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Abstract. Table soccer (also called “foosball”) is much simpler
than real soccer. Nevertheless, one faces the same challenges as in all
other robotics domains. Sensors are noisy, actions must be selected
under time pressure and the execution of actions is often less than
perfect. One approach to solve the action selection problem in such
a context is decision-theoretic planning, i.e., identifying the action
that gives the maximum expected utility. In this paper we present a
decision-theoretic planning system suited for controlling the behav-
ior of a table soccer robot. The system employs forward-simulation
for estimating the expected utility of alternative action sequences.
As demonstrated in experiments, this system outperforms a purely
reactive approach in simulation. However, this superiority of the ap-
proach did not extend to the the real soccer table.

1 Introduction

Playing table soccer (also called “foosball”) is a task that is much
simpler than playing real soccer. Nevertheless, one is faced with all
the challenges one usually has to deal with in robotics. One has to
interpret sensor signals and to select actions based on this interpre-
tation. All this has to be done while keeping in mind that the sensor
signals are noisy and the actuators are less than perfect.

One approach to solve the action selection problem is to use purely
reactive methods. These are methods that select actions based on the
current sensor input with only a minimum amount of computation.
The selection of actions can be based on layered finite state automa-
tons [2] or even simpler by using a simple decision tree. However,
these purely reactive approaches have the disadvantage that they can-
not anticipate changes in the environment caused by its own actions
or by exogenous actions and for this reason might act sub-optimally.

Approaches such behaviour networks [3, 6] address this problem
by modeling all possible actions, their consequences, and some-
thing similar to success likelihood. Based on this model, actions that
promises to achieve the goals best are selected. As demonstrated by
different robotic soccer teams [4, 7], this approach can be quite suc-
cessful. However, it lacks theoretical foundation and, in fact, it is not
clear under what circumstances the approach provably achieves its
goals.

Decision-theoretic planning in contrast addresses the action selec-
tion problem by explicit deliberation about possible actions and aims
at generating plans which promise to yield the maximum expected
utility for an agent. This is achieved by explicitly considering the un-
certain effects of the actions, the incomplete knowledge about the

world and the possibly limited resources for carrying out a plan.

Decision theoretic planning can be implemented in various fash-
ions. Using a classical refinement planner, it is possible to calculate
the plan with the maximum expected utility by keeping ranges of
possible utility values for partial plans [5]. A very popular way to
realize decision-theoretic planning is the modeling of the planning
problem as a Markov decision process [1].

The main challenge in using such an approach is to simplify the
model of the domain such that the computational costs are not pro-
hibitive. For this reason, we do not consider e.g. all possible ways
an action can fail, but distinguish only between successful execution
and failure. Furthermore, we do not consider responses to successful
ball interceptions but consider the plan as failed once the opponent
has intercepted the ball. Finally, planning is carried out only to a lim-
ited depth and the utility of the resulting state is assessed using a
heuristic measure.

The rest of the paper is structured as follows. In Section 2, the
KiRo system is presented. Section 3 describes the implementation
of a decision theoretic planning algorithm for KiRo. Experimental
results are presented in Section 4 and a short conclusion and outlook
is given in Section 5.

2 KiRo

KiRo is a table soccer robot, i.e., an automated table soccer table [8].
Its hardware consists of the following components (see Figure 1):

Figurel. The hardware setup

e a standard table soccer table, where all rods of one player are
equipped with electro motors strong enough to shift and turn the



rods fast,
e an overhead camera, and
e astandard PC, on which the control software runs.

The software executes a control cycle, consisting of the following
four steps:

1. During the vision analysis phase, the positions of the various items
on the field are estimated (see Figure 2(a)).

2. These positions are combined with knowledge about former ones
in order to build the new world model. The world model, shown
in Figure 2(b), contains information about the positions and move-
ments of all items on field. The field is represented by a coordinate
system where the origin is in the middle of the field and the z-axis
connects both goals.

3. Based on this world model, the best actions are chosen in the ac-
tion selection phase.

4. Action execution translates the chosen actions into steering com-
mands. These commands are sent to the actuators.

Figure2. (@) The camera picture and (b) the generated world state

Since table soccer is a fast-paced game, the cycle duration has to
be as short as possible in order to be able to react in time. KiRo
works with a cycle time of 20 msec, which leads to strict bounds for
the time available to select appropriate actions.
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Figure3. Theorigina action selection procedure

The first approach to action selection has been a purely reactive
decision tree. This essence of this approach is depicted in Figure 3.
Although very crude, this approach was able to beat 75% of a random
sample of human opponents [8].

In contrast, the system presented in this paper selects the action
that promises the best consequences. To identify this action, it is nec-
essary to plan ahead and to simulate the change in the world state

caused by the different actions. As this approach needed a different
kind of action model, the action control had to be completely rewrit-
ten.

3 Decision-Theoretic Planning for Table Soccer
Playing

Table soccer does not seem to be well suited for decision-theoretic
planning because it involves an opponent, which apparently means
that we have to use game-solving methods, e.g., minimax search,
instead of planning. However, the game is highly asymmetric. Only
the player in possession of the ball, the attacking player, is able to
decide on the future development of the game. The other player, the
defending player, has to wait until the ball can be intercepted. For this
reason, we can focus on a sub-game that is much easier to tackle.

We will consider the sub-game where the attacking player has con-
tinuous control of the ball. That means that this sub-game ends when
the attacking player either scores a goal or looses control of the ball.
This implies that the game tree can be pruned at nodes where the
defending player intercepts the ball. Furthermore, all opponent ac-
tions that are unsuccessful in intercepting the ball do not influence
the game at all. In summary, the defending player never needs to look
ahead and just tries to intercept the current ball while the attacking
player considers different possibilities of shooting the ball and takes
the opponent into account only as a threat to the next action. So, we
can indeed use decision-theoretic planning techniques to address the
table soccer playing problem.

As a general strategy, KiRo uses a reactive positioning scheme
when it is the defending player and employs decision-theoretic plan-
ning in the role of the attacking player. In what follows, we only
consider the situation when KiRo is the attacking player.

3.1 Action and Forward Simulation

When planning, the attacking player can act all the time and the state
changes continuously, because the ball is in motion most of time.
Planning in such a setting is, of course, computationally infeasible.
However, we do not have to consider all possible actions and all
movements of the ball:

1. Most of the time, the movement of the ball and the rods is pre-
dictable. The ball moves according to its inertia, the rods move in
the way which is specified by the employed actions.

2. The movement of the ball and of the rods are fully independent
apart from one case: One figure touching the ball. In this situation,
the movement of the ball is influenced.

3. Whenever the movement of the ball changes, the actions of the
rods are likely to change as both players react on the new situation.

For this reason, we can interleave actions and physical simulations
in a regular manner. Given a world state, an action as well as a reac-
tion of the opponent, we simulate the evolution of the world until the
point of time at which one of both players can manipulate the ball
again. At this moment is it necessary to stop the simulation and to
evaluate the reactions of both players in the new situation.

3.2 One Iteration of Planning

For a given world state s, in which KiRo is playing the ball, all pos-
sible consequences of KiRo’s actions as well as all possible reactions
of the opponent are considered. For each combination among these,
a new world state is constructed which is used as a base for further



planning — provided that the opponent is not playing the ball in this
state.

The search tree consists of three different kind of nodes which
alternate in a given sequence. Each of theses types corresponds to a
different planning step. The starting point of plan iteration is always a
state node s corresponding to a game state s. The first step is to select
a set of applicable actions (a1, ...,a,). Foreach a; € (ai,...,an)
one action node a; is created. As these nodes represent the different
choices in state s, the utility value of the state node s is the maximum
utility among its successors (once these are known):

utility(s) = Juax utility(a;).

Figure 4 illustrates the generation of the action nodes.
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Figure4. Theaction choice and its representation within the tree

The next step is the estimation of the opponent’s reactions. Based
on the world state s a set {(o1,p(01)),..., (0m,p(om))} Of hy-
potheses is created where the o; classify the reactions and the p(o;)
the associated probabilities. Note that we assume that these reactions
depend only on s and are independent from the chosen action a;,
which in fact is true in table soccer. There is usually no way an op-
ponent can react to an the action of an attacking player.

For each action node a;, a set of successor opponent nodes
{0i1,...,0:n } iscreated. The value of a; is the expected value over
its successors:

utility(a;) = Y _ p(o;) - utility(os;).
j=1

In Figure 5 two possible reactions of the opponent and the formal-
ization of this fact in the tree is depicted.
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Figure5. Theformalization of the opponent

Every opponent node o;; contains informations about the world
state s as well as one specific action a; and reaction (oj,p(0;)). To
finish the planning step, the consequences {ci, . . ., cq } 0f a; are esti-
mated along with their probabilities p(ci1), . . . , p(cq). The now gath-
ered information (s, a;, 05, ck) is used to estimate new world states
sijx by means of a simulator. These states are used to build a new
layer of state nodes s;;i.

The utility value of the precedent opponent node o;; is calculated
by
q
utility(os;) = Zp(ck) - utility(sijr).
k=1

Figure 6 shows two different outcomes of an action and the use of
the simulator to create a new world state based on the collected data.
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Figure6. The possible outcomes of an action

After one iteration of planning, there exists a number of new state
nodes containing the world state resulting from every possible action
a;, every possible reaction o; and every possible consequence ¢ of
the action a;. After the search tree has been built up to the leafs, those
get evaluated using the utility function. These evaluations propagate
backward through the tree until the root state node s is reached. The
utility of s is the maximum expected utility among all selectable ac-
tions in world state s; the action a; yielding this value is the one to
be selected in s.

3.3 Choosing an Applicable Action

Currently, KiRo’s capabilities comprise the following actions for op-
erating each of the four rods under his control:

e KickBall: Rotate the rod by 90° in order to kick the ball forward
or diagonally to the left or right.

e BlockBall: Move the rod so that a figure intercepts the ball.

e ClearBall: Move to the same position as BlockBall but turn the
rod to let the ball pass from behind.

e StopBall: Pen the ball in between figure and field.

Altogether, it is possible to assign a single rod one out of 6 differ-
ent actions (three of them being kicks in different directions). Tak-
ing all four rods into account is it possible to create 24 different as-
signments of actions. In other words, our search tree would have a
branching factor of 24. Fortunately, one can easily reduce this fac-
tor because only the rod close the ball can kick and the others have
a choice between the remaining three actions. We decided to assign
statically BlockBall to all rods between the ball and the own goal
in order to have a defence even when the ball is accidentally lost
or reflected. Rods between the opponent’s goal and the ball should
not handicap the chances to score a goal. For that reason, they are
assigned ClearBall.

With these static assignments, the branching factor is reduced to
six while KiRo is playing the ball. If the opponent possesses the ball,
a static defensive allocation of actions without any planning is em-
ployed. This reflects the already mentioned observation that planning
in these situations is useless.

In some situations, performing a certain action might be useless
(e.g. trying to stop an already stopped ball) or the chance of a suc-
cessful carrying out of an action might become too low. In these



cases, such actions are not evaluated in order to reduce the complex-
ity further.

As the means the opponent is going to use in order to protect his
goal are unknown, it is necessary to guess what his reactions will
be. Each of these guesses is weighted by the probability that this
reaction will occur. Currently, the opponent is always expected to
either let his rods unmoved or to protect his goal according to the
scheme applied in the BlockBall-action. Each of these alternatives is
weighted with a probability of 0.5. These probabilities are, of course,
only a crude approximation and it is planned to replace this simple
opponent model by a more sophisticated, experience-based one.

3.4 Calculating the Successor State

The last — and most important — step is to estimate the probability
of a success of KiRo’s actions and to create a new world state based
on the data collected yet. The actions of KiRo can have two possible
outcomes, success and failure. The probabilities of these depend on
the encountered world state, e.g. a quickly moving ball is more dif-
ficult to kick than a static one. Based on the world state and on data
about the effectiveness of the actions collected during earlier games,
the success probability is estimated.

The means to create a new world state based on the informations
about KiRo’s actions, their success or failure and the opponent’s re-
actions is a simple simulator. This simulator models the world based
on the following principles:

e The angle of incidence and the angle of reflection are equal.
e Friction is ignored.

Additionally, the simulator has a model that allows to interprete the
steering commands issued by both players. Of course, the real world
is only very coarsely modeled by a simulator based on these prin-
ciples. Further, since the input data is imperfect, the simulation is
accumulating errors. The simulated span of time, however, is very
short, so that the errors are still acceptable.

Simulation is performed in two steps: In the first one, the game is
simulated until the point of time in which KiRo’s action takes place.
Afterwards, two successor states are generated: One of the resulting
world states is a state according to the known consequences of the
success of KiRo’s action. The other state reflects the failure of the
action. In this case, we have a new problem: The consequences of a
successful action are known — in case of failure, anything can happen.
The most frequent kind of failure is the inability of KiRo to hit the
ball. For this reason, the failing case is simulated by letting the ball
pass the failing rod without changing its movement parameters. The
resulting world state is not used as a starting point for a new planning
step; it is directly evaluated using the heuristic utility function (see
Subsection 3.6).

3.5 Estimating the Success Probabilities

In order to estimate the success probability for a given action on
a certain rod in a given world state, a Bayesian approach is em-
ployed. The first step is to classify the ball movements by a 4-tuple
(dz,dy,vz,vy), Where

e d is the distance in z-direction to the rod.

e d, is the minimal distance in y-direction to a figure on this rod .

e v, is the relative velocity in z-direction. “Relative” means in this
context e.g. “approaching” or “departing”

o v, is the relative velocity in y-direction.

Each of these values is discretized according to a seven step scale.

The task is now to calculate the success probability
P(S|dz,dy, vz, vy) Of the action given this tuple. Using Bayes” rule
yields

P(da,dy, vz, vy4|S) - P(S)
P(dy, dy,ve,vy)

P(S|ds,dy, ve,vy) =

In order to simplify the computation of the conditional probability,
two independence assumptions are made:

1. P(ds,dy, vs,vy) = P(dz) - P(dy) - P(vs) - P(vy)
2. P(ds,dy, va,vy|S) = P(ds|S) - P(dy|S) - P(vz|S) - P(vylS).

This “naive Bayes” assumption is clearly not met; this, however, is
usually the case in naive Bayes approaches (otherwise they would
not be called “naive™). Using this assumption, we are able to give an
easy to compute estimate for the success probability:

PNB(Sldm,dy,’Um,’Uy)

2 P(d2[S)-P(dy|S)-P(va]S) P(vy|S)-P(S)
B P(dz)-P(dy)-P(va)-P(vy)

3.6 The Utility Function

Table soccer poses a highly dynamic environment where only little
time is available for selecting the most appropriate action. Due to
the high uncertainties in sensing and acting, it is infeasible to create
and carry out a complete plan for reaching the final aim of scoring
a goal. It is necessary to plan with a limited horizon and to use an
utility function for evaluating world states. Planning in this fashion is
similar to depth-limited minimax search with a heuristic evaluation
of the leafs of the game tree. The utility of inner nodes is estimated
using a rollback procedure [1].

The heuristic utility function is used to estimate the world states
contained in the leafs of the search tree — provided one has not
reached a scored goal yet. The principles underlying this function
are:

e Ifagoal is either scored or going to be scored (i.e. ball behind the
keeper, moving towards the goal), a value of 100 is returned if it
is the opponent’s goal, otherwise 0.

e The closer the ball is to the opponent’s goal wall, the better.

o If the distance between the ball and both front walls is equal, it is
neither important who controls the ball nor whether the ball is on
the left or right of the field. The closer it gets to one of the walls,
the bigger the importance of these facts.

4 Results

The decision-theoretic planner has been fully implemented in the
KiRo system and tested using a simulator and the real table soccer
system.

4.1 Computational Costs

The implemented system runs on a 1.7 GHz AMD processor. On this
processor, the vision analysis phase, the world modeling step and
action execution (see Section 2) require together roughly 5 msec.
With a cycle time of 20 msec, this gives us approximately 15 msec
per cycle for planning.

Table 1 shows the worst case runtimes for different search depths.
The search depth is in this case defined as the number of plan it-
erations. One planning step constructs a subtree of the depth 3; a



search depth of z therefore corresponds to a tree depth of 3z. The ta-
ble shows that search depth values over 3 are clearly not feasible for
KiRo with the current processor speeds. However, with newer, faster
CPUs we might even be able to go to search depth of 3.

| Search depth | Runtime
0.3 msec
10 msec
23 msec
45 msec
80 msec

QWD

Tablel. Worst case runtimes

4.2 Performance Experiments

Two kinds of performance experiments have been conducted. The
simulator has been used to compare the reactive and the decision-
theoretic planning action selection directly by playing against each
other. On the real table, games against human adversaries were per-
formed to test both approaches indirectly.

4.3 Results on the Simulator

Two kinds of experiments were conducted on the simulator: In a
first run, the decision-theoretic planning procedure had a fixed search
depth of two. Using this setting, a number of games has been played.
While the program using the reactive action selection scheme shot
in average one goal in 10 minutes, the decision-theoretic approach
scored once in 1.5 minutes.

As many of these goals were own goals by the reactive control sys-
tem, a second criteria was employed: Field superiority. In this con-
text, a team is called field superior if it is capable of keeping the ball
in the opponent’s half most of the time. The field superiority value
of a team is therefore the percentage of time during which the ball
was in the opponent’s half of the field. Table 2 shows the results for
the decision-theoretic planning approach, ordered by the employed
search depth.

[ Search depth | Field superiority value |

1 64%
2 2%
3 74%
4 57%

Table2. Field superiority values for the decision-theoretic planning
approach

The decision theoretic planning approach is field superior. The
field superiority increases with the search depth until the efficiency
gets decreased due to the excessive time consumption.

4.4 Results on Physical Table Soccer System

The good results from the simulation experiments could not be repli-
cated on the real table soccer system. Since we do not have a table
with robot control for both sides, we had to conduct the tests indi-
rectly by playing against humans. The setting of these experiments

was as follows. Every opponent team consisted of two players. The
teams were not allowed to switch their positions, and every team had
to play four matches against the robot. During two of these, the reac-
tive action selection was controlling the robot; the other two matches
were performed by the planning approach. The order of the matches
was randomly drawn and the human opponents did not know against
which action selection they were playing.

In 56 Matches, the reactive approach was on average able to shoot
a goal in 0.6 minutes, while it took the human opponents 1.56 min-
utes to score. The planning approach hit the goal once in 0.84 min-
utes and admitted goals by the human teams on average every 1.19
minutes.

5 Conclusion

We presented a decision-theoretic planning approach to play table
soccer. The presented approach used a forward-simulation scheme as
well as an opponent model and a naive Bayesian approach to estimate
the success probabilities of its own actions.

This approach was able to dominate a reactive action selection
mechanism in direct matches performed on a simulator, but proved
to be inferior in indirect comparisons playing on the real table soccer
table against human teams. While the result on the real table soccer
table is disappointing, the simulation results have shown that the ap-
proach has potential. In particular, there are a number of parameters
that appear to be worthwhile to be experimented with. The oppo-
nent model, for example, is currently very simple and could, e.g., be
trained by recording real games. Furthermore, the success probabil-
ity should also be adapted to the real table. Finally, the execution of
actions themselves might be able to be enhanced. Summarizing, the
decision-theoretic planning approach has shown promise but still has
to live up to its expectations.
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