Flexible Interval Planning in Concurrent Temporal Golog

Alberto Finzi and Fiora Pirri !

Abstract. In this paper we present an approach to flexible plan-of the Situation Calculus, but here can be meaningful, as it would of-
ning and scheduling based on a suitable mapping of the Constraifer to the temporal planning community a way to compare the Golog
Based Interval Planning paradigm [7, 2] into the Situation Calculusspecification environment with the CBIP modeling constructs, and it
We show how this representation is particular suitable for executiveprovides a new account for deploying Golog at the executive control.
control processes, and illustrate this with an example. In fact, we show how it can be used to implement a parallel control
system for a particularly difficult task such as tobocup rescue

1 Introduction

2 Preliminaries
A central feature in executive control is flexible tasks alternation,
yielding switching-time criteria, based on tasks, goal and the curren2.1 ~ Situation Calculus and Golog
situation needs. lin vitro domaing, robots are requested to per- o) !
forming multiple tasks either simultaneously or in rapid alternation, 1€ Situation CalculusSC) [9] is a sorted first order language
using diverse sensing and actuating tools, like navigation, visual eX€Presenting dynamic domains by meansastions situations
ploration, mapping, perceptual analysis, etc. To guarantee that sudhdfluents Aptlonsand situationare first orde_r terms. A situation
multiple-task performance can be achieved, some approaches hagnetes a history of actions compound with the binary symbol
proposed that executive control processes supervise the selection, iff¢ 4(a,s) is the situation obtained by executing the action
tiation, execution, and termination of actions. In this sense, a welfiter the sequence The constant symbd¥, stands for the initial
known approach to executive control is Constraint Based Intervafituation (i-e. the empty sequence). In this work, we assume the
Planning (CBIP), amalgamating planning, scheduling and resourcekemporal Concurrent Situation Calculus presented in [12, 15, 14].
optimization for reasoning about the competing activities involved [0 rePresent time in the Situation Calculus, one of the arguments to
in a flexible concurrent plan (see [7, 2, 4]). The CBIP approach, likethe action function symbol is the time of the action’s occurrence. For

similar ones, emerged from the planning community, and have showf*@mple,startGoing(a, 12.01) is the action of starting to move
a strong practical impact in executive control processes [10, 18]. toward a gt time 12.91. All actions are viewed as |n.stantaneo.us.
From the vantage point of cognitive robotics a question to pel Ne fL_mctlon symbotime(a) denotes_ the occurrence time of action
addressed is how executive control processes interact with basft While start(s) denotes the start time of situatien The latter is
perceptual-motor and cognitive processes used for performing ind@€fined asistart(do(a, s)) = time(a), andtime(a) is defined,
vidual tasks, how priorities among individual processes can be estati2" €ach action term, to be its temporal argument, for example,
lished, and how resources can be allocated to them during multipléf-”me(smrtco(av t)) = t.In this paper, we will use the notatlcsr[ﬂ_
task performance (see [5, 8, 3]). to represent the situationwith ¢ free_ temporal vanable_s. _F_ollowm_g
In particular, when dealing with the executive control it seems that 6] we represent concurrent actions as sets of primitive actions:
approaches (such as the CBIP) tailored to the practical needs of reafle actions are sorted in simple actiorand concurrent. a € ¢
tive planning are more suitable. In this paper we show that CBIP perM€ans that the simple actienis one of the concurrent actionsdn
spective, on executive control processes, with all its arsenal of spedVe rely on the standard interpretation of sets and their operations
ifications in terms of flexible time, alternation constraints, resource&nd relations. _Slnce in the COF}Curr_eﬁC, 5|tuat_|ons are lists of
optimization, failure recovering, and tasks scheduling, can be easilgOncurrent actions, we have situation terms lik({a1, az}, s).
imported into the framework of the Situation Calculus([16, 9]), ex-7* fluéntis a predicate whose last argument is a situation, e.g.
ploiting already established temporal and concurrent extensions dft (7ill, do(endGo(hill, 10), break, do(stratGo(hill, 2.1), So))).
basic theory of actions, as those provided by [12, 14, 13, 17, 5. ThE!uents predicates denote properties that can change with the action

resulting language is one naturally belonging to the Concurrent TemEX€cution. _ _ _
In the SC' concurrent durative actions are considerefrasesses

poral Golog (CTG) families of languages, and it offers the possibil- - i
ity of manipulating flexible plans on a multiple time line. The paper [12, 16], represented by fluents, and duratl_onles.s actions are to start
is just introductory, and several problems still need to be addresse@f'd terminate the processes. For exampigng(hill, s) is st:elrted

and solved; among these we mention the need of indexing situatiorfy the actionstartGo(hill, t) and itis ended byndGo(hill, t').

so as to ensure multiple independent timelines, a suitable formaliza-
P P ’ l't)omam Theory. In the SC' a dynamic domain can be described

tion of forgetting executed processes, progressing to the current s . . L
of processes, side effects of processes, and failure management. Tﬁ%aBasmt Action Theory BAT) which is compqsed of the classes
axioms:XU Ds,U DssaU DunaU Dayp. HereX is the set of foun-

mapping proposed is somehow obvious due to the expressive powg‘rational axioms for situations. We refer to the version introduced

I University of Rome “La Sapienza’ in [14] in order to represent timed concurrent actions. For example,

2 Domains requiring effective robots performance, even if suitably con-these axioms impose that, given a situatilaiic, s), all the actions
strained so as to keep possible domino effects under control a € coccur at the same time (i.eoherent(c)).

Duna are unigueness axioms for each actib, is a sets of sen- Ameets B Amet by B

tences describing the initial state (i%,) of the domain. — [*

Dssa specify thesuccessor state axionf®r each fluent'(Z, s) . Acont by B A contains B
Here we assume the successor state axioms modified in order to rep- — —=
resent concurrent actions. This slight modification can be illustrated
by the following example: Astarts B AendsB

pointingTo(z, do(c, s)) = startPointingTo(z) € cV
pointing(x, s) A endPointingTo(z) ¢ c. AE’“}% A{"‘“}’[‘i’ms ‘
A d, s 4 A

Finally, D,, represents the action precondition axioms. In order to
extend thePoss predicate to concurrent actions, the following ax-

ioms are introduced: Figure 1. Interval relations in the underlying temporal model.

Poss(a, s) D Poss({a}, s).

Poss(c,s) O (3a)a € ¢ A (Va)[a € ¢ O Poss(a, 3)]. Attributes and Intervals The CBIP paradigm assumes a dynamic

system modeled as a setaifributeswhose state changes over time.
In a concurrent domairgction preconditions axiomsn simple ac- Each attribute, calledtate variable represents a concurrent thread,
tions are not sufficient: two simple actions may each be possible, bifescribing its history over time as a sequence of states and activities.
their concurrent execution should not be permitted. This problem i€30th states and activities are represented by temporal intervals called
called precondition interaction problerfi6] (see [11] for a discus- tokensThe history of states for a state variable over a period of time

sion) and its solution requires some additional precondition axiomsis called &imeline For example, given a rover domajmsition is a
possible attributegoing(a, b) from time1 to 3, andat(b) from time

Temporal Concurrent Golog. Golog is a situation calculus-based 3 to 5 are intervals representing, respectively, an activity and a state.
programming language for denoting complex actions composed dEach token can be described by the tufilep(Z), ts, te), wherev

the primitive (simple or concurrent) actions defined in thelT. is the attribute (e.gposition), p is the name of an activityy’ are
Golog programs are defined by means of standard (and not sdts parameters (e.going(a,b)), andts, t. are numerical variables
standard) Algol-like control constructs: i. action sequengep:, indicating start and end times respectively.

ii. test: ¢?, iii. nondeterministic action choige |p2, iv. conditionals, To represent intervals on a timeline we will use the notation

while loops, and procedure calls. An example of a Golog program isft1, t2] p [ts, t4], meaning thap is s.t.ts € [t1,t2] andt. € [ts, t4]
(e.g. given the timelingos, [0, 0] at(hill) [3,4]).
while —at(hill, 3) do
if =(3z)going(x) do w(t, (t < 3)? : startGo(hill, t))
Domain Constraints. Given a set of attributed and a set of in-
The semantics of a Golog prograhis aSC formulaDo(d,s,s") tervalsI, aCBI modelM = (A, I, R) is specified by a set of con-
meaning that’ is a possible situation reached bynce executed straintsR, that is, each tokef = (v, p(Z,), ts, t.) has its owrcon-
from s. Some of the construct definitions are the following figuration constrainG'r (v, Z,, s, t.), calledcompatibility(see [7]),
representing all the possible legal relations with other intervals; for

Do(nil, s, s). example compatibility establishes which token must proceed, follow,
Do((p1 : p2) : p3,8,8') = Do(p1 : (p2: p3), s, ") be co-temporal, etc. to others in a legal plan. These relations are, in
Do(a : p, s, s") = Do(p,do(a, s),s’) turn, defined by equality constraints between parameter variables of
Do(pi|p2,s,s’) = Do(p1,s,s") V Do(p2, s, s") different tokens, and by simple temporal constraints on the start and
Do(n(z,p(x)),s,s") = (3x) Do(p(z), s, ") end variables. The latter are specified in terms of metric version of

. . . _temporal relationa la Allen[1]. Here we restrict our attention to the
In this paper we consider a Golog language version endowed W'“fbllowing set of temporal relationsueets, met_by, contained by,
the parallel execution between processes. Analogously to [3] concur;

rency is modeled by interleaved processes and the parallel constru Cénmms' beforeld, D], after(d, D], starts, ends. For instance,
. > j , ts at(y), andgoi , t_by at(x) specifies
|| is defined as follows: fioing(z, y) meets at(y) going(w, y) met.by at(x) Sp

that eachyoing interval is followed and preceded by a state

L. Do(p1|lp2, s,s") = Do(pz|lp1, s, s").
. C ;e AR . < - / . . o
3. gzg(phﬁ?l '51/7; ||;p’g’j() sl?j)(pl H(p2: p3)llp: 5, 57). Planning Problem. Given theCBI modelM specifying the plan-
4' DO(Zl p ’Ha’ S s S,)p;’ bo(é : pr|lp2, do({as}, 5),)V ning domain, alanning problenis defined byP = (M, P.), where
: Dol 1”‘a Hiee 'dI:)Q(’{a’ Vs s) vll);)?l ﬁn’ do({;) } 9 s’)PC is acandidate planrepresenting an incomplete instance of a plan.
5 Do(}(?;b)’?% bfﬁl’l . S,);’(ﬁ[;] A Do(plﬂ;];275’) 1 92552)5%) The candidate plan consists of: i.pnning horizonspecified by
6. Do((p1lps)||ps, 5, ") = Do(ps||pz, s, 5') V Do(pi [[ps, s,). a pair of temporal valfueshs,lrz]e), with hf < he; i g .tlmellne
7. Do(n(z,p(x))p.s,s') = (3z)Do(p(z)|p, s, ') T, = (Toy,...,T,,) for eac st__e_lte variable, co_ntalnlng a _set
’ ’ 7 R of tokensT; = (o, P(Z),ts;, te,); iil. @ set of ordering constraints
among the token in the timeliné:, < t., < ts, < ...;iv. the
2.2 Constraint Based Interval Planning set of constraint{C1, ..., C,} associated with the tokens laying

on the timelines. For instance, given the rover domain with the at-
In this section we briefly introduce the ontology and the basic condributes Location and Navigation, a candidate plan can be repre-
cepts of Constraints Based Interval Planning paradigm, whose prinsented by a planning horizdfi, 10), and by the two timelines for the
itives are illustrated in Figure 1 (note that D] denotes the interval Location (Lc) and Navigation (Nv) attributes, and the two asso-
whered is the minimum time distance arfd the maximum). ciated incomplete sequence of tokens (together with their respective

constraints), e.g. Domain Constraints. Given the CBlI modelM = (A, I, R), the

R constraints can be captured in the temporal BAT by exploiting the
axiom preconditions needed in the concurrent action specification
(to address the precondition interaction problem). For instance, the

constraint on the token duration can be expressed by:

Le: [0,0] at(a) [3,3] [5,10] going(d, e) [6,10],
Nv: [0,0] stop [3,5] [6,9] move [8,10],

Notice that thecandidate plardefines both the initial situation and
the goals. A tokeri; in a candidate planis said to befully sup-
portedif its G, compatibility is satisfied, in a sense to be specified.
For instance[5, 10] going(d, e), in the example above is not fully
supported, sincgoing(d, e) met_by at(d) is to be satisfied. A can- where A_end(Z, a, s) (A-start(Z,a, s)) is true if a ends (starts)
didate plan is called potential behavioif: a. each token on each A(Z) in s. Analogously the Allen-like temporal constraints intro-
timeline is fully supported; b. all timelines fully cover the planning duced above (see Figure 1) can be easily represented in the concur-

Poss(c,s) D (3t)[A-ends(Z, a, s) N A(Z,t,s) Na € ¢ D
d < time(a) —t < D]

horizon; c. all timeline tokens are bound to a single value. In otherrent temporal BAT (see Figure 1):

worlds, apossible behaviorepresents a possible evolution of the dy-

namic system. A candidate plan can be seen as an incomplete speei-A(f) meets B(Z):

fication of a possible behavior where gaps, unsupported tokens, and
uninstantiated variables can be found (see example above). A candi-

date plan is said to be@mplete plarf it satisfies both the proper-

Poss(c,s) D Ja.A_end(Z,a,s) Na € ¢ D
3a’.B_start(Z,a’,s) Nad' € c.

ties a. and b. specified above. More generally, a candidate plan is g A(Z) met_by B(Z):

plan depending on plan identification functior{see [7] for further
details).

Given theplanning problenspecified by theCBI modeland the
candidate planthe planning task is to providecmplete plarwith

Poss(c,s) D Ja.A-start(Z,a,s) Na € ¢ D
Jda’.B_end(Z,a’,s) Na' € c.

the maximum flexibility: the planner should minimally ground the ® A(Z) starts B(Z):

(temporal and not) variables to allow for on-line binding of the val-
ues. For example, given the rover example, assuming the candidate
plan presented above (assuming also that each activity takes at least

e A(Z) ends B(Z):

one time unit), asufficient plarcould be

Le : [0,0]at(a)[3, 3]going(a, d)[4, 8]at(d)[6, 9] going(d, e) [6, 10],
Nv : [0, 0] stop [3, 3]move[4, 8]stop[6, 9move[8, 10].

Notice that the above specification completely fill the timelines till .

the end of the horizon and each token is fully supported.

3 Representing the Temporal Model in the
Temporal Concurrent SC

In this section we show how to represent a CBI Model in the Tempo-

ral ConcurrentSC framework.

Attributes and Intervals. For each token(v, p(Z), ts,t.) we
introduce a fluentP, (%, ts,s) and two actionsstart_p(Z,t) and
end_p(Z,t) representing, respectively, thgz) process (here; is
the start time) starting and ending events.

The temporal model will be defined by a BAT. In particular the
successor state axior§ § A) is defined as follows:

P, (Z,ts,do(c, s)) = Ja.P_start(Z,a,s) Na € c Atime(a) = tsV
(3t).Py(2,t,8) A —~(Ja’).Pend(Z,a’,s) Na' € c.

Here P_start(Z,a,s) (P-end(Z,a,s)) is true if a starts

(ends) P,(Z,ts,s) in s. Continuing the previous example,
(Lc, going(z),ts,te) can be represented by thgwing(z,t,s)

fluent whoseS'S A is represented as follows:

going(z,t,do(c, s)) = start_going(z,t) € ¢V
going(x,t,s) A (Vt')end_going(z,t') & c.

The start_p andend_p actions are specified by action precondi-
tions axioms, where, (7, t, s) are sentences specifying the condi-
tions under which thetart andend actions can be executed:

Poss(start_p(Z,t), s) = ¢p(Z,t,s)
Poss(end_p(Z,t), s) = ¢p(Z,t,s)

Poss(c, s) D Ja.A_start(Z,a,s) Na € ¢ D
Ja'.B_start(Z,a’,s) Na' € c.

Poss(c,s) D Ja.Aend(Z,a,s) Na € ¢ D
Jda’.B_end(%,a’,s) Na' € c.

A(Z) contained_ by B(ZT):

Poss(c, s) D [Fa.A_start(Z, a,s) A a € ¢ D B(Z, s)A
—3a’.B_end(Z,a’,s) Aa’' € c]A
[Ja.B_end(Z,a,s) Na € ¢ D —A(Z, s)V
Ja’.A_end(Z,a’,s) Nad' €].

A(Z) contains B(Z) is recursively defined once we introduce
two auxiliary fluent/processedmeetsB(Z) and AendsB(Z),
s.t.

AmeetsB(%) cont_by A(Z),
AendsB(Z) cont_by A(Z),
AmeetsB(Z) cont_by AendsB(Z),

A(Z) starts AmeetsB(Z),
A(Z) starts AendsB(T),
AmeetsB(Z) meets B(T),
AendsB(%) ends B(Z).

e A(Z) beforeld, D] B(Z) is recursively defined by:

A(Z) meets Abf_B(Z,d, D), Abf _B(Z,d, D) meets B(Z),

where A bf_B(Z,d, D, s) is an auxiliary fluent/process whose
duration ranges over the intenjal D).
A(Z) after[d, D] B(Z) :

Poss(c,s) D Ja,t.A_start(Z,a,s) Na € cAtime(c) =t D
after_B(Z,t,d, D, s).

whereafter_B(Z,t,d, D, s) is an auxiliary fluent which is true
if there exists an actiom ending B(Z), with d < time(s) —
time(a) < D.

Once all the temporal constraints are specified in this way, the
Poss(c, s) definition can be obtained by the closure of its necessary
conditions.

Planning Problem. Once the domain temporal constraints haveis aDg, and ac_plan CTGolog procedure such thatis a possible
been represented in the Concurrent Temporal Situation Calculus, theehaviorof (M, P.), if there exists a (ground) withf (o) = p and
planning problem is defined by @andidate plarrepresenting both BAT |= Do(c_plan, So, o).
the initial situation and the system goals. We recall that the candidate A CBI sufficient planis a complete CBI plan with maximal flexi-
plan is defined by: i. a planning horizdwy,, T3); ii. timelines 7; bility. In the SC framework we can represent a sufficient plan as the
for each state variable;; iii. ordering constraints between tokens couple(s[Z, t], Constr(&, t)) whereConstr(Z,t) is a minimal set
in the same timelines; iv. a set of constraifts each of the kind: of constraints (among time variablgand argument variabled s.t.
[tSNTQi} pl(f') [tei) Tei]'

To represent theandidate plarasgolog programin the concur- BAT U {Constr(&,t)} = Do(c_plan, so, s[Z,1]).
rent temporal golog, we do not deploy occurencies and narratives)) o))
[13] since it is not a domain constraint, as it defines the control GIVeN this representation, it Is possible to show thap.if =
knowledge (goals). We assume a complete specificatidhegf the (5[Z, &), Constr(Z, 1)) is s.t. the previous property holds, then the as-
Golog scripting language is used to represent@heonstraints (in ~ Sociatetbcsr CBI plan is asufficient planNotice that the mapping
the SC' we have to distinguish among initial situation and goa|S).does not work in the other direction, i.e. there exists a CBI flexible

This is possible introducing, for eacft, a procedure definition of ~ Planpcsr which cannot be captured bysa... This is due to the fact

the following kind: that a complete CBI plan is identified with a situatigi], where the
order of two (starting or ending) evenis andas belonging to two

proc(c;, (Te, > horizon)? |((Te; < horizon)A different timelines is already decided: at planning time the compiler
(3t,t').end_P;(7 t, ')A decides ifa; starts before, after, or concurrently with. Instead,

ts, <t <Ts; ANte;, <t <Te,)?). in a CBI sufficient plan this order between events can be defined at

)]) ~execution time. A complet§'C' mapping of the sufficient CBI plan
This procedure is composed of only two tests: if the end timeneeds a more complex representation where each plan is associated

constraint is beyond the horizon the constraint is neglected, othety a set of flexible situations, we leave this issue to future work.
wise, the start and end timepoints have to satisfy the temporal con-

straints. Hereend_P;(7,t,t', s) is a fluent properties which is true
iff Pi(Z,t,s) ends ins att'. For example[5, 10]going(d, e)[6,10] 4 Example

can be represented as We consider a rescue domain where a rover is to explore an unknown

. ? . environment in order to map and localize victims. We assume the
proc(cz, (10 > horizon)? |(10 < horizon)A .) . -
(3t, ').end_going(d, e, t, ')A rover endowed with a pan-tilt and stero-cameras. Visual perception
' 5<¢ <10 /7\67 < £ < 10)?) is exploited to detect interesting locations where it's worth to go and
- = - - o perform the observations. Basically the robot has to provide two main
Given these procedures, an incomplete plan over a tim@Jian activities: exploring and mapping; search for victims. While the robot

be define by the following procedure: is in the exploration mode a rough visual perceptiop_fnonitor)
is always active in order to tag the map with salient regions. A more
proc(plan_7j, complex visual analysis is performegp(analsys) in order to detect
w(n, (select(n))? : planj(n) : c1) : victims, during this activity the rover must be stopped while the pan-
m(n, (select(n))? : planj(n) : ca) :... : tilt and range-finder are coordinated in order to scan a salient portion
m(n, (select(n))? : planj(n) : cx)), of the visual space.

We consider the following state variabléZant-tilt, RangeFinder
LocMap Navigation VisualPerceptionMode Each state variable
is associated with a set of processes/tok&as-tilt can either be

Yidling in pos @ (Pt_idle(6)), moving towardd’ (Pt_moving(d)),
or scanning Pt_scanning(d)); Range findet states areR f _idle
proc(plan;(n), and Rf_active;, LocMap maps and tracks the robot position

true? | m(a, (primitive_action(a,))? : a) : plan(n — 1)) Via the Le.at() and Le_goTo(x) tokens; Navigation represents
the navigation state throughVuv_stop, Nv_-movingT o(speed),

whereprimitive_action(a,) is to select a primitive action belong- Nv_wandering; Visual Perceptiorrepresents the state of the vi-

ing to the7; timeline. For example, th& avigation timeline intro- sual perception module: it can be either idlép(idle), activated to
duced in Section 2.2, can be represented ya_Tnq. With c2 detect interesting objects in the environmé&nt_monitor, or ana-
defined as before and as follows: lyzing an interesting region from robot position with pant-tilt irg:

Vp_analisys(Z,). Modecan beM d_map(st) or Md_search(st),

wherest is ok if the activity succeeds andb if it fails.

Hard time constraints among the activities can be defined by

whereplan(n) is a planner whose depth is bounded /byepre-
senting the maximal number of gaps (tokens) betwgeamdc; ;1.
plan(n) implements a simple planning algorithm, e.g. we can deplo
the following straightforward algorithm:

proc(ci, (10 > horizon)? |(10 < horizon A end_at(a,0, 3))?).

Once an incomplete plan is over a timelifg given a set of time-

lines {7;}, a candidate plan becomes a parallel execution of its owrf' temporal Toglel in CBI style. For examplep.monitor and
procedureplan_T;: Vp_observe(Z,6) are respectively associated with the mapping
and the search modes, hence we hd¥g-monitor cont by
proc(c_plan, plan_Ty :nil || ... || plan_Ty : nil). Md_map(st) and Vp_observe(Z,0) contby Md_search.

The search mode can be started only if the local envi-
Given aBAT encoding the action theory, and the temporal con-ronment is mapped with succes3/d_search(st) met_by
straints among the activities, any ground situatios.t. BAT |= Md_map(ok). The victim detection requires the rover to be stopped

Do(c_plan, So, o) represents a CBpossible behaviorMore pre- v, analisys(z,0) cont_by Nv_stop. The visual analysis needs
cisely, letf (o) be a behavior at a ground situatienM = (I, A, R)

a CBI model, defined iBB AT, then for anycandidate planP, there 3 Itis actually a telemeter returning the precise distance of the point hit.

7 pt_idle(X,T1,do(C,S)) -

the pan-tilt scanningV p_analisys(Z,8) cont Pt_scanning(d)
and thePt_scanning can start only ifmet_by Pt_idle(6), etc.

Since these constraints are represented bythe of the BAT,
the embedded CBI temporal model is directly combined with the
other dynamic properties specified in tB€' language. Now, given
the (0, 1000)
the exploration of an unknown environment:

pt_idle(X,T1,S) not member(pt_pos_start(_,T2),S);
member(pt_pos_end(X,T1),S).

Given the BAT specification, for each timeline itis possible to specify
a control procedure

plan horizon, the following partial plan should force Proc(pt_go(x), pi(tl, [pt_pos_start(X,t1)]:

pi(t2, [pt_pos_end(X,t2)]))).

Once the flexible temporal plan is compiled, it can be executed. We

Md : [0,0]Md-map(ok)[10, 100]Md_search(ok)[11, 1000]
Nu : [0,0]Nv_idle[0, 1000]

assume an execution monitoycleExecwhich sends and receives
commands at each time tick so that constraints can be, step by step
solved and/or propagated. A dummy implementationyafeExeds

- shown below.

Pt : [0,0]Pt_idle(8)[0, 1000]

where, except foMode each timeline has only the initial activity

planExec :-

do(c-plan,s0,S),!,cycleExec(1,s0,S,S1).

ycleExec(T,S0,S0,S0) :- I

defined. Following the approach presented in Section 3, this partiq(ﬂjydeExec(T‘50,5,31) -

plan can be translated into the Golog procedure:

proc(c_plan,

plan_Md : nil || plan_Nv : nil||...|| plan_Pt : nil),

checkMsg(T), exec(T,S0,S,S1), checkMsg(T),
T1 is T+1,!, cycleExec(T1,S1,S,S2).

6 Summary and Outlook

where plan_Md is defined by the two time constraints WWe presented an approach to the embedding of the CBIP paradigm in

[0,0]Md_map(ok)[10, 100]Md_search(ok)[11, 1000], and

the Golog framework. Several issues are left to future work, among

the other procedures are encoded as generic planners. However,tfigm: progression and forgetting the past, parallel planning over in-
order to make this planning activity feasible, the Golog scripting lan-dependent timelines, failure management.

guage can be exploited to directly encode some control knowledge.

For example, thé’lan_Pt procedure can be written as follows:
1
proc(plan_Pt, w(t,n(t', (3z.Md_map(z,t))?| o
(3z.Md_search(z,t))? : waitlocation : [2]
Ptscan : Ptldle: (time =t At —t < d)?)), .

wherewait_location : Ptscan : Ptldle are three Golog proce-
dure defining the expected pant-tilt behavior during the search modeyy;
The final test enforces a maximéatime duration for the whole pro-

cedure execution. [5]

5 Implementation (6]
We provided a constraint logic programming (CLP) [6] implementa- [7]
tion of the CTGolog based control system for the rescue domain.
Since in this setting the CTGolog interpreter is to generate flex- g
ible temporal plans, it must be endowed with a constraint prob-
lem solver. Analogous to [14] we rely on a logic programming [9]
language with a built-in solver for linear constraints over the re-
als (CLPR)). In this setting logical formulas, allowed for the def-
inition of predicates, are restricted to be horn clauses of the forni10]
A — ci1,...,cm|A1, ..., Ay, wherec; are constraints and ; are
atoms. Specifically, we appeal to the ECRC Common Logic Pro-
gramming System ECLIPSE 5.7. In this way our planner and domai|[111]
axioms make use of linear temporal relations ke T, + 7> = 5 [12]
and3 x T> — 5 < 2 * T3, and we rely on ECLIPSE to performing

the reasoning in the temporal domain. The relations managed by the
ECLIPSE built-in constraint solver have # as a prefix, for example, é 1
temporal constraint represented in the Golog interpreter is:

14
do(C : A,S,S1) :- concurrent_action(C), 4
poss(C,S), start(S,T1), time(C,T2), Tl #=< T2, [15]
do(A,do(C,S),S1).
[16]
Other temporal constraints are expressed in the action preconditions,
for example, considering the pan-tilt processes: [17]

poss(pt_pos_start(X,T),S) :-
pt_idle(X,T1,S),T1 #< Tstart(S,T2),T2 #>= T, [18]
nv_stop(T11,S),T11 #<T.

An example of the successor state axioms is the following.

REFERENCES

J.F. Allen, ‘An interval-based representation of temporal knowledge’,
in IJCAI, (1981).

A.K. Jonsson D.E. Smith, J. Frank, ‘Bridging the gap between planning
and scheduling’'Knowledge Engineering Revie®s(1), (2000).

Y. Lesperance G. De Giacomo and H. Levesque, ‘Congolog, a con-
current programming language based on the situation calculgg,
(2000).

Malik Ghallab and Herv Laruelle, ‘Representation and control in ixtet,
a temporal planner’, il\IPS 1994 pp. 61-67.

H. Grosskreutz and G. Lakemeyer, ‘ccgolog — a logical language deal-
ing with continuous changel,ogic Journal of the IGPL11(2), 179—
221, (2003).

Joxan Jaffar and Michael J. Maher, ‘Constraint logic programming: A
survey’,Journal of Logic Programmingl9/2Q 503-581, (1994).

Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and
Benjamin D. Smith, ‘Planning in interplanetary space: Theory and prac-
tice’, in Artificial Intelligence Planning Systemsp. 177-186, (2000).
Doherty P. Kvarnstrm, J. and P. Haslum, ‘Extending talplanner with
concurrency and resources’.

J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University, (1963). Reprinted in Semantic Information Pro-
cessing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-
417.

Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C.
Williams, ‘Remote agent: To boldly go where no Al system has gone
before’, Artificial Intelligence 103(1-2), 5-47, (1998).

J.A. Pinto, ‘Integrating discrete and continuous change in a logical
framework’, Computational Intelligencel4(1), 39—88, (1998).

J.A. Pinto and R. Reiter, ‘Reasoning about time in the situation calcu-
lus’, Annals of Mathematics and Artificial Intelligenc®4(2-4), 251
268, (September 1995).

Javier Pinto, ‘Occurrences and narratives as constraints in the branching
structure of the situation calculuslpurnal of Logic and Computation
8(6), 777-808, (1998).

Fiora Pirri and Raymond Reiter, ‘Planning with natural actions in the
situation calculus’, 213-231, (2000).

R. Reiter, ‘Natural actions, concurrency and continuous time in the sit-
uation calculus’, irProceedings of KR'96pp. 2—13, (1996).

Raymond ReiterKnowledge in action : logical foundations for speci-
fying and implementing dynamical system$T Press, 2001.

Raymond Reiter and Zheng Yuhua, ‘Scheduling in the situation calcu-
lus: A case study’Annals of Mathematics and Artificial Intelligence
21(2-4), 397-421, (1997).

B. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. Sulli-
van, ‘Model-based programming of fault-aware systeiEMagazine
(Winter 2003).

