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Abstract. In this paper we propose a spatial representation ap-
proach for a mobile robot operating in an office-like indoor envi-
ronment which is intended to provide an interface between low-
level information required for navigation and abstract information
required for high-level symbolic reasoning about routes. The repre-
sentation is based on a route graph [16] that links navigational deci-
sion points via edges corresponding to route segments. We describe
a particular route graph representation that is derived from the gener-
alized Voronoi diagram of the environment and enables the robot to
incrementally construct the representation autonomously. Since the
Voronoi-based route graph still reflects irrelevant features of the envi-
ronment, our proposed representation is a hierarchical structure con-
sisting of route graph layers representing the environment at different
levels of granularity. It is shown how the more abstract layers can be
derived from the original route graph by using relevance measures to
assess the significance of the vertices. We provide examples of how
planning, spatial reasoning, and communication can benefit from this
kind of representation.

1 Introduction

In the context of mobile robot control systems, a crucial step is to de-
cide in which way spatial information about the robot’s environment
required to solve different subtasks like path planning, path execu-
tion, localization, spatial reasoning, etc. should be stored. Since any
truly autonomous mobile robot will have to be able to construct and
maintain its model of the environment on its own based on observa-
tions, the representation will have to bridge the gap from low-level
sensor data to entities needed for high-level reasoning.

Representations used in current mobile robot systems can be
grouped into two main classes: Metric approaches [12, 10, 14] rely
on an absolute coordinate system superimposed onto the environ-
ment to specify position and orientation of spatial entities. Topologi-
cal representations on the other hand represent the environment by a
graph structure that explicitly stores spatial relations like adjacency
or connectivity between the entities represented by the vertices [7, 3].

In this paper we describe a so-called route graph representation
(a concept introduced in [16]) which is a special kind of topologi-
cal map in which the graph structure describes qualitatively different
routes through the environment. The vertices in this representation
correspond to navigational decision points, while the edges corre-
spond to route segments connecting the decision points. The rep-
resentation and the involved procedures are intended to serve as a
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navigation and mapping module within a hybrid control architecture
combining reactive and deliberative components.

Our particular route graph representation is based on the general-
ized Voronoi diagram (GVD) which is a retraction of the free parts of
the working space onto a network of one-dimensional curves reflect-
ing the connectivity of free space (see figure 1). The GVD allows us
to derive a route network from information about the obstacle bound-
aries. The graph corresponding to the GVD, the generalized Voronoi
graph (GVG), forms the core of our route graph representation and
is annotated with additional information like relative positions of the
vertices. While the resulting route graph can be used for navigation
by applying a simple motion behavior to travel along edges until the
next vertex is reached [3], it still contains parts that are caused by
insignificant features of the environment like small niches or that re-
sult from noise in the sensor data and that are irrelevant for high-level
reasoning. Therefore, we develop a way to deal with this problem by
deriving more abstract route graphs from the original GVG employ-
ing measures to assess the relevance of the Voronoi vertices and the
regions accessible by them. Based on the ability to abstract from the
GVG, we propose a hierarchical organized multi-layer representation
with the original GVG at the bottom level and layers containing route
graphs representing the environment at different levels of granularity
stacked on top of it. Corresponding features in adjacent layers are
linked with each other allowing to switch to a finer or coarser level
of granularity. We argue in favor of such a representation for a mo-
bile robot system for application in office-like indoor scenarios show-
ing how it is particularly well-suited to provide an interface between
low-level navigational information and abstract information required
for high-level planning, reasoning, and communication. Planning and
spatial reasoning based on this representation can be performed in a
hierarchical manner to make them more efficient.

The paper is structured as follows: Section 2 describes the
Voronoi-based route graph representation scheme and briefly dis-
cusses advantages of the representation and important issues like
incremental construction and localization. In section 3 the idea of
a hierarchization of the Voronoi-based route graph is elaborated and
relevance measures are proposed to derive such a representation from
the original route graph. Section 4 presents planning and reasoning
examples within this kind of representation and section 5 provides
first results of the experimental evaluation of the described approach.

2 Voronoi-based route graph representation

The GVD is a generalization of standard Voronoi diagrams [1] that
handles other geometric primitives, e. g. line segments [9, 6], instead
of only point sites. It is also related to the idea of a shape’s skeleton
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Figure 1. (a) The generalized Voronoi diagram (GVD) (fine lines) of a 2D
environment, (b) the corresponding generalized Voronoi graph (GVG) with

vertices placed at the position of the corresponding meet points for
visualization.

introduced in [2] and has been first used in robotics as an intermediate
representations to solve motion planning tasks given complete infor-
mation about the working space of the robot (usually by providing a
geometric description of the boundaries of the obstacles) [13, 8]. In
the two-dimensional case it contains all points of free space that are
center of maximal inscribed circles (circles that are maximally ex-
panded without intersecting the obstacle boundaries) that touch the
obstacle boundaries at at least two points. Figure 1a shows a sim-
ple two-dimensional environment and the corresponding GVD (fine
lines) consisting of curves that intersect at meet points and end up in
corners of the environment.

As described in [3] simple motion behaviors to follow a Voronoi
curve from one meet point to the next or get from a point aside the
GVD to one on the GVD can be defined. Therefore, the general-
ized Voronoi graph (GVG), which is the graph corresponding to the
GVD (see figure 1b) with vertices corresponding to meet or corner
points and edges connecting vertices joined by Voronoi curves, is
well-suited to serve as a topological map [3, 17]. The robot can travel
from one vertex of the GVG to any other by repeatedly applying the
Follow-Voronoi-Curve behavior while keeping track of the robot’s
position within the graph structure. The only additional information
required for this is the clockwise order of departing edges for each
vertex. It is also possible to construct this kind of representation au-
tonomously during an exploration by tracing the Voronoi curves with
the same behavior and registering the meet points encountered to-
gether with their departing edges.

However, in real world applications noisy and discrete sensor data
together with the instability of the underlying GVD, which may show
additional or missing vertices and edges if the boundary information
changes slightly, require to store more information about the envi-
ronment and more complex procedures to make the approach robust
enough to be applicable. In addition, to construct a complete GVG
by tracing every single Voronoi curve of the GVD is quite costly and
can be avoided by making better use of the sensor data.

To overcome these problems, we developed a representation that
extends the GVG with additional annotations to vertices and edges
together with procedures for localization and incremental construc-
tion for a robot equipped with a laser range finder [15]. We will
briefly describe this approach in the following.

2.1 The GVG-based representation

Besides the graph structure and the clockwise order of edges the fol-
lowing information is contained in our representation:

1. Vertices are labeled with asignature (see figure 2a) that con-
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Figure 2. Different kinds of annotations to the GVG-based route graph: (a)
Vertex signature containing the distance of the generatingpoints (radius of
the maximal inscribed circle) and angles between the connections to the
generating points, (b) relative position information givenby the angles

between departing edges and the length of the edges.

tains the angles and distance to the generating points (those points
where the maximal inscribed circle centered on the Voronoi meet
point touches the obstacle boundaries). This information can be
used to distinguish vertices.

2. The approximate relative position of vertices is represented by an-
notating the edges with the approximate distances and vertices
with the approximate angles between departing edges (see figure
2b).

3. Every edge is annotated with a description of the Voronoi curve
corresponding to this edge since this curve may deviate from the
direct connection between the two vertices.

4. Additional information about which edges are traversable (not too
close to obstacles) for the robot and which edges lead to still un-
explored areas is also annotated to the graph structure.

In the remainder of the text we will for simplicity still call this
extended representation a GVG.

2.2 Path planning, localization, and incremental
construction

Path planning in this extended GVG can still be done by applying
standard graph search techniques which now might employ the anno-
tations, for instance to plan shortest paths. For execution of a planned
path and for incrementally constructing this representation during ex-
ploration a robust localization within the graph structure is required.

Therefore, we developed a localization scheme that compares alo-
cal GVG computed from a single360◦ scan taken from the robot’s
current position with the (partially constructed)globalGVG to iden-
tify correspondences taking into account the vertex signature, the
relative position information, and odometry information about the
last movement. The local GVG describes how the GVG looks in the
neighborhood of the robot’s current position as far as this can be de-
rived from the sensor data available from this point. The comparison
scheme searches for a similar subgraph instead of an exact isomor-
phism. This way robust localization can be achieved despite the in-
stability caused by the imperfect sensors.

Incremental construction of the global representation is achieved
by sequentially merging local GVGs computed for different positions
starting with the local GVG computed for the start position of the
robot. Thus, it makes maximal use of the information available from
each observation avoiding unnecessary exploration steps. It uses the
results of the comparison scheme employed for localization to iden-
tify parts of the local GVG that can be used to complement the global
GVG. The idea of merging local GVGs to construct the global rep-
resentation is illustrated in figure 3 that shows how a global GVG



Figure 3. A sequence of growing global GVGs (starting with the local
GVG of the robot’s start position) constructed during the exploration of an

unknown environment.

grows over time (see [15] for details on the localization and con-
struction algorithms).

The GVG-based route graph is a rather compact representation of
the essential spatial information required for navigation that can be
augmented with additional (e. g. semantic) information if needed.
The topological localization approach avoids special efforts required
to keep the annotated metric information globally consistent since
successful navigation is possible without globally consistent metric
information. In addition, the Voronoi-based approach allows system-
atic exploration of an unknown environment by keeping track of
which edges still need to be explored until the GVG is complete.
Path planning within the GVG is more efficient than in most met-
ric approaches because the representation only represents qualitative
different routes.

3 Hierarchization of the Voronoi-based route
graph

Voronoi-based route graphs as described in the previous section con-
tain the information required for successful navigation. However,
they also contain details not required for many tasks since not all
meet points of the underlying GVD really correspond to decision
points relevant for navigation. Some are caused by minor features of
the environment like small dents or niches and some are merely the
result of noise in the sensor data. For high-level reasoning, planning,
and for communication issues a more abstract level of representation
would be preferable if it is still linked to the detailed level required
for actually acting within the environment. In addition, the relevant
vertices are also those that are very stable and thus less likely to be
missing in one of the local GVGs. Hence, localization can also ben-
efit from a more abstract level of representation only containing the
relevant vertices. Therefore, our goal is to construct a hierarchically
structured multi-layer route graph representation that bridges from
detailed navigational information to abstract high-level information
about the environment and allows to efficiently reason in a hierar-
chical manner. Every layer of this representation consists of a route

graph that models the environment at a certain level of granularity
and its features are linked to those of the next higher and next lower
layer in a way that allows to switch to a finer or coarser level. To
derive more abstract layers from the original GVG a measure is re-
quired that assesses the relevance of individual Voronoi vertices for
navigation and we will develop such a measure in the next section.

3.1 Assessing the relevance of Voronoi vertices

The GVG as described in section 2 is mainly an undirected Graph
RG = (V, E) (with additional annotations) containing only vertices
of degree one (the corner vertices) or of degree three or higher (the
inner vertices). As figure 2a illustrates, the lines connecting a Voronoi
vertexv with its generating points on the obstacle boundaries sepa-
rate different parts of free space that are accessible via one ofv’s de-
parting edges. We will call each such area, that can be reached from
v without crossing one of the connecting lines again, a regionRv

i of
v. For each Voronoi vertex of degreen there existn such regions.
If v is part of a cycle in the route graph, the regions corresponding
to the two edges ofv that also belong to this cycle will be identical
since the edges provide access to the same part of the environment,
just from different directions.

How relevant a Voronoi vertexv is for navigation depends directly
on its regions. To be regarded as a decision point, at least three of
v’s regions need to be significant enough to be judged as different
continuations after arriving at this point. Otherwise, no real decision
is to be made at this point. In addition, having two very significant
regions can not make up for the third region being insignificant, e. g.
a small niche in a corridor will not create a decision point in front of
it irrespective of how long the corridor continues in both direction.
Furthermore, having many insignificant regions will not make up for
the third most significant one being still insignificant, e. g. two small
niches on opposing sides of the corridor will not cause a decision
point either.

Therefore, assuming we have a second measure called RSM (for
region significance measure) that assesses the significance of each
region ofv, it makes sense to take the RSM value ofv’s third most
significant region as the relevance value ofv. Using maxRSMv

3 to
denote the k-highest RSM value of a region ofv, we thus define
our Voronoi vertex relevance measure (VVRM) for allv ∈ V with
degree(v) ≥ 3 as:

VVRM(v) = maxRSMv

3 .

We now need to define the RSM measure in a way that captures
the notion of a significant region in the context of navigation in an in-
door environment. The two major factors that we wanted to account
for in our measure are the following: First, the distance fromv to
the remotest goals belonging to the region should influence the sig-
nificance of the region, since a region is clearly more significant if
one can reach goals within it that are far from the current position.
Second, we wanted to include the aspect of visibility to ensure that
a region is assessed as less significant if most of it can be perceived
from a larger area aroundv.

An additional constraint on our measure is that the significance
values should be computable from the information contained in the
GVG alone without referring to a geometric description of the bound-
aries of obstacles because this is the only information available in our
mapping approach. Furthermore, cyclic regions should be treated as
maximally significant so that cycles in the graph will never be split
up when deriving a coarser route graph from the GVG (see section
4.1).
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Figure 4. Computation of the RSM value for the regionR1 to the left of
vertexA: The length of the path toB lying within the maximal inscribed

circle (dashed line) is subtracted from the length of the complete path toB
yielding the length of the solid thick part of the path.
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Figure 5. RegionR1 of vertexA is caused by a small niche in a wall.
SinceA lies in a large area the distance along the GVD fromA to the corner
verticesB andC is rather big. However, most part of the connection to these
vertices lies within the maximal inscribed circle and will thus be subtracted
during the RSM computation resulting in a small RSM value for regionR1.

Hence, we define the RSM measure as follows:

1. RSM(Rv

i ) = ∞, if v and the departing edge corresponding toRv

i

belong to a cycle in the route graph.
2. Otherwise, the shortest paths fromv to the corner vertices belong-

ing toRv

i in terms of the distance along the GVD are considered.
As illustrated in figure 4, it is determined for which corner vertex
the length of this path minus the length of the part of this path ly-
ing within the maximal inscribed circle ofv is maximal, and this
is returned as the value RSM(Rv

i ).

In the non-cyclic case the distance of the furthest corner vertex
contained in the region is used to measure how far the robot could
travel into this region. The subtraction of the length of the part that
lies in the maximal inscribed circle ofv introduces the notion of vis-
ibility as mentioned above. For instance in figure 5 the small niche
that causes Voronoi vertexA in a wide hallway will be assessed as
insignificant since the most part of the path toB or C is contained
within the maximal inscribed circle centered onA meaning most
parts of the corresponding region are visible from every point within
this circle.

Given the complete global GVG the individual RSM values for a
vertexv can be easily computed by applying a slightly modified ver-
sion of Dijkstra’s single source shortest path algorithm [5]. Picking
the 3rd highest value then yields VVRM(v). The modifications have
to ensure that

• only the edgeeRv

i
departing fromv into the regionRv

i is consid-
ered connected tov when relaxing the edges of the start vertex in
the first step, and

• cycles leading back tov via a different edge thaneRv

i
will be

detected and a value of∞ will be returned.

With the worst-case time complexity of the dominating shortest
path algorithm beingO(|E| + |V | log |V |), we end up with a total
time complexity for computing VVRM(v) with degree(v) = n of
O(n(|E| + |V | log |V |)).

The computation of the relevance values as described above as-
sumes that a complete GVG is available. However, when we want
to compute the relevance values for the vertices in a local GVG or
for a still only partially constructed global GVG, we have to adapt
this approach: We then treat all vertices that mark the boundary of
the explored area like corner vertices and compute the relevance val-
ues as before. Doing this, all RSM values for regions which contain
edges marked as unexplored and which do not correspond to a cycle
in the graph will just be lower bounds on the true significance value
of the region and will be marked as such. VVRM(v) of any vertexv
only yields the exact relevance value if all RSM values for this vertex
from the 3rd highest on are exact values and not just lower bounds.
Otherwise, the fact that one of these RSM values could actually be
higher could result in a higher 3rd highest RSM value for this vertex.
Thus, VVRM(v) in this case is also just a lower bound on the real
relevance value ofv. Lower bound estimates of relevance values are
updated when more information allows to make an estimate closer
to the true relevance value and such vertices are treated like vertices
with an relevance value of∞ when deriving a coarser route graph
layer, as long as the exact value cannot be determined.

3.2 Coarser level route graphs and abstraction
relation

Unfortunately we can only give a short description on how the sim-
plification algorithm that derives a coarser route graph from the orig-
inal route graph works here. The algorithm removes every vertexv

with an relevance value that is not higher than a given thresholdθ

together with the subgraphs that correspond to the regions ofv that
are classified as insignificant by the RSM value. In certain cases it
becomes necessary to replacev by a new vertex of degree one to en-
sure that every relevant vertex has a departing edge for every signifi-
cant region accessible from it. Replaced substructures of the original
GVG will be represented either by a single vertex or a single edge in
the coarser route graph.

Figure 6 shows the result of applying this algorithm to the GVG
previously shown in figure 1.θ was set to 1000mm in this example, a
value that already produces quite abstract representations since most
of the vertices caused by small dents and niches are removed. Figure
7 illustrates how parts of the original GVG (shown at the bottom) are
represented by a vertex or an edge in the coarser route graph (top).
When we are building up the multi-layer representation correspond-
ing features of adjacent layers are linked as indicated by the arrows.
Thus, we have two kinds of edges in our hierarchical representation:
route graph edges horizontally connecting vertices within the same
route graph layer and abstraction edges vertically connecting vertices
and edges in one layer with subsets in the layer below.

4 Path planning, reasoning, and communication
with the hierarchical GVG-based route graph

In this section we point out on how we think path planning, spatial
reasoning, and communication about spatial information can bene-
fit from the hierarchical route graph representation described in the
previous section.
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Figure 6. Results of the simplification algorithm: The original GVG (a) is
transformed into a coarser route graph (b).

Figure 7. A two-layer hierarchical route graph representation with the
original GVG at the bottom and a coarser route graph layer on top of it. Two
examples of how parts of the detailed level are represented bya vertex or an

edge of the coarser level are shown by the arrows.

4.1 Path planning

A hierarchical route graph representation like the two-layer exam-
ple from the previous section can be employed for hierarchical path
planning. The edges in the coarse layer in a way correspond to macro
operations like driving from one door to the next along a corridor
or passing an object on one side. Thus, planning on the high-level
(e.g. by using graph search techniques) results in a plan that is not
directly executable with the low-level navigation procedures of the
robot. However, the abstraction relation allows to recursively break
down more abstract operations into finer operations until a plan at the
detailed level of the original GVG is reached.

The definition of the relevance measures and the simplification
algorithm used assure that cycles in the original GVG are either re-
tained at a coarser level or that a complete subgraph containing the
cycle is replaced by a vertex or an edge. But a cycle will never split
up when changing to a higher level of abstraction. This guarantees
that a shortest path planned on a higher level will always result in
the shortest path at the bottom level as well, when it is recursively
transformed into an executable plan.

4.2 Spatial Reasoning

In [11] we described an approach to reason about the relative posi-
tions of the decision points within the low-level GVG-based route
graph by propagating intervals for the distance and angles (called
distance-orientation intervals (DOIs)) annotated to the graph struc-
ture along the sequence of edges connecting two vertices. This ap-
proach is similar to the composition of spatial relations in qualita-

tive spatial reasoning [4]. The DOIs represent the uncertainty in the
metric relative position information assuming certain maximal error
boundaries. Reasoning about relative positions of the decision points
in the route graph can for instance be applied to determine potential
candidates for loops in the environment that need to be closed while
constructing the representation during an exploration. Another appli-
cation is judging if an unexplored junction in a partially constructed
route graph might be a good shortcut to a place visited earlier.

This reasoning about routes can also benefit from the hierarchical
organization of the route graph representation. Intermediate results
from the low-level propagation can be stored as relative position in-
formation at the higher levels. This would allow to employ a hierar-
chical propagation scheme that uses the distance orientation intervals
at the highest level if they are available or switches to a lower level
whenever this is not the case, adding the result to the higher level
after it has been computed. On the long run the higher level will be
completely annotated speeding up the relative position computation
significantly.

4.3 Communication

The most abstract route graph layer in our representation provides
a compact description of the environment that is rather independent
of the particular properties of the range sensor of the robot that con-
structed the representation. Therefore, this information is much bet-
ter suited to be communicated to another spatial agent than the de-
tailed description given by the original GVG. Scenarios that come to
mind here are multi-robot exploration scenarios in which the individ-
ual robots exchange knowledge about parts of the environment they
have explored so far. However, there are of course limits to the degree
of difference in the sensors that can be dealt with without further de-
veloping reasoning mechanism to handle e. g. problems arising from
differences in the individual GVGs caused by obstacles that can be
seen by one robot but not the other due to different heights in which
the range sensors are mounted.

Another application scenario in which the abstract route graph
level can be employed beneficially is human-robot communication
about routes. Augmenting the route graph with semantic information
for instance stemming from door recognition modules will allow the
robot to generate route instructions to guide a person to a certain
goal. In addition, such a representation will make it easier to match a
route description given by a human instructor to the robot’s model of
the environment and translate it into a detailed sequence of actions,
since the abstract route graph with all irrelevant vertices and edges
removed will be much closer to the route graph the instructor had in
mind when generating the description.

5 Experimental results

In first experiments we tested the relevance measures and the sim-
plification algorithm on real data collected with our Pioneer 2 robot
while it was driving along a corridor in our office building. Figure
8a shows a section of the GVG constructed during this exploration
run. 8b shows the route graph computed from this GVG (again for a
threshold value of 1000mm). It demonstrates how the algorithm suc-
cessfully removes vertices and edges caused by small dents or noise
resulting in a route graph that only contains edges for traveling along
the corridor and for entering the rooms on both sides.

In a second experiment we used a simulation to perform two ex-
ploration runs with different noise ratios in the range sensor data.
Applying the simplification algorithm to both GVGs constructed
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Figure 8. Example of a coarse route graph (b) computed from a GVG
constructed with a real robot that drove down a corridor withflanking offices.

(a) (b)

(c)

Figure 9. Simulation of different sensor properties: (a) shows the GVGof
a robot with high and (b) of one with low sensor noise. Identical coarse route

graphs are computed from both GVGs (c).

during those runs (shown in figure 9a and 9b) resulted in identical
route graphs for both cases shown in 9c, only varying slightly in the
exact positions of the vertices. This demonstrates that our coarser
route graph representation is better suited to allow multiple robots
equipped with different range sensors to exchange spatial knowledge
than the original GVGs.

6 Conclusions

We have proposed a hierarchically organized Voronoi-based route
graph representation for robot navigation and exploration tasks in
office-like indoor scenarios. The representation bridges the gap be-
tween low-level spatial information for navigation and abstract route-
based representations well-suited for high-level planning and spatial
reasoning. We showed how such a representation can be constructed
using a Voronoi vertex relevance measure and how it can be em-
ployed for hierarchical planning, spatial reasoning, and robot-robot
or human-robot communication. We hope to further explore these ap-
plications in the future. In addition, we plan to address other issues
involved in generating suitable abstract route graphs like the fact that

multiple Voronoi vertices located close to each other may be treated
more adequately as a single decision point, something that is impor-
tant for human-robot communication.
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