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Abstract. This paper describes a practical approach to the robot
grasping problem. An approach that is composed of two different
parts. First, a vision-based grasp synthesis system implemented on
a humanoid robot able to compute a set of feasible grasps and to
execute any of them. This grasping system takes into account gripper
kinematics constraints and uses little computational effort.

Second, a learning framework aimed at discovering the visual fea-
tures that predict a reliable grasp. A grasp characterization scheme
based on a set of visual features is developed in order to describe and
compare grasps. In addition, a practical measure of grasp reliability
is designed and implemented.

Moreover, an algorithm aimed at predicting the performance of
an untested grasp using the results observed on previous similar at-
tempts is presented. A second algorithm that actively selects the next
grasp to be executed in order to improve the predictive quality of the
accumulated experience is introduced, too.

An exhaustive database of experimental data is collected and used
to test and validate both algorithms.

1 INTRODUCTION

The ability for manipulating and using objects are some of the most
relevant skills that robots have to master in order to interact with its
environment and constitute a key component for many robotic appli-
cations. Robotic manipulation can be studied at many levels, from
the mechanical and physical interactions between different objects,
through the proper design of mechanical robot hands, to the purpose-
ful use of different objects. Traditionally, roboticist has focused on
the former aspects, and for a good reason. Usually, complex manip-
ulations , from the point of view of a robot, require a precise knowl-
edge of the complex physics involved and the use of carefully de-
signed hands. As a consequence, little attention has been paid on the,
high-level, cognitive activities related with the purpose of manipula-
tion and the nature of the manipulated objects.

This paper is the summary of a large project that has been focused
on the improvement of the grasping capabilities of a robot in order to
be able to grasp objects within unstructured environments. This un-
structuredness is derived from the uncertain conditions of the objects
to be grasped, and the little practical knowledge of the conditions that
make a grasp stable.

We focus on the grasping problem, consisting of determining the
kind grasp necessary to carry out certain manipulation tasks on an
object. A grasp is defined both by the contacts on the objects surface
and the hand and arm configuration necessary to reach them. More-
over, we focus on the pick up task. That is, we grasp the object in
order to lift and transport it.
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Extensive research on this field during the last two decades has
established a strong theoretical framework[15, 13, 2]. However, most
of this research has been based on perfect models or ideal operational
conditions. These assumptions often become unrealistic in real world
applications.

Briefly, the principles of our approach are two: first, the use of
sensorial, mainly visual, information to reduce the uncertainty in the
environment; second, the development of a learning framework to
apprehend the features of the environment that predict the outcome
of the actions of the robot.

The development of this project yields two clearly separated parts:
the development of a practical grasping system, and the design and
implementation of a complete learning scheme.

The main features of the grasping in system (described in sec. 2),
is that it makes use of sensorial inputs, mainly vision, to acquire rel-
evant information for the grasping task, in particular the shape and
location of the objects to grasp. In addition to this, we also develop
a couple of grasp synthesis algorithm able to compute two and three
finger grips from this information, using a small computational time,
and meeting theoretical stability conditions. Finally, an algorithm to
adapt the computed grips to the particular features of the gripper used
is necessary, too.

Once this system is developed we face the problem of grip selec-
tion. Given a object, many different feasible grips can be performed
on it, and it is thus critical to characterize the quality of candidate
grips in order to execute the most reliable ones.

In this paper we introduce an ambitious approach that tries to
use experience of real grasping actions to tune the behavior and
the reliability assessment capabilities of the grasping system. More
specifically we follow an active learning approach. According to this
paradigm, the agent is allowed to interact with its environment. More
specifically, it can execute actions which have an impact on the gen-
eration of training data. Exploration refers to the process of selecting
actions in active learning. In the framework of our problem, the pos-
sible actions are the different candidate grips, at a given moment.
Actions are selected by the agent in an ”intelligent” way in order to
minimize the cost and duration of the learning process.

To reach this goal we develop a learning scheme that is composed
of four main parts:

• A grasp characterization scheme that provides a unique descrip-
tion of any grasp (sec. 3). This characterization scheme is based
on nine high-level vision-based descriptors. In this way, we repre-
sent each grip as a point in a multidimensional space.

• An experimental test (sec. 3.1) by means of which the robot can
determine the reliability of a given grasp. This is achieved by ex-
ecuting the grasp and applying on it a set of practical tests to esti-
mate the degree of stability.

• A set of techniques for predicting the reliability of a grasp from
its similarity to other grasps (sec. 4). These techniques use the



Figure 1. The UMASS Torso. A humanoid robotic system developed at the
Laboratory for Perceptual Robotics in the University of Massachusetts[17].

characterization schema described in previous point, and are based
on pattern classification and recognition techniques.

• An exploration algorithm (sec. 5) that makes use of the problem
representation previously built to decide the next action, the grasp
to be executed, in order to obtain a better knowledge of the en-
vironment with a lower cost, that is, with a minimum number of
executions.

Finally, we carry out an experimental validation of these methods
using real data from repeated grasping actions of the robot. We col-
lect an extensive set of samples from real grasping executions (sec.
3.2), and use them to tune, test and validate our methods (secs. 4.3
and 5.1).

2 A PRACTICAL GRASPING SYSTEM

We have implemented a robotic grasping system on the UMass hu-
manoid torso, at the Laboratory for Perceptual Robotics in the Uni-
versity of Massachusetts[17]. This humanoid robot consists of two
Whole Arm Manipulators from Barrett Technologies, two Barrett
hands with tactile sensors at the fingertips and a BiSight stereo head.

The stereo vision system estimates the two-dimensional location
of the target object on the table, and provides a monocular image for
surface curvature analysis (see [12] for more details). Once a grip
is selected (consisting of contact locations and a hand posture), the
hand is preshaped and positioned above the object. It moves down,
closes the fingers so that the object is grasped, lifted and transported
to a designated location.

The main modules/steps of the functioning of this robotic grasping
system are the following:

1 Image processing: analyzes an image of an unknown planar ob-
ject, extract its contour and identify triplets of grasping regions.

2 Grip synthesis: determines a number of feasible grasps selecting
the grasping points for each region triplet; after that, generates
finger configurations that could actually be applied to the object
in order to perform a grip action.

3 Grasp selection: perform an ‘intelligent’ selection of the grip to
execute.

4 Execution: execute the grip with support of visual and tactile
feedback.

(a) Photo (b) Kinematics

Figure 2. Barrett Hand, http://www.barretttechnology.com

Details about the first, second, and fourth sections of a system of
this kind, concerned with the generation of candidate grasping con-
figurations, are fully described in [10, 11, 12], though in the next
subsections we introduce the basic concepts.

2.1 Grasp synthesis

We define a grasp as the set of three contact points on an object
contour, and the corresponding force directions, perpendicular to the
contour, which meet in the grasp force focus. We call hand configura-
tion each possible grip obtained applying the kinematics constraints
of a robot hand to a grasp as defined above.

To avoid misunderstandings, in all this text when referring to
grasps and configurations together, the term grip is used.

We assume a real-time system acting in an unstructured environ-
ment, which detects unknown objects and, through analysis of visual
data, selects and executes a stable grip of such objects.

Fast computation is necessary in order to achieve a real-time inter-
action with the external world. The ability to cope with uncertainties,
in terms of knowledge of friction coefficients or visual and position-
ing errors, is a must in an uncontrolled environment.

2.2 Configurations

With a perfectly homogeneous three-finger hand, for which the fin-
gers are all the same, the three possible ways of combining fingers
with contact points in a grasp are not distinguishable. This is not the
case for the Barrett Hand, for which the kinematics of the thumb
is different from that of the other two fingers. A photo of the hand
is reproduced in Fig. 2(a). Its kinematics are depicted in Fig. 2(b).
The hand has four degrees of freedom: the three finger extensions
e1, e2, e3 and the spread angle θ.

For each grasp there are three possible positions of the thumb. Af-
ter deciding where to place the thumb, there are still potentially infi-
nite ways of making the hand touch the object at three contact points.
However, when the action line of the thumb is fixed as well, only
one solution is possible. A one-dimensional search along all possible
thumb force directions gives the best Barrett Hand configuration for
a grasp after the thumb position has been defined . Thus, every grasp
ideally generates three different configurations, one for each thumb
position. When no solutions are found for a thumb position within
a grasp, due to the constraints deriving from the hand geometry and
kinematics, no corresponding configurations are produced.



(a) Grasp (b) Config. 1 (c) Config. 2

Figure 3. Generating configurations from a grasp

Typically, dozens of configurations can be generated for an ob-
ject, mostly depending on the number of regions found. In Fig. 3(b)
and 3(c) two configurations generated from the grasp of Fig. 3(a) are
depicted.

2.3 Two-finger grips

A particular kind of three-finger grasp is obtained as an extension of
two-finger grasps. To generate a two-finger grasp, only two regions
are needed, and they must be nearly parallel and facing each other
(with friction, regions that are not perfectly parallel can also be used
for two-finger grips).

Starting from a real two-finger grasp, if one of the regions is large
enough to carry two Barrett Hand fingers, then a virtual two-finger
grasp is generated. So, there is a special group of three-finger grasps
that are computed in a completely different way, and thus have differ-
ent properties and characteristics. From now on we will refer to them
as two-finger grasps, meaning that two of the fingers are positioned
on the same grasping region.

Each two-finger grasp can generate only one configuration, that is
a two-finger configuration, as the thumb must be the finger opposed
to the other two. An example of a two-finger grasp and its configura-
tion are shown in Fig. 4 (a) and (b).

2.4 Implementation and results

The modules described in the previous sections have been imple-
mented and tested. In a first stage they have been tested isolated,
using as inputs images of different objects [10, 11]. These tests show

(a) Grasp (b) Configuration

Figure 4. Example of two-finger grip

that our implementation obtains the same results as do other classi-
cal works [5, 14] employing a few milliseconds on a common PC
computer.

On a second stage they have been embedded on the control sys-
tem of the UMass humanoids torso for building a complete grasping
system[12]. Nearly 70 real grasp executions have been performed
using this system. These experiments have consisted in placing an
object in front of the robot and grasping it by executing one of the
hand configurations computed for the object. The selection of the
configuration to execute have been done by a human operator.2

These experiments show the usefulness and validity of the devel-
oped algorithms. However, they also shown the limitations of the
grasping system. The first main problem is that the grasp synthesis
algorithms produce a large number of possible grips, and there is no
clear rule for preferring one to the others. Regarding to this problem,
we propose a set quality criteria [3] that gives a value for each grasp.
However, this method is not satisfactory enough since it is purely a
priory, with no feedback from reality.

A second main problem, is the unexpected bad performance of
some a priory stable grasp. Though this can be caused by the in-
accuracy of the sensor inputs and the execution controllers, it also
strongly affected by risks not anticipated during the stability study
used to design the grasp synthesis algorithms.

These limitations have motivated the development of the learn-
ing framework that uses experience for determining the features of
grasps that asses its stability and reliability.

3 GRASP CHARACTERIZATION SCHEME
AND RELIABILITY MEASUREMENT

A characterization scheme to provide a way to describe grasps so
that they can be used by the learning procedures has been developed.
We have opted for a scheme that measures a set of properties of each
grasp. In this way a grasp will be represented by n measurements
becoming a point in an n-dimensional space. This scheme consists
of nine of these high-level features that have been designed in order
to meet the next requirements:

Vision-based computation. The features are computed from
visually-extracted information.

Hand constraining. Features take into account particular character-
istics of the hand.

Location and orientation invariance. Displacements and rotations
of the object do not affect the values of the features.

Object independence. Grasps with the same physical properties
have the same characterization independently of the object for
which they are computed.

Physical meaning. Features are computed to measure physical
properties relevant to grasping.

Stability and reliability. Features consider stability and reliability
hazards of a grasp.

To summarize, every grip is described by a nine-elements tuple,
and therefore, can be abstracted as a point in a nine-dimensions
space. This space would contain all the possible grip descriptors.

Due to the limitations of space, we only describe in detail one of
the grasp descriptors, as an example of the kind how these require-
ments are actually applied in the design of the descriptors. For further

2 In http://www.robot.uji.es/people/morales/experiments
there is an exhaustive description, including video recordings, of all these
experiments.



Figure 5. Geometrical representation of the Finger Limit Criterion.

details and a better explanation of all the descriptors the reader is re-
ferred to [3].

An example of grasp descriptor: The Finger Limit criterion

When trying to grip large objects, there is a limit in the extension of
the fingers . Due to the way the Barrett Hand grips objects, there is a
finger extension value that, if overcome, causes the grip to shift from
a fingertip grip to a fingerside grip on the part edge, which is more
risky and less stable although still possible (see Fig. 5). Therefore, a
threshold on the maximum optimal finger extension η has been set
in order to avoid marginal contacts: qFG = ε1 + ε2 + ε3 where
εi = ( ei−η

λ
)2 if ei > η, else 0. The threshold λ is an estimation of

the positioning error.

3.1 Experimental measurement of grasp reliability

A key issue in our experimental approach is the definition of a prac-
tical measurement of the reliability of a grasp. In order to do this a
single object is placed on a table within the robot workspace. Using
visual information the robot locates the object and computes a set of
feasible grasp configurations. One of the configurations is selected,
either manually by a human operator, or automatically by the robot,
and executed.

If the robot has been able to lift the object safely, a set of stability
tests are applied in sequence. These are aimed at measuring the sta-
bility of the current grasp. They consist of three consecutive shaking
movements of the hand which are executed with an increasing accel-
eration. After each movement the tactile sensors are used to check
whether the object has been dropped off.

This protocol provides us with a qualitative measure of the success
of a grasp. Thus, an experiment may result in five different reliability
classes: E indicates that the system was not able of lifting the ob-
ject at all; D, C, B indicate that the object was dropped, respectively,
during the first, second, or third series of shaking movements; finally
A means the object did not fall and was returned successfully to its
initial position on the table. Hence, we define Ω = {A, B, C, D, E}
as the set of reliability classes.

3.2 Experimental sample dataset

To acquire a sample database large enough to validate the proposed
methods, a series of exhaustive experiments have been carried out.

Table 1. SAMPLE DATASETS

E D C B A Total
LIGHT 102 84 33 27 18 264
LOW 38.6% 31.8% 12.5% 10.2% 6.8% (22)

LIGHT 51 97 56 38 118 360
HIGH 14.2% 26.9% 15.6% 10.6% 32.8% (34)

HEAVY 95 92 29 2 2 220
HIGH 43.1% 41.8% 13.2% 0.9% 0.9% (23)

Sample distributions among classes for the different data sets. The figures in
brackets in the “Total” column indicates the number of different grip

configurations really tested.

Four real objects has been built for this experiment: two with simple
shapes and two with more complex shapes. In order to build the sam-
ple database the four objects are presented to the grasping system,
and a sufficiently large number of grips are executed. The reliability
of these grips is obtained applying the test described in section 3.1.

A particular execution of a grip configuration can be influenced
by many unpredictable factors. To avoid this problem, each grip is
executed a sufficiently large number of times, by varying the location
and orientation in the presentation of the object.

The number of feasible grips that are computed for each single ob-
ject is usually large, varying from several dozens to more than one
hundred. The repetition above mentioned could lead to a non practi-
cal number of executions, so for each object only a few configuration
grips are selected to be executed. This selection consists of the most
representative configurations of each object. Each configuration grip
is executed 12 times, 4 times for three different orientations of the
object.

Since we are also interested in studying the grasping performances
in different circumstances, several characteristics of the environment
are tested. These are the weight of the objects and the friction co-
efficient. Two qualitative categories for each of both conditions are
distinguished: heavy and light objects, and high and low friction. The
different weight is obtained by making two different sets of objects
similar in appearance, but made of different material. Different con-
tact friction is achieved by using a latex fingertip to envelope the
fingers.

A series of experiments where done following this experimen-
tal protocol. Three different combinations of physical properties
were tested: light objects and low friction (light/low), heavy objects
and high friction (heavy/high); and light objects and high friction
(light/high). More than eight hundred samples were obtained from
this exhaustive experimentation. Table 1 shows the number of differ-
ent grips executed and the percentages of grips that resulted in each
class of Ω.

4 GRASP RELIABILITY PREDICTION

The learning methodology that we propose is composed of two main
algorithmic components. First, a prediction scheme that computes
the most likely reliability class of an untested grip, using previous
experience as reference. This component assumes the existence of a
set of previously executed grips having the values of the descriptors
and their reliability class known.

The second component, that will be referred as exploration func-
tion, is responsible of building such set of previous attempts by suc-
cessive selection of the most appropriate grip candidates. In this sec-
tion we focus on the first component.



In theoretical terms a data set of previous experience is composed
of N executed triplets. Each grip gi, i = 1 . . . N is described by
the nine visual features q1, . . . q9 introduced in subsection 3. The 9-
dimensional space GS is formed by the ranges of the values of the
features. Moreover, we have also recorded the performance of the
grip and have assigned it to a class ωi ∈ Ω for each gi.

A prediction function tries to assess the most likely reliability class
for a candidate grasp gq ∈ GS using as reference the previous expe-
rience. There exists a wide bibliography on the building of such func-
tions based on the Bayesian decision theory and other non-statistical
approaches. In this work we have studied three different approaches
for the implementation of the prediction function.

4.1 Density estimation

The first one is a statistical parametric method[4]. It assumes that the
samples that belong to every reliability category are distributed in the
feature-space according to a particular density function. In our imple-
mentation this is a multivariate normal density. We use the existent
datasets to estimate the parameters of this density functions, in our
case, the mean µωi and the covariance matrix Γωi where ωi ∈ Ω. For
our purposes we are interested of the posterior probability p(ωi|gq).

p(ωi|gq) ≈ exp

(
−1

2
(x − µωi)

T Γ−1
ωi

(x − µωi)

− 1

2
log det Γωi + log p(ωi)

)
(1)

The most likely class is, then, the one with a higher conditional
probability.

4.2 Voting KNN classification rule

A prediction function has the form F (g) = ω̄ where g ∈ GS and
ω̄ ∈ Ω. There exists a wide bibliography on the building of such
functions based on the Bayesian decision theory [4]. In this paper we
have chosen the approach of the non-parametric techniques, in par-
ticular the voting k-nearest neighbor (KNN) rule [6, 4], for modeling
this function. The non-parametric techniques do not assume any den-
sity distribution of the features and the classes. To predict the class of
a query point gq , the KNN rule counts the K-nearest neighbors and
chooses the class that most often appears, the most voted.

In our implementation we have introduced some modifications to
the basic schema. First we use the euclidean metric for measuring the
distance between the points in the GS . We weighted the contribution
of each of the KNN points according to its distance to the query point.
This gives more importance to the closer points. The kernel function
used is K(d) = 1

1+(d/T )
, where T is an adjustable parameter, and d

is the distance.
We define KNN(gq) = {(gi, ωi), i = 1 . . . k, gi ∈ GS , ωiinΩ}

as the k closest points to gq and di their corresponding distances
from gq . The probability corresponding to a class ω̄ are computed
using this expression:

p(ω̄, gq) =
∑

gi∈KNN(gq)
ωi=ω̄

K(di)∑
gj∈KNN(gq) K(dj)

(2)

Function P is also an expression of the posterior prob-
ability [6]. Our predictor would be defined as F (gq) =
argmaxω∈Ω{p(ω, gq)}. That is, the class predicted ω is the one with
the largest probability p(ω, gq).

Table 2. COMPARISON USING THE LIGHT/HIGH SAMPLE DATASET

0 1 2 3 4 ē
random 23.5% 26.2% 20.3% 20.7% 9.3% 0.415
density est. 35.0% 20.3% 15.6% 17.2% 11.9% 0.365
knn 51.1% 21.7% 13.3% 11.1% 2.8% 0.223

Percentages of misclassifications depending on the error distance. Distance 0
indicates successful classifications.

4.3 Validation and comparison of the methods

Three basic questions need to be answered about the prediction ca-
pabilities of the rules described in this section: first, are they able to
predict anything at all?; second, are they able to generalize across
different objects?; and third, did we have enough data to properly
construct a risk function? To answer these questions we have devel-
oped a cross-validation method named leave-one-grasp-out valida-
tion similar to the well known leave-one-out validation and n-fold
cross-validation [4]. This consists of the following steps: 1) given
the whole data set, remove all the points of a particular grasp con-
figuration and use this subset as validation set; 2) use the remaining
samples for predicting the outcomes of the validation set and com-
pute the mean error; 3) repeat steps 1) and 2) for all configurations.
The validation error will be the mean error of the iterations of step 2).
The goal of removing all the points of a configuration from the data
set is to eliminate points similar to the query grasp in the experience
dataset, thus testing generalization properties.

The error metric is based on the concept of misclassification error
distance. The distance between two consecutive classes is defined as
1, that between A and C as 2, etc. In this way define the error distance
e(gq) = {0, . . . , 4} for the prediction of a given query grip. Given a
set of predictions G = {gi, i = 1 . . . n}, we define the average error
metric ē(G) =

∑
e(gi)/4.

Moreover, we compare these prediction methods against the the-
oretical results that would be obtained by a prediction method that
would have chosen randomly the predicted class.

The performance of this methods is obtained using the validation
procedure described above. Table tab:fullsize shows the results ob-
tained for one the sample datasets (light objects and high friction).
The results in the other two cases were similar. The figures obtained
indicate the the KNN prediction function improves clearly the other
prediction functions, moreover it obtains better results that the naive
random prediction.

This results show its validity of KNN function for prediction
within this problem. Finally, we also measure the evolution of the
performance of the KNN prediction method with different sizes of
the sample dataset (fig. 6) and we conclude that the performance im-
proves when the available experience dataset is larger[8, 9].

5 ACTIVE LEARNING FOR EXPERIENCE
ACQUISITION

The results of the analysis of prediction methods indicate that it is
possible to predict reasonably well the reliability class of a grasp if
enough previous experience is available. In this part of the project we
question if it is possible to reach a similar degree of performance with
less experience. In particular we aim at designing an exploration pro-
cedure that guides the continuous execution of grasps with the goal
of acquiring the maximum performance possible with the minimum
number of executed trials.
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Figure 6. Evolution of the error when the size of the available data set
varies. The Solid black line represents the errors obtained by the KNN

prediction method, while the dashed line is the threshold of the random error.

In practice, the task of such exploration procedure is to select the
next grasp to execute among a set of candidates. This selection must
be done in order to improve the predictive capabilities of the stored
experience, i.e., the set of already executed grasps.

The algorithm we propose assumes that at any point during the
training of the grasping system a set of candidate grips gi ∈ GS is
proposed and the algorithm has to select the next grasp to be exe-
cuted. To accomplish this task, it can take into account the results of
previous experiments.

The approach we propose for the selection is inspired in the idea
hinted by Thrun [16], “queries are favored that have the least pre-
dictable outcome”. That is, those candidates which category is less
predictable are preferred. This idea is based on the intuition that such
candidates are located in areas where the implicit model represented
by the experience data set is less clear.

We implement this idea by defining the term prediction confi-
dence. For every grip candidate gi, a class ωi ∈ Ω is computed
using the KNN prediction scheme defined in the previous section.
The confidence of that prediction is simply p(ωi, gi). In formal terms
the prediction confidence for a grip gq is defined as Fconf (gq) =
max{p(ω|gq)}, ω ∈ Ω. We use only the KNN prediction function
since it proved to obtain the better results in the analyses described
in previous section.

Once defined the notion of confidence, it is easy to describe
the exploration function. It chooses the candidate with a mini-
mum confidence value. Given a set of m grasp candidates Gq =
{g1, . . . , gm} ⊂ GS , the exploration function is defined as,

Fexp(Gq) = argmin
gi∈Gq

Fpred(gi) (3)

Hereinafter, we will refer to this method as the minimum confi-
dence exploration, or simply the risk exploration function.

Summarizing, this procedure procedure predicts a query point
based on its similarity to its neighbors. This is a case of instance-
based also known as memory-based learning [1], which is a numeric
variant of the more symbolic case-based reasoning [18]. These ap-
proaches do not construct an explicit representation of the target
function when training samples are provided, but simply store them.
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Figure 7. Evolution of the prediction error using the Light/High sample
dataset.

5.1 Validation of the exploration procedure

The performance of the exploration/selection procedure is measured
by the predictive capability of the set of samples selected/executed,
which reliability class is known. This can be easily measured by us-
ing this dataset to predict the class of the samples contained in a
secondary validation test. We have designed a validation framework
that follows this principle. In its design we also take inspiration from
the running of the robot in the training environment or in a learn-
ing experiment. In this situation the robot will execute a sequence
of selection-execution actions. Each of these actions will follow the
next steps:

1. One or more objects appear in the workspace of the robot. The
grasps for them are computed. These are the grasp candidates

2. The robot selects one of them by using the exploration function.
3. The grasp is executed and the reliability test is applied.
4. The new grasp and the performance outcome are added to the ex-

perience dataset.

For the execution of the validation algorithm, we take the whole
sample dataset available and extract a subset, validation dataset from
it. The remaining is used as a pool dataset. In a sequence of selection
steps, a small subset of candidate samples are extracted randomly
from this pool. The exploration function, in our case, the minimum
confidence rule, is applied to select one of these candidates. The se-
lected candidate is added to the experience dataset and the discarded
candidates are returned back to the pool. The performance measure-
ment is done by using the samples in the experience dataset for pre-
dicting the samples in the validation set. The sequence is repeated
until the pool dataset is emptied or it contains few samples.

This procedure is repeated a sufficiently large number of times
varying the contents of the pool and validation datasets and the per-
formance measurements for each size of the experience dataset are
averaged.

Figure 7 presents the evolution of the prediction error for differ-
ent sizes of the Light/High sample dataset, that is equivalent to the
number of steps of the algorithm described in the above paragraphs.
The graph in dashed lines shows the evolution of the prediction er-
ror when the sample to execute is selected randomly among the set



of candidates. This case would represent the evolution when no spe-
cific exploration rule is applied. From this graph, and similar ones
obtained using the other sample datasets, we conclude that the pro-
posed exploration procedure clearly improves the random selection
function, and is able to reach maximum performance levels with less
than a hundred trials.

6 CONCLUSION

This paper is the summary of large project [7] aimed at improving
the grasping skills of a robot to work in the face of unknown con-
ditions and uncertainty. We have approached this problem following
two different ways.

The goal of the first part is to develop and to implement a grasping
system able to use vision for extracting and using relevant informa-
tion for grasp synthesis. The visual approach allows the system to
deal with unknown objects. We have already emphasized the inclu-
sion of the particular kinematics of the robotic hand within the grasp
synthesis algorithms. As a result we have developed a couple of al-
gorithms able to compute two and three-finger grasp for unknown
objects using vision as only input, and a third algorithm that con-
strains their results to the hand geometry.

Moreover, these algorithms have resulted to be fast and suitable to
use in real-time manipulation activities. Finally, a complete imple-
mentation on the UMass Torso has shown the strengths and limita-
tions of the grasping system. This observations have motivated the
approached followed in the next part of the project.

In this second part, we have presented the development of a learn-
ing framework for assessing robot grasp reliability. This framework
is based on two learning algorithms and a representation of the data,
built on a grasp characterization scheme composed of nine high level
vision-based descriptors.

The first algorithm is aimed at predicting the reliability of an
untested grip from its comparison to previous recorded attempts. The
second algorithm, based on the idea of active learning, is an explo-
ration rule that has to select among a set of candidate grips the next
one to execute, having the goal of improving the predictive perfor-
mance of the accumulated experience.

An experimental measurement of the reliability of a grasp have
been developed and used to gather an exhaustive database of sample
grips. Several validation frameworks that make use of this database,
have been designed to test and validate the usefulness and properties
of the proposed algorithms.

The results have proved that the algorithms proposed in this work
are able to carry out the expected tasks with a reasonable level of
performance, despite the complex and unpredictable nature of the
task space.

Moreover, the experimental and practical approach followed indi-
cates a possible path that service robotic applications willing to be
used in every-day human environments could follow. The inclusion
of active learning schemes in robot systems is an appropriate way to
improve their adaptability to unmodeled or partially unknown envi-
ronments and, thus, building real intelligent robot systems.
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