, an
optional object to perform the action on, and do-until contexts indi-
cating when the action has been completed. Within the each level of
the action hierarchy, tuples compete probabilistically for expression,
based on their action and trigger values.

Figure 3. An example action system. Purple rectangles represent tuples.
Red circles are trigger contexts, yellow triangles are objects, and blue

rectangles are actions (do-until contexts not shown)

4.1 Action Identification

By matching observed gestures and movements to his own, Max is
able to imitate Morris. Max can also use this same ability to try and
identify which actions he believes Morris is currently performing.
Max keeps a record of movement-action correspondences, that is,
which action he is generally trying to carry out when he performs a
particular movement (e.g. the ‘reaching’ gesture is most often per-
formed during the ‘getting’ action). When he sees Morris perform a
given movement, he identifies the action tuples it is most likely to be
a part of. He then evaluates a subset of the trigger contexts, known
ascan-I triggers, to determine which of these actions was possible
under the current circumstances. In this way, Max uses his own ac-
tion selection and movement generation mechanisms to identify the
action that Morris is currently performing.

4.2 Motivations and Goals

Another subset of trigger contexts, known asshould-I triggers, can
be viewed as simple motivationsfor example, a should-I trigger for
Maxs eating action is hunger. Similarly, some do-until contexts,
known assuccesscontexts, can represent low-level goalsMaxs suc-
cess context for reaching for an object is holding the object in his
hands. By searching his own action system for the action that Morris
is most likely to be performing, Max can identify likelyshould-Itrig-
gers andsuccessdo-untils for Morriss current actions. For example,
if Max sees Morris eat, he can match this with his own eating action,
which is triggered by hunger, and know that Morris is probably hun-
gry. Similarly, Max can see Morris reaching for, or jumping to get, an



object, and know that Morris’s goal is to hold the object in his hands,
since that is the success context for Max’s own ’get’ action. Notice
that in this second case, Max does not need to discern the purpose
of jumping and reaching separately, since these are both subactions
’get’ in his own hierarchy.
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Figure 4. A close up of a motivational subsystem in the action system
hierarchy (in this case the hunger subsystem)

We are currently developing mechanisms that allow Max to use
the trigger and do-until information from his best matching action
in order to interact with Morris in a more socially intelligent wayfor
instance, Max might see Morris reaching and help him get the ob-
ject he is reaching for, bringing him closer to more advanced social
behavior such working on cooperative tasks.

5 CONCLUSION

We want to build animated characters and robots capable of rich so-
cial interactions with humans and each other, and who are able to
learn by observing those around them. This paper presents an ap-
proach to creating imitative, interactive characters, inspired by the
literature on infant development and by the Simulation Theory view
of social cognition. Additionally, it introduces our ongoing work to-
wards creating robots and animated characters who are able to un-
derstand simple motivations, goals and intentions, a critical step in
creating artificial creatures who are able to interact with humans and
each other as socially capable partners.
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