
On Ability to Autonomously Execute Agent Programs
with Sensing

Sebastian Sardina1 and Giuseppe De Giacomo2 and Yves Lespérance3 and Hector J. Levesque4

Abstract. Most existing work in agent programming assumes an
execution model where an agent has a knowledge base (KB) about
the current state of the world, and makes decisions about what to
do in terms of what is entailed or consistent with this KB. Planning
then involves looking ahead and gauging what would be consistent
or entailed at various stages by possible future KBs. We show that in
the presence of sensing, such a model does not always work properly,
and propose an alternative that does. We then discuss how this affects
agent programming language design/semantics.

1 INTRODUCTION

There has been considerable work on formal models of delibera-
tion/planning under incomplete information, where an agent can per-
form sensing actions to acquire additional information. This problem
is very important in agent applications such as web information re-
trieval/management. However, much of the previous work on formal
models of deliberation—i.e., models of knowing how, ability, epis-
temic feasibility, executabiliy, etc. such as [14, 4, 9, 11, 19]—has
been set in epistemic logic-based frameworks and is hard to relate
to work on agent programming languages (e.g. 3APL [8], AgentS-
peak(L) [17]). In this paper, we develop new non-epistemic formal-
izations of deliberation that are much closer and easier to relate to
standard agent programming language semantics based on transition
systems.

When doing deliberation/planning under incomplete information,
one typically searches over a set of states, each of which is associ-
ated with a knowledge base (KB) or theory that represents what is
known in the state. To evaluate tests in the program and to determine
what transitions/actions are possible, one looks at what is entailed
by the current KB. To allow for future sensing results, one looks
at which of these are consistent with the current KB. We call this
type of approach to deliberation “entailment and consistency-based”
(EC-based). In this paper, we argue that EC-based approaches do
not always work, and propose an alternative. Our accounts are for-
malized within the situation calculus and use a simple programming
language based on ConGolog [6] to specify agent programs as de-
scribed in Section 2, but we claim that the results generalize to most
proposed agent programming languages/frameworks. We point out

1 Dept. of Computer Science, University of Toronto, Toronto, Canada, email:
ssardina@cs.toronto.edu

2 Dip. Informatica e Sistemistica, Univer. di Roma “La Sapienza”, Roma,
Italy, email: degiacomo@dis.uniroma1.it

3 Dept. of Computer Science, York University, Toronto, Canada, email: les-
peran@cs.yorku.ca

4 Dept. of Computer Science, University of Toronto, Toronto, Canada, email:
hector@cs.toronto.edu

that this paper is mainly concerned with the semantics of the deliber-
ation process and not much with the actual algorithms implementing
this process.

We initially focus on deterministic programs/plans and how to for-
malize when an agent knows how to execute them. For such deter-
ministic programs, what this amounts to is ensuring that the agent
will always know what the next step to perform is, and no matter
what sensing results are obtained, the agent will eventually get to the
point where it knows it can terminate. In Sections 3 and 4, we de-
velop a simple EC-based account of knowing how (KHowEC). We
show that this account gives the wrong results on a simple example
involving indefinite iteration. Then, we show that whenever this ac-
count says that a deliberation/planning problem is solvable, there is
a conditional plan (a finite tree program without loops) that is a so-
lution. It follows that this account is limited to problems where the
total number of steps needed can be bounded in advance. We claim
that this limitation is not specific to the simple account and applies
to all EC-based accounts of deliberation.

The source of the problem with the EC-based account is the use of
local consistency checks to determine which sensing results are pos-
sible. This does not correctly distinguish between the models that sat-
isfy the overall domain specification (for which the plan must work)
and those that do not. To get a correct account of deliberation, one
must take into account what is true in different models of the do-
main together with what is true in all of them (what is entailed). In
Section 5, we develop such an entailment and truth-based account
(KHowET), argue that it intuitively does the right thing, and show
how it correctly handles our test examples.

We end by reviewing the paper’s contributions, discussing the
lessons for agent programming language design, and sketching other
related results that we have but were left out due to lack of space.

2 THE SITUATION CALCULUS AND
INDIGOLOG

The technical machinery we use to define program execution in the
presence of sensing is based on that of [7, 6]. The starting point in the
definition is the situation calculus [12]. We will not go over the lan-
guage here except to note the following components: there is a spe-
cial constant S0 used to denote the initial situation, namely that situ-
ation in which no actions have yet occurred; there is a distinguished
binary function symbol do where do(a, s) denotes the successor sit-
uation to s resulting from performing the action a; relations whose
truth values vary from situation to situation are called (relational) flu-
ents, and are denoted by predicate symbols taking a situation term as
their last argument. There is a special predicate Poss(a, s) used to
state that action a is executable in situation s. We assume that actions

return binary sensing results, and we use the predicate SF (a, s) to
characterize what the action tells the agent about its environment. For
example, the axiom

SF (senseDoor(d), s) ≡ Open(d, s)

states that the action senseDoor(d) tells the agent whether the door
is open in situation s. For actions with no useful sensing information,
we write SF (a, s) ≡ True.

Within this language, we can formulate domain theories which de-
scribe how the world changes as a result of the available actions.
Here, we use basic action theories [18] of the following form:

• A set of foundational, domain independent axioms for situations
Σ as in [18].

• Axioms describing the initial situation, S0.
• Action precondition axioms, one for each primitive action a, char-

acterizing Poss(a, s).
• Successor state axioms for fluents of the form

F (~x, do(a, s)) ≡ γ(~x, a, s)
providing the usual solution to the frame problem.

• Sensed fluent axioms, as described above, of the form
SF (A(~x), s) ≡ φ(~x, s)

• Unique names axioms for the primitive actions.

To describe a run of a program which includes both actions and
their sensing results, we use the notion of a history, i.e., a sequence
of pairs (a, µ) where a is a primitive action and µ is 1 or 0, a sensing
result. Intuitively, the history σ = (a1, µ1) · . . . · (an, µn) is one
where actions a1, . . . , an happen starting in some initial situation,
and each action ai returns sensing value µi. We use end[σ] to denote
the situation term corresponding to the history σ, and Sensed[σ] to
denote the formula of the situation calculus stating all sensing results
of the history σ. Formally,

end[ε] = S0, where ε is the empty history; and
end[σ · (a, µ)] = do(a, end[σ]).

Sensed[ε] = True;
Sensed[σ · (a, 1)] = Sensed[σ] ∧ SF (a, end[σ]);
Sensed[σ · (a, 0)] = Sensed[σ] ∧ ¬SF (a, end[σ]).

Next we turn to programs. We consider a very simple deterministic
language with the following constructs:

a primitive action
δ1; δ2 sequence
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop

This is a small subset of ConGolog [6] and we use its single step
transition semantics in the style of [16]. This semantics introduces
two special predicates Trans and Final: Trans(δ, s, δ′, s′) means
that by executing program δ in situation s, one can get to situation
s′ in one elementary step with the program δ′ remaining to be exe-
cuted; Final(δ, s) means that program δ may successfully terminate
in situation s.

Offline executions of programs, which are the kind of executions
originally proposed for Golog and ConGolog [10, 6], are character-
ized using the Do(δ, s, s′) predicate, which means that there is an
execution of program δ that starts in situation s and terminates in sit-
uation s′. This holds if there is a sequence of legal transitions from
the initial configuration up to a final configuration:

Do(δ, s, s′)
def
= ∃δ

′

.T rans
∗(δ, s, δ′, s′) ∧ Final(δ′

, s
′),

where Trans∗ is the reflexive transitive closure of Trans. An of-
fline execution of δ from s is a sequence of actions a, . . . , an such
that: D ∪ C |= Do(δ, s, do(an, . . . , do(a1, s) . . .)), where D is an
action theory as mentioned above, and C is a set of axioms defining
the predicates Trans and Final and the encoding of programs as
first-order terms [6].

Observe that an offline executor has no access to sensing results,
available only at runtime. IndiGolog, an extension of ConGolog to
deal with online executions with sensing, is proposed in [7]. The se-
mantics defines an online execution of a program δ starting from a
history σ. We say that a configuration (δ, σ) may evolve to configu-
ration (δ′, σ′) w.r.t. a model M (relative to an underlying theory of
action D) iff 5 (i) M is a model of D ∪ C ∪ {Sensed[σ]}, and (ii)

D ∪ C ∪ {Sensed[σi]} |= Trans(δ, end[σ], δ′, end[σ′])

and (iii)

σ
′ =

8

>

>

>

>

<

>

>

>

>

:

σ · (a, 1) if end[σ′] = do(a, end[σ])
and M |= SF (a, end[σ])

σ · (a, 0) if end[σ′] = do(a, end[σ])
and M 6|= SF (a, end[σ]).

σ if end[σ′] = end[σ],

The model M above is only used to represent a possible environment
and, hence, it is just used to generate the sensing results of the corre-
sponding environment. Finally, we say that a configuration (δ, σ) is
final whenever

D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ]).

Using these two concepts of configuration evolution and final con-
figurations, one can define various notions of online, incremental, ex-
ecutions of programs as a sequence of legal configuration evolutions,
possibly terminating in a final configuration.

3 DELIBERATION: EC-BASED ACCOUNT

Perhaps the first approach to come to mind for defining when an
agent knows how/is able to execute a deterministic program δ in a
history σ goes as follows: the agent must always know what the next
action prescribed by the program is and be able to perform it such
that no matter what sensing output is obtained as a result of doing
the action, she can continue this process with what remains of the
program and, eventually, reach a configuration where she knows she
can legally terminate. We can formalize this idea as follows.

We define KHowEC(δ, σ) to be the smallest relation R(δ, σ) such
that:

(E1) if (δ, σ) is final, then R(δ, σ);
(E2) if there exists an action a such that (δ, σ) may evolve to configura-

tion (δ′, σ·(a, µ)) for some δ′ and µ w.r.t. some model of theory D,
and R(δ′, σ ·(a, µi)) holds for every configuration (δ′, σ ·(a, µi))
such that (δ, σ) may evolve to w.r.t. some model Mi of theory D,
then R(δ, σ).

The first condition states that every terminating configuration is in the
relation KHowEC . The second condition states that if a configuration
performs an action transition and for every consistent sensing result,
the resulting configuration is in KHowEC , then this configuration is
also in KHowEC .

5 This definition is more general than the one in [7], where the sensing re-
sults were assumed to come from the actual environment rather than from
a model (a model can represent any possible environment).

Note that, here, the agent’s lack of complete knowledge in a his-
tory σ is modeled by the theory D ∪C ∪ {Sensed[σ]} being incom-
plete and having many different models. KHowEC uses entailment
to ensure that the information available is sufficient to determine
which transition should be performed next. KHowEC uses consis-
tency to determine which sensing results can occur, for which the
agent needs to have a subplan that leads to a final configuration. Due
to this, we say that KHowEC is an entailment and consistency-based
(EC-based) account of knowing how.

This EC-based account of knowing how seems quite intuitive and
attractive. However it has a fundamental limitation: it fails on pro-
grams involving indefinite iteration. The following simple example
from [9] shows the problem.

Consider a situation in which an agent wants to cut down a tree.
Assume that the agent has a primitive action chop to chop at the tree,
and also assume that she can always find out whether the tree is down
by doing the (binary) sensing action look. If the sensing result is 1,
then the tree is down; otherwise the tree remains up. There is also
a fluent RemainingChops(s), which we assume ranges over the
natural numbers N and whose value is unknown to the agent, and
which is meant to represent how many chop actions are still required
in s to bring the tree down. The agent’s goal is to bring the tree down,
i.e., bringing about a situation s such that Down(s) holds, where

Down(s)
def
= RemainingChops(s) = 0

The action theory Dtc is the union of:

1. The foundational axioms for situations Σ.
2. Duna = {chop 6= look}.
3. Dss contains the following successor state axiom:

RemainingChops(do(a, s)) = n ≡
(a = chop ∧ RemainingChops(s) = n + 1) ∨
(a 6= chop ∧ RemainingChops(s) = n).

4. Dap contains the following two precondition axioms:

Poss(chop, s) ≡ (RemainingChops > 0),
P oss(look, s) ≡ True.

5. DS0
= {RemainingChops(S0) 6= 0}.

6. Dsf contains the following two sensing axioms:

SF (chop, s) ≡ True,

SF (look, s) ≡ (RemainingChops(s) = 0).

Notice that sentence ∃n.RemainingChops(S0) = n (where the
variable n ranges over N) is trivially entailed by this theory so “in-
finitely” hard tree trunks are ruled out. Nonetheless, the theory does
not entail the sentence RemainingChops(S0) < k for any con-
stant k ∈ N. Hence, there exists some n ∈ N, though unknown
and unbounded, such that the tree will fall after n chops. Because
of this, intuitively, we should have that the agent can bring the tree
down, since if the agent keeps chopping, the tree will eventually
come down, and the agent can find out whether it has come down
by looking. Thus, for the program

δtc = while ¬Down do chop; look endWhile

we should have that KHowEC(δtc, ε) (note that δtc is deterministic).
However, this is not the case:

Theorem 1 Let δtc be the above program to bring the tree down.
Then, for all k ∈ N, KHowEC(δtc, [(chop, 1) · (look, 0)]k) does not
hold. In particular, when k = 0, KHowEC(δtc, ε) does not hold.

PSfrag replacements

δtc

[]

look ; δtc

look ; δtc

δtc

(chop, 1)

(chop, 1)

(chop, 1)

(chop, 1) (chop, 1)

(chop, 1)

(chop, 1)

(look, 0)

(look, 0) (look, 0)

(look, 1)
(look, 1)

δtc

δtc
1

1
0

0
chop

chop
look

look

√
√

Figure 1. Online execution tree of program δtc. Each box represents a
configuration with the remaining program at the top and the current history

at the bottom. Terminating configurations are marked with a check sign.

Thus, the simple EC-based formalization of knowing how
gives the wrong result for this example. Why is this so? Intu-
itively, it is easy to check that if the agent knows how (to ex-
ecute) the initial configuration, i.e., KHowEC(δtc, ε) holds, then
she knows-how (to execute) every possible finite evolution of
it, i.e., for all j ∈ N, KHowEC(δtc, [(chop, 1) · (look, 0)]j) and
KHowEC((look; δtc), [(chop, 1) · (look, 0)]j · (chop, 1)). Now con-
sider the hypothetical scenario in which an agent keeps chopping and
looking forever, always seeing that the tree is not down. There is no
model of Dtc where δtc yields this scenario, as the tree is guaranteed
to come down after a finite number of chops. However, by the above,
we see that KHowEC is, in some way, taking this case into account
in determining whether the agent knows how to execute δtc (see Fig-
ure 1). This happens because every finite prefix of this never-ending
execution is indeed consistent with Dtc. The problem is that the set
of all of them together is not. This is why KHowEC fails, which can
also be viewed as a lack of compactness issue. In the next section, we
show that KHowEC’s failure on the tree chopping example is due to a
general limitation of the KHowEC formalization. Note that Moore’s
original account of ability [14] is closely related to KHowEC and
also fails on the tree chopping example [9].

4 KHowEC ONLY HANDLES BOUNDED
PROBLEMS

In this section, we show that whenever KHowEC(δ, σ) holds for
some program δ and history σ, there is simple kind of conditional
plan, what we call a TREE program, that can be followed to exe-
cute δ in σ. Since for TREE programs (and conditional plans), the
number of steps they perform can be bounded in advance (there are
no loops), it follows that KHowEC will never be satisfied for pro-
grams whose execution cannot be bounded in advance. Since there
are many such programs (for instance, the one for the tree chopping
example), it follows that KHowEC is fundamentally limited as a for-
malization of knowing how and can only be used in contexts where
attention can be restricted to bounded strategies. As in [19], we define
the class of (sense-branch) tree programs TREE with the following
BNF rule:

dpt ::= nil | a; dpt1 |senseφ; if φ then dpt1 else dpt2

where a is any non-sensing action, and dpt1 and dpt2 are tree pro-
grams.

This class includes conditional programs where one can only test a
condition that has just been sensed. Thus as shown in [19], whenever
a TREE program is executable, it is also epistemically feasible, i.e.,

the agent can execute it without ever getting stuck not knowing what
transition to perform next. TREE programs are clearly determinis-
tic.

Let us define a relation KHowByEC : Program × History ×
TREE . The relation is intended to associate a program δ and history
σ for which KHowEC holds with some TREE program(s) that can
be used as a strategy for successfully executing δ in σ.

We define KHowByEC(δ, σ, δtp) to be the least relation
R(δ, σ, δtp) such that:

(A) if (δ, σ) is final, then R(δ, σ, nil);
(B) if (δ, σ) may evolve to configurations (δ′, σ · (a, 1)) and

(δ′, σ · (a, 0)) w.r.t. some models M1 and M2, respec-
tively, of theory D, and there exist δ

tp
1

and δ
tp
0

such that
R(δ′, σ · (a, 1), δtp

1
) and R(δ′, σ · (a, 0), δtp

0
) hold, then

R(δ, σ, (a; if φ then δ
tp
1

else δ
tp
0

endIf)) where φ is the condi-
tion on the right hand side of the sensed fluent axiom for a (i.e.,
action a senses the truth value of formula φ).

(C) if there exists an action a and a program δ′ for which (δ, σ) may
evolve to configuration (δ′, σ · (a, µ)) only for some unique sens-
ing outcome µ and some model M of theory D, and there exist δ′′

such that R(δ′, σ · (a, µ), δ′′) holds, then R(δ, σ, (a; δ′′)).

Condition (A) deals with the simple case of a terminating config-
uration; condition (B) handles the case in which the current config-
uration can perform a step with some (sensing) action a and where
both sensing outcomes 1 and 0 are eventually possible/consistent;
and condition (C) deals with the simpler cases of a non-sensing ac-
tion step and a sensing action step for which there is only one con-
sistent sensing outcome.

It is possible to show that whenever KHowByEC(δ, σ, δtp) holds,
then KHowEC(δ, σ) and KHowEC(δdp, σ) hold, and the TREE

program δtp is guaranteed to terminate in a Final situation of the
given program δ (in all models).

Theorem 2 For all programs δ, histories σ, and programs δtp, if
KHowByEC(δ, σ, δtp) then we have that

• KHowEC(δ, σ) and KHowEC(δdp, σ) hold; and
• There is a common execution for δtp and δ from end[σ]:

D ∪ C ∪ {Sensed[σ]} |=
∃s.Do(δtp, end[σ], s) ∧ Do(δ, end[σ], s).

In addition, every configuration captured in KHowEC can be exe-
cuted using a TREE program.

Theorem 3 For all programs δ and histories σ, if KHowEC(δ, σ),
then there exists a program δtp such that KHowByEC(δ, σ, δtp).

Since the number of steps a TREE program performs can be
bounded in advance, it follows that KHowEC will never hold for
programs/problems that are solvable, but whose execution requires
a number of steps that cannot be bounded in advance, as it is the
case with the program in the tree chopping example. Thus KHowEC

is severely restricted as an account of knowing how; it can only be
complete when all possible strategies are bounded.

5 DELIBERATION: ET-BASED ACCOUNT

We saw earlier that the reason KHowEC failed on the tree chopping
example was that it required the agent to have a choice of action that

guaranteed reaching a final configuration even for histories that were
inconsistent with the domain specification such as the infinite history
corresponding to the hypothetical scenario described in the previous
paragraph. There was a branch in the configuration tree that corre-
sponded to that history. This occurred because “local consistency”
was used to construct the configuration tree. The consistency check
kept switching which model of D ∪ C (which may be thought as
representing the environment) was used to generate the next sens-
ing result, postponing the observation that the tree had come down
forever. But in the real world, sensing results come from a fixed envi-
ronment (even if we don’t know which environment this is). It seems
reasonable that we could correct the problem by fixing the model of
D∪C used in generating possible configurations in our formalization
of knowing how. This is what we will now do.

We define when an agent knows how to execute a program δ in
a history σ and a model M (which represents the environment),
KHowInM(δ, σ, M), as the smallest relation R(δ, σ) such that:

(T1) if (δ, σ) is final, then R(δ, σ);
(T2) if (δ, σ) may evolve to (δ′, σ·(a, µ)) w.r.t. M and R(δ′, σ·(a, µ)),

then R(δ, σ);

The only difference between this and KHowEC is that the sens-
ing results come from the fixed model M . Given this, we obtain the
following formalization of when an agent knows how to execute a
program δ in a history σ:

KHowET (δ, σ)
iff

for every model M such thatM |= D ∪ C ∪ {Sensed[σ]},
KHowInM(δ, σ, M) holds.

We call this type of formalization entailment and truth-based, since
it uses entailment to ensure that the agent knows what transitions she
can do, and truth in a model to obtain possible sensing results.

We claim that KHowET is actually correct for programs δ that
are deterministic. For instance, it handles the tree chopping example
correctly:

Proposition 4 KHowET (δtc, ε) holds w.r.t. theory Dtc.

Furthermore, KHowET is strictly more general than KHowEC . For-
mally,

Theorem 5 For any background theory D and any configuration
(δ, σ), if KHowEC(δ, σ) holds, then KHowET (δ, σ). Moreover, there
is a background theory D∗ and a configuration (δ∗, σ∗) such that
KHowET (δ∗, σ∗) holds, but KHowEC(δ∗, σ∗) does not.

6 DISCUSSION AND CONCLUSION

In an extended version of this paper, we show how the notion of
ability to achieve a goal can be defined in terms of our notions of
knowing how to execute a deterministic program. We observe that
an EC-based definition of ability inherits the limitations of the EC-
based definition of knowing how. Then, we examine knowing how
to execute a nondeterministic program. We consider two ways of
interpreting this: one (angelic knowing how) where the agent does
planning/lookahead to make the right choices, and another (demonic
knowing how) where the agent makes choices arbitrarily. We discuss
EC-based and ET-based formalizations of these notions. Finally, we
show how angelic knowing how can be used to specify a powerful
planning construct in the IndiGolog agent programming language.

In this paper, we have looked at how to formalize when an agent
knows how to execute a program, which in the general case, when the
program is nondeterministic and the agent does lookahead and rea-
sons about possible execution strategies, subsumes ability to achieve
a goal. First, we have shown that an intuitively reasonable entail-
ment and consistency-based approach to formalizing knowing how,
KHowEC , fails on examples like our tree chopping case and that,
in fact, KHowEC can only handle problems that can be solved in a
bounded number of steps, i.e. without indefinite iteration.

The problems of accounts like KHowEC when they are formal-
ized in epistemic logic, such as Moore’s [14], had been pointed out
before, for instance in [9]. However, the reasons for the problems
were not well understood. The results we have presented clarify the
source of the problems and show what is needed for their solution.
A simple meta-theoretic approach to knowing how fails; one needs
to take entailment and truth into account together. (Even if we use a
more powerful logical language with an knowledge operator, knowl-
edge and truth must be considered together.)

Our non-epistemic accounts of knowing how are easily related to
models of agent programming language semantics and our results
have important implications for this area. While most work on agent
programming languages (e.g. 3APL [8], AgentSpeak(L) [17], etc.)
has focused on reactive execution, sensing is acknowledged to be
important and there has been interest in providing mechanisms for
run-time planning/deliberation. The semantics of such languages are
usually specified as a transition system. For instance in 3APL, con-
figurations are pairs involving a program and a belief base, and a
transition relation over such pairs is defined by a set of rules. Evalu-
ating program tests is done by checking whether they are entailed by
the belief base. Checking action preconditions is done by querying
the agent’s belief base update relation, which would typically involve
determining entailments over the belief base — the 3APL semantics
abstracts over the details of this. Sensing is not dealt with explicitly,
although one can suppose that it could be handled by simply updating
the belief base (AgentSpeak(L) has events for this kind of thing).

As mentioned, most work in the area only deals with on-line re-
active execution, where no deliberation/lookahead is performed; this
type of execution just involves repeatedly selecting some transition
allowed in the current configuration and performing it. However, one
natural view is that deliberation can simply be taken as a different
control regime involving search over the agent program’s transition
tree. In this view, a deliberating interpreter could first lookahead and
search the program’s transition tree to find a sequence of transitions
that leads to successful termination and later execute this sequence.
This assumes that the agent can chose among all alternative tran-
sitions. Clearly, in the presence of sensing, this idea needs to be
refined. One must find more than just a path to a final configura-
tion in the transition tree; one needs to find some sort of conditional
plan or subtree where the agent has chosen some transition among
those allowed, but must have branches for all possible sensing re-
sults. The natural way of determining which sensing results are pos-
sible is checking their consistency with the current belief base. Thus,
what is considered here is essentially an EC-based approach.

Also in work on planning under incomplete information, e.g.
[3, 15, 5], a similar sort of setting is typically used, and finding a
plan involves searching a (finite) space of knowledge states that are
compatible with the planner’s knowledge. The underlying models of
all these planners are meant to represent only the current possible
states of the environment, which, in turn, are updated upon the hypo-
thetical execution of an action at planning time. We use models that
are dynamic in the sense that they represent the potential responses

of the environment for any future state. In that way, then, what the
above planners are doing is deliberation in the style of KHowEC . An
interesting case arises with answer set planning/programming, e.g.
[2, 20, 21]. There, plans are found by inspecting all models of an
underlying logic program and, hence, they seem, in principle, to be
more in the lines of our ET-based approach to deliberation. Nonethe-
less, all these approaches are eventually restricted to propositional
languages and, as a result, only bounded problems can be expressed.

Our results show that the ET-based view of deliberation is funda-
mentally flawed when sensing is present. It produces an account that
only handles problems that can be solved in a bounded number of
actions. As an approach to implementing deliberation, this may be
perfectly fine. But as a semantics or specification, it is wrong. What
is required is a much different kind of account, like our ET-based
one.

Finally, we point out that even though one might argue that re-
sults concerning the indistinguishability of unbounded nondetermin-
ism [13, 1] (e.g., a∗b being observationally indistinguishable from
a∗b+aω) are a problem for our approach, this is not the case because
we are assuming that agents can reason about all possible program
executions/futures.

REFERENCES

[1] K.R. Apt and E.R. Olderog, Verification of Sequential and Concurrent
Programs, Springer-Verlag, 1997.

[2] Chitta Baral and Michael Gelfond, Reasoning Agents in Dynamic Do-
mains, chapter 12, 257–275, Kluwer, 2000.

[3] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, ‘Planning in non-
deterministic domains under partial observability via symbolic model
checking’, in Proc. of IJCAI-01, pp. 473–478, (2001).

[4] Ernest Davis, ‘Knowledge preconditions for plans’, Journal of Logic
and Computation, 4(5), 721–766, (1994).

[5] Giuseppe De Giaccomo, Luca Iocchi, Daniele Nardi, and Riccardo
Rosati, ‘Planning with sensing for a mobile robot’, in Proc, of ECP-
97, pp. 156–168, (1997).

[6] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121, 109–169, (2000).

[7] Giuseppe De Giacomo and Hector J. Levesque, ‘An incremental inter-
preter for high-level programs with sensing’, in Logical Foundations
for Cognitive Agents, eds., Hector J. Levesque and Fiora Pirri, 86–102,
Springer-Verlag, (1999).

[8] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. J. Ch. Meyer,
‘A formal semantics for an abstract agent programming language’, in
Proc. of ATAL-97, pp. 215–229, (1998).

[9] Yves Lespérance, Hector J. Levesque, Fangzhen Lin, and Richard B.
Scherl, ‘Ability and knowing how in the situation calculus’, Studia Log-
ica, 66(1), 165–186, (2000).

[10] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl, ‘GOLOG:
A logic programming language for dynamic domains’, Journal of Logic
Programming, 31, 59–84, (1997).

[11] Fangzhen Lin and Hector J. Levesque, ‘What robots can do: Robot
programs and effective achievability’, Artificial Intelligence, 101, 201–
226, (1998).

[12] John McCarthy and Patrick Hayes, ‘Some philosophical problems from
the standpoint of artificial intellig ence’, in Machine Intelligence, eds.,
B. Meltzer and D. Michie, volume 4, 463–502, Edinburgh University
Press, (1979).

[13] Robin Milner, Communication and Concurrency, Prentice Hall, 1989.
[14] Robert C. Moore, ‘A formal theory of knowledge and action’, in Formal

Theories of the Common Sense World, eds., J. R. Hobbs and Robert C.
Moore, 319–358, (1985).

[15] Ron Petrick and Fahiem Bacchus, ‘A knowledge-based approach to
planning with incomplete information and sensing’, in Proc. of AIPS-
02, pp. 212–221, (2002).

[16] Gordon Plotkin, ‘A structural approach to operational semantics’, Tech-
nical Report DAIMI-FN-19, Computer Science Dept., Aarhus Univer-
sity, Denmark, (1981).

[17] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logica com-
putable language’, in Agents Breaking Away (LNAI), eds., W. Vander
Velde and J. W. Perram, volume 1038, 42–55, Springer-Verlag, (1996).

[18] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[19] Sebastian Sardina, Yves De Giacomo, Giuseppe Lespénce, and Hector
Levesque, ‘On the semantics of deliberation in IndiGolog – from theory
to implementation’, Annals of Mathematics and Artificial Intelligence,
41(2–4), 259–299, (2004). Previous version appeared in Proc. of KR-
2002.

[20] T. Son, C. Baral, and S. McIlraith, ‘Extending answer set planning with
sequence, conditional, loop, non-deterministic choice, and procedure
constructs’, in Proceedings of the AAAI Spring Symposium on Answer
Set Programming: Towards Efficient and Scalable Knowledge Repre-
sentation and Reasoning.

[21] Tran Son, Phan Huy Tu, and Chitta Baral, ‘Planning with sensing ac-
tions and incomplete information using logic programming’, in Pro-
ceedings of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning, LPNMR 2004, Lecture Notes in Com-
puter Science, pp. 261–274, Fort Lauderdale, FL, USA. Springer.

