Learning Partially Observable Action Models

Eyal Amir
Computer Science Department
University of lllinois, Urbana-Champaign
Urbana, IL 61801, USA
eyal@cs.uiuc.edu

Abstract. In this paper we present tractable algorithms for solved (approximately) by interleaving learning the POMDP
learning a logical model of actions’ effects and precondi- with solving it (the learning and solving are both approxi-
tions in deterministic partially observable domains. Thesemate because finite memory or finite granularity is always
algorithms update a representation of the set of possible acassumed) [3, 12, 13]. It is important to notice that this prob-
tion models after every observation and action execution. Wdem is harder than solving POMDPs. In some cases, one can
show that when actions are known to have no conditionalsolve the POMDP with some guarantee for relatively fast
effects, then the set of possible action models can be repeonvergence and approximation, if one knows the underlying
resented compactly indefinitely. We also show that certaintransition model [9, 14]. Also, in deterministic cases, com-
desirable properties hold for actions that have conditional efputing the optimal undiscounted infinite horizon policy in
fects, and that sometimes those can be learned efficiently aknown) POMDPs is PSPACE-hard (NP-complete if a poly-
well. Our approach takes time and space that are polynomiahomial horizon) in the number of states [11], but reinforce-
in the number of domain features, and it is the first exact so-ment learning has no similar solution known to us.
lution that is tractable for a wide class of problems. It does In this paper we present a formal, exact, many times
so by representing the set of possible action models usingractable solution to the problem ofimultaneously learn-
propositional logic, while avoiding general-purpose logical ing and filtering (SLAF) preconditions and effects of actions
inference. Learning in partially observable domains is diffi- from experiences in partially observable domains. We put
cultand intractable in general, but our results show that it caremphasis on the solution being tractable as a function of the
be solved exactly in large domains in which one can assuma&umber of state featureather than the (exponentially larger)
some structure for actions’ effects and preconditions. Thes@umber of states.
results are relevant for more general settings, such as learn- First, we present a formal system that captures this prob-
ing HMMs, reinforcement learning, and learning in partially lem precisely for possibly nondeterministic actions. It main-
observable stochastic domains. tains a set of pairéstate,transition-relatiopthat are consis-
tent with the actions and observations collected so far (the
. transition belief state Then, we present a generic algorithm
1 Introduction that uses logical deduction and learns transition models in
) . .. deterministic partially observable domains.
Agems that act in con_1p|ex_ dor'nalns ”S‘!‘"?‘”V have limited We present more tractable algorithms for special cases of
prior knO\_/v_Iedge of their actions’ preconditions and effects SLAF. We examine actions that are (d)ways executable
(thetransition mc_)debf the world)._Such agents need to learn or sometimes inexecutabidepending on deterministic pre-
about these action to act effectively, 'and they ?ISO “eeF’ t(?:onditions), and (2¢onditionalor nonconditionalwhenever
_trac_:k _the state of the world, when th_e'r sensory 'nforma"onexecutable, have the same effect). For the case of STRIPS ac-
IS I|m|te_d._For example, a robot moving f“?m room toroom g (always executable, nonconditional) we show that our
in a building can observe only its immediate environment. algorithm runs in time linear in the number of propositional

Upon dlscovenn% :. SW.'tCh ;qn the Wakl]l’ ifrtnayﬂpot_ knqw tEe domain features and the space taken to represent our transi-
consequences of flipping this switch. After fipping I, t '€ tion belief state. We can maintain this transition belief state
agent may observe those effects that occur in its |mmed|at(]-‘:n polynomial space (in the number of features and actions

environment, but not those outside the room. When it IeaVesavailable in our domain) under very relaxed conditions. We

the room and dls_covers some _cha_mge in the world, it maypresenta more general algorithm (than our STRIPS one) that
want to ascribe this change to flipping the switch.

L i . dels i iallv ob ble d treats other cases with a polynomial time per time step, when
earming transition models in partially observable do- ,.iyng are known to act as 1:1 mapping on states, and they
mains is hard. In stochastic domains, learning transition

. ; . rovide an approximation otherwise.
models is central to learning Hidden Markov Models P PP

d inf | ) both of Our algorithms are the first to learn exact action models
(HMMs) [17] and to reinforcement leaming [8], both o in partially observable domains. They are also first to find

which afford only solutions that are not guaranteed 0 ap-p"action model at the same time that they determine the
Iproxm(;ite .the (r)]ptlr;al. anH:\Allq\Aslthe, ;[]ransnli:).nhnjodel IS agent’s knowledge about the state of the world. They draw
e_alrne usTgE,tVIel gum_h'l(le CI i.gor't Im’ V\;] Ic IhS a;}s_pe-on intuitions and results of [1] for known (nondeterministic)

clal case o - Itis a hill-climbing algorithm which IS 5 i5n models. If we assume that our transition model is fully

only guaranteed to reach a local optima, and there is no tim%nown, then our results reduce to those of [1] for determin-
guarantee for convergence on this local optifRainforce- istic actions

ment learningin partially observable domains [7] can be



A wide range of virtual domains satisfy our assumptions execute). We denote the former kind of observation with
of determinism and structured actions, and we are in the proand the latter withO K',~O K, respectively.
cess of testing our algorithms in large domains, including
over1000 features (see [6] for current progress). Definition 1 (Transition Filtering Semantics) Letp C &
Previous work on learning action’s effects and precon-be a transition belief state. Thitering of p with actions
ditions focused on fully observable domains. [5, 19] learnand observationgai, 01, ..., at, 0¢) IS
STRIPS actions with parameters by finding the most gen-1. Filter[e](p) = p;
eral and most specific in a version space of STRIPS oper2. Filtera, OK](p) =

ators. [15] uses a general-purpose classification system (in {(s',R) | {s,a,s'Y € R, (s,R) € p};

their case, MSDD) to learn the effects and preconditions of3. Filter[a, ~OK](p) =

actions, identifying irrelevant variables. [2] presents an ap- {(s,R) | (s, R) € p, Vs’ € S (s,a,s") ¢ R};
proach that is based on inductive logic programming. Most4. Filter[o](p) = {(s,R) € p | oistrueins};
recently, [16] showed how to learn stochastic actions with no5. Filter[{a;, 0, ..., at,0¢)](p) =

conditional effects (i.e., the same stochastic change occurs at  Filter[{(ait+1,0it+1,- - -, ¢, 0t)]

every state in which the action is executable). The common (Filter|o;](Filter[a;](p)))-

theme among these approaches is their assumption that th&fe call Step progression witl, Step 3disqualifyinga, and
state of the world is fully observed at any point in time. [18] Step 4filtering with o.

is the only work that considers partial observability, and it

does so by assuming that the world is fully observable, giv- The intuition behind this definition is that every transition
ing approximate computation in relevant domains. relation, R, and initial states, produce a set of state-relation
pairs{(si, R) }scr in the result of an action. If an observa-
tion discards some statg, the pair(s;, R) is removed from
this set. We conclude thak is not possible when all pairs
including it are removed from the set.

2 Filtering Transition Relations

West (Eat West (Eat A nor_lgleterministic domain descriptioﬂ_ﬁ is a fi_nite set
Y3 of transition rulesof the form ‘a causesF' if G” which de-
g off m off Eg: on E on scribe the effects of actions, féf andG propositional state
formulae. We say thaf' is theheadandG is thetail of those
== rules. Whenz = T RU E we write “a causesF".
SSWA —lit AE Sw-on swA lit A E The semantics of a domain description that we choose is

compatible with thestandard semantickelief update oper-
ator of [20]. We define it below by firstompletingthe de-
scription and then mapping the completed description to a
transition relation.

Figure 1. Two rooms and flipping the light switch

Consider a simple world with two rooms, one with a : o ! .
switch, and the other with a light bulb whose state can be .For domain descriptio) we deﬁne a transition systgm
observed only when the agent is in that room (see Figuré’v'th Pp andAp the sets of propositional fluents and actions
1). Assume that our agent initially knows nothing about the Mentioned inD, respectively. For action and fluentf, let
three actions go-E (go to the Eastern room), go-W (go to the B e
Western room), and sw-on (flip the switchdn). Our agent’s Gp(a, f) = \/{G | “a causesF'if G” € D, f € L(F)},

problem is to determine the effects of these actions (tothe ex- . . . . .
tent that it can, theoretically), while also tracking the world. a disjunction of the preconditions of rules that possibly affect

We describe the combined problem of filtering (updating fluent £ (an empty disjunction is equivalent to FALSE). We

the agent’s belief state) and learning the transition model for-_l;Se @ (;?epj{ ifG"asa sl_qforthan(gi"fcl)rctihe _rulea 'CaLrJ]SQSf
mally. A transition systenis a tuple(P, S, A, R), where if fAG”and"a causes-f it ~fAG". Itdesignates theon-
e P s afinite set of propositional fluents; effectsof actiona. DefineComp(D), thecompletion ofD
S C Pow(P) is the set of world states; “ . "
: A isa foiqrfit(e get of actions; Comp(D) = DU{"akeepsfif ~Gn(a, f)" |

e R C S x A x Sisthe transition relation. a€AfEP, Gpla,f) # TRUE}.

Here, aworld state s € S, is a subset of” that contains  Thjs definition is well behaved, in the sense that
propositions true in this state, afl{ s, a, s") means that state Comp(D) = Comp(D U D), if D' C Comp(D).
s" is a possible result of actianin states. Let Fp(a,s) = {F | “a causesF' if " € D, s = G}

A transition belief statés a set of tuplegs, ) wheresis  the set of effects of in s, according taD. D defines a tran-
a state and? a transition relation. LéR = Pow(Sx AXS)  sition relationRp as follows

be the set of all possible transition relations SnA. Let

G = S x R. Everyp C G is atransition belief stateWhen Rp ={(s,a,8') | s,s €S, a€c A, s |=Fp(a,s)} (1)

we hold a a transition belief stajgewe consider every tu-

ple (s, R) € p possible. With this formal system we assume  When there is no confusion, we wrife for Rp. We say
that observations are given to us (if at all) as logical sen-that two domain description®,, D, are equivalentlp; =

tences after performing an action. They are eistate for-  D»), if Rp, = Rp,. D is acomplete domain descriptioi

mulae(propositional combinations of fluent names)@K Rp = Rcomp(p)- In that case we say thdt is completely
or -OK (observing the action is possible or impossible to defined byD.



Time step| 1 2 3 4 5 6 7
Action go-W sw-on go-E sw-on go-W go-E
Location E -E -F E E -E E
Bulb ? —lit =lit ? ? lit ?
Switch —sw ? ? —sw sw ? sw
Possible OK -OK OK OK OK OK

Figure 2. An action-observation sequence (table entries are oltsmms LegendF: east;—E: west;lit: light is on;—lzt: light is off; sw:
switch is on;—sw: switch is off; O K: action executable;O K: action not executable.

Example 2 Consider the scenario of Figure 2 and assume of actions. In this section we follow the intuition that propo-
that actions are deterministic, unconditional, and always ex-sitional logic can serve to represeptsiore compactlyFrom

ecutable (assuming no action was performed at step 2). Therh o e forth e assume that our actions are deterministic.
every action affects every fluent either negatively, positively,

or not at all. Consequently, every transition relatid is In the following, for a set of propositional formulag,
completely defined by sonie such that (viewing a tuple as  L(¥) is the signature o¥, i.e., the set of propositional sym-
a set of its elements) bols that appear i#. £(T) is the language 0¥, i.e., the set

, of formulae built withZ (¥). Similarly, £(L) is the language
a causesE, a causessw, a causedit,
De H a causes-E ><{ a causes-sw } « ¢ a causes-lit of L, for a set of symbolg..
go-W a keepsE a keepssw a keepslit
u.G{ go-E }

sw-on

Say that initially we know the effects of go-E, go-W, but do . .. .
not know what sw-on does. Then, transition filtering starts3.1 Representing Transition Belief States
with the product set oR (of 27 possible relations) and all
possible2?® states. Also, at time step 4 we know that the world
state is exactly{ £, —lit, -sw}. We try sw-on and get that
Filter[sw-or}(p4) includes the same set of transition rela- We define a propositional logical language that allows us to
tions but with each of those transition relations projecting represent sets of domain descriptions (thus, sets of transi-
the state{ £/, -lit, ~sw} to an appropriate choice fron¥.  tion relations). Lef?;, P, C £(P) be sets of state formulae
When we receive the observatians= —F A ~sw of ime g0y thap, includes only literals o ALSE, P, includes

step 5,05 = Filter|os|(F'ilter[sw-0 removes from . . - .
theptrar?sition belief[s?il(te all trge relgt(iga)s) that gave rise to only terms (conjunctions of literals) that are not equivalent to

—E or to —~sw. We are left with transition relations satisfy- FALSE, and for allp, s € P1 U Py, if ¢ = ¢, thenp = ¢
ing one of the tuples in or o = TRUE. We define a propositional vocabulary

{ sw-oncauseskE,

sw-oncausedit
sw-onkeepsE

}><{ sw-oncausessw }x< sw-oncauses-lit
sw-onkeepslit

L(P1,Py) = {aG |a € A, F € Py, G € P}

Finally, when we perform action go-W, again we update
the set of states associated with every transition relation inTheorem 4 For every ruler =* a causesF’ if G”, for F,G
the set of pairgs. When we receive the observations of time y |

step 6, we concludes — Filter|og)(Filter[go-W(ps)) = state formulae, there is a set of transition rulé® = {“a

caused; if t;” }ier, with a set of indiced, termst;, and
-E sw-oncausesr, -E sw-onkeepsE, iterals I;, such thatr = TR (i.e., we can exchange for
. Sw-oncausessw, " Sw-oncausessw, . . L.

<{llt } »{ sw-oncausesit, > , < { lit } s sw-oncausedit, > R, and get an equivalent domain description).

sw go-E.. sw go-E.. i

In the rest of this paper we implicitly assume tRat P, C
SLAF reduces to filtering (updating the agent's belief L(P) are sets of state formulae as above. AlSds acom-
state) [1, 20, 10] when the transition model is fully specified. pletedomain description with effects i, and preconditions
in P2. We also assume that i#f3s'Rp (s, a,s’) for some
Theorem 3 Letp = o x {R}, wherec C SandR C S x s € S,a € A, then there is a ruled' causeFALSE if G”
A x S, and let(a;, 0;), ., be a sequence of actions and ob- such thats = G.

servations. IfFilterR[(&i,oi)iSt}(a) is the belief-state fil- For set of formulaéP, we defineBottom(Ps) = {G €
tering' of o with (a;, o), ,, thenFilter([(a:, 0:),.,](p) = P, | G # FALSE, VG € P [(G' = G) A (G" #
Filterr[{a:, 0:);.,)(0) x {R}. - FALSE)] = G = G'}, i.e., Bottom(P;) is the set of

strongest preconditions iP,.

3 Logical Filtering of Transition Models

The example in the previous section illustrates how the ex-Definition 5 We define the theory
plicit representation of transition belief states may be doubly

exponential in the number of domain features and the number ;. N
T5 = rulesp A implied-weaker-rules

! Filtering semantics as defined in [1]. implied-stronger-rules\ exec-preconds

©)



rulesp = {a& € L | “a causesF if G” € D}
implied-weaker-rules= A\ r cp, (ats A (G = G') = af)
G,G €P,

a €

implied-stronger-rules= A r cp, (a& Aa& = a&i) A
G,G'\ G ePy
G'=GVa

a€c A , .
F F F
AN rr rrep, (agNag =ag )
F'"=FAF

G e Py
ac A

exec-preconds =
{=aEAESE ¢ | G € Bottom(Py),
VG € Py ((G | G') = “acauseFALSEif G’ ¢ D)}.

The intentionis thatf € L is true inT} exactly when &
causesF' if G” is in D or there is a stronger transition rule
“a causesF’ if G in D.

Example 9 Consider pg from Example 2 (equation 2).
There, we considered only deterministic, same-effect,
always-executable actions. We tdRe to include only unit
clauses, an®,; = {TRUE}. We can writepg using a logi-

cal formula that is satisfied only by the tuplesog

—EA go-W Z A go-EX A
Tpg = | swA | A | go-W*°A | A [ go-EE°A) A

lit go-Wite go-Eit°
(sw-orf v sw-orF°)A fe e e
zx—gj{“ A ANiep acala’ Va™lVal?)

Notice that, e.g.;7go-E"F and—~go-E”° are logical conse-
quences of ;.

The same way allows us to represent a much larger set of
transition relations. For example, in the previous section we
avoided listing the contents of the set of tuplgbecause it
was too large 27 possible relations cross-combined with all
23 world states). Now we can write it simply as follows:

The following theorem shows how we can represent deter-

ministic transition relations (with conditional effects) using
only the positive causality statemehts

Theorem 6 (Representing Deterministic Actions)1. Tp
is a complete theory

2. fTp |= ok, thenfor every, s, if Rp(s,a,s’) ands =
G, thens’ |= F.

3. IfTp | —af, then there ares, s’ such thatRp (s, a, s')
ands = G, s’ | —F.

Consequently, for every pair of complete domain descrip-the set of tupless, R)

tions D1, D2, D1 = Ds iff Tp, = Tp,. Thus, every transi-
tion relationR has a unique theoryp and every theory de-
fines a unique transition relation. (We wrifg for the theory

representing transition relatiaR.)

Corollary 7 (Always-Executable, Deterministic) If in D
all actions are always executable, tieexec-preconds=
{=aEA5E | a € A, G € Bottom(P2)} and

Tp =rulesp A exec-preconds.
A (@& N (G =G = aé) A

i ‘\(ag/\CLE;F) /\/\ FeP, (Cbg/\ag/ :>Cbg//)
p G,G',G" € Py
G'"=GvG

ac A

i fo _ f -f
Definea’® = a; Aa_y.
Corollary 8 (Unconditional, Always-Exec., Deterministic)
LetP, = {TRUE}, and assume thab possibly includes
sentences of the fornu"keepsF”, and no sentences of the
form “a causes FALSE”. Then,

A

fEP,ac A

Tp = rulesp A (af\f/aﬁf\f/afo).

go-WF go-EPA
go-W™° | A | gO-E°Y°A | A
go_Wto go_Ehto
(sw-orf v sw-or" v sw-orf’°)A
(sw-0r™ v sW-0r*™ v SW-0T“°)A | AN pep aeala’ Va™ I Val®)

f Tt v sw-ort©)

(sw-orf' v sw-on

Thus, we can represent a transition belief stateyith a
logical formula,y, over the propositional state fluents and
the propositional symbols for effect sentencesepresents
that satisfy it. We call this logical
representation @ansition belief formulalt follows thaty =
baseg if we takebaseto be the subformula df’p that is not
rulesp in the appropriate case of Corollaries 7, 8 because
baseis independent oD in those cases.

3.2 Filtering Logical Action Models

For a deterministic (possibly conditional) actian, define
the effect model of; for time ¢ to be

Teﬁ(a, t) = /\ZE]P’LGE]P’Q((at A alG A Gt) = lt+1) A
Niep, (et1 Aar = (V gep, (ag A Gr)))

“4)
wherea; is a propositional symbol asserting that action
occurred at timet, and we use the convention that =
op /P, 1-€.,¢¢ IS the result of replacing every propositional
symbol of ¢ with the same propositional symbol that now
has an added subscript,The first part of the conjunction is
the assertion that it executes at time, and it causes, if
G holds, andG holds at timet, then! holds at timet + 1.
The second part of the conjunction says thigttrue at time
t + 1 aftera’s execution only ifa has an effect conditional
on some(, and thisG is true at timet.

For an always-executable, non-conditional actienwe

We encode sets of domain descriptions as follows: For aget a simpler formula

setR C P(S x A x S) let' Tr = \/ p Tr. For a tuple
(s,R), s € S, we defineT, gy = Tr A s. Finally, for a
transition belief statey, we definel), =V, e, T(s,R)-

2 At present it is not clear to the author how one can observe non

causality in nondeterministic settings.
3 D is omitted as a subscript because it is not relevant.
4 We assume that the set of fluefRds finite.

Ten(a,t) = Njep, ((ae A (@' V (ap AlL)) = lepr) A
Niep, o1 Aaz = (a' v (a] Aly)))

Definition 10 (Logical Transition Filtering)
Progression: Filter[a](¢) = Cn™ 1 (p: Aas ATer(a, t))
Filtering: Filter[o](¢) = ¢ Ao



Thus, Filter[a](p) is the set of consequences of in the
vocabularyL:;1 = P41 U L, the vocabulary that includes
only fluents of timet + 1 and effect propositions froni.
The following theorem shows that filtering a transition belief
formula is equivalent to filtering a transition belief state.

Theorem 11 For ¢ transition belief formulag action,

Filter[a]({(s, R) € & | (s, R) satisfiesp}) =
{(s, R) € & | (s, R) satisfiesFilter[a](y)}

3.3 Distribution Properties

Several distribution properties always hold for filtering of
transition belief states (or formulae). The first one follows
from set theoretical considerations. 11.

Corollary 12 For ¢, % transition belief formulaeg action,
1. Filter|a](yp V ¢) = Filter[a](y) V Filter[a]()
2. [= Filter[a)( A ) = Filter[a](y) A Filter[a](v)

Stronger properties hold if filtering an action is a 1:1 map-
ping between state-transition-relation pairs.

Corollary 13 Leta be an action, ang, ¥ be transition be-

lief formulae. ThenFilter[a](¢ A ¢) = Filter[a]l(p) A

Filter[a](¢y), if

1. For every transition relationk possible withy V 1, a
maps states ifs | (s, R) |= ¢} 1:1to states inS, or

2. Whenevefsi,R) = ¢ V¥, (s2, R) = ¢ V 9, then

S1 = S2.

Corollary 14 For actiona, states € S, and, v transition
belief formulae,

Filter[a]l(s Ao A1) = Filter[a](s Ap) A Filter[a]l(s A1)

PROCEDURE Factored-SLAKf;, 0;) ;<)
Vi, a; action,o; observationy transition belief formula.
1. Forifrom1totdo,
(a) Setp «— Step-SLAF6;,a;,p).
(b) Eliminate subsumed clausessn
2. Returnp.

PROCEDURE Step-SLARB(a.¢)

o an observation sentence (conjunction of literatsgn
action, a transition belief formula.

1. If pis aliteral, then retureAFluent-SLAF,a,y).

2. If ¢ = @1 A @2, return Step-SLAR{,a,p1)AStep-
SLAF(o0,a,p2).

If © 1 V @2, return Step-SLAR,a,p1)VStep-
SLAF(o,a,p2).

PROCEDURE Fluent-SLAk(a,»)

o an observation sentence (conjunction of literatsian
action,y a fluent.

1. ReturnCn®+1(ps A as A Tops(a,t)).

3.

Figure 3. SLAF using distribution oven, v

4.1 Always-Executable STRIPS Actions

STRIPS actions [4] are deterministic and unconditional (but
sometimes not executable). In this section we examine them
with the assumption that our they always executable. We re-
turn to inexecutability in Section 4.2.

Let Ly = {f}U{a’,a™,a’® | a € A} be the propo-
sitional vocabulary including only the propositional fluent
symbol f and effect propositions mentionin§l. We say
that ¢ is afluent-factored transition belief formula ¢ =
basen A ;cp s, With L(¢y) C Ly. When a transition be-
lief formulay is fluent-factored, then the result of filtering is
also a fluent-factored formula.

This last corollary explains the relationship between learn-
ing in fully observable and partially observable worlds. Our Theorem 16 Lety = baseA A jep ¥+ be afluent-factored
algorithms for learning world models will be more tractable transition belief formula, witi.(x¢) C L. Then,
when our agent observes more of the environment. We see

in Section 4 that polynomial-time algorithms exist for SLAF
when filtering distributes over conjunctions.

Finally, whenTet(a,t) = T' A T? andp = ¢! A ¢?,
such thatL(T") N L(T?) = 0 and L(¢") C L(T"), for
i € {1,2}, then the filtering factors into filtering @', ©*
separately. More generally, the following holds.

Theorem 15 Leta be an action, les € S be a state, leP,

include literals in and FALSE, leP} (i € {1,2}) include
clauses inP* such thatZL(P) = L(PY)UL(P?), and let
¢" € L(L(P1,P5) UP) (i € {1,2}) be transition belief

Filter[a](p) = baseA /\ Filter[al(py)
fepP

and L(Filter(a](¢yr)) C Ly. Also, ifo is a conjunction of
literals, thenFilter[o](y) is fluent-factored.

We are left with the problem of filtering eachy with a
ando. Let LY = L; \ {f}.

Theorem 17 Let ¢ be a transition belief formula with
L(gaf) - Lf. Then,

formulae. Then,

Filter[al(o5) = (f = (o’ V (g5 = f) Aa"))A
(=f = (@ vV ((pr = ~f) Aal))A
Cn(py) N L(LE)

Filterlal(p A1) = Filter[al(p) A Filter[a](¢)

4 Factored Learning and Filtering o
We can computeCn(py) N L(L3) without general-

Learning world models is easier when filtering dis- purpose automated deduction, if we keep in a the fol-
tributes over logical connectives. The computation becomesowing form
tractable, with the bottleneck being the time to filter each part
separately. Figure 3 presents an algorithm for SLAF using

this observation. Filtering of a single fluent (done in function
Fluent-SLAR and more efficient solutions are the focus of Whereexpl,, expl ;, and¢; are in £(L}). Every formula
the rest of this section. in £(Ly) is logically equivalent to a formula in this form,

(=f Vexpl) A (f Vexpl,) A&y



PROCEDURE AE-STRIPS-SLAR(:, 0:), - %) fine

e i ; i = - - FALSE l
Vi, a; an actloh_pz an opservatlonp N jep ¢y afluent At = Nepottom(ey) (H0E = al)
factored transition belief formula. o= A (—aEALSE o glo)

Qe = G€ Bottom(Ps) ag ag

1. Forifrom1totdo,
(a) Setp — /\fep AE-STRIPS-Fluent-SLAFR; ,a;,¢¢).

— l
(b) Eliminate subsumed clausessn LetB(a) = /\56?1 (ac = ley1) A base

2. Returnp. Corollary 19 (STRIPS-SLAF of a literal) Letl be aliteral
PROCEDURE AE-STRIPS-Fluent-SLAK;(,¢) in L(Py,P>) anda an action. Ifl € Py, then

o conjunction of literalsg action, = (—f Vexpl.) A (fV

expo) A&y in f-free form Filter[a, OK|(l) = (l¢41 < (ale_\/ afao)) A ﬁalFALSE/\ B(a)
1. Setexpl, = a' v (a'° A expl,)). Filter[a, ~OK](l) = l;11 A af “*“* A base

2. Setexpl,; = a~f V (a’® Aexpl,;)).
3.0ff Idoes not appear (positively or negativelypirthen
4. SIEersgé, Eoglf:. f (we observed), then Filtera, OK](l) =LA ﬁa’;;gffiEE A B(a)
(a) Sete; — & Aexply. Filterla,~OK|(l) = | A app g A base
(b) Setexpl; — TRUE andexpl,; «— FALSE.
5. Else (we o{)servedf),
() Sett} «— &5 Aexpl;.
(b) Setexpl; = FALSE andexpl.; = TRUE.
6. Return(—f v expl) A (f Vexpl ;) A&}

If I ¢ P, (i.e.,lis an effect literal), then

Now we replace Procedure Fluent-SLAF in Figure 3 with
Procedure STRIPS-Fluent-SLAF of Figure 5.

PROCEDURE STRIPS-Fluent-SLAKG, )
o conjunction of literalsq action, ¢ fluent.
1. If € Py, then
(@) Ifo = OK, thenreturn
Figure 4. SLAF with always-executable STRIPS. (legr < (ale Vi aff)) A —‘CLZFALSE A B(a).
(b) (0 E ~OK) Returnl; 1 A af “*“* A base
which we call f-free form Figure 4 presents a complete al- | 2. (e Py)If o = OK, then returri A —ahALSE AB(a).
gorithm for SLAF using this observation and form. 3. Returnl A aﬁ%g% A base
Now, we examine the size of the formula that results from
filtering. A transition belief formulg in CNF is in f-k-CNF
if every clause mentioning or - f has at mosk literals. For  Figure 5. SLAF with STRIPS actions, observing success/failure.
examplef V a’ is in f-2-CNF, buta! v a,” is in f-0-CNF.
We also say that, o determinef in ¢ if o = a’ orp = a™f
oro = forof=~f. 4.3 Conditional Effects

Corollary 18 Let ¢ = A, p»¢s be a fluent-factored A similar fpr_ml_JIato _the one abpve hoId; f_or the general case
transition belief formula, ando a conjunction of lit- of deterministic actions (possibly conditional). We assume
erals. Then, Procedure AE-STRIPS-SLAEG), ¢) re-  thatahas preconditions using the propositiongih, ..., [*}.
turns a fluent-factored transition belief formula’ = o ) -

Filter[o] (Filter[a] () in time O(|g]). Further, if  is in Theorem 20 Filtering for a literal [ € P, satisfies

f-k-CNF andy, a, o determinef, theny' is in f-1-CNF. Filter[a, OK](I) = (If,1 =

Otherwise’ is in f-(k + 1)-CNF. ; .
Ve € Bottom(®a, (11, .. 1%}y (66 A Nj<x((aG = U)A
GEP

(ad”’ = —1,1)))

Thus, our transition belief formula remains compact, if we
know the effect of our action on in ¢, or we observef
frequently enough. For example, if we observe every fluent
every 4 actions, then our transition belief state is always in5  Conclusions
5-CNF, meaning that it is of size at moSt(n - m®) for n
fluents andn actions (this is much better than the worst case
which can be doubly-exponential ity m).

We presented general principles and algorithms for learning
and filtering in partially observable domains. Some of our re-
sults guarantee polynomial-time filtering of transition belief
states indefinitely. In particular, STRIPS domains in which
4.2 STRIPS Actions actions are always executable (or when the preconditions for
those actions are known) can be learned in polynomial time,
Assume that we allow actions to fail but we always if fluents are observed frequently enough.
observe such success and inexecutability. In both exe- We expect our algorithms to generalize to action schemas,
cutable/inexecutable cases we learn something about the exyhere actions are parametrized in various ways (e.g., objects
ecutability of the action under consideration. Unfortunately, on which they operate, and numbers that modify the extent
this prevents factoring for the general case of actions, unlessf the action). We plan to explore this direction in the future,
one of the conditions of section 3.3 holds. In the rest of thisas well as extending this work to agents that have a prior dis-
section we assume that either one of those conditions holdsribution, knowledge, or preference over the possible worlds
or we accept the approximation offered by Corollary 12. De-or the actions’ effects.
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