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Abstract. We present th@&®obel supervision system which is able controller and the learning mechanism which has been deployed to

to learn from experience robust ways to perform high level taskshoose at run time the appropriate modality for pursuing a task in the

(such as "navigate to"). Each possible way to perform the task isurrent environment. Finally we present the results obtained both on
modeled as an Hierarchical Tasks Network (HTN), calieddal-  the modalities planning/synthesizing problem and on learning their

ity whose primitives are sensory-motor functions. An HTN plan- best use. We conclude with a discussion, and a prospective on this
ning process synthesizes all the consistent modalities to achieve subject.

task. The relationship between supervision states and the appropriate

modality is learned through experience as a Markov Decision Pro-

cess (MDP) which provides a general policy for the task. This MDP1{ Sensory-Motor Functions

is independent of the environment and characterizes the robot abili-

ties for the task. . .
Thanks to years of research in robotics, a large numbsemdtinc-

tions are now available, in particular for navigation tasks. To give an
Introduction idea of this diversity, we briefly present them, according to the main
functionality they provide.

Robust robot navigation is a complex task which involves many dif-  Reliable and precise localization is often hard to obtain, numerous
ferent capabilities such as localization, terrain modeling, motion genmethods have been developed to provide this functionalitlom-
eration adapted to obstacles, and so on. Many sensory-matdr ( etry is easy to use but, due to drift and slippage, is seldom precise
functions have been developed and are available to perform naVig@mough to perform long-range navigatidegment-based localiza-
tion into structured (e.g. buildings) and unstructured (e.g. outdoorjion js generally reliable in indoor environment [16], but laser oc-
environments. Since no single method or sensor has a universal co¥ysjon gives unreliable data. Moreover, in long corridors the laser
erage, eacbmfunction has its specific weak and strong points. Theget little data along the corridor axis, thus the drift increaS¢steo
approach presented here improves the global robustness of complgision odometry[11] is more precise than classic odometry, but re-
tasks execution in taking advantage of thesefunctions comple-  quires heavy computations which limits drastically the refresh rate
mentarity. of the current position estimate. Moreover, it is very sensible to any

To achieve these goals, we propose a two-stepped approach namgsrameters which may impede the stereo correlatiobal Posi-
Robel for RCbot BEhavior Learning. Firstsmfunctions are aggre-  tioning Systentan be used for absolute localization, although one
gated in a collection of Hierarchical Tasks Networks (HTN) [17], that need a diﬂerentia| System to have an accurate meabuw]iza’[ion
are complex plans calledodalities Each modality is a possible way  on Jandmarkssuch as wall posters in long corridors can provide an
to achieve the desired task. One contribution of this work is to usggccurate localization [2]. However, landmarks are usually only avail-
and to synthesize modalities relying on the HTN formalism. In a seCqyple and visible in few areas of the environment.
ond step, the relationship between supervision states and the appro-according to the type of mission and environment, different type
priate modality for pursuing the task is learned through experienceys path planners can be usatav [22] or m2d [21]. The first one
as a Markov Decision Process (MDP) which provides a policy forjs petter for exploration of unknown regions, but at a high compu-
achieving the task. The second contribution of this work is an origi-tational cost. The second one is fairly generic and robust, although
nal approach for learning from the robot experiences an MDP-basegl may require further processing to get an executable dynamic tra-
supervision graph which enables to choose dynamically a modalityectory to take into account environment changes that occur during
appropriate to the current context for pursuing the task. We obtain aayvigation.
system able to efficiently use redundancies of low-levefunctions For locomotion on rough terrains, we use a motion planner/maotion
to robustly perform high-level tasks. generator name@3D [5] which is designed essentially for explo-

In the first Section we describe tisenfunctions and briefly de-  yation of static environments. Motion control in dynamic environ-
tail their forces and weaknesses. In Section 2 we introduce what af@ents has been implemented usiti [14]. It offers reactive motion
the modalities, the one written by hand or better, how we can syncapability that remains efficient in very cluttered space, but may fall
thesize them automatically using a planner. Section 3 describes thg |ocal minima. Theelastic band[19] gives a very robust method

for long range navigation, but can be block mobil I
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2 Synthesis of Modalities (function lane.fuse)
(needs lane.fuse (3D_image video_image))

A high level task given by a mission planning step requires an in- (produces lane.fuse 3D_model)
tegrated use of severainfunctions among those presented earlier.
Each consistent combination of thesafunctions is a particular plan ~ In the initial state of the problem, the only available data is input
called amodality A modality is one way of performing the task. A data such agoal, and we want to reach a state where thetion
modality has specific characteristics that make it more appropriatéata is available. We implement a backward-chaining mechanism
for some contexts or environments, and less for others. The choice #fat starts from the final state and choose an operatem(&inc-
the right modality for pursuing a task is far from being obvious. Thetion) that will provide this data. The new current state needs the input
goal of thecontroller (see Section 3) is to perform such a selection data of our operator. If they are not available, we choose a new func-
all along the task execution. tion to produce them and so on. The backtrack points of the search

We chose to represent modalities as Hierarchical Task Networkgire the choice at this time of ttenfunction. If we need a position
We believe that the HTN formalism is adapted to modalities becauséor localization), we may choose as different functionsaasiliza-
of its expressiveness and its flexible control structure [8]. HTNs offerttion on landmarksor visual odometryto perform it. We may even
a middle ground between programming and automated planning, aghoose both of them using some data fusion mechanism available
lowing the designer to express the control knowledge which is availOn our robots. This regression/decomposition process stops when all
able here. So we can use the same formalism to write a modality b§gquired data are available, typically provided by a sensor.

hand or to generate it automatically. Thus we have the methods:

(:method (find_producer ?d)
2.1 Model of data flow gconnecmd_pmducer ?f 2d))
Creating a consistent modality may be seen as a planning problem ((produces ?f 2d))
using the correct models. To build a coherent modality, we want the ((‘connect_as_prod ?f ?d)
planner to produce a plan which properly connect the available mod- (find_consumable ?f)))

. . . (:method (find_consumable ?f)
ules implementing them functions. So we need to model tisen (needs 2f 2data)

functions previously described from a data flow point of view. We ((connect_as_cons ?f ?data)

give a module a semantic by considering it as a black box with some (find_producer ?data))))

input and output data. By correctly typing the data, and choosing the -

right smfunctions, we are able to build a coherent chain of data pro- The first one is to find the producers for a type of data. If this data
cessing, for a navigation modality. This chain goes from external dat#s already produced, we stop the decomposition (this is the meaning
to the goal, through sensors, map building and motion generation aff the empty parenthesis), else we find a producer and continue. The
a real movement (see Fig. 1). second one is straightforward.

However, building a modality is not just linking a network of
producers/consumers. If this process can synthesize simple modal-
Cor>

ities, most complex ones require other attributes and parameters to
be taken into account.

|
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2.2 Other Attributes

Figure 1. Example of a data flow We list here the other attributes the modality planning system has to

take into account, like theesources A physical device may be re-
quired, at the same time, by two different modules in the same modal-

This scheme might be generalized easily to other kinds of modallty- Similarly, CPU and Memory usage are interesting resources to
ity, like exploration, manipulation or pure learning, depending on theM0del too. Such resources usage could be expressed as constraints
available functional modules. in the HTN formalism. Theiime is also important: most modules

To perform this planning task we use SHOP [18], a hierarchicalre synchronous and have their own frequency, which on our robots
task planner. It uses a description of the domain, operators, and d&ary from 50 Hz to less than 1 Hz. A realistic model must take this
composition methods to go from a high level tasks to terminal acinto account to ensure a correct execution. We may also notice the
tions. To get SHOP to produce the correct connections between modome processing are dooe request when instructed by another
ules, we set some planning operators: module or the executive, or can biarted and stoppedand produce
some data at a given period.s&nchronous/asynchronousittribute
is necessary: some execution requests may be synchronized with re-
spect to others (waiting for some data to be available) or may be

The first one says that a function produces a type of data, the othéunning at their own pace, using whatever data is then available.
that a function consumes a type of data. This operators assert the As of today, the current implementation of the modalities synthe-
corresponding predicates, to explicit the current state: sizing part ofRobel uses the data flow model as well as a simple
synchronous/asynchronous and cyclic/on request model. Still, we are
able to produce interesting modalities (See Section 4.1). Neverthe-
less, using a complete model taking into account all the attributes,

We also have to specify correctly the functions. This is achievedve expect to be able to automatically produce modalities as rich and
as follows: as robust than the handwritten ones.

(fconnect_as_prod ?func ?data)
(fconnect_as_cons ?func ?data)

(connected_producer ?func ?data)
(connected_consumer ?func ?data)



The solution to this problem gives an a priori valid modality (with given state may lead to different adjacent states. This nondeterminis-
respect to the model), which can then be “tested” on line, thus altic control automaton is defined as the tuple= {S, A, P, C}:
lowing thecontroller to learn in which situations it is appropriate to S is a finite set of control states,
use it. To conclude on this part, we may say that we are now able to A is a finite set of modalities,
automatically generate the executable code of a modality fromafew P:S x A x S — [0, 1] is a probability distribution on the state-
information on how thesmwork. The next challenge is to learn to transition, P, (s’|s) is the probability that the execution of modality
use them efficiently. a in states leads to stata’,

C:AxSxS— RTis a positive cost functior;(a, s, s’) cor-
responds to the average cost of performing the state transition from
3 The Controller s to s’ with the modalitya.

3.1 Qualitative Model of the Environment A and S are given by design from the definition of the set of

o . . modalities and of the control variableB.andC are obtained from
We present in this section an example of a controller adapted to an insp cared statistics during a learning phase

door navigation task. To perform this specific task, the design of the The Control automatol is a Markov Decision Process. As an

control space and the control process itself require the use of a tOpWIDP, 52 could be used reactively on the basis of a universal policy
logical graph. Cells are polygons that partition the metric map. Each

- ; | « which selects for a given statethe best modalityr(s) to be ex-
cell is characterized by its name anddor that corresponds to nav-

o ) ’ i ecuted. However, a universal policy will not take into account the
igation features such e@prndor, Corridor with landmarks, Large current navigation goal. A more precise approach takes into account
Door, Narrow Door, Confined Area, Open Area and so Bdges of

explicitly the navigation goal, transposed irioas a setS, of goal

the topological graph are labeled by estimates of the transition Iengtgtates in the control space. This Sgtis given by a look-ahead mech-
from one cell to the next and by heuristic estimates of how easy Sucgnism based on a search for a patttirhat reflects a topological

atransition Is. route to the navigation goal.

3.2 The Control Space 3.3.1 Goal States in the Control Space

The controller has to choose a modality that is most appropriate tgijven a navigation task, a search in the topological graph provides
a set ofcontrol variableshas to represent control information for the f edges between topological cells. This route will help finding in

smfunctions. The choice of these control variables is an importanthe control automaton desirable control states for planning a pol-

design issue. _ o _ _ _ icy. The router is characterized by the paft., . ), whereo, =
For example, in the navigation task in an indoor environment, the<clc2 ... cx) is the sequence of colors of traversed cells, larig the
control variables are: length ofr.

Now, a path between two stateshdefines also a sequence of

e the cluttering of the environment which is defined to be a o .
. ) . colorso,qtn, those of traversed states; it has a total cost, that is the
weighted sum of the distances to nearest obstacles perceived B

’
the laser, with a dominant weight along the robot motion axis; snmzpath Cla, s, s") over all traversed arcs. A path from the
e ) .’ current control statg, to a states corresponds to the planned route
e theangular variation of the profile of the laser range data which

characterizes the robot area. Close to a wall, the cluttering valuWhen the pattmatchesthe features of the routgr, ;) in the fol-

o - . : fowing way:
is high but the angular variation remains low. But in an open area g way

the cluttering is low while the angular variation may be high; e > ..clas s') > Kl K being a constant ratio between the

o theinaccuracy of the position estimate as computed from the  cost of a state-transition in the control automaton to corresponding
co-variance matrix maintained by each localizatsomfunction; route length,

e the confidencein the pOSitiOﬂ estimate (because the inaccuracy. Opath Corresponds to the same sequence of CO|Ometh pos-
is not sufficient to qualify the localization, each localizatiem sible repetition factors, i.e., there are factors> 0,...,i, > 0
function)supplies a confidence estimate about the last processed sych thatpatn = <c§1 , cg"‘, R cjj) wheno, = (c1,ca, ..., Ck).
position);

e the navigation color of current area is used when the robot po- ~ This last condition requires that we will be traversinglircontrol
sition estimate falls within some labeled cell of the topological States having the same color as the planned route. A repetition fac-

graph, the corresponding labels are taken into account; tor corresponds to the number of control states, at least one, required
e the current modality is essential to assess the control state andor traversing a topological cell. The first condition enables to prune
possible transitions between modalities. paths inX that meet the condition on the sequence of colors but can-

not correspond to the planned route. However, pathstimt contain
A control state is characterized by the discretized values of thesa loop (i.e. involving a repeated control sequence) necessarily meet
control variables. We finally end-up with a discrete control spacethe first condition.

which allows us to define eontrol automaton Let route(so, s) be true whenever the optimal path ¥a from
so to s meets the two previous conditions, and gt = {s €
3.3 The Control Automaton S | route(so, s)}. A Moore-Dijkstra algorithm starting fror, gives

optimal paths to all states il in O(n?). For every such a path,
The control automaton is nondeterministic: unpredictable externathe predicateoute(so, s) is checked in a straightforward way, which
events may modify the environment, e.g. someone passing by mayives S,. It is important to notice that this sét; of control states
change the value of the cluttering variable, or the localization inacis a heuristic projectionof the planned route to the goal. There is
curacy variable. Therefore the execution of the same modality in @o guaranty that following blindly (i.e., in an open-loop control) a



path inY that meetgoute(so, s) will lead to the goal, and there is supports our approach of a supervision controller switching from one
no guarantee that every successful navigation to the goal corresponadwmdality to another one according to the context.

to a sequence of control states that meetge(so, s). This is only A second step of experiments is focused on the automatic modal-
an efficient and reliable way of focusing the MDP cost function with ities synthesis by a planning process. These ongoing results are pre-
respect to the navigation goal and to the planned route. sented in the next section. Finally, the learning capabilities of the

controller are illustrated in section 4.2.

3.3.2 Finding a Control Policy
4.1 Modalities Synthesis

At this point we have to find the best modality to apply to the current

stateso in order to reach a state ifl;, given the probability distri- | et us give some examples of synthesized modalities. On Fig. 2,

bution functionP and the cost functio@'. A simple adaptation of e can see the HTN built by SHOP. The corresponding modality
the Value Iterationalgorithm solves this problem. Here we only need js shown on Fig. 3.

to know 7 (so). Hence the algorithm can be focused on a subset of

states, basically those explored by the Moore-Dijkstra algorithm. | oula_wodaiy
The closed-loop controller uses this policy as follows: { """""
T Fina_Producer ! R
o the computed modality (so) is executed,; Lo oToN | L emon

o the robot observes the stateit updates its route and its setS, :'";.'na;c'.gg;um;.s.:': p—
of goal states, it finds the new modality to applysto [ ReexTRACK |

This is repeated until the control reports a success or a failure. R | Find Producer

covery from a failure state consists in trying from the parent state an
untried modality. If none is available, a global failure of the task is
reported.

Find_Producer
POSITION

3.3.3 Estimating the Parameters of the Control automaton
A sequence of randomly generated navigation goals is given to the sex o pomrs choommm
robot. During its motion, new control states are met and new tran- * *
sitions are recorded or updated. Each time a transition frams’

with modality a is performed, the traversed distance and speed are
recorded, and the average speedf this transition is updated. The
cost of the transitio'(a, s, s’) can be defined as a weighted average
of the traversal time for this transition taking into account the even-
tual control steps required during the execution of the modality

s together with the outcome of that control. The statisticsa6s)

are recorded to update the probability distribution function. Several

strategies can be defined to led?randC in X. The first one is used @ @

initially to expandX: a modality is chosen randomly for a given task; -‘ ‘
this modality is pursued until either it succeeds or a fatal failure is no @ @
tified. In this case, a new modality is chosen randomly. This strategy

is used initially to expand. X is used according to the normal con-

trol except in a state on which not enough data has been recorded; a Figure 3. A simple modality

modality is randomly applied to this state in order to augment known
statistics, e.g, the random choice of an untried modality in that state.

Figure 2. HTN built by SHOP for a simple modality

The odometry snfunction does not need any data at input, nor
does the sick (laser range finder). TN® motion generator uses
The justification of the whole system relies on the following princi- points from the sick to find out where are obstacles and gives the
ple : the use of the complementarity of several navigation modalitiespeed reference to avoid obstacles and go to the goal.
increases the global robustness of the task execution. To validate this This modality is better suited for exploration of “slightly” dynamic
principle, 5 handwritten modalities have been integrated inboard onenvironments, at low speed. This modality is the most simple of the
of our robot. In order to characterize the usefulness domain of eac2 generated for the outdoor mobile robot, usingffunctions
modality we measured in a series of navigation tasks, the success rateAnother (more complex) modality is shown on Fig. 4. We can see
and other parameters such as the average speed, the distance covetieal, the robot uses its cameras to take images, and stereo-correlation
the number of retries. Various cases of navigation have been consithh have a 3D image. From here, it uses this image to compute a mo-
ered such as for instance, long corridors or large areas, cluttered t¢ion (Stereo Vision Odometyyvhich combined with classic odome-
not, occluding the 2D characteristic edges of the area or not. Thedey will give the localization. The modality also builds a 3D metric
extensive experiments described in details in [15] required severahodel, the corresponding 3D qualitative model and projects it to ob-
kilometers of navigation. The result is that for each case of navigatain a 2D qualitative model. This model is used to give long range
tion met by the robot there is at least one successful modality. On thpath made of way points. This way points are consumed one by one
other hand, no modality is able to cover all cases. This result clearlypy a motion generator that gives speed references using the 3D metric

4 Experimental results



P3D.TRACK

model (and of course the current position). Then this speed referen@e tried untiln93. During these 9 first navigations, 6 failures are
is used by the low-level effector to generate effectively the robot morecorded forM;, each time from a state with a high level for the
tion. clutter variable. Aftem101 and untiln114, each time a state with a
high level for the clutter variable is encountered, the executiav of
@ is stopped by the controller and the obstacle avoidance is systemat-
L] ically performed withM>. No more failures are recorded wiftf; .
As soon as the clutter level recovers a low level, the computation of
7 switches back to a selection 8f;. M; is then kept as long as the
value of the clutter state variable stays low. If in the previous phase,
Z0-QuALLMoBE M, was more appropriate thay, in this second phase, the system
is able to learn within 30 navigations, the better efficiencyf in
@ cluttered environments.
Phase 3 The goal of the third step is to check if the learning of
the second phase (avoidance) didn't corrupt the learning of the first
phase (open navigation). The obstacles are then removed to recover
the same environment as the phase 1 and 58 more navigations are per-
SPEED_REFERENCE formed by the system. This new step shows that the learning of the
phase 1 was not complete: 10 new states are created and 23 untried
transitions are completed. Despite these untried transitions, between
n114 andn152, 30 navigations are performed with 100 % of selec-
tion for M, by 7. After n151, M, is constantly selected all along the
21 last navigations. This last step shows that despite an incomplete
Figure 4. A more complex modality learning, the efficiency of/; in the phase 1 has not been forgotten
after the learning of the phase 2.

The problem we are facing now is to define criterion and ways for -

. e . number of states
selecting gyoodset of modalities. A too large set will make the learn- umber ofransiions -~
ing of the controller unrealistically long and costly, but we obviously Y

need a sufficiently large set to cover the main ways of combining the
smfunctions. For the moment, this selection is performed interac-
tively by the robot designer. This still provides a significant benefit
in robustness, programming and debugging time w.r.t. handwriting
the modalities.

150 -

4.2 Controller

. We propose here to illustrate the learning capabilities of the con- % m % w W @ @ w0 m e
troller through an indoor navigation task. To perform this experiment, Figure 5. Evolution of the size of the graph
we start with an empty automaton and 2 complementary modalities:
the first one /1) is composed by thelastic bangdm2dand theseg-
ment basedocalization function, while the second onk/§) works | | l |
reactively without any path plannétD performs the obstacle avoid- ‘ I ' ‘
ance and the robot is localized with the same functiod&s The

velocity and the path planner makdé; more efficient in large and
open environments. On the other hand, the limited avoidance capabil-
ities of theelastic bandmakesM- more adapted in highly cluttered
environments.

In this three-stepped experiment, the strategy of learning favors
the completion of each transition( 3.3.3). If a modality has not been
tried for the current state (untried modality), this modality is executed
without any computation of.

Phase 1 The learning starts with a series of 83 navigations in a
large open environment. During these navigations, 86 states and 159

. . ) ) 0 20 40 60 80 100 120 140 160 180
transitions are created (Fig. 5). After théf" navigation (notec53) navigations
the number of new transitions met by the system tends to be stable. Figure 6. Percentage of choice @fl;
Betweem53 andn83, the computation of returnsi/; for any state
encountered except for 2 states (60 andn70) whose transitions
with M, were still untried _(Fig. 6). The constant selectiomdf by Discussion and Conclusion
« all along the 30 last navigations shows that the controller relevantly
learned the superiority a¥/; on M- for the open environments. This paper addressed the issue of producing complex modalities from

Phase 2 Some narrow obstacles are added. This new situatiorsensory motors functions, and how to exploit the complementarity of

generates 14 new states betwesd et n87 and 10 new transitions these modalities to perform a task.

percentages




We have shown that it is indeed feasible to synthesize modalitieREFERENCES

from generic specifications, we still need to improve this planning
component to take into account attributes such as resource, time an[&]
synchronism. 2]

This is certainly not the first contribution that relies on a plan-
ning formalism and on plan-based control in order to program an au-
tonomous robot. For example, tffétructured Reactive Controllers” (3]
[3] are close to our concerns and have been demonstrated effectively;
on the Rhino mobile robot. The efforts for extending and adapting
the Golog language [12] to programming autonomous robots offer[5]
another interesting example from a quite different perspective, that of
the Situation Calculus formalism [20]. THeocietal agent theory” 6]
of [13] offers also another interesting approach for specifying and
combining sequentially, concurrently or in a cooperative mode sev-
eral agent-based behaviors; the CDL language used for specifying{ﬂ]
the agent interactions is similar to our Propice programming envi-[8]
ronment. Let us mention also thBual dynamics” approach of [10]
that permit the flexible interaction and supervision of several behav-[9]
iors. These are typical examples of a rich state of the art on possible
architectures for designing autonomous robots. (see [1] for a morﬁO]
comprehensive survey).

Here also the use of MDPs for supervision and control of robot
navigation tasks is not new. Several authors expressed direct§1]
Markov states as cells of a navigation grid and addressed naviga-
tion through MDP algorithms, e.g. value iteration [23, 6, 7]. Learn-
ing systems have been developed in this framework. For exampley o)
XFRMLEARN extends these approaches further with a knowledge-
based learning mechanism that adds subplans from experience to
improve navigation performances [4]. Other approaches consider
learning at very specific levels, e.g., to improve path planning capa-
bilities [9]. Our approach stands at a more abstract and generic levegl.4]
It addresses another purpose: acquiring autonomously the relation-
ship from the set of supervision states to that of redundant modalitie&!®]
We have proposed a convenient supervision space. We have also in-
troduced a new and effective search mechanism that projects a topgs)
logical route into the supervision graph. The learning of this graph
relies on simple and effective techniques, whose results provide two
particular features: [17]

Portability: Variables of the control state reflect control informa- [,
tion for thesmfunctions. No information dedicated to the environ-
ment is present in the control state. In this sense we say that the con-
trol state isabstract Thanks to this characteristic, a controller learned![19]
in an environment can directly be used in another environment.

Adaptativity: In this system, learning and execution are not de-[2q)
coupled : learning ok parameters is active all along the robot nav-
igations. If a new situation is encountered, corresponding new staté21]
are created irE and the new untried transitions are evaluated an 22]
taken into account by the next computationsroThis unsupervised
learning confers a high level of adaptativity to the controller.

In addition to future work directions mentioned above, an impor-
tant test ofRobel will be the extension of the set of tasks to manip- (23]
ulation tasks such d®pen a door”. This significant development
will require the integration of new manipulation functions, the syn-
thesizing of new modalities for these tasks and the extension of the
controller state. Another development which seems rather promising
is to learn the control space of the controller instead of relying on
one given by hand.
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