
Specifying Failure and Progress Conditions in a  
Behavior-Based Robot Programming System 

(Extended Abstract) 
 

Froduald Kabanza and Khaled Ben Lamine 
University of  Sherbrooke 

Sherbrooke, Quebec, J1K 2R1 Canada 
{Kabanza, Khaled.Ben.Lamine}@usherbrooke.ca 

 
 

Abstract.   Behavior-based robot programs are designed 
by splitting the overall robot decision making process 
among concurrent processes, each of them being in 
charge of a well defined simple goal-oriented behavior. 
However, the combination of simple behaviors into more 
complex ones often incur global interactions that cannot 
be debugged by just considering individual behaviors. 
The normal way of dealing with global interactions that 
may cause failure in the robot execution is to program 
additional heuristic processes that monitor behaviors to 
check that they progress normally towards their intended 
goals.  In this paper, we explain how Linear Temporal 
Logic (LTL) can be used as a declarative language for 
specifying an interesting class of such monitoring 
processes. This simplifies the task of writing robot 
control programs, increases the design modularity by 
clearly separating the control components from the 
monitoring ones, and augments the reliability of control 
programs thanks to a precise and clear LTL semantics. 

1 INTRODUCTION 
Behavior-based robot programming systems follow the 
principle that the overall robot decision making process 
should be split among several concurrent processes, each of 
them being in charge of a well defined simple goal-oriented 
behavior; it is then the combination of theses processes that 
achieves more complex task-oriented behaviors [1, 7, 10, 15]. 
An interesting feature that explains in part the increasing 
popularity of this approach is undoubtedly the modularity of 
robot programs that are designed along this principle; one 
designs a program that controls one behavior, without having 
to get into details of interacting behaviors that control the 
other robot aspects. For instance, one can program a goto 
behavior that combines with obstacle-avoidance behaviors to 
make a robot go to a desired destination, yet without getting 
involved into the code of obstacle-avoidance processes.  

The split of behaviors among many concurrent processes 
introduces, however, all the known hurdles of concurrent 
processes. Individual behaviors that are tested or proven to 
work correctly by assuming local conditions may no longer 
work perfectly when combined with other behaviors. In fact, 
most complex tasks require heuristic processes that monitor 
the robot behaviors to check whether they progress normally 
towards their intended goals, and trigger failure-avoidance or 
failure-recovery behaviors whenever necessary [3, 11, 13, 16]. 
However, programming such robot monitoring behaviors still 
remains a difficult task, because of the complexity of process 
interactions, which is often exacerbated by the intrinsic 

imprecision in robot sensors, actuators and positioning devices 
or the uncertainty in the robot environment. 

In order to facilitate the programming of robot monitoring 
processes, we are trying to develop a general framework for 
specifying declarative robot monitoring conditions using 
Linear Temporal Logic (LTL) [12]. We use LTL to specify 
conditions that a normal, satisfactory robot execution should 
satisfy; then we monitor those statements in the background of 
the robot execution to notify of their violation. Processes 
waiting on such notifications can then be activated to avoid 
anticipated failures or to recover from them. LTL is 
expressive enough to handle an interesting subset of 
monitoring conditions, such as waiting until a particular 
sequence of state conditions has been observed. 

With this approach, the implementation of a monitoring 
process will not require elaborate knowledge of the internal 
program structure of the processes being monitored. This 
approach also seems quite flexible, allowing the specification 
of both light-weight synchronous monitoring processes as well 
as more complex asynchronous ones. It is quite simply 
implemented, without any explicit storage of the robot history; 
instead, the relevant state features of the history are 
automatically conveyed by the update of monitoring 
conditions which are added to the robot internal state. These 
features make our approach fit naturally with the behavior-
based architecture that we use, thus requiring little learning 
effort from robot software programmers to use our approach 
for coding logic-based monitoring processes.  

The remainder of the paper is organized as follows. In the 
next section we discuss SAPHIRA [10, 15], the robot 
programming system used to implement our approach. Then, 
we discuss the use of LTL to express robot monitoring 
conditions; we discuss the basic algorithms that are used to 
handle those formulas in robot monitoring activities, as well 
as the integration of these algorithms into the SAPHIRA 
architecture. We conclude with a discussion on most related 
work and on future directions of this research. 

2 SAPHIRA ARCHITECTURE 
SAPHIRA is a programming system for mobile robots, 
developed by Konolige and his team at SRI [10, 15]. It 
includes libraries for controlling a mobile robot at different 
levels of complexity, going from low-level (e.g., moving a 
given distance, turning the wheels a given angle, or acquiring 
raw sensor data) to more complex navigation behaviors (e.g., 
obstacle avoidance, map registration, path planning) and tasks 
(e.g., sequencing behaviors using arbitrary C++ programs). 
Figure 1 shows an abstract view of the SAPHIRA 



architecture. SAPHIRA processes can be synchronous or 
asynchronous. They all have access to the robot state, which 
consists of the state reflector (position encoder readings, 
wheel orientation, sonar readings), and the environment 
representations (map information, sonar interpretation data). 
State information is updated automatically from robot sensors 
and from SAPHIRA synchronous or asynchronous processes. 

 

 
Figure 1. SAPHIRA architecture  

Synchronous processes are normally used to implement 
lower-level behaviors that require immediate action on the 
part of the robot, such as obstacle avoidance or object 
tracking; they are managed by a SAPHIRA specific scheduler.  
Asynchronous processes on the other hand are normally used 
to implement higher-level behaviors (e.g., a task planner 
deciding on the order objects are picked and delivered by a 
robot in an office delivery application); they are managed by 
the host computer operating system (e.g., Linux or Windows).   

The synchronous scheduler iterates through each 
synchronous process every 100 milliseconds. At each cycle, it 
runs each process, one at time, from the execution point where 
it suspended it last time to the next suspension point; a priority 
mechanism is used to resolve conflicts among processes that 
simultaneously affect the same robot control parameters.  

The rationale behind the 100 milliseconds cycle becomes 
obvious by considering the obstacle-avoidance behavior; if we 
code an avoidance strategy consisting in turning left each time 
the sensor readings indicate an obstacle on the right, we would 
like the time between the detection of the obstacle (one block 
of instruction executed during one cycle) and the turning of 
the robot wheel and change of its speed (another block of 
instruction executed in the next cycle) to last at most one 100 
milliseconds, so as the robot’s reaction is fast enough before it 
hits the obstacle.  Hence, when writing synchronous 
processes, one must ensure that the code between two 
suspension points is fast enough to be executed within the 100 
milliseconds cycle.  

Synchronous processes are programmed using either rule-
based C++ libraries, a declarative C-like language called 
Colbert, or finite state machines (FSM) which are actually 
internal representations of processes written using the rule-
based C++ libraries and are rarely convenient to code in 
directly. Asynchronous processes are normally written in 
higher-level languages (e.g., C++ or Java). In SAPHIRA 
terminology, rule-based processes are called behaviors, 
whereas those written using Colbert are called activities.  In 
this paper, we adopt a formal software engineering 
terminology [13]; a behavior is a set of possible execution 

sequences that a given SAPHIRA process may go through 
when interacting with other processes.  

3 MONITORING PROCESSES 
A robot task is programmed by combining several concurrent 
SAPHIRA processes.  For instance, moving a robot to a goal 
location can be done by combining one behavior that avoids 
obstacles and one behavior that attracts the robot towards the 
goal location; the obstacle avoidance behavior is often further 
split into avoiding close obstacles and staying away from 
remote obstacles. Adding corridor following, object-seeking, 
object-grasping and object-releasing processes makes the 
robot become an object delivery system. Although such a 
splitting of behaviors is a purely reactive, heuristic one, in 
many cases it is sufficient to move the robot fast towards its 
target, while avoiding obstacles. However, in unusual obstacle 
configurations, the robot can get trapped, oscillating between 
the obstacle avoidance and goal-tracking behaviors.   
 

 

Figure 2. Example of navigation failure 

Figure 2 illustrates this situation with a U-shape obstacle 
configuration. The robot is shown as a circle, with a crossing 
line indicating its heading direction. The dotted curve 
indicates the robot trajectory so far. Using rule-based C++ 
goal-reaching and obstacle avoidance processes provided with 
the SAPHIRA distribution, we reproduced an experiment 
made by Xu [17]. The robot starts from the indicated point on 
the figure with the goal of reaching the indicated target 
position. At the start, the U-shape obstacle is too far away to 
have an impact on the obstacle avoidance behavior; hence the 
robot moves in a straight line towards the target only under 
the effect of the goal-reaching behavior. As it gets closer to 
the obstacle (bottom of the U-shape), the obstacle avoidance 
veers the robot to the right to avoid the obstacle (it could also 
have veered left). The robot continues moving along the 
bottom of the obstacle, towards the right. On point A, because 
of the obstacle in front,  the robot veers left (being attracted by 
the goal-reaching behavior), then because of the obstacle still 
on the left, abruptly veers right, making its heading direction 
opposite to the target direction.  There are no more obstacles 
in front, and the robot becomes attracted again towards the 
target, bringing it back to point C. Since it approaches the 
bottom slightly inclined on its right, it will tend to veer left 
this time, making a move that is a mirror to the previous one, 
this time with critical point B playing the role of critical point 
A. The robot keeps on oscillating this way, between points A, 
C and B endlessly.   

This is kind of situations is not limited to behavior-based 
robots. It is actually a problem for any navigation approach 
based on local decisions such potential field methods [11]. If 



the obstacle configurations are known, we can use path-
planning to escape from such situations. For unpredictable 
obstacles (e.g., in office delivery environments people can 
move freely and objects may be displaced without notice), the 
robot behaviors have to be coupled with monitoring processes 
to detect such U-shaped obstacle configurations in order to 
activate recovery strategies.  

3.1 Program-based monitoring processes 
We can detect and escape from U-shape obstacles by using the 
virtual target approach by Xu [17]. The idea is to monitor the 
occurrence of the above A and B points in the robot behaviors 
and then to temporally set a virtual escape target for the robot 
(see Figure 3).  

 

Figure 3. Virtual target approach 

To experiment with this idea, we wrote a Colbert process 
(i.e., more precisely a Colbert activity, named DetectUshape) 
which sets a global Boolean variable (UshapeDetected) when 
such points A and B have occurred over a period of time; 
another Colbert process (SetVirtualTarget) waits on 
UshapeDetected becoming true to change temporally the 
robot target to a virtual target opposite to the current one and 
to activate another Colbert process (DetectOpening), which 
moves the robot along one side of the U-shape (much like a 
corridor following behavior), trying to detect an opening; once 
an opening is detected (point D), this is notified to 
SetVirtualTarget, which restores the original target. Colbert 
includes useful primitive for programming the above 
processes, C-like while and if flow control instructions, 
instructions for suspending and resuming processes, 
instructions for acquiring process states, global variable 
definitions for inter-process data sharing, and a very useful 
waitFor instruction allowing a process to be suspended until a 
Boolean condition becomes true.  

The above solution still remains simple in many aspects 
(it’s not difficult to trap the robot with a more complex 
obstacle configuration), nevertheless it illustrates that even 
very lower-level robot control can deal with logical patterns of 
behaviors which could be abstracted over using declarative 
statements.   

3.2 LTL-based monitoring processes 
The process DetectUshape monitors a failure condition for 
robot navigation that can be declaratively expressed as 
“eventually, the robot’s heading direction keeps on changing 
abruptly from left to right, or from right to left, immediately 
followed with the heading opposite to the target”. We want to 
simplify the program by replacing the process DetectUshape 
by a simple wait instruction on such a declaratively stated 
condition. 

This statement specifies something that should not happen 
in a normal execution; it’s a failure condition. We can also 
express this from a perspective of something that should be 
maintained true in a normal behavior: “the robot’s heading 
direction is never continually changing abruptly from left to 
right, or from right to left, immediately followed with the 
heading opposite to the target”; this is a progress condition. 
Failure conditions and progress conditions are dual, but it’s 
nice to have both of them in a tool for monitoring behaviors, 
since some execution properties are better captured as failures 
while others are better expressed as progress conditions.  

By integrating declarative failure and progress conditions 
as Colbert and C++ primitives, we can use them to code 
succinct monitoring processes, to develop prototypes using 
them in a development phase and later replace them by 
Colbert or C/C++ code, or to test the correctness or 
performance of a robot.  For instance, we can simulate a robot 
control program on randomly generated object delivery 
requests using a statement like “always when a delivery 
request is received, it is fulfilled within 20 seconds”. We can 
also express things like “when grasping and delivering object, 
the robot should wait until an object is visible for five 
consecutive SAPHIRA cycles, before approaching it;” or “the 
robot must wait in the corridor until door to room B is 
opened.”  

3.2.1 Specifying LTL  conditions 
The execution of a robot process produces a sequence of robot 
states. We can thus express failure and progress conditions as 
declarative statements over sequences of robot states. In 
Colbert and C/C++ processes, we can already write conditions 
relevant to just one state using Boolean expressions (in 
Colbert they have the same syntax as in C/C++).  Normal 
Colbert or C++ Boolean expressions form the basic case for 
LTL conditions, called state conditions. For instance, if x is an 
integer declared in Colbert, then (x== 1||x==2) is an LTL 
condition. All Boolean variables are also LTL conditions.  

LTL conditions are expressed from the perspective of the 
current robot state. A state condition is true at a current point 
of execution if the corresponding Boolean expression 
evaluates to true. Backward conditions express properties with 
respect to the execution history of the current state, whereas 
forward conditions express properties with respect to what 
will happen from the current state.  

A backward condition is a condition involving the logical 
operators L (last), S (since), P (previous) and G (all the time) 
to refer to the history states. The syntax and intuitive 
semantics are quite simple. If c is a state condition or a 
backward condition, then (L c) is a backward condition, 
which is true in the current state if c is true in the preceding 
state. If c and d are state conditions or backward conditions, 
then (c S d) is a backward condition, which is true in the 
current state if c has been true in each previous state since 
when d was true. If c is a state condition or a backward 
condition, then (P c) is a backward condition, which is true in 
the current state if c is true in some previous state. If c is a 
state condition or a backward condition, then (G c) is a 
backward condition, which is true in the current state if c is 
true in all previous states. Finally, backward conditions can be 
combined using the usual Boolean operators II (or), ! 
(negation) and && (and). The operator L is only used in 
synchronous processes; by preceding state, it then means the 
state available at the preceding SAPHIRA cycle. For 



asynchronous processes, SAPHIRA states are sampled at 
arbitrary periods. 

Conditions can be nested arbitrary, making the resulting 
semantics a recursive one, with a double basic case on state 
conditions and on the start state of the execution. This gives us 
a quite powerful language for expressing behavior properties. 
For example, we can express the abrupt direction change in 
the U-shape obstacle failure by using the condition  

 
(P (targetRealLeft && (L targetRealRight))) || 
(P (targetRealRight && (L targetRealLeftt))), 

 
where targetRealLeft and targetRealRight are Boolean 
conditions over the robot current position and the target, 
expressing respectively that, the target is on the rear left of the 
robot, or on the real right; thus the disjunct (P (targetRealLeft 
&& (L targetRealRight)) expresses that there is a previous 
state in which the target was on the rear left and on the rear 
right in the state just before.  

A forward condition is a condition involving the logical 
operators N (Next), U (until), E (eventually) and A (always) 
to refer to the history states. The syntax and intuitive 
semantics are also simple. If c is a state condition or a forward 
condition, then (N c) is a forward condition, which is true in 
the current state if c is true in the next state. If c and d are 
state conditions or forward conditions, then (c U d) is a 
forward condition, which is true in the current state if c true in 
all forward states preceding the first state, if any, where d is 
true. If c is a state condition or a forward condition, then (F c) 
is a forward condition, which is true in the current state if c is 
true in some future state. If c is a state condition or a forward 
condition, then (A c) is a forward condition, which is true in 
the current state if c is true in all future states. Forward 
conditions can also be combined using the usual Boolean 
operators. The operator N is only used in synchronous 
processes; by next state, it then means the state available at 
the next SAPHIRA cycle.  

Forward conditions are like mirror conditions to backward 
conditions with respect to the current state. In fact, in our 
case, any property expressed as a backward condition can also 
be expressed as a forward condition and vice-versa.1 The 
previous U-shape example can be expressed forwardly as  

 
(F (targetRealRight && (N targetRealLeft))) || 
(F (targetRealLeft && (N  targetRealRight))). 

 
Even though backward conditions and forward conditions 

have the same expressive power, it is useful to have them both 
because some behavior properties are better specified by 
telling what should happen or not happen for any future 
execution sequence seen from the start state (i.e., the current 
state in interpreting the condition), whereas other properties 
are better expressed by stating what bad sequence of states 
must have occurred in the past, before concluding in a failure 
or normal progress in the current state.  
                                                 
1 This equivalence holds because for (F c), c is not required to 
eventually become true (what is required is that if this ever happens, 
then we must be able to detect it); similarly, in (c U d), d is not 
required to hold eventually. Without these conditions, forward 
conditions are slightly more expressive than backward conditions.  

3.2.2 Progressing  conditions 
The above example and the intuitive semantics of this 
language suggest that we would have to store explicitly the 
sequence of SAPHIRA states in order to evaluate the truth of 
LTL conditions. In fact, we need not. Given an LTL formula 
and a current state, it is possible to tell whether the formula is 
true in the current state, whether it is false, or whether none of 
these two situations can be decided yet, by simply computing 
an update of the condition to be evaluated, state by state. The 
function that computes such an update condition for backward 
or forward formula is called a condition progress function; it 
progresses a condition along a sequence of execution on the 
fly until being able to establish its validity or falsity. 

The technique for progressing forward formulas is well-
known and has been used in many problems, including robot 
perception planning [5] and robot monitoring [3]. The update 
rules are actually quite easily derived from the forward 
recursive syntax rules and recursive semantics of LTL.  

For backward conditions a different technique is needed. 
We can track the truth of a backward condition over a history, 
on the fly, forwardly, starting from the initial state of an 
execution, yet without actually keeping an explicit record of 
the execution trace. Instead, the necessary information for 
evaluating the backward condition at a given point of 
execution will be conveyed by a set of past sub-conditions 
that are updated at every step of execution.  

The idea is first to realize that the truth value of a backward 
condition is completely determined by the truth value of its 
sub-conditions. Initially, we determine the sub-conditions that 
are true in the initial state. For example, (L c) is initially false 
since there is no previous state; a Boolean condition c is 
initially true if it holds in the initial state; (s S d) is initially 
true if d is true in the initial state; similarly for P and G 
conditions. It takes a constant time to compute the initial set of 
sub-conditions (exactly one run over the condition).  

Next, we pass the set of sub-conditions true in the current 
state to the next state of execution; we say that we have 
progressed the set of sub-conditions. Given this, we can 
determine whether a backward formula is true, false or none 
of these yet, by evaluating Boolean conditions as usual in the 
new state and backward sub-conditions using their 
membership in the progressed set of sub-conditions.    This 
also takes a constant time. 

3.2.3 Integration into SAPHIRA  
Asynchronous processes are programmed in C/C++ (or other 
high-level languages that allow dynamically linked libraries). 
On the other hand SAPHIRA Colbert synchronous processes 
can invoke arbitrary C/C++ functions and have access to 
C/C++ structures via dynamically linked libraries.  Thus, once 
one has implemented the LTL progression algorithms for 
forward conditions and backward conditions, it is not hard to 
make an interface between them and Colbert or with C/C++. 
Currently we have only the forward progression functions 
implemented, and only for Colbert processes.  

We programmed in C++ a structure for an LTL condition, 
indicating the type (backward or forward, although only 
forward ones are supported at the time being), its mode 
(failure condition or progress condition) the original 
condition, the progressed condition (by the LTL progression 
function, this slot becomes true in state where it is satisfied, 
false in states where it falsified, an LTL condition otherwise) 
and other few bookkeeping attributes.  



The declaration of an LTL condition initializes the 
appropriate structure and returns a pointer to it. This pointer 
can then be used in a waitLTLCondition. If c is a failure 
condition, then the instruction waitLTLCondition(c) in a 
Colbert process blocks the process until c is progressed to 
false (which means it is made false in the current state). If c is 
a progress condition, then the instruction waitLTLCondition(c) 
in a Colbert process blocks the process until c is progressed to 
true (which means it is made true in the current state). After 
the process has passed the wait condition, it can execute user-
specified code for handling the condition. Figure 4 illustrates 
the integration into the SAPHIRA architecture. 
 

 

Figure 4. SAPHIRA architecture with LTL Progress 

4 RELATED WORK 
Earlier steps of this work were reported in [3,4]. At that time, 
our system only supported asynchronous monitoring 
processes, required to record a history of the robot execution 
(this increases the monitoring complexity), and only handled 
forward LTL conditions. Even though handling backward 
conditions does not modify the theoretical expressive power, 
this allows easier specifications in many cases, particularly 
when coding robot behaviors based upon past observed states.  

Many task-level control languages have been proposed 
allowing flexible specifications of robot tasks. Among them, 
the Task Definition Language (TDL) of Simmons and 
Apfelbaum is a C++ extension [16] with various useful 
synchronization primitives that facilitate the specification of 
robot monitoring processes. The language does not support 
however a declarative specification of behavioral properties 
such as forward or backward conditions; these have to be 
encoded directly as programs. Other frameworks that involve 
formal methods in robot monitoring include the Reactive Plan 
Language in [2], the probabilistic perception action planner in 
54], the extraction of symbolic facts from a history of 
behaviors’ activations [9], and robot monitoring of Golog 
robot control programs [5]. Both RPL and Golog appear to be 
more flexible for task-level problems. The work in [11] is 
much closely related to the framework we propose in that it 
provides a mechanism for extracting fluents from behavior 
activation levels; a connection could then be made with our 
approach by using such fluents as the basis for propositions in 
monitored progress conditions.   

5 CONCLUSION 

This work is being continued along many avenues, including 
the following. With synchronous processes, LTL conditions 
are progressed by Colbert activities. This increases the size of 
the SAPHIRA stack, consuming precious time of the 100 
milliseconds cycle. Since not all conditions need update at 
every SAPHIRA cycle, we can progress non critical 
conditions asynchronously, still allowing access of SAPHIRA 
synchronous processes to the result of this progression.  

It also seems feasible to add timing conditions by 
introducing a global clock variable and having it involved in 
Boolean conditions that compose progress conditions. For 
instance, if the clock is initialized to 0 at the start of the robot 
executions, with units in seconds, we can have a formula like 
F=(A(nearTarget || clock < 600)), where nearTarget is a 
Boolean expression expressing a desired nearness between the 
robot position and a target position. If this is declared as a 
failure condition in a process, the instruction 
waitLTLCondition(F) would block the process until 600 
seconds have elapsed before the robot is near the target. 

6 REFERENCESS 

[1] R. C. Arkin. Behavior-Based Robotics. MIT press, 1998. 
[2] M. Beetz. ‘Structured reactive controllers: controlling 

robots that perform everyday activity.’  Agents, 228-235, 
1999.  

[3] K.  Ben Lamine and F. Kabanza. Reasoning about robot 
actions: a model-checking approach. In Advances in 
Plan-Based Control of Robotic Agents. LNAI 2466, 
pages 123-139, 2002. 

[4] K. Ben Lamine and F. Kabanza, ‘History checking of 
temporal fuzzy logic formulas for monitoring behavior-
based mobile robots’. Proc. of the 12th IEEE 
International Conference on Tools with Artificial 
Intelligence, 312–319, 2000.  

[5] M. Broxvall, L. Karlsson and A. Saffiotti. ‘Steps toward 
detecting and recovering from Perceptual Failures.’  
Proc. of the 8th Int. Conf. on Intelligent Autonomous 
Systems, 2004.  

[6] G. De Giacomo, R. Reiter and M. Soutchanski. 
‘Execution monitoring of high-Level robot programs.’  
Proc. of Principles of Knowledge Representation and 
Reasoning, 453-465, 1998.  

[7] E. Gat. ‘On three-layer architecture.’  Artificial 
Intelligence and Mobile Robots, 2, 1622–1627, 1994. 

[8] M. Grabisch. ‘Temporal scenario modelling and 
recognition based on possibilistic logic’, Artificial 
Intelligence Journal, 148(1-2) , 261–289, August 2003. 

[9] J. Hertzberg, F. Schönherr, M. Cistelecan and T. 
Christaller. ‘Extracting situation facts from activation 
value histories in behavior-based robots’, KI-2001:: 
Advances in Artificial Intelligence, LNAI 2174,  305–319, 
2001. 

[10] K. Konolige. Colbert: A language for reactive control in 
SAPHIRA. In KI: Advances in Artificial Intelligence, 
LNAI, pages 31–52, 1997.  

[11] J.C. Latombe. ‘Robot Motion Planning.’ Kluwer 
Academic Press, 1991. 



[12] K. Madhava and P. Krishna. ‘Perception and 
remembrance of the environment during real-time 
navigation of a mobile robot.’ Robotics and Autonomous 
Systems, 37(1) :25–51, 2001. 

[13] Z. Manna and A. Pnueli. ‘The Temporal Logic of 
Reactive and Concurrent Systems.’  Springer-Verlag, 
1991.  

[14]  F.G. Pin and S.R. Bender. ‘Adding memory processing 
behaviors to the fuzzy Behaviorist-based navigation of 
mobile robots.’  In ISRAM’96 Sixth International 
Symposium on Robotics and Manufacturing, 27-30 1996.  

[15] E.H. Ruspini, K. Konolige, K. L. Myers and A. Saffiotti. 
‘The Saphira architecture: A design for autonomy,’ 
Journal of Experimental and Theoretical Artificial 
Intelligence, 9(1):215–235, 1997. 

[16] R. Simmons and D. Apfelbaum. ‘A task description 
language for robot control.’ Proc. of Conference on 
Intelligent Robotics Systems, 1998.  

[17]  W. L. Xu. A virtual target approach for resolving the 
limit cycle problem in navigation of a fuzzy behaviour-
based mobile robot. Robotics and Autonomous Systems, 
30(4) :315–324, 2000. 


