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Abstract. We present an approach to mobile robot guidance. The
proposed architecture grants an abstract interface to robot naviga-
tion allowing to bridge from perception to high level control. The
approach is based upon a comprehensive map representing metric,
configurational, and topological knowledge. Robot instruction and
localization is dealt with by communicating and reasoning about
cyclic ordering information of shape-features.

1 Motivation

Service robots are a growing field of interest and are higly relevant,
not only for the research community but also for companies that try
to take a share in an emerging market. Within near future, office com-
plexes populated with various heterogenous service robots are a very
probable scenario resulting in a range of different problems, for ex-
ample coordination among the robots and interaction with human
users.

A key point to instructing robots is to communicate spatial in-
formation, for example when commanding a robot to visit a certain
place. To provide sufficient control over the various robots, a com-
patible method of instruction is required for all of them. As a con-
sequence, the spatial representations of the individual robots would
need to be compatible with each other. In the presence of different
robot systems from various vendors, equipped with different sensors,
this is a non-trivial task. Moreover, the chosen method of instruction
needs to mediate between the technical abilities of a robot and its
often data-driven spatial representation and features desired in a user
interaction that are based on more abstract spatial information.

To consolidate these different demands we propose a central robot
guidance system. A qualitative language, i.e. relational information,
is applied for communication with the robots. Allowing for an easy
formalization, qualitative information offers a good means for a spec-
ification of such a system, which also respects individual robots’ ca-
pabilities. In particular, a system based on qualitative information can
serve as an interface to a human user. Furthermore, with robot guid-
ance it is possible to restrict the spatial representation of an individual
robot to the needs of its specific task, like cleaning of the floor. There
is no need to represent the complete working environment within
each single robot. Especially within dynamic environments the man-
agement, i.e. construction and maintenance, of a spatial representa-
tion is a difficult task that has not been solved thoroughly yet [20].
Freeing individual service robots from this burden, our proposed ar-
chitecture is a slender one.

The robot guidance outlined here does not rely upon a precise or
even correct map of the environment. Typically, environments are
subject to steady changes. Therefore, handling of unreliable, or even
conflicting knowledge is of high importance. The proposed guidance
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system is well-suited to cope with uncertainty as robust qualitative
ordering information gets used.

2 Related Work

Many robot architectures have been proposed that address the con-
struction of a versatile mobile robot. Hereby, the robot’s spatial rep-
resentation is the key point. Mapping and localization issues have
been covered by various authors (see [20] for an overview). It is gen-
erally agreed upon that a helpful robot map is not a single-layered
representation, but provides different modalities of access, metric in-
formation and topological knowledge play key roles here [11, 18].
To respect uncertainty, successful robot architectures typically rely
upon a stochastic modeling as a method of localization within a set
of possible states [19].

The goal of all approaches mentioned is to gain complete metric
knowledge of the environment the robot is located in. With increasing
size of environments, the problem gets more difficult as compute-
time increases and mix-ups in the localization occur. But not all this
information may need to be acquired for the construction of a service
robot. For example, a robot that is designed to collect garbage in a
local surrounding like a single room needs a (spatial) representation
that allows for a search strategy, but does not need to know where the
room it cleans is located in a larger office complex. Local information
is sufficient in guiding a robot from one usage site to another. Thus,
with global guidance individual internal representations can be kept
at a manageable size. Additionally, it allows to concentrate on a given
task, i.e. to only use knowledge needed for the task at hand.

Multi-robot scenarios have been investigated and approaches to
distributed robot systems have been proposed [5, 4]. However, these
approaches rely upon a shared spatial representation that is commu-
nicated among the individual robots. Therefore, a compatibility on
the lower levels of the internal spatial representation is necessary,
which makes it difficult to combine different robot architectures. To
obtain an open interface, a more abstract communication is advan-
tageous. Similar to the localization based on regions of same con-
figuration as presented within this approach, Schlieder [17] presents
a qualitative approach to ordering of point-like landmarks; all land-
marks are assumed visible. Another qualitative approach based on
extended—but more abstract—uniquely identifiable features is pre-
sented by Barkowsky et al. [2]. In contrast to these approaches we use
complex, extended features and only demand some features’ visibil-
ity. Moreover, our shape-features need not be uniquely identifiable.
Shape processing similar to the features employed in our approach
has been proven feasible in the context of robot mapping [14]. Bi-
ologically inspired approaches similar to ours exist (e.g., [6]), too.
Such view-based approaches typically employ a direct matching of
sensor information perceived at certain view-points. Therefore, these
approaches do not allow to mediate between different sensors.



Schematic maps are well-suited for communication [7]. As any
service robot needs some kind of internal map, communication by
means of pictorial information seems promising [8]. We apply a map-
like spatial representation in our system to allow for this kind of in-
teraction.

3 Robot Guidance System (RGS)

We propose a single central guidance system that manages several
service robots that can be–to some degree–heterogenous. This robot
guidance system (RGS) is built on the basis of a map of the working
environment. The spatial representation derived from this map can
be used for interaction with the robots (see section 6) and is suitable
for the different tasks of the given robots as it allows for access in
different aspects. With aspects we refer to different kinds of (spa-
tial) information that is representable in a map. Depending on the
task, it is possible to focus on certain aspects while ignoring others
(cf. [3, 10]). The aspects represented include metric, configurational,
and topological information. Accordingly, we term this representa-
tion multi-aspect map; its details are presented in section 5. Central
to the multi-aspect map is the handling of polygonal shape-features
extracted from range information. We cover issues related to them in
the next section.

The configurational knowledge used in our approach is ordering
information, which is a qualitative spatial representation. Qualitative
representations summarize similar quantitative states into one qual-
itative characterization. From a practical viewpoint, a possibly infi-
nite number of states is represented by means of equivalence classes.
Therefore, this kind of representation is well suited to handle uncer-
tainty.

4 Shape-Features

The spatial representation applied in the proposed architecture is
based upon polygonal shape-features that represent boundaries of
passable space. Using polygonal shape-features allows us to achieve
the advantages in feature-based localization while avoiding its short-
comings: A feature-based representation is a compact one. Percep-
tual information gets interpreted and abstracted to form a feature.
Moreover, features offer an object-based access to the information
stored. Object-based access to a system’s spatial representation is a
fundamental prerequisite for interaction and communication.

The drawback of any feature-based approach is the necessity to re-
liably recognize features from perceptual data. The higher the num-
ber of features present in an environment, the more susceptible the
recognition process is to any mix-up. Furthermore, if features are
sparse (or even not present at all) correct localization is most likely
to fail. Therefore, it is necessary to choose features that are distinc-
tive and can be observed from any position within the environment.
Shape information provides an excellent choice, as shape offers a
great variety. Moreover, a direct link to pictorial information as rep-
resented by aspect maps is established (see Section 5).

Within a typical indoor scenario, a robot will be able to perceive
sufficient information for reliable operation. Processing of polygonal
shape features, which we callpolylines, is necessary in perception
and localization.

4.1 Processing Shape-Features

Let us assume that range information (typically acquired by a laser
range finder) is mapped to the Euclidean plane. Reflection points are

grouped to polylines. A simple heuristic may be used to implement
this grouping: Whenever consecutive points are too far apart (a 20cm
threshold has been used in our experiments), an object transition
is assumed. Range finder information can be ordered in a counter-
clockwise manner. We will denote the counter-clockwise ordering of
objectsP beforeQ asP ≺ Q, meaning thatQ directly follows after
P . Proceeding this way, we obtain an ordered list of polylines from a
range finder scan. Figure 1 illustrates this. These polylines still rep-
resent all the information read form the range finder. However, this
data contains some noise and is much more precise than actually re-
quired by the proposed system. Therefore, a generalization is applied
that cancels noise as well as makes the data compact without loosing
valuable shape information.

(a) (b) (c)

Figure 1. The process of extracting polygonal features from a scan consists
of two steps: First, polygonal lines are set up from raw scanner data (a) (1
meter grid, the cross denotes the coordinate system’s origin). The lines are

split, wherever two adjacent vertices are too far apart (20 cm). The resulting
set of polygonal lines (b) is then simplified by means of discrete curve

evolution with a threshold of 2. The resulting set of polygonal lines consists
of less data though still capturing the most significant shape information.

4.2 Discrete Curve Evolution (DCE)

The generalization process used for noise cancelation in our ap-
proach is called discrete curve evolution (DCE). It has been devel-
oped by Latecki & Lak̈amper [13, 14]. This process may be con-
sidered as an schematization (see 5.2). It describes a context sensi-
tive process of simplifying a discrete curve by deletion of vertices
and allows to reduce the influence of noise and to simplify a shape
by removingirrelevant shape features. DCE proceeds in a straight-
forward manner: From a given polyline, the leastrelevantvertex is
removed. This process is repeated until the least relevant vertex is
more relevant than a given threshold. To determine a vertex’ rele-
vance, a measure is defined for a vertexv and its left and right neigh-
boru andw:

K(u, v, w) = |d(u, v) + d(v, w)− d(u, w)|

whered denotes the Euclidean distance. For vertices that do not have
two neighbors no relevance measure is defined. Consequently, end-
points remain fixed. An exemplary result is depicted in figure 1.

DCE may be implemented efficiently. As vertices can be repre-
sented within a double-linked polyline structure and a self-balancing
tree (reflecting the order of relevance measures) simultaneously, the
overall complexity isO(n log n). Since we apply DCE to segmented
polylines, the number of a polyline’s vertices is much smaller than
the number of points read from the sensor.

4.3 Similarity of Polylines

A crucial method for localizing a robot is matching the robot’s sen-
sor readings against a map. As the spatial representation used here



relies upon shape features, detecting correspondences between poly-
lines perceived and ones stored in the map is the solution at hand.
The matching process relies on a similarity measure for polylines. To
each pair of possibly corresponding polylines a measure of matching
plausibility is assigned.

However, the proposed architecture does not rely exclusively on
the correspondence of features, instead it is used alongside with con-
figurational knowledge that poses constraints upon the matching.
Therefore, discussion of the actual matching is delayed to section 4.4
and the following description focuses on computing the similarity of
two given polylines.

The pair of polylines, whose similarity needs to be computed, is on
the one hand perceived by the mobile robot and on the other hand ex-
tracted from the multi-aspect map. This map is specially designed to
be adaptable to any robot’s capabilities. Nevertheless, there may be
remarkable differences between the two polylines (e.g., due to noisy
perception). Therefore, we need a careful approach to determine sim-
ilarity. We utilize a similarity measure of polylines originating from
Computer Vision [12]. It can easily be adopted to polylines describ-
ing environmental features [21]. We briefly summarize the computa-
tion of similarity of polylines as presented in [12, 21].

The similarity measure is based on a matching of maximal left- or
right-arcuated arcs. Any polyline’s partioning into consecutive non-
empty sequences of arcs is called a grouping, if consecutive groups
overlap in exactly one line segment. This entails that any grouping
covers the whole polyline.

GroupingsG, H are said to correspond (denotedG ∼ H), if there
exist a bijectionfG,H between the two groupings such that on the
level of maximum arcs only mappings of type 1-to-1, 1-to-many, or
many-to-1 exist. Based on a similarity of arcsSarcs that is presented
below, the similarity measure for polylines is defined.

Spoly(g, h) = min
G∼H

Σx∈GSarcs(x, fG,H(x))

Similarity of arcs is defined in tangent space, a multi-valued step
function mapping a curve into the interval[0, 2π) by representing
angular directions of line segments only. Furthermore, arc lengths
are normalized. Denoting the mapping function byT , the similarity
gets defined as follows:

Sarcs(c, d) =

∫ 1

0

(Tc(s)−Td(s) + Θc,d)2ds · (1 + (l(c)− l(d))2)

wherel(c) denotes the arc length ofc. The constantΘc,d is chosen to
minimize the integral (it respects for different orientation of curves)
and is given byΘc,d =

∫ 1

0
Tc(s)− Td(s)ds. In contrast to the orig-

inal work, absolute instead of relative size is considered, since this is
more adequate in our domain. The correspondence yielding the best
similarity is computed using dynamic programming.

4.4 Similarity of Views

On the basis of an individual similarity of polylines we define a simi-
larity of views, cyclic ordered sets of polylines. Whereas similarity of
polylines respects only the spatial context of a single polyline, views
account for a larger context. It is, thus, a much more distinctive mea-
sure. Similarity of views will be the fundamental building block in
localizing the robot within the central map and also gets used in the
construction process of the map itself.

The similarity is based on the individual similarities of corre-
sponding features. Thus, the aim is to find a correspondence relation
between features that optimizes the summed up similarity. However,

we must also consider that (a) the cyclic ordering≺ must not be vi-
olated and (b) not all features present in one view need to have a
counterpart in the other. Whereas the latter may be viewed as a soft
constraint, configurational knowledge is reliable and thus poses hard
constraints upon the recognition process. By introducing a penaltyP
for leaving a feature unmatched, we can formulate the computation
of views’ similarity by means of dynamic programming similar to
aproximate string-matching. Therefore we must linearize the cyclic
ordering. This can be done by selecting any feature of one view as
the first one, and then considering every linearization of the second
view. This yields an overall complexity ofO(n3) wheren denotes
the number of features.

To be more precise, let us assume thatF1 ≺ F2 ≺ . . . ≺ Fn and
F̂1 ≺ F̂2 ≺ . . . ≺ F̂m are two linearized views. A matrixM of size
n × m is set up and is initialized by settingM1,1 to Spoly(F1, F̂1)
leaving the remains empty. A cellMi,j may be computed when all
cellsMi′,j′ with i′ < i, j′ < j have been computed. The cell’s value
is then given by:

min
{
S(Fi, F̂j) + Mi−1,j−1, P (F̂j) + Mi,j−1, P (Fi) + Mi−1,j

}
The first term denotes a 1-to-1 matching of featuresFi and F̂j ex-
tending the matching of previous features stored inMi−1,j−1. The
second and third term addresses the possibility that a feature is not
matched at all. The penalty measureP is chosen to scale linearly
with the size of the feature, as it is much more likely to overlook a
small object than a larger one.

5 Multi-Aspect Map

In this section we give further details on the spatial representation
we use. As stated earlier, this representation, a map, is multi-aspect.
It is suitable for navigational tasks, can be used on different levels
of abstraction, and allows for different aspects in access. This multi-
aspect map is the fundamental representation of our RGS; it is used
for localization, path-planning, and interaction with the robots.

We termed the set of spatial representations that get used in our
RGSmulti-aspect mapsince the different kinds of information cor-
respond to differentaspectsof the environment. The environmental
representation can be accessed depending on a given task, for ex-
ample topological information for path-planning or metric informa-
tion for shape matching, and depending on the given context, i.e. the
given robot. Our representation is, thus, customized for a specific
situation while still originating from a single source. Use of such a
multi-aspect map is comparable to the approach taken in the project
’Spatial Structures in Aspect Maps’ [3, 10]; here, the idea is to extract
from a given map-like representation all (spatial) information that is
needed for a given task and, by focusing on the aspects relevant for
the task, providing a cognitively adequate representation.

The basis for the multi-aspect map is a representation of the envi-
ronment; its properties are described in section 5.1. There are three
different kinds of information stored in the multi-aspect map: Met-
ric information denotes the shape of the environmental features. The
spatial configuration of the features, which corresponds to ordering
information, is also explicitely stored in the map. Both kinds of infor-
mation are needed for robot localization. Topological information is
used for path-planning. It is stored as a graph. All kinds of informa-
tion are present and accessible on different abstraction levels; these
levels are adapted to the given robots and their respective sensors.
The way we construct the multi-aspect map is detailed in section 5.2.



5.1 Properties of the Map

A map of the environment is the basic representation of the RGS.
The map’s structure is polygonal, i.e. its basic elements are polylines.
Such a map can be obtained in different ways. One way is to use an
existing map, i.e. an electronic version of a building’s blueprint. This
requires that all elements of the dataset can be addressed directly, i.e.
it is possible to access objects individually, and that such an existing
dataset is rich enough to contain all the information needed for the
different tasks.

The map can also be obtained by using a robot that explores the en-
vironment and builds a map of it. Many approaches to robot mapping
have been proposed [20, 9]. Even though they typically rely either on
simple line segments or uninterpreted data, they can be extended to
deal with polygonal lines, or polylines may be extracted from their
output. An example of such map extracted from laser range finder
data is depicted in figure 2.

5.2 Constructing a Multi-Aspect Map

Construction of the multi-aspect map is a three-step process. First,
we construct the maps designated for the different robots, i.e.
schematizing the map of the environment to an adequate abstraction
level. Next, we determine for each schematized map a graph reflect-
ing the envionment’s topological structure. Based on this graph we
then calculate regions of similar order and, thus, partition the plane.

5.2.1 Schematizing maps

Roughly speaking, map schematization describes a simplification—
or even an elimination—of map objects, respecting essential spa-
tial relations. Schematizing maps, hence, involves simplification of
shape information. Complex polylines are simplified to obtain sim-
pler ones that still show off the most important shape information
while hiding the details. To simplify shapes, various techniques have
been proposed. The DCE process as presented in section 4.2 is one
promising approach to shape simplification. It has been successfully
applied to shape simplification in map schematization [1]. Besides
DCE, other approaches to shape simplification have been proposed,
too. For example, the Curvature Scale Space proposed by Mokhatar-
ian et al. is based on a simplification process’ history [15, 16]; a
Gaussian convolution filter is applied to accomplish the simplifica-
tion. Simplification by means of smoothening changes shapes glob-
ally, whereas simplification by vertex removal like in DCE is com-
posed out of local changes. Since any simplification must be checked
for admissibility, e.g., to prevent violation of topological constraints
(see below), DCE’s discrete structure is advantageous here.

Due to the more complex structure of map schematization com-
pared to simplification of a single polyline, the DCE process needs
to be adapted, though. On the one hand, not every point of the struc-
ture can be removed, for example points that belong to multiple ob-
jects. They must be preserved to retain the fact that multiple objects
meet at this point. On the other hand, as the spatial information has
to remain correct for the different tasks to remain accomplishable,
we take into account relational information of the map’s entities. We
need to take care that by removing vertices there does not occur a
violation of any relational information. After an evolution step may,
for example, (parts of) an entity be resided left to another entity while
it was located right to it prior to this step, or two entities may now
overlap. For further details of the necessary extensions to DCE for
map schematization see [1].

(a) (b) (c)

Figure 2. The base map (a), and two different schematization levels:
medium (b) and maximum (c)

Additionally, as small objects do not provide relevant features they
get removed from the map. Just like the degree of schematization, the
size threshold depends on the sensors used by the different robots.
Figure 2 depicts some schematization levels as an example.

Theoretically, the maximum number of different abstraction levels
corresponds to the number of inner points of all polygonal lines as
the process of discrete curve evolution is stepwise and removes one
vertex in each step. Practically, the actual number of different ab-
straction levels that get stored in the RGS is much smaller. Schema-
tized maps are only needed on certain levels of abstraction; these
levels are determined by the robots’ perceptual abilities. These abil-
ities are taken into account when setting the levels’ DCE thresholds.
Each marks a level of adequate abstraction. All schematization levels
in-between are deemed qualitatively equal to either of them and are
not considered. Thus, although quantitatively the number of possible
maps is quite high, the number of maps that really get constructed is
rather low due to the qualitative abstraction involved.

5.2.2 Regions of similar order

Next, we determine a graph embedded in the map that reflects the en-
vironment’s topological structure. We consider structure from a more
abstract point of view, as we are only interested in noticeable differ-
ences, for example when moving through a door into another room.
The graph is calculated based on the schematized map and gets used
for path-planning (see 5.3). For example, Voronoi graphs are suitable
for this purpose [18].

This graph is taken as the basis for determiningregions of similar
order: The graph is said to intersect with the boundary of a region
whenever traversing its edges yields a high dissimilarity of views
at nearby positions (see 4.4). Practically, computing the similarity
for nearby views along the graph’s edges is performed by a subsam-
pling of similarity values at a given number of locations on the edges.
Each time the value exceeds a given threshold a new region is gener-
ated. For each region a single, prototypical view is stored in the map,
which gets used in the localization process.

5.3 Using the Multi-Aspect Map for Robot
Navigation

Two tasks in robot navigation are carried out using the multi-aspect
map, namely qualitative localization and topological path-planning.
Prior to using the map for communicating with a robot, the adequate
level of schematization needs to be chosen. We select the appropriate
level from the multi-aspect map regarding the level of generalization



used by the robot for feature extraction. This ensures that features
stored in the map are perceivable to the robot, i.e. they are not too
small to be detected by the robot when not close-by.

The map’s topological aspect is used to plan a robot’s path from
a given location to a goal region. We calculate a qualitative path by
means of graph-search determining the regions the robot passes by.
A prerequisite for successful navigation is that the robot can be lo-
calized; we describe this process in detail in the next section.

6 Instructing a Robot

To command a robot to a given area of the environment, the robot
needs first of all to be localized within the multi-aspect map in order
to plan a path. Localization combines the similarity of shape features
with configurational knowledge. It is covered in section 6.1. Know-
ing the robot’s position within the map, a path that leads the robot to
its goal region can be computed. As will be presented in section 6.2
a single motion primitive is sufficient to guide the robot along this
path.

6.1 Localization

For the RGS it is sufficient to localize a robot qualitatively. The term
qualitative localization as opposed to metric localization is chosen to
stress that only information required for the guidance task is used.
The robot’s position is represented by qualitative regions of similar
order. Hence, localization means to recognize the region a robot cur-
rently visits. Similarity of views (see section 4.4) is the clue here.
Therefore, the approach to localization taken here relates to view-
based approaches (cf. [6]); however, the presented approach is more
abstract, since sensor information is always interpreted first. Such a
more abstract approach is advantageous here, as different robots uti-
lizing different sensors (e.g., laser range finder mounted at differing
heights) need to be localized.

To localize the robot, individual plausibilities are computed for the
robot being in a particular region by determining the similarity be-
tween the prototypical view associated with the individual region and
the view perceived by the robot. These plausibility values can easily
be coupled with a stochastical approach to localization like Markov
localization (cf. [19]). Plausibility values are therefore scaled such
that the overall sum yields 1. The robot is said to visit the region
which has currently the highest belief state.
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Figure 3. (a): An excerpt from the utilized path network shown on the
medium level schematization. Blocks denote the borderline of regions of
similar order. (b): The prototypical view associated with the network’s

lowest segment of (a). The shape-features extracted from a scan taken at the
lower end of the hallway (c) are matched against the prototypical views

stored for each region. The membership probability in % is given in (d). As
can be observed, matching a single view already yields the right localization.

6.2 Instruction

Once the robot is localized, instruction can be realized with just
one motion primitive that needs to be implemented into each mo-
bile robot: moving the robot inbetween two features it has perceived.
It moves along until the order of features changes, i.e. a feature be-
comes invisible or a new feature emerges and, thus, probably a new
region is entered. This motion primitive is sufficient to guide the
robot from cell to cell, i.e. along the different regions of similar or-
der; its path is determined using the topological graph (see 5.2.2). For
the purpose of localization the belief state is updated accordingly.

7 Conclusion

In this paper, we proposed a central system that can be used to guide
various service robots acting in an environment. It allows to inte-
grate different kinds of service robots within a larger context, while
offering a single interface for the human user to all robots involved.
This single interface is one of the system’s main advantages, as a
user does not need to remember and to switch to different interaction
modes depending on the robot currently addressed. The specifics of
the robot remain abstract to the user. Interaction is cognitively ade-
quate since the user can concentrate on the task the robot is about to
perform.

We use a single spatial representation—amulti-aspect map—in
the system; this representation allows to access just the information
needed for a given navigational task and robot, namely metric, order-
ing, or topological information on different abstraction levels. This
is another main advantage of the proposed architecture: reasoning
about the environment, i.e. localization and navigation, takes place
on a qualitative level. We apply a partitioning of the environment
in regions of similar order, which is a novel approach. It is robust
but detailed. We employ these regions and a matching ofshape-
featuresin robot localization. We can, thus, perform this localization
on a qualitative level, which is very robust, keeps the communication
compact, and allows for an efficient path execution algorithm.

The prime focus of this paper has been to present the general
structure of our proposed architecture and to point out its advan-
tages. While individual aspects have already been implemented, fu-
ture work comprises the integration of these parts and an evalutation
of the whole system.
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