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Abstract. DTGolog was proposed by Boutilier et al. as an integra-
tion of decision-theoretic (DT) planning and the programming lan-
guage Golog. Advantages include the ability to handle large state
spaces and to limit the search space during planning with explicit
programming. Soutchanski developed a version of DTGolog, where
a program is executed on-line and DT planning can be applied to
parts of a program only. One of the limitations is that DT planning
generally cannot be applied to programs containing sensing actions.
In order to deal with robotic scenarios in unpredictable domains,
where certain kinds of sensing like measuring one’s own position are
ubiquitous, we propose a strategy where sensing during deliberation
is replaced by suitable models like computed trajectories so that DT
planning remains applicable. In the paper we discuss the necessary
changes to DTGolog entailed by this strategy and an application of
our approach in the ROBOCUP domain.

1 Introduction

Boutilier et al (2001) proposed DTGolog, an integration of Markov
Decision Processes (MDPs) [12] and the programming language
Golog [8], which is based on Reiter’s variant of the situation cal-
culus [13]. Golog is equipped with familiar control structures like
sequence and while-loops, but also nondeterminism, which allow for
complex combinations of actions operating on fluents (predicates and
functions changing over time). DTGolog extends Golog by adding
familiar MDP notions like stochastic actions and rewards. Moreover,
decision-theoretic planning is incorporated in the form of an MDP-
style optimization method, which takes a program ρ and computes a
policy (another program), which follows the controls of ρ except that
it chooses among nondeterministic actions in order to maximize ex-
pected utility up to a given horizon of actions. The advantage over
traditional MDP’s is that the state space need not be represented
explicitly and that the search space can be narrowed effectively by
Golog’s control structures.

One serious limitation of DTGolog is that it does not account for
sensing actions.2 The reason for this limitation is that DTGolog oper-
ates in an off-line modus, that is, it computes a policy for the whole
program, which is then handed to an execution module. When the
program contains actions sensing fluents that can take on a large,
perhaps infinite number of values, finding a policy quickly becomes
infeasible, if not impossible. For this reason Soutchanski [15] intro-
duced an on-line version of DTGolog, which interleaves policy opti-
mization and execution. The main idea is that a user can specify for
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2 The only exception are sensing actions which are introduced by the opti-
mizer to determine the state after a stochastic action.

which parts of the program an MDP-style policy is to be computed.
As an example, consider the program optimize(ρ1); sense(φ); if φ

then ρ2 else ρ3. The idea is, roughly, that first a policy is computed
for the subprogram ρ1, which is then executed, followed by an action
sensing the truth value of φ. Finally, depending on the outcome either
ρ2 or ρ3 is executed, both of which may themselves contain further
occurrences of optimize.

In order to see that Soutchanski’s approach is problematic for de-
cision making in highly dynamic domains, it is useful to distinguish
two very different forms of sensing, which we refer to as active and
passive sensing. An example of active sensing is an automatic taxi
driver asking a customer for her destination. Typically, this form of
sensing happens only occasionally and should be part of the robot’s
control program. An example of passive sensing is keeping track of
one’s own position, which happens frequently, often in the order of
tens of milliseconds. It would make little sense to explicitly represent
such passive sensing actions in the robot’s control program, for these
would make up the bulk of the program and render reasoning about
the program all but impossible. While Soutchanski does not say so
explicitly, he clearly is concerned only with active sensing actions,
as all his sensing actions are part of the control program.

In highly dynamic domains, passive sensing is ubiquitous as a
robot has to constantly monitor its own position and its environment.
The aim of this paper is to show how decision-theoretic planning can
be adapted to account for this form of sensing. The starting point for
our investigations is the work by Grosskreutz and Lakemeyer [5],
who integrated passive sensing into Golog. The idea is, roughly,
that when reasoning about a program (e.g. projecting its outcome)
one uses models of how fluents like the robot’s position change. (To
model the movement of a robot they use simple linear functions of
time to approximate the robot’s trajectories.) During actual execution
these models are replaced by passive sensing actions which are rep-
resented as so-called exogenous actions, which periodically update
fluents like the position of the robot and which are inserted by the
interpreter of the program.

Assuming we have appropriate models of how the relevant fluents
change during deliberation, could we then simply adopt Soutchan-
ski’s approach or even the original DTGolog if we ignore active sens-
ing? The answer, in short, is No. What is missing in both cases is that,
after a policy has been computed, its execution must be carefully
monitored. This is because the model of the world used during de-
liberation is only a rough approximation of the real world and things
may very well turn out differently and may even result in aborting
the current policy. For example, when a driver initiates passing a car
and another vehicle suddenly appears speeding from behind, it may
be advisable to let the other car pass first. Monitoring then means to
compare assumptions made by the model of the world (such as com-



puted agent trajectories) with the actual values obtained by sensing
during execution. As we will see, this can be achieved by annotating
the policy with appropriate information.

Given that we are motivated by robots operating in highly dy-
namic and unpredictable domains, deliberation and decision making
should happen quickly, preferably in less than a second. For arbi-
trary Golog programs this clearly cannot be guaranteed.3 Here we
are concerned with control programs for robots that operate contin-
uously over longer periods of time. In such scenarios it makes little
sense to find optimal policies for the robot’s actions from start to fin-
ish, since it is impossible to predict what the world will be like after
even a few seconds. Instead one is content to peek into the future to
plan perhaps only a handful of actions with highest utility, like pass-
ing another car. As we will demonstrate at the end of the paper, under
these assumptions, efficient decision-theoretic planning is achievable
and can lead to overall good performance.

Since an application like an automatic taxi driver is currently
still out of reach, we have chosen robotic soccer, in particular, the
ROBOCUP MIDDLE SIZE LEAGUE as a benchmark. While the en-
vironment is still fairly controlled (a fixed playing field with four
mobile robots on each team), game situations are nevertheless chal-
lenging due to their dynamics and unpredictability. To keep things
simple, we only consider the case of passive sensors, that is, Golog
programs as supplied by a user do not contain explicit sensing ac-
tions.

In related work, Poole [11] incorporates a form of decision-
theoretic planning into his independent choice logic. While he also
distinguishes passive from active sensing, he does not consider the
issue of on-line DT planning. Other action logics addressing uncer-
tainty include [14], where abduction is the focus, and [6], which ad-
dresses symbolic dynamic programming and which itself is based
on [1]. Finally, [7] also discuss ways of replacing sensing by models
of the environment during deliberation.

The rest of the paper is organized as follows. First, we give a brief
overview of DTGolog and its underlying semantics. Then we sketch
out our approach to on-line decision-theoretic planning, followed by
a discussion of applying decision-theoretic to ROBOCUP’s MIDDLE

SIZE LEAGUE and some concluding remarks.

2 The Situation Calculus and DTGolog

2.1 The Situation Calculus

Golog is based on Reiter’s variant of the Situation Calculus [13, 10],
a second-order language for reasoning about actions and their ef-
fects. Changes in the world are only due to actions so that a situation
is completely described by the history of actions since the initial sit-
uation S0. Properties of the world are described by fluents, which are
predicates and functions with a situation term as their last argument.
For each fluent the user defines a successor state axiom describing
precisely when a fluent value changes or does not change after per-
forming an action. These, together with precondition axioms for each
action, axioms for the initial situation, and foundational axioms as
well as unique names and domain closure assumption, form a so-
called basic action theory [13].

2.2 Off-line DTGolog

DTGolog uses basic action theories to give meaning to primitive
actions and it inherits Golog’s programming constructs such as se-

3 In the coffee-delivery example in [2], the robot needed several seconds or
even minutes to find a policy.

quence, if-then-else, while-loops, and procedures, as well as non-
deterministic actions. From MDPs DTGolog borrows the notion of
reward, which is a real number assigned to situations indicating the
desirability of reaching that situation, and stochastic actions. To see
what is behind the latter, consider the action of intercepting a ball
in robotic soccer. Such an action routinely fails and we assign a low
probability (0.2) to its success. To model this in DTGolog, we define
a stochastic action intercept . It is associated with two non-stochastic
or deterministic actions interceptS and interceptF for a successful
and failed intercept, respectively. Instead of executing intercept di-
rectly, nature chooses to execute interceptS with probability 0.2 and
interceptF with probability 0.8. The effect of interceptS can be as
simple as setting the robot’s position to the position of the ball. The
effect of interceptF can be to teleport the ball to some arbitrary other
position and setting the robot’s position to the old ball position.4

While the original Golog merely looks for any sequence of primi-
tive actions that corresponds to a successful execution of a program,
DTGolog takes a program and converts it into another simplified pro-
gram, called a policy, which is a tree of conditional actions. This pol-
icy, roughly, follows the advice of the original program in case of
deterministic actions and settles on those choices among nondeter-
ministic actions which maximize expected utility. The search for the
right choices is very similar to the search for an optimal policy in an
MDP. One advantage of using Golog compared to a regular MDP is
that the search can be arbitrarily constrained by restricting the num-
ber of nondeterministic actions.

DTGolog is defined in terms of a macro BestDo(p, s, h, π, v, pr),
which ultimately translates into a situation calculus expression.
Given a program p and a starting situation s, BestDo computes a
policy π with expected utility v and probability pr for a successful
execution. h denotes a finite horizon, which provides a bound on the
maximal depth of any branch in the policy. For space reasons we
only consider the definition of BestDo for nondeterministic choice
and stochastic actions. (See [2] for more details.)

Suppose a program starts with a nondeterministic choice between
two programs p1 and p2, written as (p1|p2). Then

BestDo((p1|p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1
.BestDo(p1; p, s, h, π1, v1, pr1

) ∧

∃π2, v2, pr2
.BestDo(p2; p, s, h, π2, v2, pr2

) ∧

((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr
1
∧ v = v1) ∨

(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr
2
∧ v = v2)

Here BestDo commits the policy to the best choice among the
two alternatives, where “best” is defined in terms of a multi-objective
optimization of expected value and success probability. See [2] for an
example of how (vi, pi) ≥ (vj , pj) can be defined.

Now suppose that a is a stochastic action with nature’s choices
n1, n2, . . . , nk.

BestDo(a; p, s, h, π, v, pr)
def
=

∃π
′

.BestDoAux ({n1, . . . , nk}, p, s, h, π
′

, v, pr)

π = a; senseEffect(a); π′

.

Here the policy is a; senseEffect(a); π′ where π′ is computed
by BestDoAux below. The action senseEffect(a) is inserted in
order to maintain the MDP assumption of full observability. Its job

4 While this model is certainly simplistic, it suffices in most real game situ-
ations, since all that matters is that the ball is not in the robot’s possession
after a failed intercept.



is to make sure that after performing a the robot gathers enough
information to distinguish between the outcomes ni. In the case of
intercept , the sensing would involve finding out whether the robot
has the ball denoted by the fluent haveBall(s).

BestDoAux ({n1, . . . , nk}, p, s, h, π, v, pr)
def
=

¬Poss(n1, s) ∧ BestDoAux ({n2, . . . , nk}, p, s, h, π, v, pr) ∨
Poss(n1, s) ∧
∃π′, v′, pr ′.BestDoAux ({n2, . . . , nk}, p, s, h, π′, v′, pr ′) ∧
∃π1, v1, pr1

.BestDo(n1, do(n1, s), h − 1, π1, v1, pr1
) ∧

π = if (ϕ1, π1, π
′) ∧

v = v′ + v1 · prob(n1, s) ∧
pr = pr ′ + pr

1
· prob(n1, s)

BestDoAux ({}, p, s, h, π, v, pr)
def
= π = Stop ∧ v = 0 ∧ pr = 0

Note that BestDoAux produces a policy of the form
if (ϕ1, π1, if (ϕ2, π1, . . .)) accounting for all outcomes of nature’s
choices. The ϕi are user-defined tests which allow the robot to dis-
tinguish between them. In our intercept example, these could be
haveBall(s) for interceptS and ¬haveBall(s) for interceptF . A
policy contains Stop if in the respective branch no further actions
can be executed, i.e. an action was not possible.

2.3 On-line DTGolog

The original version of DTGolog, which we just described, operates
in an off-line modus, that is, it first computes a policy for the whole
program and only then initiates execution. As was observed already
in [4], this is not practical for large programs and certainly not for
applications with tight real-time constraints such as ROBOCUP. In
the extreme one would only want to reason about the next action
of a program, execute it and then continue with the rest of the pro-
gram. This is the basic idea of an on-line interpretation of a Golog
program [4]. To make this work, a so-called transition semantics is
needed, which takes a configuration consisting of a program and a
situation and turns it into another configuration. Formally, one in-
troduces a predicate Trans(δ, s, δ′, s′), which first appeared in [3],
expressing a possible transition of program δ in situation s to the
program δ′ leading to situation s′ by performing an action. For space
reasons we only consider the case of while-loops.

Trans(while(ϕ, p), s, δ′

, s
′) ≡

∃δ
′′

.Trans(p, s, δ
′′

, s
′) ∧ ϕ[s] ∧ δ

′ = δ
′′;while(ϕ, p)5

Given such definitions for all constructs, the execution of a com-
plete program can be defined in terms of the reflexive and transitive
closure of Trans .6

A nice feature of on-line interpretation is that the step-wise exe-
cution of a program can easily be interleaved with other exogenous
actions or events, which are supplied from outside. This is how we
handle periodic sensor updates for position estimation, for example.
(See [5] for details of how this can be done in Golog.)

With the basic transition mechanism in hand, it is, in principle,
not hard to reintroduce off-line reasoning for parts of the program.
In the case of DTGolog, Soutchanski proposed for that purpose an
interleaving of off-line planning and on-line execution. We show an

5 ϕ[s] denotes the situation calculus formula obtained from ϕ by restoring
situation variable s as the suppressed situation argument for all fluent names
mentioned in ϕ. Also note that free variables are universally quantified in
the following formulas.

6 One also needs the notion of a final configuration, an issue we ignore here
for simplicity.

excerpt of his interpreter implemented in Prolog. We only consider
the case of executing deterministic and sensing actions, leaving out
stochastic actions:

online(E,S,H,Pol,U) :-
incrBestDo(E, S, ER, H, Pol1, U1, Prob1),
( final(ER, S, H, Pol1, U1), Pol=Pol1, U=U1 ;

reward(R, S), Pol1 = (A : Rest),
%% deterministic action

( agentAction(A), doReally(A), !,
online(ER, do(A,S), H, PolFut, UFut),
Pol = (A : PolFut), U is R + UFut ;
%% sensing action
senseAction(A), doReally(A), !,
online(ER, do(A,S), H, PolFut, UFut),
Pol=(A: PolFut), U is R + UFut ;
...

)
).

Roughly, the interpreter online calculates a policy π for a
given program e up to a given horizon h, executes its first action
(doReally(a)) and recursively calls the interpreter with the remain-
ing program again.

To control the search while optimizing Soutchanski proposes an
operator optimize defined by the following macro:

IncrBestDo(optimize(p1); p2, s, pr, h, π, u, pr)
def
=

∃p
′

.IncrBestDo(p1; Nil, s, p
′

, h, π, u, pr) ∧

(p′ 6= Nil ∧ pr = (optimize(p′); p2) ∨

p
′ = Nil ∧ pr = p2).

This has the effect that p1 is optimized and the resulting policy
is executed before p2 is even considered. As mentioned already in
the introduction, one advantage is that a user can deal with explicit
(active) sensing actions by restricting optimize to never go beyond
the next sensing action.

Nevertheless the approach has a number of shortcomings. First
note that, in the definition of the interpreter online, after executing
only one action of a computed policy, the optimizer is called again.
This means that large parts of the program are re-optimized over and
over again, which is computationally too expensive for real-time de-
cision making. Also note that it is only checked during the optimiza-
tion phase whether an action is executable. Hence the interpreter ig-
nores the possibility that an action, which was possible at planning
time, becomes impossible to execute due to changes in the environ-
ment.

While there are easy fixes to these drawbacks, the funda-
mental problem of this approach is that it is not possible to
do optimization ahead of sensing actions. Consider the program
p1; sense(ϕ); if ϕ then p2 else p3. The condition must be eval-
uated before one is able to decide whether to execute p2 or p3, i.e.
the sensing action must be executed online to evaluate the value of ϕ.
The forementioned operator optimize allows for limiting the search
for an optimal policy for that case. Using optimze the program can
be rewritten as optimize(p1); (sense(ϕ)); if ϕ then p2 else p3.
This program instructs the interpreter to first optimize p1 without re-
garding the rest of the program. Then, the sensing action is executed
to get the needed value from the environment. Afterwards, the con-
ditional can be optimized and executed, resp.

In real-time domains sensor updates arrive with high frequency.
The proposed active sensing in Soutchanski’s interpreter is not feasi-
ble as is renders the applicability of the decision-theoretic planning
approach impossible.

We propose a different kind of online interpreting decision-
theoretic plans in Golog which is feasible for real-time domains. Our
approach differs mainly in that we use passive sensing instead of the
active sensing proposed by Soutchanski. We therefore do not have



any restrictions with sensing actions. Instead we use models of the
world in the planning phase. To be able to validate if the model as-
sumptions hold while executing a plan we annotate the policies in a
special way desribed in Section 3.1. In Section 3.2 we show how an-
notated policies are executed and how invalid policies are detected.
We deployed our approach in the RoboCup domain and show some
of the results in Section 4.

3 On-line DTGolog for Passive Sensing

As the re-optimization of a remaining program is generally not fea-
sible in real-time environments, our first modification of on-line DT-
Golog is to make sure that the whole policy and not just the first
action is executed. For this purpose we introduce the following oper-
ator solve(p, h) for a program p and a fixed horizon h.

Trans(solve(p, h), s, δ′

, s
′) ≡

∃π, v, pr .BestDo(p, s, h, π, v, pr)

∧ δ
′ = applyPol(π) ∧ s

′ = s.

The predicate BestDo first calculates the policy for the whole pro-
gram p. For now the reader may assume the definition of the previous
section, but we will see below that it needs to be modified. This pol-
icy is then scheduled for execution as the remaining program. How-
ever, as discussed in the introduction, the policy is generated using an
abstract model of the world to avoid sensing, and we need to monitor
whether π remains valid during execution. To allow for this special
treatment, we use the special construct applyPol , whose definition
is deferred until later.

3.1 Annotated Policies

In order to see why we need to modify the original definition of
BestDo and, for that matter, the one used by Soutchanski, we need
to consider, in a little more detail, the idea of using a model of the
world when planning vs. using sensor data during execution. The fol-
lowing fragment of the control program of our soccer robots might
help to illustrate the problem:

while game on do . . . ;

solve(. . . ;

if ∃x, y(ball pos(x, y) ∧ reachable(x, y))

then intercept

else . . . ; . . . , h)

endwhile

While the game is still on, the robots execute a loop where they
determine an optimal policy for the next few (typically less than
six) actions, execute the policy and then continue the loop. One of
the choices is intercepting the ball which requires that the ball is
reachable, which can be defined as a clear trajectory between the
robot and the ball. Now suppose BestDo determines that the if-
condition is true and that intercept has the highest utility. In that
case, since intercept is a stochastic action, the resulting policy π

contains . . . intercept ; senseEffect(intercept); . . .. Note, in partic-
ular, that the if-condition of the original program is not part of the
policy. And this is where the problem lies. For during execution of
the policy it may well be the case that the ball is no longer reach-
able because an opponent is blocking the way. In that case intercept

will fail and it makes sense to abort the policy and start planning for
the next moves. For that, the if-condition should be re-evaluated us-
ing the most up-to-date information about the world provided by the
sensors and compared to the old value. Hence we need to make sure
that the if-condition and the old truth value are remembered in the
policy.

In general, this means we need to modify the definition of BestDo

for those cases involving the evaluation of logical formulas. Here we
consider if-then-else and test actions. While-loops are treated in a
similar way.

BestDo(if (ϕ, p1, p2); p,s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, pr) ∧

π = M(ϕ, true); π1 ∨

¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧

π = M(ϕ, false); π2

The only difference compared to the original BestDo is that we
prefix the generated policy with a marker M(ϕ, true) in case the ϕ

turned out to be true in s and M(ϕ, false) if it is false. The treat-
ment of a test action ?(ϕ) is even simpler, since only the case where
ϕ is true matters. If ϕ is false, the current branch of the policy is
terminated, which is indicated by the Stop action.

BestDo(?(ϕ); p, s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π
′

.BestDo(p, s, h, π
′

, v, pr) ∧

π = M(ϕ, true); π′ ∨

¬ϕ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

In the next subsection, we will see how our annotations will allow
us to check at execution time whether the truth value of conditions in
the program at planning time are still the same and what to do about
it when they are not. Before that, however, it should be mentioned
that explicit tests are not the only reason for a possible mismatch be-
tween planning and execution. To see that note that when a primitive
action is entered into a policy, its executability has been determined
by BestDo. Of course, it could happen that the same action is no
longer possible at execution time. It turns out that this case can be
handled without any special annotation.

3.2 Execution and Monitoring

Now that we have modified BestDo so that we can discover
problems at execution time, all that is left to do is to define
the actual execution of a policy. Given our initial definition of
Trans(solve(p, h), s, δ′, s′), this means that we need to define
Trans for the different cases of applyPol(π). To keep the defini-
tions simple, let us assume that every branch of a policy ends with
Stop or nil, where nil represents the empty program.

Trans(applyPol(Nil), s, δ′

, s
′) ≡ s = s

′ ∧ δ
′ = nil

Trans(applyPol(Stop), s, δ′

, s
′) ≡ s = s

′ ∧ δ
′ = nil

Given the fact that configurations with nil as the program are
always final, that is, execution may legally terminate, this simply
means that nothing needs to be done after Stop or nil.

In case a marker was inserted into the policy we have to check
the test performed at planning time still yields the same result. If this
is the case we are happy and continue executing the policy, that is,
applyPol remains in effect in the successor configuration. But what
should we do if the test turns out different? We have chosen to simply



abort the policy, that is, the successor configuration has nil as its pro-
gram. While this may seem simplistic, it seems the right approach for
applications like ROBOCUP. For consider the case of an intercept. If
we find out that the path is blocked, the intercept will likely fail and
all subsequent actions in the policy become meaningless. Moreover,
a quick abort will enable immediate replanning according to the con-
trol program, which is not a bad idea under the circumstances.

Trans(applyPol(M(ϕ, v); π), s, δ′

, s
′) ≡ s = s

′∧

(v = true ∧ ϕ[s] ∧ δ
′ = applyPol(π) ∨

v = false ∧ ¬ϕ[s] ∧ δ
′ = applyPol(π) ∨

v = true ∧ ¬ϕ[s] ∧ δ
′ = nil ∨

v = false ∧ ϕ[s] ∧ δ
′ = nil)

If the next construct in the policy is a primitive action other than
a stochastic action or a senseEffect , then we execute the action and
continue executing the rest of the policy. As discussed above, due to
changes in the world it may be the case that a has become impossible
to execute. In this case we again abort the rest of the policy with the
successor configuration 〈nil, s〉.

Trans(applyPol(a; π), s, δ′

, s
′) ≡

∃δ
′′

.Trans(a; π, s, δ
′′

, s
′) ∧ δ

′ = applyPol(δ′′) ∨

¬Poss(a[s], s) ∧ δ
′ = nil ∧ s

′ = s

If a is a stochastic action, we obtain

Trans(applyPol(a; senseEffect(a); π), s, δ′

, s
′) ≡

∃δ
′′

.Trans(senseEffect(a); π, s, δ
′′

, s
′) ∧

δ
′ = applyPol(δ′′))

Note the subtlety that a is ignored by Trans . This has to do with
the fact that stochastic actions have no direct effects according to
the way they are modeled in DTGolog. Instead one needs to per-
form senseEffect to find out about the actual effects. Of course, even
though Trans ignores a, care must be taken by the implementation
that it is executed in the real world.7 As in the original DTGolog we
also assume that senseEffect actions are always executable.

Finally, if we encounter an if -construct, which was inserted into
the policy due to a stochastic action, we determine which branch of
the policy to choose and go on with the execution of that branch.

Trans(applyPol(if (ϕ, π1, π2)), s, δ
′

, s
′) ≡

ϕ[s] ∧ Trans(applyPol(π1), s, δ
′

, s
′) ∨

¬ϕ[s] ∧ Trans(applyPol(π2), s, δ
′

, s
′)

We end this section with a few notes about the implementation of
our on-line decision-theoretic interpreter called Readylog.8

We begin with a (very) rough sketch of the main loop of the inter-
preter.

/******** Interpreter mainloop ******/
/* (1)- exogenous action occured */
icpgo(E,H) :- exog_occurs(Act,H), exog_action(Act),!,

icpgo(E,[Act|H]).

/* (2) - performing a step in program execution */
icpgo(E,H) :- trans(E,H,E1,H1),icpxeq(H,H1,H2),!,

icpgo(E1,H2).

/* (3) - program is final -> execution finished */
icpgo(E,H) :- final(E,H).

7 This can be done similar to Soutchanski’s interpreter by inserting an ap-
propriate doReally(a) literal (see Section 2.3 or icpxeq in our case (see
above)).

8 Readylog stands for “real-time dynamic Golog.”

solve(nondet(
[kick(ownNumber, 40),
dribble_or_move_kick(ownNumber),
dribble_to_points(ownNumber),

5 if(isKickable(ownNumber),
pickBest(var_turnAngle, [-3.1, -2.3, 2.3, 3.1],
[turn_relative(ownNumber, var_turnAngle, 2),
nondet([[intercept_ball(ownNumber, 1),

dribble_or_move_kick(ownNumber)],
10 [intercept_ball(no_ByRole(supporter), 1),

dribble_or_move_kick(no_ByRole(supp.))]])]),
nondet([[intercept_ball(ownNumber, 1),

dribble_or_move_kick(ownNumber)],
intercept_ball(ownNumber, 0.0, 1)]) ) ]), 4)

Figure 1. The bestInterceptor program performed by an offensive player.
Here, nondet(Σ) denotes the nondeterministic choice of actions.

/* (4) - waiting for an exogenous action to happen */
icpgo(E,H) :- wait_for_exog_occurs, !, icpgo(E,H).

/******** Executing actions ******/
/* (1) - No action was performed so

we don’t execute anything */
icpxeq(H,H,H).

/* (2) - The action is not a sensing one:
exec. and ignore its sensing */

icpxeq(H,[Act|H],H1) :- not senses(Act,_),
execute(Act,_,H), H1=[Act|H]).

/* (3) - The action is a sensing one for F:
execute sensing action*/

icpxeq(H,[Act|H],H1):-senses(Act,F),
execute(Act,Sr,H),H1=[e(F,Sr),Act|H].

First, it checks whether an exogenous event occurred and if so
inserts it into the history. Next, it is checked if a transition to a new
configuration can be made executing the next possible action. If there
is no successor configuration reachable a test for a final configuration
is conducted. In case (4) where none of the previous cases apply the
interpreter waits until some exogenous event occurs, e.g. the robot
has reaches a certain position.

For the execution the predicate icpxeq exists checking whether the
action to be executed is a sensing action or not. This is very similar to
Soutchanski’s doReally . Note that we still allow for passive sensing
actions we only avoid them during plan generation.

We put a lot of effort into tuning the perfomance of the interpreter.
One major speed-up was achieved by integrating a progression mech-
anism for the internal database in the spirit of Lin and Reiter [9] (step
5 in the loop). For space reasons we leave out all details except to say
that this is indispensable for maintaining tractability because the ac-
tion history would otherwise grow beyond control very quickly.

Additional speed-ups were obtained by using a Readylog prepro-
cessor. It takes a complete domain axiomatization as input and gen-
erates optimized Prolog code, i.e. run-time invariants like static con-
ditions are evaluated at compile-time to save the time of evaluating
them many times at run-time.

4 Empirical Results in RoboCup

We used the described version of Readylog for our ROBOCUP MID-
DLE SIZE robot team at the world championships 2003 in Padua,
Italy, and at the German Open 2004 in Paderborn. In this Section
we show some details of the implementation of our soccer agent
and present some results of the use of decision-theoretic planning
in Golog in the soccer domain.

Among the basic actions we used the most important
were goto pos(x, y, θ), turn(θ), dribble to(x, y, θ), intercept ,
kick(power), and move and kick(x, y, θ).

While the goalie was controlled without Readylog in order to
maintain the highest possible level of reactivity, all other players of
our team had an individual Readylog procedure for playing. We as-
signed fixed roles to the three field players: defender, supporter, and



ball behavior when turning with ball

move_kick/dribble

move/dribble/intercept

Figure 2. The set of alternatives for the attacker when it is in ball
possession. The red boxes denote opponents, the black ones are teammates.

Everything else are field markings.

attacker. Only the best positioned player to the ball started to deliber-
ate, i.e. solved the MDP given by the program in Fig. 1, otherwise it
performed a program according to its role like defending the team’s
goal.

The set of alternatives made up from the bestInterceptor program
is best described by Figure 2. In line 3 of Fig. 1 the choice is between
a dribbling to the free goal corner or to dribble thereto but finishing
the action with a shot as soon as the goal is straight ahead. In line 6
the agent decides among four angles to turn to in order to push the
ball to either side where it can be intercepted by a teammate, using
the pickBest construct.

Figure 3 shows an example decision tree made up from this pro-
gram. For readability we pruned some similar branches. The root
node stands for the situation were the agent switched to off-line
mode, i.e., the current situation. The boxes symbolize agent choices,
i.e. the agent can decide which of the alternatives to take. The circles
are nature’s choices, denoting the possible outcomes of stochastic ac-
tions. Numbers of outgoing edges in these nodes are the probabilities
for the possible outcomes. The numbers in the boxes are the rewards
for the corresponding situation. The actually best policy in the situa-
tion of the example is marked by a thick line.

natures choices

agent choices
   move_kick

kick

turn

intercept(me)

intercept(TM)

move_kick

move_kick

0.8

0.2

0.8

0.2

10000

10000

 4169

 4169

costs: −70

costs: −70

costs: −70

costs: −70

 4169

 4169

 4169

costs: −12

costs: −7

 4557

4776

4623

Figure 3. A (pruned) example decision tree for the bestInterceptor
program.

Indispensable for a successful acting agent using decision-
theoretic planning is a reasonable reward function. For this scenario,
however, we used a rather primitive reward function based solely on
the velocity, relative position and distance of the ball towards the op-
ponents goal. In future work this could be refined for improving the
overall play.

Naturally, the time a player spent deliberating depended highly on
the number of alternatives that were possible. In this respect, whether
or not the ball was kickable made the most difference (all times in
seconds):

examples min avg max
without ball 698 < 0.01 0.094 0.450

with ball 117 0.170 0.536 2.110

The hardware used was an on-board Pentium III-933.

With the described decision making method we shot 13 goals at
the world championships and scratched the final round by one goal.
In the end we placed 10th out of 24 and ended 5th (or 7th depending
on ranking algorithm) out of 13.

5 Conclusion

In this paper, we proposed a novel method of on-line decision-
theoretic planning and execution in Golog, which is particularly
suited for robotic applications with frequent sensor updates like mea-
suring one’s own position and that of other agents and objects. We
overcame the problem of Soutchanski’s approach, which cannot plan
past the next sensing action, by eliminating explicit sensor updates of
the above kind from a robot control program altogether and replac-
ing them instead with models that allow the approximate calculation
of otherwise sensed values during planning. However, this also re-
quired annotating policies with information about the models so that
discrepancies with the real world could be detected while executing
the policy. Our approach was applied in the ROBOCUP domain with
encouraging results.

One weakness of the current implementation is that rewards are
assigned manually in a rather ad-hoc manner. In the future we hope
to employ learning methods to improve the overall performance.
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