
Flexible Interval Planning in Concurrent Temporal Golog
Alberto Finzi and Fiora Pirri 1

Abstract. In this paper we present an approach to flexible plan-
ning and scheduling based on a suitable mapping of the Constraint
Based Interval Planning paradigm [7, 2] into the Situation Calculus.
We show how this representation is particular suitable for executive
control processes, and illustrate this with an example.

1 Introduction

A central feature in executive control is flexible tasks alternation,
yielding switching-time criteria, based on tasks, goal and the current
situation needs. Inin vitro domains2, robots are requested to per-
forming multiple tasks either simultaneously or in rapid alternation,
using diverse sensing and actuating tools, like navigation, visual ex-
ploration, mapping, perceptual analysis, etc. To guarantee that such
multiple-task performance can be achieved, some approaches have
proposed that executive control processes supervise the selection, ini-
tiation, execution, and termination of actions. In this sense, a well
known approach to executive control is Constraint Based Interval
Planning (CBIP), amalgamating planning, scheduling and resources
optimization for reasoning about the competing activities involved
in a flexible concurrent plan (see [7, 2, 4]). The CBIP approach, like
similar ones, emerged from the planning community, and have shown
a strong practical impact in executive control processes [10, 18].

From the vantage point of cognitive robotics a question to be
addressed is how executive control processes interact with basic
perceptual-motor and cognitive processes used for performing indi-
vidual tasks, how priorities among individual processes can be estab-
lished, and how resources can be allocated to them during multiple-
task performance (see [5, 8, 3]).

In particular, when dealing with the executive control it seems that
approaches (such as the CBIP) tailored to the practical needs of reac-
tive planning are more suitable. In this paper we show that CBIP per-
spective, on executive control processes, with all its arsenal of spec-
ifications in terms of flexible time, alternation constraints, resources
optimization, failure recovering, and tasks scheduling, can be easily
imported into the framework of the Situation Calculus([16, 9]), ex-
ploiting already established temporal and concurrent extensions of
basic theory of actions, as those provided by [12, 14, 13, 17, 5]. The
resulting language is one naturally belonging to the Concurrent Tem-
poral Golog (CTG) families of languages, and it offers the possibil-
ity of manipulating flexible plans on a multiple time line. The paper
is just introductory, and several problems still need to be addressed
and solved; among these we mention the need of indexing situations
so as to ensure multiple independent timelines, a suitable formaliza-
tion of forgetting executed processes, progressing to the current set
of processes, side effects of processes, and failure management. The
mapping proposed is somehow obvious due to the expressive power

1 University of Rome “La Sapienza”
2 Domains requiring effective robots performance, even if suitably con-

strained so as to keep possible domino effects under control

of the Situation Calculus, but here can be meaningful, as it would of-
fer to the temporal planning community a way to compare the Golog
specification environment with the CBIP modeling constructs, and it
provides a new account for deploying Golog at the executive control.
In fact, we show how it can be used to implement a parallel control
system for a particularly difficult task such as therobocup rescue.

2 Preliminaries

2.1 Situation Calculus and Golog

The Situation Calculus (SC) [9] is a sorted first order language
representing dynamic domains by means ofactions, situations,
andfluents. Actionsandsituationare first order terms. A situation
denotes a history of actions compound with the binary symbol
do: do(a, s) is the situation obtained by executing the actiona
after the sequences. The constant symbolS0 stands for the initial
situation (i.e. the empty sequence). In this work, we assume the
Temporal Concurrent Situation Calculus presented in [12, 15, 14].
To represent time in the Situation Calculus, one of the arguments to
the action function symbol is the time of the action’s occurrence. For
example,startGoing(a, 12.01) is the action of starting to move
toward a at time 12.01. All actions are viewed as instantaneous.
The function symboltime(a) denotes the occurrence time of action
a, while start(s) denotes the start time of situations. The latter is
defined as:start(do(a, s)) = time(a), and time(a) is defined,
for each action terma, to be its temporal argument, for example,
time(startGo(a, t)) = t. In this paper, we will use the notations[~t]
to represent the situations with ~t free temporal variables. Following
[16], we represent concurrent actions as sets of primitive actions:
the actions are sorted in simple actiona and concurrentc. a ∈ c
means that the simple actiona is one of the concurrent actions inc.
We rely on the standard interpretation of sets and their operations
and relations. Since in the concurrentSC, situations are lists of
concurrent actions, we have situation terms likedo({a1, a2}, s).
A fluent is a predicate whose last argument is a situation, e.g.
at(hill, do(endGo(hill, 10), break, do(stratGo(hill, 2.1), S0))).
Fluents predicates denote properties that can change with the action
execution.

In theSC concurrent durative actions are considered asprocesses
[12, 16], represented by fluents, and durationless actions are to start
and terminate the processes. For example,going(hill, s) is started
by the actionstartGo(hill, t) and it is ended byendGo(hill, t′).

Domain Theory. In theSC a dynamic domain can be described
by aBasic Action Theory(BAT ) which is composed of the classes
of axioms:Σ∪ DS0∪ Dssa∪ Duna∪ Dap. HereΣ is the set of foun-
dational axioms for situations. We refer to the version introduced
in [14] in order to represent timed concurrent actions. For example,
these axioms impose that, given a situationdo(c, s), all the actions
a ∈ c occur at the same time (i.e.coherent(c)).



Duna are uniqueness axioms for each action.DS0 is a sets of sen-
tences describing the initial state (i.e.S0) of the domain.
Dssa specify thesuccessor state axioms, for each fluentF (~x, s) .

Here we assume the successor state axioms modified in order to rep-
resent concurrent actions. This slight modification can be illustrated
by the following example:

pointingTo(x, do(c, s)) ≡ startPointingTo(x) ∈ c∨
pointing(x, s) ∧ endPointingTo(x) 6∈ c.

Finally, Dap represents the action precondition axioms. In order to
extend thePoss predicate to concurrent actions, the following ax-
ioms are introduced:

Poss(a, s) ⊃ Poss({a}, s).
Poss(c, s) ⊃ (∃a)a ∈ c ∧ (∀a)[a ∈ c ⊃ Poss(a, s)].

In a concurrent domain,action preconditions axiomson simple ac-
tions are not sufficient: two simple actions may each be possible, but
their concurrent execution should not be permitted. This problem is
calledprecondition interaction problem[16] (see [11] for a discus-
sion) and its solution requires some additional precondition axioms.

Temporal Concurrent Golog. Golog is a situation calculus-based
programming language for denoting complex actions composed of
the primitive (simple or concurrent) actions defined in theBAT .
Golog programs are defined by means of standard (and not so-
standard) Algol-like control constructs: i. action sequence:p1; p2,
ii. test:φ?, iii. nondeterministic action choicep1|p2, iv. conditionals,
while loops, and procedure calls. An example of a Golog program is:

while ¬at(hill, 3) do
if ¬(∃x)going(x) do π(t, (t < 3)? : startGo(hill, t))

The semantics of a Golog programδ is aSC formulaDo(δ, s, s′)
meaning thats′ is a possible situation reached byδ once executed
from s. Some of the construct definitions are the following

Do(nil, s, s).
Do((p1 : p2) : p3, s, s

′)
.
= Do(p1 : (p2 : p3), s, s

′)
Do(a : p, s, s′)

.
= Do(p, do(a, s), s′)

Do(p1|p2, s, s
′)

.
= Do(p1, s, s

′) ∨Do(p2, s, s
′)

Do(π(x, p(x)), s, s′)
.
= (∃x)Do(p(x), s, s′)

In this paper we consider a Golog language version endowed with
the parallel execution between processes. Analogously to [3] concur-
rency is modeled by interleaved processes and the parallel construct
‖ is defined as follows:

1. Do(p1‖p2, s, s
′)

.
= Do(p2‖p1, s, s

′).
2. Do((p1 : p2) : p3‖p, s, s′)

.
= Do(p1 : (p2 : p3)‖p, s, s′).

3. Do(p1‖nil, s, s′)
.
= Do(p1, s, s

′).
4. Do(a1 : p1‖a2 : p2, s, s

′)
.
= Do(a1 : p1‖p2, do({a2}, s), s′)∨

Do(p1‖a2 : p2, do({a1}, s), s′) ∨Do(p1‖p2, do({a1, a2}, s), s′).
5. Do((φ)? : p1‖p, s, s′)

.
= φ[s] ∧Do(p1‖p, s, s′).

6. Do((p1|p2)‖p3, s, s
′)

.
= Do(p1‖p2, s, s

′) ∨Do(p1‖p3, s, s
′).

7. Do(π(x, p(x))‖p, s, s′)
.
= (∃x)Do(p(x)‖p, s, s′).

2.2 Constraint Based Interval Planning

In this section we briefly introduce the ontology and the basic con-
cepts of Constraints Based Interval Planning paradigm, whose prim-
itives are illustrated in Figure 1 (note that[d, D] denotes the interval
whered is the minimum time distance andD the maximum).

Figure 1. Interval relations in the underlying temporal model.

Attributes and Intervals The CBIP paradigm assumes a dynamic
system modeled as a set ofattributeswhose state changes over time.
Each attribute, calledstate variable, represents a concurrent thread,
describing its history over time as a sequence of states and activities.
Both states and activities are represented by temporal intervals called
tokens. The history of states for a state variable over a period of time
is called atimeline. For example, given a rover domain,position is a
possible attribute;going(a, b) from time1 to 3, andat(b) from time
3 to 5 are intervals representing, respectively, an activity and a state.
Each token can be described by the tuple〈v, p(~x), ts, te〉, wherev
is the attribute (e.g.position), p is the name of an activity,~x are
its parameters (e.g.going(a, b)), andts, te are numerical variables
indicating start and end times respectively.

To represent intervals on a timeline we will use the notation
[t1, t2] p [t3, t4], meaning thatp is s.t.ts ∈ [t1, t2] andte ∈ [t3, t4]
(e.g. given the timelinepos, [0, 0] at(hill) [3, 4] ).

Domain Constraints. Given a set of attributesA and a set of in-
tervalsI, a CBI modelM = (A, I, R) is specified by a set of con-
straintsR, that is, each tokenT = 〈v, p(~xp), ts, te〉 has its owncon-
figuration constraintGT (v, ~xp, ts, te), calledcompatibility(see [7]),
representing all the possible legal relations with other intervals; for
example compatibility establishes which token must proceed, follow,
be co-temporal, etc. to others in a legal plan. These relations are, in
turn, defined by equality constraints between parameter variables of
different tokens, and by simple temporal constraints on the start and
end variables. The latter are specified in terms of metric version of
temporal relationsa la Allen[1]. Here we restrict our attention to the
following set of temporal relations:meets, met by, contained by,
contains, before[d, D], after[d, D], starts, ends. For instance,
going(x, y) meets at(y), andgoing(x, y) met by at(x) specifies
that eachgoing interval is followed and preceded by a stateat.

Planning Problem. Given theCBI modelM specifying the plan-
ning domain, aplanning problemis defined byP = (M, Pc), where
Pc is acandidate plan, representing an incomplete instance of a plan.
The candidate plan consists of: i. aplanning horizonspecified by
a pair of temporal values(hs, he), with hs < he; ii. a timeline
Tσ = (Tσ1 , . . . , Tσn) for each state variableσ, containing a set
of tokensTi = 〈σ, P (~x), tsi , tei〉; iii. a set of ordering constraints
among the token in the timeline:hs ≤ te1 ≤ ts2 ≤ . . .; iv. the
set of constraints{C1, . . . , Cn} associated with the tokens laying
on the timelines. For instance, given the rover domain with the at-
tributesLocation andNavigation, a candidate plan can be repre-
sented by a planning horizon(0, 10), and by the two timelines for the
Location (Lc) andNavigation (Nv) attributes, and the two asso-
ciated incomplete sequence of tokens (together with their respective



constraints), e.g.

Lc : [0, 0] at(a) [3, 3] [5, 10] going(d, e) [6, 10],
Nv : [0, 0] stop [3, 5] [6, 9] move [8, 10],

Notice that thecandidate plandefines both the initial situation and
the goals. A tokenTi in a candidate planis said to befully sup-
portedif its GTi compatibility is satisfied, in a sense to be specified.
For instance,[5, 10] going(d, e), in the example above is not fully
supported, sincegoing(d, e) met by at(d) is to be satisfied. A can-
didate plan is called apotential behaviorif: a. each token on each
timeline is fully supported; b. all timelines fully cover the planning
horizon; c. all timeline tokens are bound to a single value. In other
worlds, apossible behaviorrepresents a possible evolution of the dy-
namic system. A candidate plan can be seen as an incomplete speci-
fication of a possible behavior where gaps, unsupported tokens, and
uninstantiated variables can be found (see example above). A candi-
date plan is said to be acomplete planif it satisfies both the proper-
ties a. and b. specified above. More generally, a candidate plan is a
plan depending on aplan identification function(see [7] for further
details).

Given theplanning problemspecified by theCBI modeland the
candidate plan, the planning task is to provide acomplete planwith
the maximum flexibility: the planner should minimally ground the
(temporal and not) variables to allow for on-line binding of the val-
ues. For example, given the rover example, assuming the candidate
plan presented above (assuming also that each activity takes at least
one time unit), asufficient plancould be

Lc : [0, 0]at(a)[3, 3]going(a, d)[4, 8]at(d)[6, 9] going(d, e) [6, 10],
Nv : [0, 0] stop [3, 3]move[4, 8]stop[6, 9]move[8, 10].

Notice that the above specification completely fill the timelines till
the end of the horizon and each token is fully supported.

3 Representing the Temporal Model in the
Temporal Concurrent SC

In this section we show how to represent a CBI Model in the Tempo-
ral ConcurrentSC framework.

Attributes and Intervals. For each token〈v, p(~x), ts, te〉 we
introduce a fluentPv(~x, ts, s) and two actionsstart p(~x, t) and
end p(~x, t) representing, respectively, thep(~x) process (herets is
the start time) starting and ending events.

The temporal model will be defined by a BAT. In particular the
successor state axiom (SSA) is defined as follows:

Pv(~x, ts, do(c, s)) ≡ ∃a.P start(~x, a, s) ∧ a ∈ c ∧ time(a) = ts∨
(∃t).Pv(~x, t, s) ∧ ¬(∃a′).P end(~x, a′, s) ∧ a′ ∈ c.

Here P start(~x, a, s) (P end(~x, a, s)) is true if a starts
(ends) Pv(~x, ts, s) in s. Continuing the previous example,
〈Lc, going(x), ts, te〉 can be represented by thegoing(x, t, s)
fluent whoseSSA is represented as follows:

going(x, t, do(c, s)) ≡ start going(x, t) ∈ c∨
going(x, t, s) ∧ (∀t′)end going(x, t′) 6∈ c.

Thestart p andend p actions are specified by action precondi-
tions axioms, whereφp(~x, t, s) are sentences specifying the condi-
tions under which thestart andend actions can be executed:

Poss(start p(~x, t), s) ≡ φp(~x, t, s)
Poss(end p(~x, t), s) ≡ φp(~x, t, s)

Domain Constraints. Given the CBI modelM = (A, I, R), the
R constraints can be captured in the temporal BAT by exploiting the
axiom preconditions needed in the concurrent action specification
(to address the precondition interaction problem). For instance, the
constraint on the token duration can be expressed by:

Poss(c, s) ⊃ (∃t)[A ends(~x, a, s) ∧A(~x, t, s) ∧ a ∈ c ⊃
d ≤ time(a)− t ≤ D]

whereA end(~x, a, s) (A start(~x, a, s)) is true if a ends (starts)
A(~x) in s. Analogously the Allen-like temporal constraints intro-
duced above (see Figure 1) can be easily represented in the concur-
rent temporal BAT (see Figure 1):

• A(~x) meets B(~x):

Poss(c, s) ⊃ ∃a.A end(~x, a, s) ∧ a ∈ c ⊃
∃a′.B start(~x, a′, s) ∧ a′ ∈ c.

• A(~x) met by B(~x):

Poss(c, s) ⊃ ∃a.A start(~x, a, s) ∧ a ∈ c ⊃
∃a′.B end(~x, a′, s) ∧ a′ ∈ c.

• A(~x) starts B(~x):

Poss(c, s) ⊃ ∃a.A start(~x, a, s) ∧ a ∈ c ⊃
∃a′.B start(~x, a′, s) ∧ a′ ∈ c.

• A(~x) ends B(~x):

Poss(c, s) ⊃ ∃a.A end(~x, a, s) ∧ a ∈ c ⊃
∃a′.B end(~x, a′, s) ∧ a′ ∈ c.

• A(~x) contained by B(~x):

Poss(c, s) ⊃ [∃a.A start(~x, a, s) ∧ a ∈ c ⊃ B(~x, s)∧
¬∃a′.B end(~x, a′, s) ∧ a′ ∈ c]∧

[∃a.B end(~x, a, s) ∧ a ∈ c ⊃ ¬A(~x, s)∨
∃a′.A end(~x, a′, s) ∧ a′ ∈ c].

• A(~x) contains B(~x) is recursively defined once we introduce
two auxiliary fluent/processesAmeetsB(~x) and AendsB(~x),
s.t.:

A(~x) starts AmeetsB(~x), AmeetsB(~x) cont by A(~x),
A(~x) starts AendsB(~x), AendsB(~x) cont by A(~x),
AmeetsB(~x) meets B(~x), AmeetsB(~x) cont by AendsB(~x),
AendsB(~x) ends B(~x).

• A(~x) before[d, D] B(~x) is recursively defined by:

A(~x) meets A bf B(~x, d, D), A bf B(~x, d, D) meets B(~x),

whereA bf B(~x, d, D, s) is an auxiliary fluent/process whose
duration ranges over the interval[d, D].

• A(~x) after[d, D] B(~x) :

Poss(c, s) ⊃ ∃a, t.A start(~x, a, s) ∧ a ∈ c ∧ time(c) = t ⊃
after B(~x, t, d, D, s).

whereafter B(~x, t, d, D, s) is an auxiliary fluent which is true
if there exists an actiona endingB(~x), with d ≤ time(s) −
time(a) ≤ D.

Once all the temporal constraints are specified in this way, the
Poss(c, s) definition can be obtained by the closure of its necessary
conditions.



Planning Problem. Once the domain temporal constraints have
been represented in the Concurrent Temporal Situation Calculus, the
planning problem is defined by acandidate planrepresenting both
the initial situation and the system goals. We recall that the candidate
plan is defined by: i. a planning horizon(th, Th); ii. timelines Ti

for each state variableσi; iii. ordering constraints between tokens
in the same timelines; iv. a set of constraintsCi each of the kind:
[tsi , Tsi ] pi(~r) [tei , Tei ].

To represent thecandidate planasgolog programin the concur-
rent temporal golog, we do not deploy occurencies and narratives
[13] since it is not a domain constraint, as it defines the control
knowledge (goals). We assume a complete specification ofDS0 ; the
Golog scripting language is used to represent theCi constraints (in
the SC we have to distinguish among initial situation and goals).
This is possible introducing, for eachCi, a procedure definition of
the following kind:

proc(ci, (Tei > horizon)? |((Tei ≤ horizon)∧
(∃t, t′).end Pi(~r, t, t

′)∧
tsi ≤ t′ ≤ Tsi ∧ tei ≤ t ≤ Tei)?).

This procedure is composed of only two tests: if the end time
constraint is beyond the horizon the constraint is neglected, other-
wise, the start and end timepoints have to satisfy the temporal con-
straints. Hereend Pi(~r, t, t

′, s) is a fluent properties which is true
iff Pi(~x, t, s) ends ins at t′. For example,[5, 10]going(d, e)[6, 10]
can be represented as

proc(c2, (10 > horizon)? |(10 ≤ horizon)∧
(∃t, t′).end going(d, e, t, t′)∧

5 ≤ t′ ≤ 10 ∧ 6 ≤ t ≤ 10)?).

Given these procedures, an incomplete plan over a timelineTj can
be define by the following procedure:

proc(plan Tj ,
π(n, (select(n))? : planj(n) : c1) :
π(n, (select(n))? : planj(n) : c2) : . . . :
π(n, (select(n))? : planj(n) : ck)),

whereplan(n) is a planner whose depth is bounded byn repre-
senting the maximal number of gaps (tokens) betweenci andci+1.
plan(n) implements a simple planning algorithm, e.g. we can deploy
the following straightforward algorithm:

proc(planj(n),
true? | π(a, (primitive action(a, j))? : a) : plan(n− 1))

whereprimitive action(a, j) is to select a primitive action belong-
ing to theTj timeline. For example, theNavigation timeline intro-
duced in Section 2.2, can be represented by aplan TNav with c2

defined as before andc1 as follows:

proc(c1, (10 > horizon)? |(10 ≤ horizon ∧ end at(a, 0, 3))?).

Once an incomplete plan is over a timelineTi, given a set of time-
lines{Ti}, a candidate plan becomes a parallel execution of its own
procedureplan Ti:

proc(c plan, plan T1 : nil ‖ . . . ‖ plan Tk : nil ).

Given aBAT encoding the action theory, and the temporal con-
straints among the activities, any ground situationσ s.t. BAT |=
Do(c plan, S0, σ) represents a CBIpossible behavior. More pre-
cisely, letf(σ) be a behavior at a ground situationσ, M = (I, A, R)
a CBI model, defined inBAT , then for anycandidate planPc there

is aDS0 and ac plan CTGolog procedure such thatp is apossible
behaviorof (M, Pc), if there exists aσ (ground) withf(σ) = p and
BAT |= Do(c plan, S0, σ).

A CBI sufficient planis a complete CBI plan with maximal flexi-
bility. In the SC framework we can represent a sufficient plan as the
couple〈s[~x,~t], Constr(~x,~t)〉 whereConstr(~x,~t) is a minimal set
of constraints (among time variables~t and argument variables~x) s.t.

BAT ∪ {Constr(~x,~t)} |= Do(c plan, s0, s[~x,~t]).

Given this representation, it is possible to show that ifpsc =
〈s[~x,~t], Constr(~x,~t)〉 is s.t. the previous property holds, then the as-
sociatedpCBI CBI plan is asufficient plan. Notice that the mapping
does not work in the other direction, i.e. there exists a CBI flexible
planpCBI which cannot be captured by apsc. This is due to the fact
that a complete CBI plan is identified with a situations[~x], where the
order of two (starting or ending) eventsa1 anda2 belonging to two
different timelines is already decided: at planning time the compiler
decides ifa1 starts before, after, or concurrently witha2. Instead,
in a CBI sufficient plan this order between events can be defined at
execution time. A completeSC mapping of the sufficient CBI plan
needs a more complex representation where each plan is associated
to a set of flexible situations, we leave this issue to future work.

4 Example

We consider a rescue domain where a rover is to explore an unknown
environment in order to map and localize victims. We assume the
rover endowed with a pan-tilt and stero-cameras. Visual perception
is exploited to detect interesting locations where it’s worth to go and
perform the observations. Basically the robot has to provide two main
activities: exploring and mapping; search for victims. While the robot
is in the exploration mode a rough visual perception (vp monitor)
is always active in order to tag the map with salient regions. A more
complex visual analysis is performed (vp analsys) in order to detect
victims, during this activity the rover must be stopped while the pan-
tilt and range-finder are coordinated in order to scan a salient portion
of the visual space.

We consider the following state variables:Pant-tilt, RangeFinder,
LocMap, Navigation, VisualPerception, Mode. Each state variable
is associated with a set of processes/tokens.Pan-tilt can either be
idling in pos ~θ (Pt idle(~θ)), moving toward~θ (Pt moving(~θ)),
or scanning (Pt scanning(~θ)); Range finder3 states areRf idle
and Rf active; LocMap maps and tracks the robot position
via the Lc at(~x) and Lc goTo(x) tokens;Navigation represents
the navigation state through:Nv stop, Nv movingTo(speed),
Nv wandering; Visual Perceptionrepresents the state of the vi-
sual perception module: it can be either idle (V p idle), activated to
detect interesting objects in the environmentV p monitor, or ana-
lyzing an interesting region from~x robot position with pant-tilt inθ:
V p analisys(~x, ~θ). Modecan beMd map(st) orMd search(st),
wherest is ok if the activity succeeds andno if it fails.

Hard time constraints among the activities can be defined by
a temporal model in CBI style. For example,V p monitor and
V p observe(~x, ~θ) are respectively associated with the mapping
and the search modes, hence we haveV p monitor cont by
Md map(st) and V p observe(~x, ~θ) cont by Md search.
The search mode can be started only if the local envi-
ronment is mapped with successMd search(st) met by
Md map(ok). The victim detection requires the rover to be stopped
V p analisys(~x, ~θ) cont by Nv stop. The visual analysis needs

3 It is actually a telemeter returning the precise distance of the point hit.



the pan-tilt scanningV p analisys(~x, ~θ) cont P t scanning(θ)
and thePt scanning can start only ifmet by P t idle(θ), etc.

Since these constraints are represented by theDAP of theBAT ,
the embedded CBI temporal model is directly combined with the
other dynamic properties specified in theSC language. Now, given
the (0, 1000) plan horizon, the following partial plan should force
the exploration of an unknown environment:

Md : [0, 0]Md map(ok)[10, 100]Md search(ok)[11, 1000]
Nv : [0, 0]Nv idle[0, 1000]
. . .

P t : [0, 0]Pt idle(~θ)[0, 1000]

where, except forMode, each timeline has only the initial activity
defined. Following the approach presented in Section 3, this partial
plan can be translated into the Golog procedure:

proc(c plan,
plan Md : nil ‖ plan Nv : nil‖ . . . ‖ plan Pt : nil),

where plan Md is defined by the two time constraints
[0, 0]Md map(ok)[10, 100]Md search(ok)[11, 1000], and
the other procedures are encoded as generic planners. However, in
order to make this planning activity feasible, the Golog scripting lan-
guage can be exploited to directly encode some control knowledge.
For example, thePlan Pt procedure can be written as follows:

proc(plan Pt, π(t, π(t′, (∃x.Md map(x, t))?|
(∃x.Md search(x, t))? : wait location :

Ptscan : PtIdle : (time = t′ ∧ t− t′ ≤ d)?)),

wherewait location : Ptscan : PtIdle are three Golog proce-
dure defining the expected pant-tilt behavior during the search mode.
The final test enforces a maximald time duration for the whole pro-
cedure execution.

5 Implementation

We provided a constraint logic programming (CLP) [6] implementa-
tion of the CTGolog based control system for the rescue domain.
Since in this setting the CTGolog interpreter is to generate flex-
ible temporal plans, it must be endowed with a constraint prob-
lem solver. Analogous to [14] we rely on a logic programming
language with a built-in solver for linear constraints over the re-
als (CLP(R)). In this setting logical formulas, allowed for the def-
inition of predicates, are restricted to be horn clauses of the form:
A ← c1, . . . , cm|A1, . . . , An, whereci are constraints andAj are
atoms. Specifically, we appeal to the ECRC Common Logic Pro-
gramming System ECLIPSE 5.7. In this way our planner and domain
axioms make use of linear temporal relations like2 ∗ T1 + T2 = 5
and3 ∗ T2 − 5 ≤ 2 ∗ T3, and we rely on ECLIPSE to performing
the reasoning in the temporal domain. The relations managed by the
ECLIPSE built-in constraint solver have # as a prefix, for example, a
temporal constraint represented in the Golog interpreter is:

do(C : A,S,S1) :- concurrent_action(C),
poss(C,S), start(S,T1), time(C,T2), T1 #=< T2,
do(A,do(C,S),S1).

Other temporal constraints are expressed in the action preconditions,
for example, considering the pan-tilt processes:

poss(pt_pos_start(X,T),S) :-
pt_idle(X,T1,S),T1 #< T,start(S,T2),T2 #>= T,
nv_stop(T11,S),T11 #<T.

An example of the successor state axioms is the following.

pt_idle(X,T1,do(C,S)) :-
pt_idle(X,T1,S) not member(pt_pos_start(_,T2),S);
member(pt_pos_end(X,T1),S).

Given the BAT specification, for each timeline it is possible to specify
a control procedure
proc(pt_go(X), pi(t1, [pt_pos_start(X,t1)]:

pi(t2, [pt_pos_end(X,t2)] )) ).

Once the flexible temporal plan is compiled, it can be executed. We
assume an execution monitorcycleExecwhich sends and receives
commands at each time tick so that constraints can be, step by step
solved and/or propagated. A dummy implementation ofcycleExecis
shown below.
planExec :-

do(c-plan,s0,S),!,cycleExec(1,s0,S,S1).
cycleExec(T,S0,S0,S0) :- !.
cycleExec(T,S0,S,S1) :-

checkMsg(T), exec(T,S0,S,S1), checkMsg(T),
T1 is T+1,!, cycleExec(T1,S1,S,S2).

6 Summary and Outlook

We presented an approach to the embedding of the CBIP paradigm in
the Golog framework. Several issues are left to future work, among
them: progression and forgetting the past, parallel planning over in-
dependent timelines, failure management.

REFERENCES
[1] J.F. Allen, ‘An interval-based representation of temporal knowledge’,

in IJCAI, (1981).
[2] A.K. Jonsson D.E. Smith, J. Frank, ‘Bridging the gap between planning

and scheduling’,Knowledge Engineering Review, 15(1), (2000).
[3] Y. Lesperance G. De Giacomo and H. Levesque, ‘Congolog, a con-

current programming language based on the situation calculus’,121,
(2000).

[4] Malik Ghallab and Herv Laruelle, ‘Representation and control in ixtet,
a temporal planner’, inAIPS 1994, pp. 61–67.

[5] H. Grosskreutz and G. Lakemeyer, ‘ccgolog – a logical language deal-
ing with continuous change’,Logic Journal of the IGPL, 11(2), 179–
221, (2003).

[6] Joxan Jaffar and Michael J. Maher, ‘Constraint logic programming: A
survey’,Journal of Logic Programming, 19/20, 503–581, (1994).

[7] Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and
Benjamin D. Smith, ‘Planning in interplanetary space: Theory and prac-
tice’, in Artificial Intelligence Planning Systems, pp. 177–186, (2000).

[8] Doherty P. Kvarnstrm, J. and P. Haslum, ‘Extending talplanner with
concurrency and resources’.

[9] J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University, (1963). Reprinted in Semantic Information Pro-
cessing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-
417.

[10] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C.
Williams, ‘Remote agent: To boldly go where no AI system has gone
before’,Artificial Intelligence, 103(1-2), 5–47, (1998).

[11] J.A. Pinto, ‘Integrating discrete and continuous change in a logical
framework’,Computational Intelligence, 14(1), 39–88, (1998).

[12] J.A. Pinto and R. Reiter, ‘Reasoning about time in the situation calcu-
lus’, Annals of Mathematics and Artificial Intelligence, 14(2-4), 251–
268, (September 1995).

[13] Javier Pinto, ‘Occurrences and narratives as constraints in the branching
structure of the situation calculus’,Journal of Logic and Computation,
8(6), 777–808, (1998).

[14] Fiora Pirri and Raymond Reiter, ‘Planning with natural actions in the
situation calculus’, 213–231, (2000).

[15] R. Reiter, ‘Natural actions, concurrency and continuous time in the sit-
uation calculus’, inProceedings of KR’96, pp. 2–13, (1996).

[16] Raymond Reiter,Knowledge in action : logical foundations for speci-
fying and implementing dynamical systems, MIT Press, 2001.

[17] Raymond Reiter and Zheng Yuhua, ‘Scheduling in the situation calcu-
lus: A case study’,Annals of Mathematics and Artificial Intelligence,
21(2-4), 397–421, (1997).

[18] B. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. Sulli-
van, ‘Model-based programming of fault-aware systems’,AI Magazine,
(Winter 2003).


