
Robel : Synthesizing and Controlling
Complex Robust Robot Behaviors

Morisset Benoit1 and Infantes Guillaume and Ghallab Malik and Ingrand Felix2

Abstract. We present theRobel supervision system which is able
to learn from experience robust ways to perform high level tasks
(such as ”navigate to”). Each possible way to perform the task is
modeled as an Hierarchical Tasks Network (HTN), calledmodal-
ity whose primitives are sensory-motor functions. An HTN plan-
ning process synthesizes all the consistent modalities to achieve a
task. The relationship between supervision states and the appropriate
modality is learned through experience as a Markov Decision Pro-
cess (MDP) which provides a general policy for the task. This MDP
is independent of the environment and characterizes the robot abili-
ties for the task.

Introduction

Robust robot navigation is a complex task which involves many dif-
ferent capabilities such as localization, terrain modeling, motion gen-
eration adapted to obstacles, and so on. Many sensory-motor (sm)
functions have been developed and are available to perform naviga-
tion into structured (e.g. buildings) and unstructured (e.g. outdoor)
environments. Since no single method or sensor has a universal cov-
erage, eachsmfunction has its specific weak and strong points. The
approach presented here improves the global robustness of complex
tasks execution in taking advantage of thesesm functions comple-
mentarity.

To achieve these goals, we propose a two-stepped approach named
Robel for RObot BEhaviorLearning. First,smfunctions are aggre-
gated in a collection of Hierarchical Tasks Networks (HTN) [17], that
are complex plans calledmodalities. Each modality is a possible way
to achieve the desired task. One contribution of this work is to use
and to synthesize modalities relying on the HTN formalism. In a sec-
ond step, the relationship between supervision states and the appro-
priate modality for pursuing the task is learned through experience
as a Markov Decision Process (MDP) which provides a policy for
achieving the task. The second contribution of this work is an origi-
nal approach for learning from the robot experiences an MDP-based
supervision graph which enables to choose dynamically a modality
appropriate to the current context for pursuing the task. We obtain a
system able to efficiently use redundancies of low-levelsmfunctions
to robustly perform high-level tasks.

In the first Section we describe thesm functions and briefly de-
tail their forces and weaknesses. In Section 2 we introduce what are
the modalities, the one written by hand or better, how we can syn-
thesize them automatically using a planner. Section 3 describes the

1 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493,
USA. email: morisset@ai.sri.com

2 LAAS-CNRS, 7 avenue du Colonel Roche 31077 Toulouse Cedex 4
FRANCE email: firstname.lastname@laas.fr

controller and the learning mechanism which has been deployed to
choose at run time the appropriate modality for pursuing a task in the
current environment. Finally we present the results obtained both on
the modalities planning/synthesizing problem and on learning their
best use. We conclude with a discussion, and a prospective on this
subject.

1 Sensory-Motor Functions

Thanks to years of research in robotics, a large number ofsmfunc-
tions are now available, in particular for navigation tasks. To give an
idea of this diversity, we briefly present them, according to the main
functionality they provide.

Reliable and precise localization is often hard to obtain, numerous
methods have been developed to provide this functionality.Odom-
etry is easy to use but, due to drift and slippage, is seldom precise
enough to perform long-range navigation.Segment-based localiza-
tion is generally reliable in indoor environment [16], but laser oc-
clusion gives unreliable data. Moreover, in long corridors the laser
get little data along the corridor axis, thus the drift increases.Stereo
Vision odometry[11] is more precise than classic odometry, but re-
quires heavy computations which limits drastically the refresh rate
of the current position estimate. Moreover, it is very sensible to any
parameters which may impede the stereo correlation.Global Posi-
tioning Systemcan be used for absolute localization, although one
need a differential system to have an accurate measure.Localization
on landmarkssuch as wall posters in long corridors can provide an
accurate localization [2]. However, landmarks are usually only avail-
able and visible in few areas of the environment.

According to the type of mission and environment, different type
of path planners can be used:nav [22] or m2d [21]. The first one
is better for exploration of unknown regions, but at a high compu-
tational cost. The second one is fairly generic and robust, although
it may require further processing to get an executable dynamic tra-
jectory to take into account environment changes that occur during
navigation.

For locomotion on rough terrains, we use a motion planner/motion
generator namedP3D [5] which is designed essentially for explo-
ration of static environments. Motion control in dynamic environ-
ments has been implemented usingND [14]. It offers reactive motion
capability that remains efficient in very cluttered space, but may fall
in local minima. Theelastic band[19] gives a very robust method
for long range navigation, but can be blocked by a mobile obstacle
that traps the band against a static obstacle. Last, the dynamic defor-
mation is computationally intensive and may limit the reactivity in
cluttered, dynamic environments and may also limit the band length.

2 Synthesis of Modalities

A high level task given by a mission planning step requires an in-
tegrated use of severalsm functions among those presented earlier.
Each consistent combination of thesesmfunctions is a particular plan
called amodality. A modality is one way of performing the task. A
modality has specific characteristics that make it more appropriate
for some contexts or environments, and less for others. The choice of
the right modality for pursuing a task is far from being obvious. The
goal of thecontroller (see Section 3) is to perform such a selection
all along the task execution.

We chose to represent modalities as Hierarchical Task Networks.
We believe that the HTN formalism is adapted to modalities because
of its expressiveness and its flexible control structure [8]. HTNs offer
a middle ground between programming and automated planning, al-
lowing the designer to express the control knowledge which is avail-
able here. So we can use the same formalism to write a modality by
hand or to generate it automatically.

2.1 Model of data flow

Creating a consistent modality may be seen as a planning problem
using the correct models. To build a coherent modality, we want the
planner to produce a plan which properly connect the available mod-
ules implementing thesm functions. So we need to model thesm
functions previously described from a data flow point of view. We
give a module a semantic by considering it as a black box with some
input and output data. By correctly typing the data, and choosing the
right smfunctions, we are able to build a coherent chain of data pro-
cessing, for a navigation modality. This chain goes from external data
to the goal, through sensors, map building and motion generation of
a real movement (see Fig. 1).

Environnement

Map Building Model Motion Generator

Goal

Speed Reference MotionEffector

Figure 1. Example of a data flow

This scheme might be generalized easily to other kinds of modal-
ity, like exploration, manipulation or pure learning, depending on the
available functional modules.

To perform this planning task we use SHOP [18], a hierarchical
task planner. It uses a description of the domain, operators, and de-
composition methods to go from a high level tasks to terminal ac-
tions. To get SHOP to produce the correct connections between mod-
ules, we set some planning operators:

(!connect_as_prod ?func ?data)
(!connect_as_cons ?func ?data)

The first one says that a function produces a type of data, the other
that a function consumes a type of data. This operators assert the
corresponding predicates, to explicit the current state:

(connected_producer ?func ?data)
(connected_consumer ?func ?data)

We also have to specify correctly the functions. This is achieved
as follows:

(function lane.fuse)
(needs lane.fuse (3D_image video_image))
(produces lane.fuse 3D_model)

In the initial state of the problem, the only available data is input
data such asgoal, and we want to reach a state where themotion
data is available. We implement a backward-chaining mechanism
that starts from the final state and choose an operator (asm func-
tion) that will provide this data. The new current state needs the input
data of our operator. If they are not available, we choose a new func-
tion to produce them and so on. The backtrack points of the search
are the choice at this time of thesmfunction. If we need a position
(for localization), we may choose as different functions aslocaliza-
tion on landmarksor visual odometryto perform it. We may even
choose both of them using some data fusion mechanism available
on our robots. This regression/decomposition process stops when all
required data are available, typically provided by a sensor.

Thus we have the methods:

(:method (find_producer ?d)
((connected_producer ?f ?d))
()
((produces ?f ?d))
((!connect_as_prod ?f ?d)

(find_consumable ?f)))
(:method (find_consumable ?f)

((needs ?f ?data)
((connect_as_cons ?f ?data)

(find_producer ?data))))

The first one is to find the producers for a type of data. If this data
is already produced, we stop the decomposition (this is the meaning
of the empty parenthesis), else we find a producer and continue. The
second one is straightforward.

However, building a modality is not just linking a network of
producers/consumers. If this process can synthesize simple modal-
ities, most complex ones require other attributes and parameters to
be taken into account.

2.2 Other Attributes

We list here the other attributes the modality planning system has to
take into account, like theresources. A physical device may be re-
quired, at the same time, by two different modules in the same modal-
ity. Similarly, CPU and Memory usage are interesting resources to
model too. Such resources usage could be expressed as constraints
in the HTN formalism. Thetime is also important: most modules
are synchronous and have their own frequency, which on our robots
vary from 50 Hz to less than 1 Hz. A realistic model must take this
into account to ensure a correct execution. We may also notice the
some processing are doneon request, when instructed by another
module or the executive, or can bestarted and stoppedand produce
some data at a given period. Asynchronous/asynchronousattribute
is necessary: some execution requests may be synchronized with re-
spect to others (waiting for some data to be available) or may be
running at their own pace, using whatever data is then available.

As of today, the current implementation of the modalities synthe-
sizing part ofRobel uses the data flow model as well as a simple
synchronous/asynchronous and cyclic/on request model. Still, we are
able to produce interesting modalities (See Section 4.1). Neverthe-
less, using a complete model taking into account all the attributes,
we expect to be able to automatically produce modalities as rich and
as robust than the handwritten ones.

The solution to this problem gives an a priori valid modality (with
respect to the model), which can then be “tested” on line, thus al-
lowing thecontroller to learn in which situations it is appropriate to
use it. To conclude on this part, we may say that we are now able to
automatically generate the executable code of a modality from a few
information on how thesmwork. The next challenge is to learn to
use them efficiently.

3 The Controller

3.1 Qualitative Model of the Environment

We present in this section an example of a controller adapted to an in-
door navigation task. To perform this specific task, the design of the
control space and the control process itself require the use of a topo-
logical graph. Cells are polygons that partition the metric map. Each
cell is characterized by its name and acolor that corresponds to nav-
igation features such asCorridor, Corridor with landmarks, Large
Door, Narrow Door, Confined Area, Open Area and so on. Edges of
the topological graph are labeled by estimates of the transition length
from one cell to the next and by heuristic estimates of how easy such
a transition is.

3.2 The Control Space

The controller has to choose a modality that is most appropriate to
the current execution state for pursuing the task. In order to do this,
a set ofcontrol variableshas to represent control information for the
sm functions. The choice of these control variables is an important
design issue.

For example, in the navigation task in an indoor environment, the
control variables are:

• the cluttering of the environment which is defined to be a
weighted sum of the distances to nearest obstacles perceived by
the laser, with a dominant weight along the robot motion axis;

• theangular variation of the profile of the laser range data which
characterizes the robot area. Close to a wall, the cluttering value
is high but the angular variation remains low. But in an open area
the cluttering is low while the angular variation may be high;

• the inaccuracy of the position estimate, as computed from the
co-variance matrix maintained by each localizationsmfunction;

• the confidencein the position estimate (because the inaccuracy
is not sufficient to qualify the localization, each localizationsm
function supplies a confidence estimate about the last processed
position);

• the navigation color of current area is used when the robot po-
sition estimate falls within some labeled cell of the topological
graph, the corresponding labels are taken into account;

• the current modality is essential to assess the control state and
possible transitions between modalities.

A control state is characterized by the discretized values of these
control variables. We finally end-up with a discrete control space
which allows us to define acontrol automaton.

3.3 The Control Automaton

The control automaton is nondeterministic: unpredictable external
events may modify the environment, e.g. someone passing by may
change the value of the cluttering variable, or the localization inac-
curacy variable. Therefore the execution of the same modality in a

given state may lead to different adjacent states. This nondeterminis-
tic control automaton is defined as the tupleΣ = {S, A, P, C}:

S is a finite set of control states,
A is a finite set of modalities,
P : S × A× S → [0, 1] is a probability distribution on the state-

transition,Pa(s′|s) is the probability that the execution of modality
a in states leads to states′,

C : A × S × S → <+ is a positive cost function,c(a, s, s′) cor-
responds to the average cost of performing the state transition from
s to s′ with the modalitya.

A and S are given by design from the definition of the set of
modalities and of the control variables.P andC are obtained from
observed statistics during a learning phase.

The Control automatonΣ is a Markov Decision Process. As an
MDP, Σ could be used reactively on the basis of a universal policy
π which selects for a given states the best modalityπ(s) to be ex-
ecuted. However, a universal policy will not take into account the
current navigation goal. A more precise approach takes into account
explicitly the navigation goal, transposed intoΣ as a setSg of goal
states in the control space. This setSg is given by a look-ahead mech-
anism based on a search for a path inΣ that reflects a topological
route to the navigation goal.

3.3.1 Goal States in the Control Space

Given a navigation task, a search in the topological graph provides
an optimal router to the goal, taking into account estimated cost
of edges between topological cells. This route will help finding in
the control automaton desirable control states for planning a pol-
icy. The router is characterized by the pair(σr, lr), whereσr =
〈c1c2 . . . ck〉 is the sequence of colors of traversed cells, andlr is the
length ofr.

Now, a path between two states inΣ defines also a sequence of
colorsσpath, those of traversed states; it has a total cost, that is the
sum

∑
path

C(a, s, s′) over all traversed arcs. A path inΣ from the
current control states0 to a states corresponds to the planned route
when the pathmatchesthe features of the route(σr, lr) in the fol-
lowing way:

•
∑

path
c(a, s, s′) ≥ Klr, K being a constant ratio between the

cost of a state-transition in the control automaton to corresponding
route length,

• σpath corresponds to the same sequence of colors asσr with pos-
sible repetition factors, i.e., there are factorsi1 > 0, . . . , ik > 0
such thatσpath = 〈ci1

1 , ci2
2 , . . . , c

ik
k 〉whenσr = 〈c1, c2, . . . , ck〉.

This last condition requires that we will be traversing inΣ control
states having the same color as the planned route. A repetition fac-
tor corresponds to the number of control states, at least one, required
for traversing a topological cell. The first condition enables to prune
paths inΣ that meet the condition on the sequence of colors but can-
not correspond to the planned route. However, paths inΣ that contain
a loop (i.e. involving a repeated control sequence) necessarily meet
the first condition.

Let route(s0, s) be true whenever the optimal path inΣ from
s0 to s meets the two previous conditions, and letSg = {s ∈
S | route(s0, s)}. A Moore-Dijkstra algorithm starting froms0 gives
optimal paths to all states inΣ in O(n2). For every such a path,
the predicateroute(s0, s) is checked in a straightforward way, which
givesSg. It is important to notice that this setSg of control states
is a heuristic projectionof the planned route to the goal. There is
no guaranty that following blindly (i.e., in an open-loop control) a

path inΣ that meetsroute(s0, s) will lead to the goal, and there is
no guarantee that every successful navigation to the goal corresponds
to a sequence of control states that meetsroute(s0, s). This is only
an efficient and reliable way of focusing the MDP cost function with
respect to the navigation goal and to the planned route.

3.3.2 Finding a Control Policy

At this point we have to find the best modality to apply to the current
states0 in order to reach a state inSg, given the probability distri-
bution functionP and the cost functionC. A simple adaptation of
theValue Iterationalgorithm solves this problem. Here we only need
to know π(s0). Hence the algorithm can be focused on a subset of
states, basically those explored by the Moore-Dijkstra algorithm.

The closed-loop controller uses this policy as follows:

• the computed modalityπ(s0) is executed;
• the robot observes the states, it updates its router and its setSg

of goal states, it finds the new modality to apply tos.

This is repeated until the control reports a success or a failure. Re-
covery from a failure state consists in trying from the parent state an
untried modality. If none is available, a global failure of the task is
reported.

3.3.3 Estimating the Parameters of the Control automaton

A sequence of randomly generated navigation goals is given to the
robot. During its motion, new control states are met and new tran-
sitions are recorded or updated. Each time a transition froms to s′

with modality a is performed, the traversed distance and speed are
recorded, and the average speedv of this transition is updated. The
cost of the transitionC(a, s, s′) can be defined as a weighted average
of the traversal time for this transition taking into account the even-
tual control steps required during the execution of the modalitya in
s together with the outcome of that control. The statistics ona(s)
are recorded to update the probability distribution function. Several
strategies can be defined to learnP andC in Σ. The first one is used
initially to expandΣ: a modality is chosen randomly for a given task;
this modality is pursued until either it succeeds or a fatal failure is no-
tified. In this case, a new modality is chosen randomly. This strategy
is used initially to expandΣ. Σ is used according to the normal con-
trol except in a state on which not enough data has been recorded; a
modality is randomly applied to this state in order to augment known
statistics, e.g, the random choice of an untried modality in that state.

4 Experimental results

The justification of the whole system relies on the following princi-
ple : the use of the complementarity of several navigation modalities
increases the global robustness of the task execution. To validate this
principle, 5 handwritten modalities have been integrated inboard one
of our robot. In order to characterize the usefulness domain of each
modality we measured in a series of navigation tasks, the success rate
and other parameters such as the average speed, the distance covered,
the number of retries. Various cases of navigation have been consid-
ered such as for instance, long corridors or large areas, cluttered or
not, occluding the 2D characteristic edges of the area or not. These
extensive experiments described in details in [15] required several
kilometers of navigation. The result is that for each case of naviga-
tion met by the robot there is at least one successful modality. On the
other hand, no modality is able to cover all cases. This result clearly

supports our approach of a supervision controller switching from one
modality to another one according to the context.

A second step of experiments is focused on the automatic modal-
ities synthesis by a planning process. These ongoing results are pre-
sented in the next section. Finally, the learning capabilities of the
controller are illustrated in section 4.2.

4.1 Modalities Synthesis

Let us give some examples of synthesized modalities. On Fig. 2,
we can see the HTN built by SHOP. The corresponding modality
is shown on Fig. 3.

RFLEX.TRACK SPEEDREF
Connect_As_Consumer

ND.GOTO 2D_POINTS

Connect_As_Consumer

SPEEDREFND.GOTO

SICK 2D_POINTS

Connect_As_Producer

POSITIONRFLEX.ODOMETRY

Connect_As_Producer
RFLEX.ODOMETRY

Find_Consumable

POSITION

Find_Producer

MOTION

Find_Producer

SPEEDREF

Find_Producer

ND.GOTO

Find_Consumable

ND.GOTO POSITION

Connect_As_Consumer

Find_Consumable
SICK

RFLEX.TRACK MOTION

Method
[argument]*

[argument]*

Operator

Connect_As_Producer

2D_POINTS

Find_Producer

Build_Modality

Connect_As_Producer
RFLEX.TRACK

Find_Consumable

Figure 2. HTN built by SHOP for a simple modality

RFLEX.ODOMETRY

SICK

POSITION

2D_POINTS GOAL

ND.GOTO SPEED_REFERENCE RFLEX.TRACK MOTION

Figure 3. A simple modality

The odometry smfunction does not need any data at input, nor
does the sick (laser range finder). TheND motion generator uses
points from the sick to find out where are obstacles and gives the
speed reference to avoid obstacles and go to the goal.

This modality is better suited for exploration of “slightly” dynamic
environments, at low speed. This modality is the most simple of the
42 generated for the outdoor mobile robot, using 16smfunctions

Another (more complex) modality is shown on Fig. 4. We can see
that the robot uses its cameras to take images, and stereo-correlation
to have a 3D image. From here, it uses this image to compute a mo-
tion (Stereo Vision Odometry) which combined with classic odome-
try will give the localization. The modality also builds a 3D metric
model, the corresponding 3D qualitative model and projects it to ob-
tain a 2D qualitative model. This model is used to give long range
path made of way points. This way points are consumed one by one
by a motion generator that gives speed references using the 3D metric

model (and of course the current position). Then this speed reference
is used by the low-level effector to generate effectively the robot mo-
tion.

SCORREL LANE PATH

3D_MODEL 2D_QUALI_MODEL NAV.COMPUTE

CAMERAS BITMAP

2D_IMAGES

3D_IMAGE STEO.COMPUTE POSITION P3D.TRACK

RFLEX.ODOMETRY

CLASSIF 3D_QUALI_MODEL GOAL

SPEED_REFERENCE

RFLEX.TRACK

MOTION

Figure 4. A more complex modality

The problem we are facing now is to define criterion and ways for
selecting agoodset of modalities. A too large set will make the learn-
ing of the controller unrealistically long and costly, but we obviously
need a sufficiently large set to cover the main ways of combining the
sm functions. For the moment, this selection is performed interac-
tively by the robot designer. This still provides a significant benefit
in robustness, programming and debugging time w.r.t. handwriting
the modalities.

4.2 Controller

. We propose here to illustrate the learning capabilities of the con-
troller through an indoor navigation task. To perform this experiment,
we start with an empty automaton and 2 complementary modalities:
the first one (M1) is composed by theelastic band, m2dand theseg-
ment basedlocalization function, while the second one (M2) works
reactively without any path planner.ND performs the obstacle avoid-
ance and the robot is localized with the same function asM1. The
velocity and the path planner makeM1 more efficient in large and
open environments. On the other hand, the limited avoidance capabil-
ities of theelastic bandmakesM2 more adapted in highly cluttered
environments.

In this three-stepped experiment, the strategy of learning favors
the completion of each transition(3.3.3). If a modality has not been
tried for the current state (untried modality), this modality is executed
without any computation ofπ.

Phase 1. The learning starts with a series of 83 navigations in a
large open environment. During these navigations, 86 states and 159
transitions are created (Fig. 5). After the53th navigation (notedn53)
the number of new transitions met by the system tends to be stable.
Betweenn53 andn83, the computation ofπ returnsM1 for any state
encountered except for 2 states (inn60 andn70) whose transitions
with M2 were still untried (Fig. 6). The constant selection ofM1 by
π all along the 30 last navigations shows that the controller relevantly
learned the superiority ofM1 onM2 for the open environments.

Phase 2. Some narrow obstacles are added. This new situation
generates 14 new states betweenn84 et n87 and 10 new transitions

are tried untiln93. During these 9 first navigations, 6 failures are
recorded forM1, each time from a state with a high level for the
clutter variable. Aftern101 and untiln114, each time a state with a
high level for the clutter variable is encountered, the execution ofM1

is stopped by the controller and the obstacle avoidance is systemat-
ically performed withM2. No more failures are recorded withM1.
As soon as the clutter level recovers a low level, the computation of
π switches back to a selection ofM1. M1 is then kept as long as the
value of the clutter state variable stays low. If in the previous phase,
M1 was more appropriate thanM2, in this second phase, the system
is able to learn within 30 navigations, the better efficiency ofM2 in
cluttered environments.

Phase 3. The goal of the third step is to check if the learning of
the second phase (avoidance) didn’t corrupt the learning of the first
phase (open navigation). The obstacles are then removed to recover
the same environment as the phase 1 and 58 more navigations are per-
formed by the system. This new step shows that the learning of the
phase 1 was not complete: 10 new states are created and 23 untried
transitions are completed. Despite these untried transitions, between
n114 andn152, 30 navigations are performed with 100 % of selec-
tion for M1 by π. After n151, M1 is constantly selected all along the
21 last navigations. This last step shows that despite an incomplete
learning, the efficiency ofM1 in the phase 1 has not been forgotten
after the learning of the phase 2.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

number of states
number of transitions

Figure 5. Evolution of the size of the graph

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

pe
rc

en
ta

ge
s

�

navigations

Figure 6. Percentage of choice ofM1

Discussion and Conclusion

This paper addressed the issue of producing complex modalities from
sensory motors functions, and how to exploit the complementarity of
these modalities to perform a task.

We have shown that it is indeed feasible to synthesize modalities
from generic specifications, we still need to improve this planning
component to take into account attributes such as resource, time and
synchronism.

This is certainly not the first contribution that relies on a plan-
ning formalism and on plan-based control in order to program an au-
tonomous robot. For example, the“Structured Reactive Controllers”
[3] are close to our concerns and have been demonstrated effectively
on the Rhino mobile robot. The efforts for extending and adapting
the Golog language [12] to programming autonomous robots offer
another interesting example from a quite different perspective, that of
the Situation Calculus formalism [20]. The“societal agent theory”
of [13] offers also another interesting approach for specifying and
combining sequentially, concurrently or in a cooperative mode sev-
eral agent-based behaviors; the CDL language used for specifying
the agent interactions is similar to our Propice programming envi-
ronment. Let us mention also the“Dual dynamics” approach of [10]
that permit the flexible interaction and supervision of several behav-
iors. These are typical examples of a rich state of the art on possible
architectures for designing autonomous robots. (see [1] for a more
comprehensive survey).

Here also the use of MDPs for supervision and control of robot
navigation tasks is not new. Several authors expressed directly
Markov states as cells of a navigation grid and addressed naviga-
tion through MDP algorithms, e.g. value iteration [23, 6, 7]. Learn-
ing systems have been developed in this framework. For example,
XFRMLEARN extends these approaches further with a knowledge-
based learning mechanism that adds subplans from experience to
improve navigation performances [4]. Other approaches considered
learning at very specific levels, e.g., to improve path planning capa-
bilities [9]. Our approach stands at a more abstract and generic level.
It addresses another purpose: acquiring autonomously the relation-
ship from the set of supervision states to that of redundant modalities.
We have proposed a convenient supervision space. We have also in-
troduced a new and effective search mechanism that projects a topo-
logical route into the supervision graph. The learning of this graph
relies on simple and effective techniques, whose results provide two
particular features:

Portability: Variables of the control state reflect control informa-
tion for thesm functions. No information dedicated to the environ-
ment is present in the control state. In this sense we say that the con-
trol state isabstract. Thanks to this characteristic, a controller learned
in an environment can directly be used in another environment.

Adaptativity: In this system, learning and execution are not de-
coupled : learning ofΣ parameters is active all along the robot nav-
igations. If a new situation is encountered, corresponding new states
are created inΣ and the new untried transitions are evaluated and
taken into account by the next computations ofπ. This unsupervised
learning confers a high level of adaptativity to the controller.

In addition to future work directions mentioned above, an impor-
tant test ofRobel will be the extension of the set of tasks to manip-
ulation tasks such as“open a door”. This significant development
will require the integration of new manipulation functions, the syn-
thesizing of new modalities for these tasks and the extension of the
controller state. Another development which seems rather promising
is to learn the control space of the controller instead of relying on
one given by hand.

REFERENCES
[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, ‘An Archi-

tecture for Autonomy’,IJRR, 17(4), 315–337, (April 1998).
[2] V. Ayala, J.B. Hayet, F. Lerasle, and M. Devy, ‘Visual localization of a

mobile robot in indoor environments using planar landmarks’, inIEEE
IROS’2000, Takamatsu, Japan, pp. 275–280, (November 2000).

[3] M. Beetz, ‘Structured reactive controllers - a computational model of
everyday activity.’, in3rd Int. Conf. on Autonomous Agents, (1999).

[4] M. Beetz and T. Belker, ‘Environment and task adaptation for robotics
agents’, inECAI, (2000).

[5] D. Bonnafous, S. Lacroix, and T. Simon, ‘Motion generation for a rover
on rough terrains’, inInternational Conference on Intelligent Robotics
and Systems, Maui, HI (USA), (October 2001). IEEE.

[6] Cassandra, Kaelbling, and Kurien, ‘Acting under uncertainty: Dis-
crete bayesian models for mobile robot navigation’, inProceedings of
IEEE/RSJ IROS, (1996).

[7] T. Dean and M. Wellman, ‘Planning and control’, inMorgan Kauf-
mann, (1991).

[8] K. Erol, J. Hendler, and D.S. Nau, ‘HTN planning: Complexity and
expressivity.’, inAAAI, (1994).

[9] K. Z. Haigh and M. Veloso, ‘Learning situation-dependent costs: Im-
proving planning from probabilistic robot execution’, inIn 2nd Int.
Conference on Autonomous Agents, (1998).

[10] J. Hertzberg, H. Jaeger, P. Morignot, and U. R. Zimmer, ‘A framework
for plan execution in behavior-based robots’, inISIC-98 Gaithersburg
MD, pp. 8–13, (1998).

[11] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, ‘Autonomous rover navigation on unknown terrains,
functions and integration’,International Journal of Robotics Research,
(2003).

[12] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,
‘GOLOG: A logic programming language for dynamic domains’,Jour-
nal of Logic Programming, 31(1-3), 59–83, (1997).

[13] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron, ‘Multiagent mis-
sion specification and execution’, inAutonomous Robots, 4(1):29 V52,
(1997).

[14] J. Minguez, L. Montano, T.Simeon, and R. Alami, ‘Global nearness
diagram navigation (GND)’, inICRA2001, Korea.

[15] B. Morisset,Vers un robot au comportement robuste. Apprendre com-
biner des modalits sensori-motrices complmentaires., Ph.D. disserta-
tion, Universit́e Paul Sabatier, Toulouse, novembre 2002.

[16] P. Moutarlier and R. G. Chatila, ‘Stochastic Multisensory Data Fusion
for Mobile Robot Location and Environment Modelling’, inProc. In-
ternational Symposium on Robotics Research, Tokyo, (1989).

[17] D. Nau, Y. Caoand, A. Lotem, and H. Munoz-Avila., ‘Shop: Simple
hierarchical ordered planner’, inIJCAI, (1999).

[18] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell, ‘Total-
order planning with partially ordered subtasks’, inIJCAI, Seatle,
(2001).

[19] S. Quinlan and O. Khatib, ‘Towards real-time execution of motion
tasks’, inExperimental Robotics 2, eds., R. Chatila and G. Hirzinger,
Springer Verlag, (1992).

[20] R. Reiter, ‘Natural actions, concurrency and continuous time in the sit-
uation calculus.’, inKR, pp. 2–13, (1996).

[21] T. Simeon and B. Dacre Wright, ‘A practical motion planner for all-
terrain mobile robots’, inIEEE/RSJ IROS, (1993).

[22] S.Lacroix, I.K.Jung, J.Gancet, and J.Gonzalez, ‘Towards long range au-
tonomous navigation’, in7th ESA Workshop on Advanced Space Tech-
nologies for Robotics and Automation, Noordwijk (The Netherlands),
(November 2002).

[23] S. Thrun, A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Hen-
ning, T. Hofmann, M. Krell, and T. Schmidt, ‘Map learning and high-
speed navigation in rhino’, inAI-based Mobile Robots: Case Studies
of Successful Robot Systems, eds., D. Kortenkamp, R.P. Bonasso, and
R. Murphy. MIT Press, (1998).

