
Proceedings of the Fourth International Cognitive Robotics

Workshop

Valencia, Spain
August 23-24, 2004

Editors:

Patrick Doherty, Linköping University, Sweden (Chair)
Gerhard Lakemeyer, Aachen University of Technology, Germany (Co-Chair)
Angel P. del Pobil, Universidad Jaume-I, Spain (Co-Chair)

1

*

Preface

This is the fourth in a series of workshops dedicated to the topic of cognitive robotics. The workshop
series began in 1998 as part of the AAAI Fall symposium series, continued in Berlin in 2000 where
it was co-located with ECAI 2000, and crossed the ocean again in 2002 where it took place in
Edmonton, Canada and was co-located with AAAI 2002. This year, we are back in Europe again
and the workshop is co-located with ECAI 2004.

Cognitive robotics is concerned with endowing robots and software agents with higher level cognitive
functions that enable them to reason, act and perceive in changing, incompletely known, and
unpredictable environments. Such robots must, for example, be able to reason about goals, actions,
when to perceive and what to look for, the cognitive states of other agents, time, collaborative task
execution, etc. In short, cognitive robotics is concerned with integrating reasoning, perception and
action with a uniform theoretical and implementation framework.

Traditionally, research in cognitive robotics has emphasized logical formalism as the main represen-
tational and reasoning tool and previous workshops have focused specifically on these approaches.
We are now seeing more attempts at integrating results from the area with physical robotic systems.
Due to this trend, we feel that it is beneficial to the workshop participants and the community
at large to widen the scope of the workshop somewhat, not only in the call for papers but also in
inviting participants from the robotics and cognitive science communities to serve on the program
committee and participate in this years workshop. We hope this is a trend that will continue in
future workshops.

36 papers were submitted and 15 were accepted for presentation. We would like to take this occasion
to thank both the authors who have submitted papers and also the program committee for their
help with ideas and with reviewing.

Patrick Doherty, Linköping University, Sweden (Chair)
Gerhard Lakemeyer, Aachen University of Technology, Germany (Co-Chair)
Angel P. del Pobil, Universidad Jaume-I, Spain (Co-Chair)

1

*

Program Committee

Chitta Baral, Arizona State University, USA
Michael Beetz, Munich University of Technology, Germany
Henrik Christensen, Royal Inst. of Technology, Sweden
Patrick Doherty, Linkping University, Sweden
Malik Ghallab, LAAS-CNRS, Toulouse, France
Joachim Hertzberg, Fraunhofer Institute, AIS, Germany
Gerhard Lakemeyer, RWTH Aachen, Germany
Sheila McIlraith, University of Toronto, Canada
John-Jules Meyer, Utrecht University, Netherlands
Nicola Muscettola, NASA Ames Research Center, USA
Bernard Nebel, Albert-Ludwigs-Universitaet Freiburg, Germany
Maurice Pagnucco, University of New South Wales, Australia
Fiora Pirri, Universita di Roma ”La Sapienza”, Italy
Angel P. del Pobil, Jaume I University, Spain
Alessandro Saffiotti, rebro University, Sweden
Erik Sandewall, Linkping University, Sweden
Alan C. Schultz, Naval Research Laboratory, Wash. DC, USA
Murray Shanahan, Imperial College, UK
Michael Thielscher, Dresden University of Technology, Germany
Brian Williams, CSAIL, MIT, USA

*

Table of Contents

• Paper Session I (pp. 9-30)

– Specifying Failure and Progress Conditions in a Behavior-Based Robot Pro-
gramming System, F. Kabanza, K. B. Lamine

– Robel: Synthesizing and Controlling Complex Robust Robot Behaviors, B.
Morisset, G. Infante, M. Ghallab, F. Ingrand

– Patterns in Reactive Programs, P. Haslum

• Paper Session II (pp. 31-53)

– Decision Theoretic Planning for Playing Table Soccer, M. Tacke, T. Weigel, B.
Nebel

– On-line Decision Theoretic Golog for Unpredictable Domains, A. Ferrein, C.
Fritz, G. Lakemeyer

– Learning Partially Observable Action Models, E. Amir

• Paper Session III (pp. 54-85)

– Building Polygonal Maps from Laser Range Data, J. Latecki, R. Lakaemper, X.
Sun, D. Wolter

– Hierarchical Voronoi-based Route Graph Representations for Planning, Spa-
tial Reasoning and Communication, J. O. Wallgrün

– Schematized Maps for Robot Guidance, D. Wolter, K-F Richter

– How can I, robot, pick up that object with my hand, A. Morales, P.J. Sanz, A.P.
del Pobil

• Paper Session IV (pp.86-107)

– On Ability to Automatically Execute Agent Programs with Sensing, S. Sar-
dina, G. DeGiacomo, Y. Lesperance, H. Levesque

– Have Another Look: On Failures and Recovery in Perceptual Anchoring, M.
Broxvall, S. Coradeschi, L. Karlsson, A. Saffiotti

– Flexible Interval Planning in Concurrent Temporal Golog, A. Finzi, F. Pirrri

• Paper Session V (pp. 108-129)

– Imitation and Social Learning for Synthetic Characters, D. Buchsbaum, B.
Blumberg, C. Breazeaal

– On Reasoning and Planning in Real-Time: An LDS-Based Approach, M.
Asker, J. Malec

– Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus, F.
Dylla, R. Moratz

*

Paper Session I

August 23, 9:00 - 10:30

• Specifying Failure and Progress Conditions in a Behavior-Based Robot Program-
ming System, F. Kabanza, K. B. Lamine

• Robel: Synthesizing and Controlling Complex Robust Robot Behaviors, B. Moris-
set, G. Infante, M. Ghallab, F. Ingrand

• Patterns in Reactive Programs, P. Haslum

1

Cognitive Robotics Workshop 2004 9

*

Cognitive Robotics Workshop 2004 10

Specifying Failure and Progress Conditions in a
Behavior-Based Robot Programming System

(Extended Abstract)

Froduald Kabanza and Khaled Ben Lamine
University of Sherbrooke

Sherbrooke, Quebec, J1K 2R1 Canada
{Kabanza, Khaled.Ben.Lamine}@usherbrooke.ca

Abstract. Behavior-based robot programs are designed
by splitting the overall robot decision making process
among concurrent processes, each of them being in
charge of a well defined simple goal-oriented behavior.
However, the combination of simple behaviors into more
complex ones often incur global interactions that cannot
be debugged by just considering individual behaviors.
The normal way of dealing with global interactions that
may cause failure in the robot execution is to program
additional heuristic processes that monitor behaviors to
check that they progress normally towards their intended
goals. In this paper, we explain how Linear Temporal
Logic (LTL) can be used as a declarative language for
specifying an interesting class of such monitoring
processes. This simplifies the task of writing robot
control programs, increases the design modularity by
clearly separating the control components from the
monitoring ones, and augments the reliability of control
programs thanks to a precise and clear LTL semantics.

1 INTRODUCTION
Behavior-based robot programming systems follow the
principle that the overall robot decision making process
should be split among several concurrent processes, each of
them being in charge of a well defined simple goal-oriented
behavior; it is then the combination of theses processes that
achieves more complex task-oriented behaviors [1, 7, 10, 15].
An interesting feature that explains in part the increasing
popularity of this approach is undoubtedly the modularity of
robot programs that are designed along this principle; one
designs a program that controls one behavior, without having
to get into details of interacting behaviors that control the
other robot aspects. For instance, one can program a goto
behavior that combines with obstacle-avoidance behaviors to
make a robot go to a desired destination, yet without getting
involved into the code of obstacle-avoidance processes.

The split of behaviors among many concurrent processes
introduces, however, all the known hurdles of concurrent
processes. Individual behaviors that are tested or proven to
work correctly by assuming local conditions may no longer
work perfectly when combined with other behaviors. In fact,
most complex tasks require heuristic processes that monitor
the robot behaviors to check whether they progress normally
towards their intended goals, and trigger failure-avoidance or
failure-recovery behaviors whenever necessary [3, 11, 13, 16].
However, programming such robot monitoring behaviors still
remains a difficult task, because of the complexity of process
interactions, which is often exacerbated by the intrinsic

imprecision in robot sensors, actuators and positioning devices
or the uncertainty in the robot environment.

In order to facilitate the programming of robot monitoring
processes, we are trying to develop a general framework for
specifying declarative robot monitoring conditions using
Linear Temporal Logic (LTL) [12]. We use LTL to specify
conditions that a normal, satisfactory robot execution should
satisfy; then we monitor those statements in the background of
the robot execution to notify of their violation. Processes
waiting on such notifications can then be activated to avoid
anticipated failures or to recover from them. LTL is
expressive enough to handle an interesting subset of
monitoring conditions, such as waiting until a particular
sequence of state conditions has been observed.

With this approach, the implementation of a monitoring
process will not require elaborate knowledge of the internal
program structure of the processes being monitored. This
approach also seems quite flexible, allowing the specification
of both light-weight synchronous monitoring processes as well
as more complex asynchronous ones. It is quite simply
implemented, without any explicit storage of the robot history;
instead, the relevant state features of the history are
automatically conveyed by the update of monitoring
conditions which are added to the robot internal state. These
features make our approach fit naturally with the behavior-
based architecture that we use, thus requiring little learning
effort from robot software programmers to use our approach
for coding logic-based monitoring processes.

The remainder of the paper is organized as follows. In the
next section we discuss SAPHIRA [10, 15], the robot
programming system used to implement our approach. Then,
we discuss the use of LTL to express robot monitoring
conditions; we discuss the basic algorithms that are used to
handle those formulas in robot monitoring activities, as well
as the integration of these algorithms into the SAPHIRA
architecture. We conclude with a discussion on most related
work and on future directions of this research.

2 SAPHIRA ARCHITECTURE
SAPHIRA is a programming system for mobile robots,
developed by Konolige and his team at SRI [10, 15]. It
includes libraries for controlling a mobile robot at different
levels of complexity, going from low-level (e.g., moving a
given distance, turning the wheels a given angle, or acquiring
raw sensor data) to more complex navigation behaviors (e.g.,
obstacle avoidance, map registration, path planning) and tasks
(e.g., sequencing behaviors using arbitrary C++ programs).
Figure 1 shows an abstract view of the SAPHIRA

Cognitive Robotics Workshop 2004 11

architecture. SAPHIRA processes can be synchronous or
asynchronous. They all have access to the robot state, which
consists of the state reflector (position encoder readings,
wheel orientation, sonar readings), and the environment
representations (map information, sonar interpretation data).
State information is updated automatically from robot sensors
and from SAPHIRA synchronous or asynchronous processes.

Figure 1. SAPHIRA architecture

Synchronous processes are normally used to implement
lower-level behaviors that require immediate action on the
part of the robot, such as obstacle avoidance or object
tracking; they are managed by a SAPHIRA specific scheduler.
Asynchronous processes on the other hand are normally used
to implement higher-level behaviors (e.g., a task planner
deciding on the order objects are picked and delivered by a
robot in an office delivery application); they are managed by
the host computer operating system (e.g., Linux or Windows).

The synchronous scheduler iterates through each
synchronous process every 100 milliseconds. At each cycle, it
runs each process, one at time, from the execution point where
it suspended it last time to the next suspension point; a priority
mechanism is used to resolve conflicts among processes that
simultaneously affect the same robot control parameters.

The rationale behind the 100 milliseconds cycle becomes
obvious by considering the obstacle-avoidance behavior; if we
code an avoidance strategy consisting in turning left each time
the sensor readings indicate an obstacle on the right, we would
like the time between the detection of the obstacle (one block
of instruction executed during one cycle) and the turning of
the robot wheel and change of its speed (another block of
instruction executed in the next cycle) to last at most one 100
milliseconds, so as the robot’s reaction is fast enough before it
hits the obstacle. Hence, when writing synchronous
processes, one must ensure that the code between two
suspension points is fast enough to be executed within the 100
milliseconds cycle.

Synchronous processes are programmed using either rule-
based C++ libraries, a declarative C-like language called
Colbert, or finite state machines (FSM) which are actually
internal representations of processes written using the rule-
based C++ libraries and are rarely convenient to code in
directly. Asynchronous processes are normally written in
higher-level languages (e.g., C++ or Java). In SAPHIRA
terminology, rule-based processes are called behaviors,
whereas those written using Colbert are called activities. In
this paper, we adopt a formal software engineering
terminology [13]; a behavior is a set of possible execution

sequences that a given SAPHIRA process may go through
when interacting with other processes.

3 MONITORING PROCESSES
A robot task is programmed by combining several concurrent
SAPHIRA processes. For instance, moving a robot to a goal
location can be done by combining one behavior that avoids
obstacles and one behavior that attracts the robot towards the
goal location; the obstacle avoidance behavior is often further
split into avoiding close obstacles and staying away from
remote obstacles. Adding corridor following, object-seeking,
object-grasping and object-releasing processes makes the
robot become an object delivery system. Although such a
splitting of behaviors is a purely reactive, heuristic one, in
many cases it is sufficient to move the robot fast towards its
target, while avoiding obstacles. However, in unusual obstacle
configurations, the robot can get trapped, oscillating between
the obstacle avoidance and goal-tracking behaviors.

Figure 2. Example of navigation failure

Figure 2 illustrates this situation with a U-shape obstacle
configuration. The robot is shown as a circle, with a crossing
line indicating its heading direction. The dotted curve
indicates the robot trajectory so far. Using rule-based C++
goal-reaching and obstacle avoidance processes provided with
the SAPHIRA distribution, we reproduced an experiment
made by Xu [17]. The robot starts from the indicated point on
the figure with the goal of reaching the indicated target
position. At the start, the U-shape obstacle is too far away to
have an impact on the obstacle avoidance behavior; hence the
robot moves in a straight line towards the target only under
the effect of the goal-reaching behavior. As it gets closer to
the obstacle (bottom of the U-shape), the obstacle avoidance
veers the robot to the right to avoid the obstacle (it could also
have veered left). The robot continues moving along the
bottom of the obstacle, towards the right. On point A, because
of the obstacle in front, the robot veers left (being attracted by
the goal-reaching behavior), then because of the obstacle still
on the left, abruptly veers right, making its heading direction
opposite to the target direction. There are no more obstacles
in front, and the robot becomes attracted again towards the
target, bringing it back to point C. Since it approaches the
bottom slightly inclined on its right, it will tend to veer left
this time, making a move that is a mirror to the previous one,
this time with critical point B playing the role of critical point
A. The robot keeps on oscillating this way, between points A,
C and B endlessly.

This is kind of situations is not limited to behavior-based
robots. It is actually a problem for any navigation approach
based on local decisions such potential field methods [11]. If

Cognitive Robotics Workshop 2004 12

the obstacle configurations are known, we can use path-
planning to escape from such situations. For unpredictable
obstacles (e.g., in office delivery environments people can
move freely and objects may be displaced without notice), the
robot behaviors have to be coupled with monitoring processes
to detect such U-shaped obstacle configurations in order to
activate recovery strategies.

3.1 Program-based monitoring processes
We can detect and escape from U-shape obstacles by using the
virtual target approach by Xu [17]. The idea is to monitor the
occurrence of the above A and B points in the robot behaviors
and then to temporally set a virtual escape target for the robot
(see Figure 3).

Figure 3. Virtual target approach

To experiment with this idea, we wrote a Colbert process
(i.e., more precisely a Colbert activity, named DetectUshape)
which sets a global Boolean variable (UshapeDetected) when
such points A and B have occurred over a period of time;
another Colbert process (SetVirtualTarget) waits on
UshapeDetected becoming true to change temporally the
robot target to a virtual target opposite to the current one and
to activate another Colbert process (DetectOpening), which
moves the robot along one side of the U-shape (much like a
corridor following behavior), trying to detect an opening; once
an opening is detected (point D), this is notified to
SetVirtualTarget, which restores the original target. Colbert
includes useful primitive for programming the above
processes, C-like while and if flow control instructions,
instructions for suspending and resuming processes,
instructions for acquiring process states, global variable
definitions for inter-process data sharing, and a very useful
waitFor instruction allowing a process to be suspended until a
Boolean condition becomes true.

The above solution still remains simple in many aspects
(it’s not difficult to trap the robot with a more complex
obstacle configuration), nevertheless it illustrates that even
very lower-level robot control can deal with logical patterns of
behaviors which could be abstracted over using declarative
statements.

3.2 LTL-based monitoring processes
The process DetectUshape monitors a failure condition for
robot navigation that can be declaratively expressed as
“eventually, the robot’s heading direction keeps on changing
abruptly from left to right, or from right to left, immediately
followed with the heading opposite to the target”. We want to
simplify the program by replacing the process DetectUshape
by a simple wait instruction on such a declaratively stated
condition.

This statement specifies something that should not happen
in a normal execution; it’s a failure condition. We can also
express this from a perspective of something that should be
maintained true in a normal behavior: “the robot’s heading
direction is never continually changing abruptly from left to
right, or from right to left, immediately followed with the
heading opposite to the target”; this is a progress condition.
Failure conditions and progress conditions are dual, but it’s
nice to have both of them in a tool for monitoring behaviors,
since some execution properties are better captured as failures
while others are better expressed as progress conditions.

By integrating declarative failure and progress conditions
as Colbert and C++ primitives, we can use them to code
succinct monitoring processes, to develop prototypes using
them in a development phase and later replace them by
Colbert or C/C++ code, or to test the correctness or
performance of a robot. For instance, we can simulate a robot
control program on randomly generated object delivery
requests using a statement like “always when a delivery
request is received, it is fulfilled within 20 seconds”. We can
also express things like “when grasping and delivering object,
the robot should wait until an object is visible for five
consecutive SAPHIRA cycles, before approaching it;” or “the
robot must wait in the corridor until door to room B is
opened.”

3.2.1 Specifying LTL conditions
The execution of a robot process produces a sequence of robot
states. We can thus express failure and progress conditions as
declarative statements over sequences of robot states. In
Colbert and C/C++ processes, we can already write conditions
relevant to just one state using Boolean expressions (in
Colbert they have the same syntax as in C/C++). Normal
Colbert or C++ Boolean expressions form the basic case for
LTL conditions, called state conditions. For instance, if x is an
integer declared in Colbert, then (x== 1||x==2) is an LTL
condition. All Boolean variables are also LTL conditions.

LTL conditions are expressed from the perspective of the
current robot state. A state condition is true at a current point
of execution if the corresponding Boolean expression
evaluates to true. Backward conditions express properties with
respect to the execution history of the current state, whereas
forward conditions express properties with respect to what
will happen from the current state.

A backward condition is a condition involving the logical
operators L (last), S (since), P (previous) and G (all the time)
to refer to the history states. The syntax and intuitive
semantics are quite simple. If c is a state condition or a
backward condition, then (L c) is a backward condition,
which is true in the current state if c is true in the preceding
state. If c and d are state conditions or backward conditions,
then (c S d) is a backward condition, which is true in the
current state if c has been true in each previous state since
when d was true. If c is a state condition or a backward
condition, then (P c) is a backward condition, which is true in
the current state if c is true in some previous state. If c is a
state condition or a backward condition, then (G c) is a
backward condition, which is true in the current state if c is
true in all previous states. Finally, backward conditions can be
combined using the usual Boolean operators II (or), !
(negation) and && (and). The operator L is only used in
synchronous processes; by preceding state, it then means the
state available at the preceding SAPHIRA cycle. For

Cognitive Robotics Workshop 2004 13

asynchronous processes, SAPHIRA states are sampled at
arbitrary periods.

Conditions can be nested arbitrary, making the resulting
semantics a recursive one, with a double basic case on state
conditions and on the start state of the execution. This gives us
a quite powerful language for expressing behavior properties.
For example, we can express the abrupt direction change in
the U-shape obstacle failure by using the condition

(P (targetRealLeft && (L targetRealRight))) ||
(P (targetRealRight && (L targetRealLeftt))),

where targetRealLeft and targetRealRight are Boolean
conditions over the robot current position and the target,
expressing respectively that, the target is on the rear left of the
robot, or on the real right; thus the disjunct (P (targetRealLeft
&& (L targetRealRight)) expresses that there is a previous
state in which the target was on the rear left and on the rear
right in the state just before.

A forward condition is a condition involving the logical
operators N (Next), U (until), E (eventually) and A (always)
to refer to the history states. The syntax and intuitive
semantics are also simple. If c is a state condition or a forward
condition, then (N c) is a forward condition, which is true in
the current state if c is true in the next state. If c and d are
state conditions or forward conditions, then (c U d) is a
forward condition, which is true in the current state if c true in
all forward states preceding the first state, if any, where d is
true. If c is a state condition or a forward condition, then (F c)
is a forward condition, which is true in the current state if c is
true in some future state. If c is a state condition or a forward
condition, then (A c) is a forward condition, which is true in
the current state if c is true in all future states. Forward
conditions can also be combined using the usual Boolean
operators. The operator N is only used in synchronous
processes; by next state, it then means the state available at
the next SAPHIRA cycle.

Forward conditions are like mirror conditions to backward
conditions with respect to the current state. In fact, in our
case, any property expressed as a backward condition can also
be expressed as a forward condition and vice-versa.1 The
previous U-shape example can be expressed forwardly as

(F (targetRealRight && (N targetRealLeft))) ||
(F (targetRealLeft && (N targetRealRight))).

Even though backward conditions and forward conditions

have the same expressive power, it is useful to have them both
because some behavior properties are better specified by
telling what should happen or not happen for any future
execution sequence seen from the start state (i.e., the current
state in interpreting the condition), whereas other properties
are better expressed by stating what bad sequence of states
must have occurred in the past, before concluding in a failure
or normal progress in the current state.

1 This equivalence holds because for (F c), c is not required to
eventually become true (what is required is that if this ever happens,
then we must be able to detect it); similarly, in (c U d), d is not
required to hold eventually. Without these conditions, forward
conditions are slightly more expressive than backward conditions.

3.2.2 Progressing conditions
The above example and the intuitive semantics of this
language suggest that we would have to store explicitly the
sequence of SAPHIRA states in order to evaluate the truth of
LTL conditions. In fact, we need not. Given an LTL formula
and a current state, it is possible to tell whether the formula is
true in the current state, whether it is false, or whether none of
these two situations can be decided yet, by simply computing
an update of the condition to be evaluated, state by state. The
function that computes such an update condition for backward
or forward formula is called a condition progress function; it
progresses a condition along a sequence of execution on the
fly until being able to establish its validity or falsity.

The technique for progressing forward formulas is well-
known and has been used in many problems, including robot
perception planning [5] and robot monitoring [3]. The update
rules are actually quite easily derived from the forward
recursive syntax rules and recursive semantics of LTL.

For backward conditions a different technique is needed.
We can track the truth of a backward condition over a history,
on the fly, forwardly, starting from the initial state of an
execution, yet without actually keeping an explicit record of
the execution trace. Instead, the necessary information for
evaluating the backward condition at a given point of
execution will be conveyed by a set of past sub-conditions
that are updated at every step of execution.

The idea is first to realize that the truth value of a backward
condition is completely determined by the truth value of its
sub-conditions. Initially, we determine the sub-conditions that
are true in the initial state. For example, (L c) is initially false
since there is no previous state; a Boolean condition c is
initially true if it holds in the initial state; (s S d) is initially
true if d is true in the initial state; similarly for P and G
conditions. It takes a constant time to compute the initial set of
sub-conditions (exactly one run over the condition).

Next, we pass the set of sub-conditions true in the current
state to the next state of execution; we say that we have
progressed the set of sub-conditions. Given this, we can
determine whether a backward formula is true, false or none
of these yet, by evaluating Boolean conditions as usual in the
new state and backward sub-conditions using their
membership in the progressed set of sub-conditions. This
also takes a constant time.

3.2.3 Integration into SAPHIRA
Asynchronous processes are programmed in C/C++ (or other
high-level languages that allow dynamically linked libraries).
On the other hand SAPHIRA Colbert synchronous processes
can invoke arbitrary C/C++ functions and have access to
C/C++ structures via dynamically linked libraries. Thus, once
one has implemented the LTL progression algorithms for
forward conditions and backward conditions, it is not hard to
make an interface between them and Colbert or with C/C++.
Currently we have only the forward progression functions
implemented, and only for Colbert processes.

We programmed in C++ a structure for an LTL condition,
indicating the type (backward or forward, although only
forward ones are supported at the time being), its mode
(failure condition or progress condition) the original
condition, the progressed condition (by the LTL progression
function, this slot becomes true in state where it is satisfied,
false in states where it falsified, an LTL condition otherwise)
and other few bookkeeping attributes.

Cognitive Robotics Workshop 2004 14

The declaration of an LTL condition initializes the
appropriate structure and returns a pointer to it. This pointer
can then be used in a waitLTLCondition. If c is a failure
condition, then the instruction waitLTLCondition(c) in a
Colbert process blocks the process until c is progressed to
false (which means it is made false in the current state). If c is
a progress condition, then the instruction waitLTLCondition(c)
in a Colbert process blocks the process until c is progressed to
true (which means it is made true in the current state). After
the process has passed the wait condition, it can execute user-
specified code for handling the condition. Figure 4 illustrates
the integration into the SAPHIRA architecture.

Figure 4. SAPHIRA architecture with LTL Progress

4 RELATED WORK
Earlier steps of this work were reported in [3,4]. At that time,
our system only supported asynchronous monitoring
processes, required to record a history of the robot execution
(this increases the monitoring complexity), and only handled
forward LTL conditions. Even though handling backward
conditions does not modify the theoretical expressive power,
this allows easier specifications in many cases, particularly
when coding robot behaviors based upon past observed states.

Many task-level control languages have been proposed
allowing flexible specifications of robot tasks. Among them,
the Task Definition Language (TDL) of Simmons and
Apfelbaum is a C++ extension [16] with various useful
synchronization primitives that facilitate the specification of
robot monitoring processes. The language does not support
however a declarative specification of behavioral properties
such as forward or backward conditions; these have to be
encoded directly as programs. Other frameworks that involve
formal methods in robot monitoring include the Reactive Plan
Language in [2], the probabilistic perception action planner in
54], the extraction of symbolic facts from a history of
behaviors’ activations [9], and robot monitoring of Golog
robot control programs [5]. Both RPL and Golog appear to be
more flexible for task-level problems. The work in [11] is
much closely related to the framework we propose in that it
provides a mechanism for extracting fluents from behavior
activation levels; a connection could then be made with our
approach by using such fluents as the basis for propositions in
monitored progress conditions.

5 CONCLUSION

This work is being continued along many avenues, including
the following. With synchronous processes, LTL conditions
are progressed by Colbert activities. This increases the size of
the SAPHIRA stack, consuming precious time of the 100
milliseconds cycle. Since not all conditions need update at
every SAPHIRA cycle, we can progress non critical
conditions asynchronously, still allowing access of SAPHIRA
synchronous processes to the result of this progression.

It also seems feasible to add timing conditions by
introducing a global clock variable and having it involved in
Boolean conditions that compose progress conditions. For
instance, if the clock is initialized to 0 at the start of the robot
executions, with units in seconds, we can have a formula like
F=(A(nearTarget || clock < 600)), where nearTarget is a
Boolean expression expressing a desired nearness between the
robot position and a target position. If this is declared as a
failure condition in a process, the instruction
waitLTLCondition(F) would block the process until 600
seconds have elapsed before the robot is near the target.

6 REFERENCESS

[1] R. C. Arkin. Behavior-Based Robotics. MIT press, 1998.
[2] M. Beetz. ‘Structured reactive controllers: controlling

robots that perform everyday activity.’ Agents, 228-235,
1999.

[3] K. Ben Lamine and F. Kabanza. Reasoning about robot
actions: a model-checking approach. In Advances in
Plan-Based Control of Robotic Agents. LNAI 2466,
pages 123-139, 2002.

[4] K. Ben Lamine and F. Kabanza, ‘History checking of
temporal fuzzy logic formulas for monitoring behavior-
based mobile robots’. Proc. of the 12th IEEE
International Conference on Tools with Artificial
Intelligence, 312–319, 2000.

[5] M. Broxvall, L. Karlsson and A. Saffiotti. ‘Steps toward
detecting and recovering from Perceptual Failures.’
Proc. of the 8th Int. Conf. on Intelligent Autonomous
Systems, 2004.

[6] G. De Giacomo, R. Reiter and M. Soutchanski.
‘Execution monitoring of high-Level robot programs.’
Proc. of Principles of Knowledge Representation and
Reasoning, 453-465, 1998.

[7] E. Gat. ‘On three-layer architecture.’ Artificial
Intelligence and Mobile Robots, 2, 1622–1627, 1994.

[8] M. Grabisch. ‘Temporal scenario modelling and
recognition based on possibilistic logic’, Artificial
Intelligence Journal, 148(1-2) , 261–289, August 2003.

[9] J. Hertzberg, F. Schönherr, M. Cistelecan and T.
Christaller. ‘Extracting situation facts from activation
value histories in behavior-based robots’, KI-2001::
Advances in Artificial Intelligence, LNAI 2174, 305–319,
2001.

[10] K. Konolige. Colbert: A language for reactive control in
SAPHIRA. In KI: Advances in Artificial Intelligence,
LNAI, pages 31–52, 1997.

[11] J.C. Latombe. ‘Robot Motion Planning.’ Kluwer
Academic Press, 1991.

Cognitive Robotics Workshop 2004 15

[12] K. Madhava and P. Krishna. ‘Perception and
remembrance of the environment during real-time
navigation of a mobile robot.’ Robotics and Autonomous
Systems, 37(1) :25–51, 2001.

[13] Z. Manna and A. Pnueli. ‘The Temporal Logic of
Reactive and Concurrent Systems.’ Springer-Verlag,
1991.

[14] F.G. Pin and S.R. Bender. ‘Adding memory processing
behaviors to the fuzzy Behaviorist-based navigation of
mobile robots.’ In ISRAM’96 Sixth International
Symposium on Robotics and Manufacturing, 27-30 1996.

[15] E.H. Ruspini, K. Konolige, K. L. Myers and A. Saffiotti.
‘The Saphira architecture: A design for autonomy,’
Journal of Experimental and Theoretical Artificial
Intelligence, 9(1):215–235, 1997.

[16] R. Simmons and D. Apfelbaum. ‘A task description
language for robot control.’ Proc. of Conference on
Intelligent Robotics Systems, 1998.

[17] W. L. Xu. A virtual target approach for resolving the
limit cycle problem in navigation of a fuzzy behaviour-
based mobile robot. Robotics and Autonomous Systems,
30(4) :315–324, 2000.

Cognitive Robotics Workshop 2004 16

1

Cognitive Robotics Workshop 2004 17

Robel : Synthesizing and Controlling
Complex Robust Robot Behaviors

Morisset Benoit1 and Infantes Guillaume and Ghallab Malik and Ingrand Felix2

Abstract. We present theRobel supervision system which is able
to learn from experience robust ways to perform high level tasks
(such as ”navigate to”). Each possible way to perform the task is
modeled as an Hierarchical Tasks Network (HTN), calledmodal-
ity whose primitives are sensory-motor functions. An HTN plan-
ning process synthesizes all the consistent modalities to achieve a
task. The relationship between supervision states and the appropriate
modality is learned through experience as a Markov Decision Pro-
cess (MDP) which provides a general policy for the task. This MDP
is independent of the environment and characterizes the robot abili-
ties for the task.

Introduction

Robust robot navigation is a complex task which involves many dif-
ferent capabilities such as localization, terrain modeling, motion gen-
eration adapted to obstacles, and so on. Many sensory-motor (sm)
functions have been developed and are available to perform naviga-
tion into structured (e.g. buildings) and unstructured (e.g. outdoor)
environments. Since no single method or sensor has a universal cov-
erage, eachsmfunction has its specific weak and strong points. The
approach presented here improves the global robustness of complex
tasks execution in taking advantage of thesesm functions comple-
mentarity.

To achieve these goals, we propose a two-stepped approach named
Robel for RObot BEhaviorLearning. First,smfunctions are aggre-
gated in a collection of Hierarchical Tasks Networks (HTN) [17], that
are complex plans calledmodalities. Each modality is a possible way
to achieve the desired task. One contribution of this work is to use
and to synthesize modalities relying on the HTN formalism. In a sec-
ond step, the relationship between supervision states and the appro-
priate modality for pursuing the task is learned through experience
as a Markov Decision Process (MDP) which provides a policy for
achieving the task. The second contribution of this work is an origi-
nal approach for learning from the robot experiences an MDP-based
supervision graph which enables to choose dynamically a modality
appropriate to the current context for pursuing the task. We obtain a
system able to efficiently use redundancies of low-levelsmfunctions
to robustly perform high-level tasks.

In the first Section we describe thesm functions and briefly de-
tail their forces and weaknesses. In Section 2 we introduce what are
the modalities, the one written by hand or better, how we can syn-
thesize them automatically using a planner. Section 3 describes the

1 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493,
USA. email: morisset@ai.sri.com

2 LAAS-CNRS, 7 avenue du Colonel Roche 31077 Toulouse Cedex 4
FRANCE email: firstname.lastname@laas.fr

controller and the learning mechanism which has been deployed to
choose at run time the appropriate modality for pursuing a task in the
current environment. Finally we present the results obtained both on
the modalities planning/synthesizing problem and on learning their
best use. We conclude with a discussion, and a prospective on this
subject.

1 Sensory-Motor Functions

Thanks to years of research in robotics, a large number ofsmfunc-
tions are now available, in particular for navigation tasks. To give an
idea of this diversity, we briefly present them, according to the main
functionality they provide.

Reliable and precise localization is often hard to obtain, numerous
methods have been developed to provide this functionality.Odom-
etry is easy to use but, due to drift and slippage, is seldom precise
enough to perform long-range navigation.Segment-based localiza-
tion is generally reliable in indoor environment [16], but laser oc-
clusion gives unreliable data. Moreover, in long corridors the laser
get little data along the corridor axis, thus the drift increases.Stereo
Vision odometry[11] is more precise than classic odometry, but re-
quires heavy computations which limits drastically the refresh rate
of the current position estimate. Moreover, it is very sensible to any
parameters which may impede the stereo correlation.Global Posi-
tioning Systemcan be used for absolute localization, although one
need a differential system to have an accurate measure.Localization
on landmarkssuch as wall posters in long corridors can provide an
accurate localization [2]. However, landmarks are usually only avail-
able and visible in few areas of the environment.

According to the type of mission and environment, different type
of path planners can be used:nav [22] or m2d [21]. The first one
is better for exploration of unknown regions, but at a high compu-
tational cost. The second one is fairly generic and robust, although
it may require further processing to get an executable dynamic tra-
jectory to take into account environment changes that occur during
navigation.

For locomotion on rough terrains, we use a motion planner/motion
generator namedP3D [5] which is designed essentially for explo-
ration of static environments. Motion control in dynamic environ-
ments has been implemented usingND [14]. It offers reactive motion
capability that remains efficient in very cluttered space, but may fall
in local minima. Theelastic band[19] gives a very robust method
for long range navigation, but can be blocked by a mobile obstacle
that traps the band against a static obstacle. Last, the dynamic defor-
mation is computationally intensive and may limit the reactivity in
cluttered, dynamic environments and may also limit the band length.

Cognitive Robotics Workshop 2004 18

2 Synthesis of Modalities

A high level task given by a mission planning step requires an in-
tegrated use of severalsm functions among those presented earlier.
Each consistent combination of thesesmfunctions is a particular plan
called amodality. A modality is one way of performing the task. A
modality has specific characteristics that make it more appropriate
for some contexts or environments, and less for others. The choice of
the right modality for pursuing a task is far from being obvious. The
goal of thecontroller (see Section 3) is to perform such a selection
all along the task execution.

We chose to represent modalities as Hierarchical Task Networks.
We believe that the HTN formalism is adapted to modalities because
of its expressiveness and its flexible control structure [8]. HTNs offer
a middle ground between programming and automated planning, al-
lowing the designer to express the control knowledge which is avail-
able here. So we can use the same formalism to write a modality by
hand or to generate it automatically.

2.1 Model of data flow

Creating a consistent modality may be seen as a planning problem
using the correct models. To build a coherent modality, we want the
planner to produce a plan which properly connect the available mod-
ules implementing thesm functions. So we need to model thesm
functions previously described from a data flow point of view. We
give a module a semantic by considering it as a black box with some
input and output data. By correctly typing the data, and choosing the
right smfunctions, we are able to build a coherent chain of data pro-
cessing, for a navigation modality. This chain goes from external data
to the goal, through sensors, map building and motion generation of
a real movement (see Fig. 1).

Environnement

Map Building Model Motion Generator

Goal

Speed Reference MotionEffector

Figure 1. Example of a data flow

This scheme might be generalized easily to other kinds of modal-
ity, like exploration, manipulation or pure learning, depending on the
available functional modules.

To perform this planning task we use SHOP [18], a hierarchical
task planner. It uses a description of the domain, operators, and de-
composition methods to go from a high level tasks to terminal ac-
tions. To get SHOP to produce the correct connections between mod-
ules, we set some planning operators:

(!connect_as_prod ?func ?data)
(!connect_as_cons ?func ?data)

The first one says that a function produces a type of data, the other
that a function consumes a type of data. This operators assert the
corresponding predicates, to explicit the current state:

(connected_producer ?func ?data)
(connected_consumer ?func ?data)

We also have to specify correctly the functions. This is achieved
as follows:

(function lane.fuse)
(needs lane.fuse (3D_image video_image))
(produces lane.fuse 3D_model)

In the initial state of the problem, the only available data is input
data such asgoal, and we want to reach a state where themotion
data is available. We implement a backward-chaining mechanism
that starts from the final state and choose an operator (asm func-
tion) that will provide this data. The new current state needs the input
data of our operator. If they are not available, we choose a new func-
tion to produce them and so on. The backtrack points of the search
are the choice at this time of thesmfunction. If we need a position
(for localization), we may choose as different functions aslocaliza-
tion on landmarksor visual odometryto perform it. We may even
choose both of them using some data fusion mechanism available
on our robots. This regression/decomposition process stops when all
required data are available, typically provided by a sensor.

Thus we have the methods:

(:method (find_producer ?d)
((connected_producer ?f ?d))
()
((produces ?f ?d))
((!connect_as_prod ?f ?d)

(find_consumable ?f)))
(:method (find_consumable ?f)

((needs ?f ?data)
((connect_as_cons ?f ?data)

(find_producer ?data))))

The first one is to find the producers for a type of data. If this data
is already produced, we stop the decomposition (this is the meaning
of the empty parenthesis), else we find a producer and continue. The
second one is straightforward.

However, building a modality is not just linking a network of
producers/consumers. If this process can synthesize simple modal-
ities, most complex ones require other attributes and parameters to
be taken into account.

2.2 Other Attributes

We list here the other attributes the modality planning system has to
take into account, like theresources. A physical device may be re-
quired, at the same time, by two different modules in the same modal-
ity. Similarly, CPU and Memory usage are interesting resources to
model too. Such resources usage could be expressed as constraints
in the HTN formalism. Thetime is also important: most modules
are synchronous and have their own frequency, which on our robots
vary from 50 Hz to less than 1 Hz. A realistic model must take this
into account to ensure a correct execution. We may also notice the
some processing are doneon request, when instructed by another
module or the executive, or can bestarted and stoppedand produce
some data at a given period. Asynchronous/asynchronousattribute
is necessary: some execution requests may be synchronized with re-
spect to others (waiting for some data to be available) or may be
running at their own pace, using whatever data is then available.

As of today, the current implementation of the modalities synthe-
sizing part ofRobel uses the data flow model as well as a simple
synchronous/asynchronous and cyclic/on request model. Still, we are
able to produce interesting modalities (See Section 4.1). Neverthe-
less, using a complete model taking into account all the attributes,
we expect to be able to automatically produce modalities as rich and
as robust than the handwritten ones.

Cognitive Robotics Workshop 2004 19

The solution to this problem gives an a priori valid modality (with
respect to the model), which can then be “tested” on line, thus al-
lowing thecontroller to learn in which situations it is appropriate to
use it. To conclude on this part, we may say that we are now able to
automatically generate the executable code of a modality from a few
information on how thesmwork. The next challenge is to learn to
use them efficiently.

3 The Controller

3.1 Qualitative Model of the Environment

We present in this section an example of a controller adapted to an in-
door navigation task. To perform this specific task, the design of the
control space and the control process itself require the use of a topo-
logical graph. Cells are polygons that partition the metric map. Each
cell is characterized by its name and acolor that corresponds to nav-
igation features such asCorridor, Corridor with landmarks, Large
Door, Narrow Door, Confined Area, Open Area and so on. Edges of
the topological graph are labeled by estimates of the transition length
from one cell to the next and by heuristic estimates of how easy such
a transition is.

3.2 The Control Space

The controller has to choose a modality that is most appropriate to
the current execution state for pursuing the task. In order to do this,
a set ofcontrol variableshas to represent control information for the
sm functions. The choice of these control variables is an important
design issue.

For example, in the navigation task in an indoor environment, the
control variables are:

• the cluttering of the environment which is defined to be a
weighted sum of the distances to nearest obstacles perceived by
the laser, with a dominant weight along the robot motion axis;

• theangular variation of the profile of the laser range data which
characterizes the robot area. Close to a wall, the cluttering value
is high but the angular variation remains low. But in an open area
the cluttering is low while the angular variation may be high;

• the inaccuracy of the position estimate, as computed from the
co-variance matrix maintained by each localizationsmfunction;

• the confidencein the position estimate (because the inaccuracy
is not sufficient to qualify the localization, each localizationsm
function supplies a confidence estimate about the last processed
position);

• the navigation color of current area is used when the robot po-
sition estimate falls within some labeled cell of the topological
graph, the corresponding labels are taken into account;

• the current modality is essential to assess the control state and
possible transitions between modalities.

A control state is characterized by the discretized values of these
control variables. We finally end-up with a discrete control space
which allows us to define acontrol automaton.

3.3 The Control Automaton

The control automaton is nondeterministic: unpredictable external
events may modify the environment, e.g. someone passing by may
change the value of the cluttering variable, or the localization inac-
curacy variable. Therefore the execution of the same modality in a

given state may lead to different adjacent states. This nondeterminis-
tic control automaton is defined as the tupleΣ = {S, A, P, C}:

S is a finite set of control states,
A is a finite set of modalities,
P : S × A× S → [0, 1] is a probability distribution on the state-

transition,Pa(s′|s) is the probability that the execution of modality
a in states leads to states′,

C : A × S × S → <+ is a positive cost function,c(a, s, s′) cor-
responds to the average cost of performing the state transition from
s to s′ with the modalitya.

A and S are given by design from the definition of the set of
modalities and of the control variables.P andC are obtained from
observed statistics during a learning phase.

The Control automatonΣ is a Markov Decision Process. As an
MDP, Σ could be used reactively on the basis of a universal policy
π which selects for a given states the best modalityπ(s) to be ex-
ecuted. However, a universal policy will not take into account the
current navigation goal. A more precise approach takes into account
explicitly the navigation goal, transposed intoΣ as a setSg of goal
states in the control space. This setSg is given by a look-ahead mech-
anism based on a search for a path inΣ that reflects a topological
route to the navigation goal.

3.3.1 Goal States in the Control Space

Given a navigation task, a search in the topological graph provides
an optimal router to the goal, taking into account estimated cost
of edges between topological cells. This route will help finding in
the control automaton desirable control states for planning a pol-
icy. The router is characterized by the pair(σr, lr), whereσr =
〈c1c2 . . . ck〉 is the sequence of colors of traversed cells, andlr is the
length ofr.

Now, a path between two states inΣ defines also a sequence of
colorsσpath, those of traversed states; it has a total cost, that is the
sum

∑
path

C(a, s, s′) over all traversed arcs. A path inΣ from the
current control states0 to a states corresponds to the planned route
when the pathmatchesthe features of the route(σr, lr) in the fol-
lowing way:

•
∑

path
c(a, s, s′) ≥ Klr, K being a constant ratio between the

cost of a state-transition in the control automaton to corresponding
route length,

• σpath corresponds to the same sequence of colors asσr with pos-
sible repetition factors, i.e., there are factorsi1 > 0, . . . , ik > 0
such thatσpath = 〈ci1

1 , ci2
2 , . . . , c

ik
k 〉whenσr = 〈c1, c2, . . . , ck〉.

This last condition requires that we will be traversing inΣ control
states having the same color as the planned route. A repetition fac-
tor corresponds to the number of control states, at least one, required
for traversing a topological cell. The first condition enables to prune
paths inΣ that meet the condition on the sequence of colors but can-
not correspond to the planned route. However, paths inΣ that contain
a loop (i.e. involving a repeated control sequence) necessarily meet
the first condition.

Let route(s0, s) be true whenever the optimal path inΣ from
s0 to s meets the two previous conditions, and letSg = {s ∈
S | route(s0, s)}. A Moore-Dijkstra algorithm starting froms0 gives
optimal paths to all states inΣ in O(n2). For every such a path,
the predicateroute(s0, s) is checked in a straightforward way, which
givesSg. It is important to notice that this setSg of control states
is a heuristic projectionof the planned route to the goal. There is
no guaranty that following blindly (i.e., in an open-loop control) a

Cognitive Robotics Workshop 2004 20

path inΣ that meetsroute(s0, s) will lead to the goal, and there is
no guarantee that every successful navigation to the goal corresponds
to a sequence of control states that meetsroute(s0, s). This is only
an efficient and reliable way of focusing the MDP cost function with
respect to the navigation goal and to the planned route.

3.3.2 Finding a Control Policy

At this point we have to find the best modality to apply to the current
states0 in order to reach a state inSg, given the probability distri-
bution functionP and the cost functionC. A simple adaptation of
theValue Iterationalgorithm solves this problem. Here we only need
to know π(s0). Hence the algorithm can be focused on a subset of
states, basically those explored by the Moore-Dijkstra algorithm.

The closed-loop controller uses this policy as follows:

• the computed modalityπ(s0) is executed;
• the robot observes the states, it updates its router and its setSg

of goal states, it finds the new modality to apply tos.

This is repeated until the control reports a success or a failure. Re-
covery from a failure state consists in trying from the parent state an
untried modality. If none is available, a global failure of the task is
reported.

3.3.3 Estimating the Parameters of the Control automaton

A sequence of randomly generated navigation goals is given to the
robot. During its motion, new control states are met and new tran-
sitions are recorded or updated. Each time a transition froms to s′

with modality a is performed, the traversed distance and speed are
recorded, and the average speedv of this transition is updated. The
cost of the transitionC(a, s, s′) can be defined as a weighted average
of the traversal time for this transition taking into account the even-
tual control steps required during the execution of the modalitya in
s together with the outcome of that control. The statistics ona(s)
are recorded to update the probability distribution function. Several
strategies can be defined to learnP andC in Σ. The first one is used
initially to expandΣ: a modality is chosen randomly for a given task;
this modality is pursued until either it succeeds or a fatal failure is no-
tified. In this case, a new modality is chosen randomly. This strategy
is used initially to expandΣ. Σ is used according to the normal con-
trol except in a state on which not enough data has been recorded; a
modality is randomly applied to this state in order to augment known
statistics, e.g, the random choice of an untried modality in that state.

4 Experimental results

The justification of the whole system relies on the following princi-
ple : the use of the complementarity of several navigation modalities
increases the global robustness of the task execution. To validate this
principle, 5 handwritten modalities have been integrated inboard one
of our robot. In order to characterize the usefulness domain of each
modality we measured in a series of navigation tasks, the success rate
and other parameters such as the average speed, the distance covered,
the number of retries. Various cases of navigation have been consid-
ered such as for instance, long corridors or large areas, cluttered or
not, occluding the 2D characteristic edges of the area or not. These
extensive experiments described in details in [15] required several
kilometers of navigation. The result is that for each case of naviga-
tion met by the robot there is at least one successful modality. On the
other hand, no modality is able to cover all cases. This result clearly

supports our approach of a supervision controller switching from one
modality to another one according to the context.

A second step of experiments is focused on the automatic modal-
ities synthesis by a planning process. These ongoing results are pre-
sented in the next section. Finally, the learning capabilities of the
controller are illustrated in section 4.2.

4.1 Modalities Synthesis

Let us give some examples of synthesized modalities. On Fig. 2,
we can see the HTN built by SHOP. The corresponding modality
is shown on Fig. 3.

RFLEX.TRACK SPEEDREF
Connect_As_Consumer

ND.GOTO 2D_POINTS

Connect_As_Consumer

SPEEDREFND.GOTO

SICK 2D_POINTS

Connect_As_Producer

POSITIONRFLEX.ODOMETRY

Connect_As_Producer
RFLEX.ODOMETRY

Find_Consumable

POSITION

Find_Producer

MOTION

Find_Producer

SPEEDREF

Find_Producer

ND.GOTO

Find_Consumable

ND.GOTO POSITION

Connect_As_Consumer

Find_Consumable
SICK

RFLEX.TRACK MOTION

Method
[argument]*

[argument]*

Operator

Connect_As_Producer

2D_POINTS

Find_Producer

Build_Modality

Connect_As_Producer
RFLEX.TRACK

Find_Consumable

Figure 2. HTN built by SHOP for a simple modality

RFLEX.ODOMETRY

SICK

POSITION

2D_POINTS GOAL

ND.GOTO SPEED_REFERENCE RFLEX.TRACK MOTION

Figure 3. A simple modality

The odometry smfunction does not need any data at input, nor
does the sick (laser range finder). TheND motion generator uses
points from the sick to find out where are obstacles and gives the
speed reference to avoid obstacles and go to the goal.

This modality is better suited for exploration of “slightly” dynamic
environments, at low speed. This modality is the most simple of the
42 generated for the outdoor mobile robot, using 16smfunctions

Another (more complex) modality is shown on Fig. 4. We can see
that the robot uses its cameras to take images, and stereo-correlation
to have a 3D image. From here, it uses this image to compute a mo-
tion (Stereo Vision Odometry) which combined with classic odome-
try will give the localization. The modality also builds a 3D metric
model, the corresponding 3D qualitative model and projects it to ob-
tain a 2D qualitative model. This model is used to give long range
path made of way points. This way points are consumed one by one
by a motion generator that gives speed references using the 3D metric

Cognitive Robotics Workshop 2004 21

model (and of course the current position). Then this speed reference
is used by the low-level effector to generate effectively the robot mo-
tion.

SCORREL LANE PATH

3D_MODEL 2D_QUALI_MODEL NAV.COMPUTE

CAMERAS BITMAP

2D_IMAGES

3D_IMAGE STEO.COMPUTE POSITION P3D.TRACK

RFLEX.ODOMETRY

CLASSIF 3D_QUALI_MODEL GOAL

SPEED_REFERENCE

RFLEX.TRACK

MOTION

Figure 4. A more complex modality

The problem we are facing now is to define criterion and ways for
selecting agoodset of modalities. A too large set will make the learn-
ing of the controller unrealistically long and costly, but we obviously
need a sufficiently large set to cover the main ways of combining the
sm functions. For the moment, this selection is performed interac-
tively by the robot designer. This still provides a significant benefit
in robustness, programming and debugging time w.r.t. handwriting
the modalities.

4.2 Controller

. We propose here to illustrate the learning capabilities of the con-
troller through an indoor navigation task. To perform this experiment,
we start with an empty automaton and 2 complementary modalities:
the first one (M1) is composed by theelastic band, m2dand theseg-
ment basedlocalization function, while the second one (M2) works
reactively without any path planner.ND performs the obstacle avoid-
ance and the robot is localized with the same function asM1. The
velocity and the path planner makeM1 more efficient in large and
open environments. On the other hand, the limited avoidance capabil-
ities of theelastic bandmakesM2 more adapted in highly cluttered
environments.

In this three-stepped experiment, the strategy of learning favors
the completion of each transition(3.3.3). If a modality has not been
tried for the current state (untried modality), this modality is executed
without any computation ofπ.

Phase 1. The learning starts with a series of 83 navigations in a
large open environment. During these navigations, 86 states and 159
transitions are created (Fig. 5). After the53th navigation (notedn53)
the number of new transitions met by the system tends to be stable.
Betweenn53 andn83, the computation ofπ returnsM1 for any state
encountered except for 2 states (inn60 andn70) whose transitions
with M2 were still untried (Fig. 6). The constant selection ofM1 by
π all along the 30 last navigations shows that the controller relevantly
learned the superiority ofM1 onM2 for the open environments.

Phase 2. Some narrow obstacles are added. This new situation
generates 14 new states betweenn84 et n87 and 10 new transitions

are tried untiln93. During these 9 first navigations, 6 failures are
recorded forM1, each time from a state with a high level for the
clutter variable. Aftern101 and untiln114, each time a state with a
high level for the clutter variable is encountered, the execution ofM1

is stopped by the controller and the obstacle avoidance is systemat-
ically performed withM2. No more failures are recorded withM1.
As soon as the clutter level recovers a low level, the computation of
π switches back to a selection ofM1. M1 is then kept as long as the
value of the clutter state variable stays low. If in the previous phase,
M1 was more appropriate thanM2, in this second phase, the system
is able to learn within 30 navigations, the better efficiency ofM2 in
cluttered environments.

Phase 3. The goal of the third step is to check if the learning of
the second phase (avoidance) didn’t corrupt the learning of the first
phase (open navigation). The obstacles are then removed to recover
the same environment as the phase 1 and 58 more navigations are per-
formed by the system. This new step shows that the learning of the
phase 1 was not complete: 10 new states are created and 23 untried
transitions are completed. Despite these untried transitions, between
n114 andn152, 30 navigations are performed with 100 % of selec-
tion for M1 by π. After n151, M1 is constantly selected all along the
21 last navigations. This last step shows that despite an incomplete
learning, the efficiency ofM1 in the phase 1 has not been forgotten
after the learning of the phase 2.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

number of states
number of transitions

Figure 5. Evolution of the size of the graph

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

pe
rc

en
ta

ge
s

�

navigations

Figure 6. Percentage of choice ofM1

Discussion and Conclusion

This paper addressed the issue of producing complex modalities from
sensory motors functions, and how to exploit the complementarity of
these modalities to perform a task.

Cognitive Robotics Workshop 2004 22

We have shown that it is indeed feasible to synthesize modalities
from generic specifications, we still need to improve this planning
component to take into account attributes such as resource, time and
synchronism.

This is certainly not the first contribution that relies on a plan-
ning formalism and on plan-based control in order to program an au-
tonomous robot. For example, the“Structured Reactive Controllers”
[3] are close to our concerns and have been demonstrated effectively
on the Rhino mobile robot. The efforts for extending and adapting
the Golog language [12] to programming autonomous robots offer
another interesting example from a quite different perspective, that of
the Situation Calculus formalism [20]. The“societal agent theory”
of [13] offers also another interesting approach for specifying and
combining sequentially, concurrently or in a cooperative mode sev-
eral agent-based behaviors; the CDL language used for specifying
the agent interactions is similar to our Propice programming envi-
ronment. Let us mention also the“Dual dynamics” approach of [10]
that permit the flexible interaction and supervision of several behav-
iors. These are typical examples of a rich state of the art on possible
architectures for designing autonomous robots. (see [1] for a more
comprehensive survey).

Here also the use of MDPs for supervision and control of robot
navigation tasks is not new. Several authors expressed directly
Markov states as cells of a navigation grid and addressed naviga-
tion through MDP algorithms, e.g. value iteration [23, 6, 7]. Learn-
ing systems have been developed in this framework. For example,
XFRMLEARN extends these approaches further with a knowledge-
based learning mechanism that adds subplans from experience to
improve navigation performances [4]. Other approaches considered
learning at very specific levels, e.g., to improve path planning capa-
bilities [9]. Our approach stands at a more abstract and generic level.
It addresses another purpose: acquiring autonomously the relation-
ship from the set of supervision states to that of redundant modalities.
We have proposed a convenient supervision space. We have also in-
troduced a new and effective search mechanism that projects a topo-
logical route into the supervision graph. The learning of this graph
relies on simple and effective techniques, whose results provide two
particular features:

Portability: Variables of the control state reflect control informa-
tion for thesm functions. No information dedicated to the environ-
ment is present in the control state. In this sense we say that the con-
trol state isabstract. Thanks to this characteristic, a controller learned
in an environment can directly be used in another environment.

Adaptativity: In this system, learning and execution are not de-
coupled : learning ofΣ parameters is active all along the robot nav-
igations. If a new situation is encountered, corresponding new states
are created inΣ and the new untried transitions are evaluated and
taken into account by the next computations ofπ. This unsupervised
learning confers a high level of adaptativity to the controller.

In addition to future work directions mentioned above, an impor-
tant test ofRobel will be the extension of the set of tasks to manip-
ulation tasks such as“open a door”. This significant development
will require the integration of new manipulation functions, the syn-
thesizing of new modalities for these tasks and the extension of the
controller state. Another development which seems rather promising
is to learn the control space of the controller instead of relying on
one given by hand.

REFERENCES
[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, ‘An Archi-

tecture for Autonomy’,IJRR, 17(4), 315–337, (April 1998).
[2] V. Ayala, J.B. Hayet, F. Lerasle, and M. Devy, ‘Visual localization of a

mobile robot in indoor environments using planar landmarks’, inIEEE
IROS’2000, Takamatsu, Japan, pp. 275–280, (November 2000).

[3] M. Beetz, ‘Structured reactive controllers - a computational model of
everyday activity.’, in3rd Int. Conf. on Autonomous Agents, (1999).

[4] M. Beetz and T. Belker, ‘Environment and task adaptation for robotics
agents’, inECAI, (2000).

[5] D. Bonnafous, S. Lacroix, and T. Simon, ‘Motion generation for a rover
on rough terrains’, inInternational Conference on Intelligent Robotics
and Systems, Maui, HI (USA), (October 2001). IEEE.

[6] Cassandra, Kaelbling, and Kurien, ‘Acting under uncertainty: Dis-
crete bayesian models for mobile robot navigation’, inProceedings of
IEEE/RSJ IROS, (1996).

[7] T. Dean and M. Wellman, ‘Planning and control’, inMorgan Kauf-
mann, (1991).

[8] K. Erol, J. Hendler, and D.S. Nau, ‘HTN planning: Complexity and
expressivity.’, inAAAI, (1994).

[9] K. Z. Haigh and M. Veloso, ‘Learning situation-dependent costs: Im-
proving planning from probabilistic robot execution’, inIn 2nd Int.
Conference on Autonomous Agents, (1998).

[10] J. Hertzberg, H. Jaeger, P. Morignot, and U. R. Zimmer, ‘A framework
for plan execution in behavior-based robots’, inISIC-98 Gaithersburg
MD, pp. 8–13, (1998).

[11] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, ‘Autonomous rover navigation on unknown terrains,
functions and integration’,International Journal of Robotics Research,
(2003).

[12] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,
‘GOLOG: A logic programming language for dynamic domains’,Jour-
nal of Logic Programming, 31(1-3), 59–83, (1997).

[13] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron, ‘Multiagent mis-
sion specification and execution’, inAutonomous Robots, 4(1):29 V52,
(1997).

[14] J. Minguez, L. Montano, T.Simeon, and R. Alami, ‘Global nearness
diagram navigation (GND)’, inICRA2001, Korea.

[15] B. Morisset,Vers un robot au comportement robuste. Apprendre com-
biner des modalits sensori-motrices complmentaires., Ph.D. disserta-
tion, Universit́e Paul Sabatier, Toulouse, novembre 2002.

[16] P. Moutarlier and R. G. Chatila, ‘Stochastic Multisensory Data Fusion
for Mobile Robot Location and Environment Modelling’, inProc. In-
ternational Symposium on Robotics Research, Tokyo, (1989).

[17] D. Nau, Y. Caoand, A. Lotem, and H. Munoz-Avila., ‘Shop: Simple
hierarchical ordered planner’, inIJCAI, (1999).

[18] D. Nau, H. Munoz-Avila, Y. Cao, A. Lotem, and S. Mitchell, ‘Total-
order planning with partially ordered subtasks’, inIJCAI, Seatle,
(2001).

[19] S. Quinlan and O. Khatib, ‘Towards real-time execution of motion
tasks’, inExperimental Robotics 2, eds., R. Chatila and G. Hirzinger,
Springer Verlag, (1992).

[20] R. Reiter, ‘Natural actions, concurrency and continuous time in the sit-
uation calculus.’, inKR, pp. 2–13, (1996).

[21] T. Simeon and B. Dacre Wright, ‘A practical motion planner for all-
terrain mobile robots’, inIEEE/RSJ IROS, (1993).

[22] S.Lacroix, I.K.Jung, J.Gancet, and J.Gonzalez, ‘Towards long range au-
tonomous navigation’, in7th ESA Workshop on Advanced Space Tech-
nologies for Robotics and Automation, Noordwijk (The Netherlands),
(November 2002).

[23] S. Thrun, A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Hen-
ning, T. Hofmann, M. Krell, and T. Schmidt, ‘Map learning and high-
speed navigation in rhino’, inAI-based Mobile Robots: Case Studies
of Successful Robot Systems, eds., D. Kortenkamp, R.P. Bonasso, and
R. Murphy. MIT Press, (1998).

Cognitive Robotics Workshop 2004 23

1

Cognitive Robotics Workshop 2004 24

Patterns in Reactive Programs
P@trik Haslum

�

Abstract. In this paper, I explore the idea that there are “patterns”,
analogous to software design patterns, in the kind of task procedures
that frequently form the reactive component of architectures for in-
telligent autonomous systems. The investigation is carried out mainly
within the context of the WITAS UAV project.

1 Introduction

A current trend in AI research is the focus on autonomous systems:
robotic, or “softbotic”, systems capable of acting independently and
intelligently, in uncertain, varied and dynamic environments. The
wish to make agents act intelligently and the requirements imposed
by the dynamic nature of the environment combine to create compet-
ing needs for deliberation and reaction, and much attention has been
given to the design of system architectures that somehow mediate
between these needs. The solutions that have, to date, appeared most
successful are variants of so called “layered architectures”, where
deliberative, reactive and low-level process components run and ex-
change information asynchronously, e.g. [10, 1, 13].

Part of every layered architecture variant is a reactive system, con-
sisting of a base of procedural knowledge, rules that prescribe reac-
tions to standard situations or flexible “scripts” for enacting standard
tasks, and a mechanism that translates the encoded knowledge into
action (i.e. commands to low-level system processes), contingent on
the state of the environment as perceived via the systems sensors.
The core of any reactive system is the procedural knowledge base,
and there have been many proposals for languages to express such
knowledge. Less attention has been devoted to the problem of how
to fill the procedural knowledge base with content. The task of writ-
ing the actual rules or programs that the reactive layer will execute is
often an ardous one, and there are few principles or guidelines to help
the programmer who must in the end perform it2 (notable exceptions
are discussed in section 6).

By contrast, principles of programming and design have since long
been studied and developed in other areas of computer science, often
without reference to the particulars of any implementation language.
It may be worthwhile to look likewise at the problem of writing reac-
tive programs. This paper presents a tentative step in this direction:
By examining examples of reactive programs, from the literature and
from experiences in the WITAS autonomous UAV project, I try to
find something akin to “design patterns” [7] for reactive layer proce-
dures. Whether the things found actually qualify as design patterns

�

Linköpings Universitet (pahas@ida.liu.se)�

Some systems, e.g. CIRCA [14] or the situated automata of Kaelbling and
Rosenschein [9], synthesize the reactive procedures from a specification of
the task to be achieved and a model of the environment. This, for better
or worse, moves the problem from programming to specification and mod-
elling, but at the same time leads to some restrictions on the expressivity
of the task specifications, environment model, and the procedures that the
system is able to generate, to make the synthesis problem decidable.

(or, indeed, have any value or meaning at all) is debatable. This lit-
tle effort should perhaps be viewed more as a sign that something
is missing, rather than a definitive answer to what that something
should be.

The next three sections provide brief background on languages
for programming reactive procedures (section 2), the WITAS project
and system architecture currently employed within it (section 3) and
design patterns (section 4). Section 5 describes and illustrate some
reactive design patterns, while section 6 contains some concluding
discussion.

2 Rule and Reactive Procedure Languages

A large class of reactive programming languages consist of condition
– action (or event – condition – action) rules. Such rules prescribe an
action to be taken whenever the corresponding condition on the sys-
tems view of the environment holds. As the complexity of tasks and
environment grows, two problems with rule-based programs arise: In
a given situation, the condition part of several rules, advising conflict-
ing actions, may hold, or no rules condition may be fulfilled, leaving
the system without a response.

A common solution to the first problem is to introduce an arbitra-
tion mechanism that decides which rule takes precedence in each sit-
uation. An example of this approach is the context-dependent blend-
ing method developed by Saffiotti et al. [15]. In this system, the an-
tecedent of a rule is a combination of (fuzzy) predicates, while the
consequent specifies for each possible action how desirable that ac-
tion is, from the point of view of the rule. Collections of rules are
grouped into behaviors, associated with a (fuzzy) context conditions.
The desirability assigned to each action by a rule is modified by the
degree to which the conditions of the rule and the behavior it belongs
to are satisfied, and the action that receives the most support, overall,
is the one taken. A different solution, examplified by Lin [11], is to
perform a static analysis on the rule base and verify that a conflict
can not occur.

Reactive procedures were introduced into AI circles mainly with
the PRS system [8]. The RAPS [5] system is similar, and serves as
an illustrative example of the approach. A task procedure in RAPS
has a “signature”, consisting of name and arguments, a context con-
dition, a success condition and a procedure body which is a partially
ordered set of steps that may be calls to subtasks, primitive actions,
or “wait for condition” statements. RAPS allows having several dif-
ferent procedures for the same task and this is what lends flexibility
to their execution: When a call for a particular procedure signature
is made, the context conditions of all matching procedures are eval-
uated against the systems current knowledge state, and among those
whose conditions are satisfied, one is chosen for execution. Eventu-
ally, the procedure either finishes successfully (its success condition
becomes satisfied) or fails. If the chosen procedure failed, the system

Cognitive Robotics Workshop 2004 25

may re-evaluate context conditions to choose another procedure (or
even to try the same procedure again) or the call as a whole may fail.

3 The WITAS Project and Architecture

The WITAS project aims to develop architechtures and technolo-
gies for intelligent autonomous systems in general, and for an au-
tonomous Unmanned Airial Vehicle (UAV) for traffic surveillance
in particular3. This choice of platform and application area leads to
many challenges, but also to a problem that, overall, is in the realm
of the possible.

The current WITAS system architecture is the result of many
development iterations. Two important characteristics that have
emerged are that it is distributed, and that the reactive system plays a
central and “driving” role. A distributed architecture is advantageous
for several reasons:

� Different system components have different needs: The UAV con-
troller operates under hard real-time constraints, parts of the im-
age processing system may need to run on specialized hardware
to achieve acceptable performance, etc. In addition, the limited
power and payload capacity of the UAV may force some compo-
nents to reside in a ground-side part of the system, while still in-
teroperating smothly with those components that reside on-board
the UAV.

� Distribution lends a certain fault-tolerance, since separate system
components can be restarted (or even rebooted) in case of failure,
without the need to bring the whole system down.

� An interesting area for future research is the integration of sev-
eral UAVs, and possibly also other actors such as ground stations
(manned or unmanned), into a system capable of acting coher-
ently and efficiently. A distributed architecture leaves many more
“hooks” for development in this direction.

To minimize the extra complexity introduced by distribution, a
choice has been made to use a CORBA infrastructure4. The use of
CORBA carries some additional advantages, such as for instance
simplifying the transition from a simulated to a real environment.

The “reactive-centric” nature of the architecture is in part an effect
of the fact that is distributed, and of the use of CORBA: At the level
of interfaces, there is simply not that much difference between e.g.
the UAV flight control system and a high-level deliberative function
such as prediction or a GIS database, and thus the different compo-
nents are naturally viewed as a collection of “services” for the reac-
tive systems use.

3.1 The Modular Task Architecture

The reactive system, like the rest of the WITAS architecture, has
been through a number of iterations. The current version, tentatively
named the Modular Task Architecture (MTA), is, also like the rest
of the WITAS system, distributed, and for pretty much the same rea-
sons.

�

For a more detailed description of the project, see Doherty et al. [4] or
http://www.ida.liu.se/ext/witas/�

The Common Object Request Broker Architecture (CORBA) is
an object-oriented middelware standard laid down by the OMG
(http://www.omg.org/gettingstarted/corbafaq.htm).
The interfaces of CORBA objects are specified in the Interface Definition
Language (IDL), which maps to whatever language is used to implement
the object.

The common denominator shared by all MTA task procedures is
a CORBA interface and a few behavioral restrictions. The task inter-
face is rather basic, containing only operations such as passing argu-
ments, starting and canceling a task. Asynchronous messages are sent
from a task to its caller via event channels5, and a few message types,
e.g. those signalling task completion or failure, are standardized. This
simplicity, however, should not be mistaken for a limitation. Beyond
the requirements that MTA places on a task, each task procedure is
free to react to events in any form and interact with any component
of the WITAS system that is accessible through an interface.

Because the MTA is, in essence, only a standard, task proce-
dures can be implemented in any language (for which there exists
CORBA support). Indeed, they have to. As it has turned out that
large parts of most task implementations tend to be routine excer-
cises in CORBA programming, we have developed a simple macro
language and translator to make writing tasks easier and less prone
to cut-and-paste errors6.

4 Design Patterns
There are numerous definitions of what constitutes a design pattern
(or just “pattern”). The term was originally used by architect Cristo-
pher Alexander, who has written several books to explain what is
meant by it. Gamma, Helm, Johnson & Vlissides, whose book on
object-oriented design patterns has probably done most to popular-
ize its use in software engineering, write: “A design pattern names,
abstracts, and identifies the key aspects of a common design struc-
ture that make it useful for creating a reusable object-oriented de-
sign. [...] Each design pattern focuses on a particular object-oriented
design problem or issue. It describes when it applies, whether or not
in can be applied in view of other design constraints, and the conse-
quences and trade-offs of its use.” [7]. A shorter, less object-oriented,
description is “A pattern is a named nugget of insight that conveys the
essence of a proven solution to a recurring problem within a certain
context amidst competing concerns” [2]. Patterns have been recog-
nized at an “application” (or “architectural”) level, at the design level,
and at the “language” level, i.e. in program constructs (where they are
often called “idioms”) [2].

5 Patterns in Reactive Programs
This section describes five different patterns that I have seen in reac-
tive task procedures. The first two examples presented here are more
“architectural” in flavour, describing what is essentially structures in
the procedural knowledge found in an application domain, while the
remaining examples are more design oriented. The first two are also
found in the structure of a single task procedure, while the other con-
cern the interplay between two or more tasks.

5.1 Scripts
In the introduction, task procedures were described as “flexible
scripts”. This is a frequently occuring form, the task procedure con-
sisting of a set of steps to be carried out, in sequence or just in partial
order, interspersed with waiting for events or conditions.

�

Channels are specified in the CORBA Event Service stan-
dard (http://www.omg.org/technology/documents/
corbaservices spec catalog.htm), and allow decoupled passing
of arbitrary data from one or more senders to one or more receivers.�

The language, called TSL, is based on XML. The translator consists basi-
cally of an XSLT processor and a library of templates for each implemen-
tation language used.

Cognitive Robotics Workshop 2004 26

Lock UAV
to position pathplanner

Wait for Call
FlyPath

UAV stable path ready finished

UAV off courseno path found fail (other reson)

FAIL

EXIT

Figure 1. The NavToPoint Task Procedure

Figure 2. The follow and cross behaviors combined into a script.
Reprinted from Saffiotti et al. (1995).

Figure 1 shows a schematic of a task procedure for safely navi-
gating the WITAS UAV to a goal position. The normal execution of
this task forms sequence of three steps, corresponding to the three
states: First, the UAV is stabilized (locked onto its current position),
then a request for a safe trajectory from this position to the goal is
made to the pathplanning service, and finally a subtask, FlyPath,
is invoked to execute the trajectory returned by the pathplanner. The
possible exception to this normal case is if any of the steps fails, e.g.
if the pathplanner can not find a flyable trajectory, or if the FlyPath
task fails. In most cases, this leads to the task as a whole failing, but in
one certain case, when FlyPath fails because the UAV has drifted
too far off course, it only causes the task to “back up” and try again
(the reason why it does not back up all the way to the first state is that
the FlyPath task locks the UAV into a stable hovering mode when
failing in this way).

Script-like task procedures can appear also in rule-based systems,
though they may be less obvious. The following example of a script
implemented by fuzzy behaviors (due to Saffiotti et al. [15]), in-
volves a mobile robot navigating in an office environment: The robots
goal is to enter a certain room, which it may achieve by a behavior
cross(doorway). The context of applicability of this behavior,
however, is limited to the close vicinity of the doorway. Another be-
havior, follow(corridor) is applicable in any part of the corri-
dor, and will when effected lead the robot down the corridor, even-
tually to reach the doorway. A procedure to achieve the goal from
the wider context is created by conjoining to the context of follow
the negation of the context condition for cross, and applying the
context-dependent blending method to the two behaviors. The result
acts like a script, applying first the follow behavior until a situation
within the context of cross is reached, then the cross behavior.
This is illustrated in figure 2.

Search Track Reaquire

new object found tracked object lost

object found

interrupt!

object not found

Figure 3. The FindTrack Task Procedure

5.2 Mode Switchers

While many task procedures take the form of scripts (though in some
cases more elaborate, e.g. with alternate branches for different con-
ditions), some are very definitely not of this kind. Another common
cathegory are “mode switchers”: tasks that continuously change be-
tween a set of different working modes, depending on circumstances,
and that often do not have any wired-in terminating condition but
carry on indefinitely, until interrupted from without.

Figure 3 shows an example of such a task procedure for the
WITAS UAV, which uses the image processing system to alternatly
search for objects (defined either by motion or by color) in the cam-
era image, and tracking an object for as long as possible. It has three
modes: Searching for an object, tracking the object once found, and
“reaquire”, which is entered immediately upon losing track and in
which the task searches for an object similar to the one just lost
near the objects last known image position, for a (short) limited time.
While in the tracking mode, an interrupt command causes the task to
drop the currently tracked object and resume search (a different ex-
ternal command causes the task to terminate, but this is not illustrated
in the figure).

5.3 Fail and Retry

Reactive procedures are typically designed to accomplish a particular
task, in a limited range of operational circumstances. This limitation
is key to keeping the complexity of individual procedures managable.
Were we to try to deal with every imaginable contingency that may
arise in carrying out a desired task, procedures would quickly be-
come unwieldingly complex. Also, the appropriate response to an
abnormal situation may vary depending on the overall plan that the
task is part of. For this reason, most reactive systems have a notion of
task procedures failing. In e.g. RAPS or the WITAS system, failures
are signalled explicitly, while in Saffiotti et al’s system a behavior
may be defined as “failing” when the degree of satisfaction of its
context condition becomes too low.

A pattern related to failing is “catch and retry”. It involves two
task procedures, one of which (“the caller”) has invoked the other
(“the callee”) and is waiting for it complete. There are many reasons
that may cause the callee to fail, but for some of them, the caller
can take measures to repair the failure, appropriate to the purpose
that the caller called the callee for. Thus, if the callee fails, the caller
determines the reason for the failure, and if it is of a kind that the
caller knows how to deal with, it takes some action to remedy the
problem and restarts, or calls again, the callee. If the failure is of any
other kind, the caller itself fails.

An example of this pattern has already been shown, in the
NavToPoint task procedure: If the FlyPath task fails due to the

Cognitive Robotics Workshop 2004 27

UAV drifting off course, the procedure solves the problem (by asking
the pathplanner for a new path, from the current position and invok-
ing FlyPath again). Note that, again, this may not be the right way
to deal with the problem in all contexts. If, for example, a prepro-
grammed path was flown to record sensor data, the flight may have
to be started over from the beginning.

5.4 Supervision
Task failures is only one half of a two-sided problem. In some situa-
tions, a task procedure may be acting inappropriately without realis-
ing it, thus not failing when in fact it should.

A way of dealing with this situation is supervision. Again, this
involves two task procedures, a “caller” and a “callee”. The callee,
during execution, sends “status reports” to its caller, who through
monitoring these and the state of the environment may detect when
the callee is responding incorrectly. The caller may then interrupt the
callee, or send to it some corrective commands.

The FindTrack task described above frequently acts as callee
in this kind of pattern. When it is invoked, it is for a purpose, e.g. to
find and track a particular vehicle, but the FindTrack task can not
discriminate the vehicle of interest from others that may be found,
or even discriminate vehicles from other moving things. Therefore,
the task reports to its caller whenever it changes from searching to
tracking the identity of the tracked object. The calling task may then
retrieve information about this object and apply more sophisticated
reasoning to determine if it is one that should actually be tracked (e.g.
matching the movement of the object with information about the road
network in the area to determine if it follows the road or not). If it is
not, the FindTrack task can be commanded to drop the object and
switch back to searching.

The same result could, of course, be obtained by implementing
the FindTrack functionality in its caller, adapted to the task that
the caller performs, but separating the two confers several advan-
tages: It avoids code duplication (i.e. writing and debugging the same
program twice), since the FindTrack task procedure can be used
by many different tasks. It keeps the calling task procedure simpler,
since it does not have to handle the idiosyncracies of interfacing to
the image processing module and since the tracking of an object
operates concurrently with the (possibly time-consuming) reasoning
performed by the calling task, without the need to write this concur-
rent handling into the calling task explicitly.

5.5 Higher-Order Task Procedures
In more complex task procedures, there is often a heirarchical struc-
ture: the task decomposes into a series (or set) of subtasks, with some
coordinating or “bridging” activity between them. Sometimes, for a
group of tasks this bridging part may be the similar, or even identical,
even though the tasks in the group are applicationwise unrelated. For
example, two potential tasks for the WITAS UAV are surveying a col-
lection of buildings (or other structures of interest) scattered through-
out an area, and searching an area for a particular vehicle. Both these
tasks involve navigating the UAV to a series of positions in turn (po-
sitions of the buildings in the first case, positions where the sought
vehicle is likely to appear in the second), and performing some data-
gathering activity at each position (taking photographs from different
angles in the first case, image/video analysis in the second).

A single task procedure could be written to handle both tasks (as
well as other tasks with similar structure), by using enough parame-
ters to define the data-gathering activity that has to be done at each

position. However, this procedure will grow very complex and diffi-
cult to maintain as the set of possible data-gathering subtasks grows.
But, since the navigation part of the overall task is (mostly) inde-
pendent of the activity carried out at each position, an alternative is
to write a “higher-order” task procedure, DoAtPositions, which
takes as argument a set of positions and an arbitrary task to carry out
at each position7. Again, this both simplifies the writing of the task
procedures involved and improves the potential for reuse.

6 Conclusions
These ideas, although grounded in some experience, are speculative.
Here are some objections that can reasonably be made:

6.1 “This is all very interesting, but hardly new.”
Although the concept of design patterns in software was introduced
not so many years ago [7], there has been an almost explosive devel-
opment in “pattern recognition” since8, and there are even collections
of patterns specifically aimed at the kind of concurrent, distributed
programming that is typical of MTA task implementations [16, 12].
Shouldn’t the simple observations found in the preceeding section al-
ready have been made, many times over? Indeed, they have. But this
lack of novelty is not a fault, since one of the hallmarks of a good
pattern is recurrence, in varying contexts.

Also, a few AI researchers have discussed reactive programming
practice: Firby [6] describes a collection of RAPS task procedures
written for an in-door mobile service robot, and atempts to structure
it into modular, reusable subtasks. His conclusion is that heirarchical
task decomposition, while a powerful structuring principle, alone is
not enough. Some tasks need to spawn subtasks whose execution is
tied to a condition on the state of the robot or its environment, and
thus streches beyond that of the spawning task (this is perhaps also
a candidate for a pattern). Beetz [3] analyzes reactive plans (pro-
grams) for mobile robot navigation tasks and designs a representa-
tion language specific to this application by introducing constructs
that match patterns of use. Examples of at least two of the pat-
terns discussed in the preceeding section can be found among those:
supervision (expressed as augmenting default plans with context-
triggered subplans) and higher-order tasks (expressed by the “at lo-
cation” macro, which specifies that a particular part of the plan needs
to be executed at a certain position, abstracting the details of how to
get the robot to the position from the task to be carried out there).
Beetz also introduces the notion of a task procedure being “embed-
dable” (meaning it can be safely run concurrently with other tasks,
even in the presence of conflicting resource needs), “interruptible”
(meaning it can be interrupted/resumed at arbitrary points without
compromising the procedures ability to complete its task) and “trans-
parent” (meaning the procedure accomplishes one and only one goal,
and that this goal is explicitly indicated), and argues that these are all
desirable properites to form a library of reusable task procedures.

6.2 “This is all very interesting, but what’s the
point?”

There are several:
�

The mechanism used for passing subtasks as arguments depends on the
language used to implement the task procedure. In the MTA framework, a
task can be passed as a CORBA object, or a specification of the task (name
and arguments) can be passed as a data structure definable in IDL.	

As evidenced by pattern catalogs, e.g. at
http://hillside.net/patterns/.

Cognitive Robotics Workshop 2004 28

Patterns suggest good practices: A task procedure that provides
information on the reason for failures is more reusable than one that
does not, since it can be combined with other tasks in a catch-and-
retry fashion. Likewise, a mode-switching task procedure that pro-
vides meaningful status reports and “hooks” to force mode changes
can be supervised, and therefore more useful as a subtask. A common
theme in all the three design-oriented patterns in the preceeding sec-
tion is that they aim towards increasing the potential for reuse, which
is a cornerstone of efficient (or economic) software construction.

Patterns of use motivate features of task procedure languages in
existence, and suggest potentially useful features missing from lan-
guages of today. Beetz design of a representation for robot navigation
tasks [3] is an example of this approach. In creating the reactive layer
of a layered architecture, looking for patterns in the intended appli-
cation domain(s) may also guide the choice of implementation tech-
nology. In the WITAS UAV project, we have found a mode-switching
structure to be more common than a script-like one, at least among
basic tasks having to do with control of the UAV platform and its
sensors. In an early phase of the project, the reactive layer was im-
plemented using the RAPS language, and one of the lessons learned
from this was that although it is certainly possible to implement a
mode switching task using the constructs of this language, it is not
very convenient.

6.3 “This is all very interesting, but it should be
formalized.”

Probably the most important function served by patterns is as an edu-
cational resource: They communicate experience, insight, and some-
times inspiration, between people faced with similar problems (pro-
grammers, in the case of software patterns). Thus, it is more impor-
tant for a pattern description to be human-readable than machine-
readable. However, recurrent patterns in reactive programs possibly
also point towards mechanisms for automatically synthesizing such
programs, for example in the form of search spaces or search control
knowledge for automated planners (this is also advocated by Beetz
[3]).

Acknowledgements
Thanks to the reviewers for pointing out Firby’s work, and for raising
some of the objections. The WITAS project is, of course, a team
effort, but I would especially like to mention Per Nyblom, who is
the author of the TSL translator, and who has also contributed much
to the development of the library of task procedures for the WITAS
UAV. This work is partially supported by research grants from the
Wallenberg Foundation, Sweden and NFFP-539 COMPAS.

References
[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, ‘An ar-

chitecture for autonomy’, International Journal of Robotics Research,
Special Issue on “Integrated Architectures for Robot Control and
Programming”, (1998).

[2] B. Appleton. Patterns and software: Essential concepts
and terminology. http://www.cmcrossroads.com/
bradapp/docs/patterns-intro.html, 2000.

[3] M. Beetz, ‘Plan representation for robotic agents’, in Proc. 6th Inter-
national Conference on Artificial Intelligence Planning and Scheduling
(AIPS’02), (2002).

[4] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg,
E. Skarman, and J. Wiklund, ‘The WITAS unmanned aerial vehi-
cle project’, in Proc. European Conference on Artificial Intelligence,
(2000).

[5] R. J. Firby, Adaptive Execution in Dynamic Domains, Ph.D. disserta-
tion, Yale University, 1989.

[6] R. J. Firby, ‘Modularity issues in reactive planning’, in Proc. Interna-
tional Conference on AI Planning Systems (AIPS’96), (1996).

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[8] M. P. Georgeff and A. L. Lansky, ‘Procedural knowledge’, in Proc.
IEEE Special Issue on Knowledge Representation, volume 74, pp. 1383
– 1398, (1986).

[9] L. P. Kaelbling and S. J. Rosenschein, ‘Action and planning in embed-
ded agents’, in Designing Autonomous Agents: Theory and Practice
from Biology to Engineering and Back, ed., P. Maes, MIT Press, (1990).

[10] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, ‘The Saphira ar-
chitecture: A design for autonomy’, Journal of Experimental and The-
oretical AI, (1996).

[11] M. Lin, Analysis and Synthesis of Reactive Systems: A Generic Lay-
ered Architecture Perspective, Ph.D. dissertation, Linköpings univer-
sitet, 1999.

[12] T. Mowbray and R. Malveau, CORBA Design Patterns, Wiley, 1997.
[13] N. Muscettola, P. Nayak, B. Pell, and B. C. Williams, ‘Remote agent: To

boldly go where no AI system has gone before’, Artificial Intelligence,
103, (1998).

[14] D.J. Musliner, E.H. Durfee, and K.G. Shin, ‘World modeling for the
dynamic construction of real-time control plans’, Artificial Intelligence,
74(1), 83 – 127, (1995).

[15] A. Saffiotti, K. Konolige, and E. H. Ruspini, ‘A multivalued logic ap-
proach to integrating planning and control’, Artificial Intelligence, 76,
481 – 526, (1995).

[16] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects, Wiley, 2000.

Cognitive Robotics Workshop 2004 29

1

Cognitive Robotics Workshop 2004 30

Paper Session II

August 23, 12:00 - 13:30

• Decision Theoretic Planning for Playing Table Soccer, M. Tacke, T. Weigel, B. Nebel

• On-line Decision Theoretic Golog for Unpredictable Domains, A. Ferrein, C. Fritz,
G. Lakemeyer

• Learning Partially Observable Action Models, E. Amir

1

Cognitive Robotics Workshop 2004 31

*

Cognitive Robotics Workshop 2004 32

Decision-Theoretic Planning for Playing
Table Soccer

Moritz Tacke, Thilo Weigel and Bernhard Nebel
Institut für Informatik
Universität Freiburg

79110 Freiburg, Germany
take,weigel,nebel@informatik.uni-freiburg.de

Abstract. Table soccer (also called “foosball”) is much simpler
than real soccer. Nevertheless, one faces the same challenges as in all
other robotics domains. Sensors are noisy, actions must be selected
under time pressure and the execution of actions is often less than
perfect. One approach to solve the action selection problem in such
a context is decision-theoretic planning, i.e., identifying the action
that gives the maximum expected utility. In this paper we present a
decision-theoretic planning system suited for controlling the behav-
ior of a table soccer robot. The system employs forward-simulation
for estimating the expected utility of alternative action sequences.
As demonstrated in experiments, this system outperforms a purely
reactive approach in simulation. However, this superiority of the ap-
proach did not extend to the the real soccer table.

1 Introduction

Playing table soccer (also called “foosball”) is a task that is much
simpler than playing real soccer. Nevertheless, one is faced with all
the challenges one usually has to deal with in robotics. One has to
interpret sensor signals and to select actions based on this interpre-
tation. All this has to be done while keeping in mind that the sensor
signals are noisy and the actuators are less than perfect.

One approach to solve the action selection problem is to use purely
reactive methods. These are methods that select actions based on the
current sensor input with only a minimum amount of computation.
The selection of actions can be based on layered finite state automa-
tons [2] or even simpler by using a simple decision tree. However,
these purely reactive approaches have the disadvantage that they can-
not anticipate changes in the environment caused by its own actions
or by exogenous actions and for this reason might act sub-optimally.

Approaches such behaviour networks [3, 6] address this problem
by modeling all possible actions, their consequences, and some-
thing similar to success likelihood. Based on this model, actions that
promises to achieve the goals best are selected. As demonstrated by
different robotic soccer teams [4, 7], this approach can be quite suc-
cessful. However, it lacks theoretical foundation and, in fact, it is not
clear under what circumstances the approach provably achieves its
goals.

Decision-theoretic planning in contrast addresses the action selec-
tion problem by explicit deliberation about possible actions and aims
at generating plans which promise to yield the maximum expected
utility for an agent. This is achieved by explicitly considering the un-
certain effects of the actions, the incomplete knowledge about the

world and the possibly limited resources for carrying out a plan.
Decision theoretic planning can be implemented in various fash-

ions. Using a classical refinement planner, it is possible to calculate
the plan with the maximum expected utility by keeping ranges of
possible utility values for partial plans [5]. A very popular way to
realize decision-theoretic planning is the modeling of the planning
problem as a Markov decision process [1].

The main challenge in using such an approach is to simplify the
model of the domain such that the computational costs are not pro-
hibitive. For this reason, we do not consider e.g. all possible ways
an action can fail, but distinguish only between successful execution
and failure. Furthermore, we do not consider responses to successful
ball interceptions but consider the plan as failed once the opponent
has intercepted the ball. Finally, planning is carried out only to a lim-
ited depth and the utility of the resulting state is assessed using a
heuristic measure.

The rest of the paper is structured as follows. In Section 2, the
KiRo system is presented. Section 3 describes the implementation
of a decision theoretic planning algorithm for KiRo. Experimental
results are presented in Section 4 and a short conclusion and outlook
is given in Section 5.

2 KiRo

KiRo is a table soccer robot, i.e., an automated table soccer table [8].
Its hardware consists of the following components (see Figure 1):

Figure 1. The hardware setup

� a standard table soccer table, where all rods of one player are
equipped with electro motors strong enough to shift and turn the

Cognitive Robotics Workshop 2004 33

rods fast,
� an overhead camera, and
� a standard PC, on which the control software runs.

The software executes a control cycle, consisting of the following
four steps:

1. During the vision analysis phase, the positions of the various items
on the field are estimated (see Figure 2(a)).

2. These positions are combined with knowledge about former ones
in order to build the new world model. The world model, shown
in Figure 2(b), contains information about the positions and move-
ments of all items on field. The field is represented by a coordinate
system where the origin is in the middle of the field and the � -axis
connects both goals.

3. Based on this world model, the best actions are chosen in the ac-
tion selection phase.

4. Action execution translates the chosen actions into steering com-
mands. These commands are sent to the actuators.

(a) (b)

Figure 2. (a) The camera picture and (b) the generated world state

Since table soccer is a fast-paced game, the cycle duration has to
be as short as possible in order to be able to react in time. KiRo
works with a cycle time of 20 msec, which leads to strict bounds for
the time available to select appropriate actions.

KickBall

ClearAtPos

DefaultAction

ClearBall

BlockAtPos

BlockBall

Ball kickable ?

Ball in front of bar?

Ball close ?

A teammate in front blocking ?

Ball position unknown ?

no

no

no no

no

yes

yes

yes

yes

yes

Figure 3. The original action selection procedure

The first approach to action selection has been a purely reactive
decision tree. This essence of this approach is depicted in Figure 3.
Although very crude, this approach was able to beat 75% of a random
sample of human opponents [8].

In contrast, the system presented in this paper selects the action
that promises the best consequences. To identify this action, it is nec-
essary to plan ahead and to simulate the change in the world state

caused by the different actions. As this approach needed a different
kind of action model, the action control had to be completely rewrit-
ten.

3 Decision-Theoretic Planning for Table Soccer
Playing

Table soccer does not seem to be well suited for decision-theoretic
planning because it involves an opponent, which apparently means
that we have to use game-solving methods, e.g., minimax search,
instead of planning. However, the game is highly asymmetric. Only
the player in possession of the ball, the attacking player, is able to
decide on the future development of the game. The other player, the
defending player, has to wait until the ball can be intercepted. For this
reason, we can focus on a sub-game that is much easier to tackle.

We will consider the sub-game where the attacking player has con-
tinuous control of the ball. That means that this sub-game ends when
the attacking player either scores a goal or looses control of the ball.
This implies that the game tree can be pruned at nodes where the
defending player intercepts the ball. Furthermore, all opponent ac-
tions that are unsuccessful in intercepting the ball do not influence
the game at all. In summary, the defending player never needs to look
ahead and just tries to intercept the current ball while the attacking
player considers different possibilities of shooting the ball and takes
the opponent into account only as a threat to the next action. So, we
can indeed use decision-theoretic planning techniques to address the
table soccer playing problem.

As a general strategy, KiRo uses a reactive positioning scheme
when it is the defending player and employs decision-theoretic plan-
ning in the role of the attacking player. In what follows, we only
consider the situation when KiRo is the attacking player.

3.1 Action and Forward Simulation

When planning, the attacking player can act all the time and the state
changes continuously, because the ball is in motion most of time.
Planning in such a setting is, of course, computationally infeasible.
However, we do not have to consider all possible actions and all
movements of the ball:

1. Most of the time, the movement of the ball and the rods is pre-
dictable. The ball moves according to its inertia, the rods move in
the way which is specified by the employed actions.

2. The movement of the ball and of the rods are fully independent
apart from one case: One figure touching the ball. In this situation,
the movement of the ball is influenced.

3. Whenever the movement of the ball changes, the actions of the
rods are likely to change as both players react on the new situation.

For this reason, we can interleave actions and physical simulations
in a regular manner. Given a world state, an action as well as a reac-
tion of the opponent, we simulate the evolution of the world until the
point of time at which one of both players can manipulate the ball
again. At this moment is it necessary to stop the simulation and to
evaluate the reactions of both players in the new situation.

3.2 One Iteration of Planning

For a given world state � , in which KiRo is playing the ball, all pos-
sible consequences of KiRo’s actions as well as all possible reactions
of the opponent are considered. For each combination among these,
a new world state is constructed which is used as a base for further

Cognitive Robotics Workshop 2004 34

planning – provided that the opponent is not playing the ball in this
state.

The search tree consists of three different kind of nodes which
alternate in a given sequence. Each of theses types corresponds to a
different planning step. The starting point of plan iteration is always a
state node � corresponding to a game state � . The first step is to select
a set of applicable actions

�������������	�
����

. For each

�����������	��������������

one action node � � is created. As these nodes represent the different
choices in state � , the utility value of the state node � is the maximum
utility among its successors (once these are known):

���
�������
� � �
�� �"!$#%�& ��'�� ���(�)�*�+�(� � � �
,�

Figure 4 illustrates the generation of the action nodes.

-.--.--.--.-/.//.//./ s

a a a1 2 3

a

s, s, s,

a
a

a a a

a aa1

2

3 1

1

2

2

3

3

s

0�0�0�00�0�0�01�1�1�11�1�1�1

Figure 4. The action choice and its representation within the tree

The next step is the estimation of the opponent’s reactions. Based
on the world state � a set 2 ��3 � ��45��3 �
�
,���������	��3768��45��396:
�
<; of hy-
potheses is created where the

3�=
classify the reactions and the

45��3�=9

the associated probabilities. Note that we assume that these reactions
depend only on � and are independent from the chosen action � � ,
which in fact is true in table soccer. There is usually no way an op-
ponent can react to an the action of an attacking player.

For each action node � � , a set of successor opponent nodes
2$> ���	���	����� > � 6 ; is created. The value of � � is the expected value over
its successors:

���
�������(� � � �
?�
6@
=�A � 4B��3�=C
�D ���
�������(� � > � =9
,�

In Figure 5 two possible reactions of the opponent and the formal-
ization of this fact in the tree is depicted.

a

2 2o , p(o)o , p(o)1 1

2 2o , p(o)o , p(o)1 1

o o1 2

s,a

s,a,o , p(o) s,a,o , p(o)1 1 22

E.EE.EE.EF.FF.FF.F

G�G�G�GG�G�G�G
G�G�G�G
H�H�H�HH�H�H�H
H�H�H�H

Figure 5. The formalization of the opponent

Every opponent node > � = contains informations about the world
state � as well as one specific action

���
and reaction

��3 = ��4B��3 =
�

. To

finish the planning step, the consequences 2$I � ���	����� I,J ; of
� �

are esti-
mated along with their probabilities

45� I �<
,�������	��4B� I J
 . The now gath-
ered information K � �
�����
3 = � I	LNM is used to estimate new world states

�
� = L by means of a simulator. These states are used to build a new

layer of state nodes � � = L .

The utility value of the precedent opponent node > � = is calculated
by

���(�)�*�+�(� � > � =
?�
J@
L A �
45� I	L
�D ���
�������
� � � � = L
,�

Figure 6 shows two different outcomes of an action and the use of
the simulator to create a new world state based on the collected data.

s s

Simulator

1 2

o

s s1 2

s,a,o, p(o)

c , p(c)2

c , p(c)1 c , p(c)1 c , p(c)21

2

1 2

O�O�O�O�OO�O�O�O�OP�P�P�P�PP�P�P�P�P

Q.Q.QQ.Q.QQ.Q.QR.RR.RR.R

Figure 6. The possible outcomes of an action

After one iteration of planning, there exists a number of new state
nodes containing the world state resulting from every possible action���

, every possible reaction
3 =

and every possible consequence I$L of
the action

���
. After the search tree has been built up to the leafs, those

get evaluated using the utility function. These evaluations propagate
backward through the tree until the root state node � is reached. The
utility of � is the maximum expected utility among all selectable ac-
tions in world state � ; the action

���
yielding this value is the one to

be selected in � .

3.3 Choosing an Applicable Action

Currently, KiRo’s capabilities comprise the following actions for op-
erating each of the four rods under his control:

� KickBall: Rotate the rod by 90 S in order to kick the ball forward
or diagonally to the left or right.

� BlockBall: Move the rod so that a figure intercepts the ball.
� ClearBall: Move to the same position as BlockBall but turn the

rod to let the ball pass from behind.
� StopBall: Pen the ball in between figure and field.

Altogether, it is possible to assign a single rod one out of 6 differ-
ent actions (three of them being kicks in different directions). Tak-
ing all four rods into account is it possible to create 24 different as-
signments of actions. In other words, our search tree would have a
branching factor of 24. Fortunately, one can easily reduce this fac-
tor because only the rod close the ball can kick and the others have
a choice between the remaining three actions. We decided to assign
statically BlockBall to all rods between the ball and the own goal
in order to have a defence even when the ball is accidentally lost
or reflected. Rods between the opponent’s goal and the ball should
not handicap the chances to score a goal. For that reason, they are
assigned ClearBall.

With these static assignments, the branching factor is reduced to
six while KiRo is playing the ball. If the opponent possesses the ball,
a static defensive allocation of actions without any planning is em-
ployed. This reflects the already mentioned observation that planning
in these situations is useless.

In some situations, performing a certain action might be useless
(e.g. trying to stop an already stopped ball) or the chance of a suc-
cessful carrying out of an action might become too low. In these

Cognitive Robotics Workshop 2004 35

cases, such actions are not evaluated in order to reduce the complex-
ity further.

As the means the opponent is going to use in order to protect his
goal are unknown, it is necessary to guess what his reactions will
be. Each of these guesses is weighted by the probability that this
reaction will occur. Currently, the opponent is always expected to
either let his rods unmoved or to protect his goal according to the
scheme applied in the BlockBall-action. Each of these alternatives is
weighted with a probability of 0.5. These probabilities are, of course,
only a crude approximation and it is planned to replace this simple
opponent model by a more sophisticated, experience-based one.

3.4 Calculating the Successor State

The last – and most important – step is to estimate the probability
of a success of KiRo’s actions and to create a new world state based
on the data collected yet. The actions of KiRo can have two possible
outcomes, success and failure. The probabilities of these depend on
the encountered world state, e.g. a quickly moving ball is more dif-
ficult to kick than a static one. Based on the world state and on data
about the effectiveness of the actions collected during earlier games,
the success probability is estimated.

The means to create a new world state based on the informations
about KiRo’s actions, their success or failure and the opponent’s re-
actions is a simple simulator. This simulator models the world based
on the following principles:

� The angle of incidence and the angle of reflection are equal.
� Friction is ignored.

Additionally, the simulator has a model that allows to interprete the
steering commands issued by both players. Of course, the real world
is only very coarsely modeled by a simulator based on these prin-
ciples. Further, since the input data is imperfect, the simulation is
accumulating errors. The simulated span of time, however, is very
short, so that the errors are still acceptable.

Simulation is performed in two steps: In the first one, the game is
simulated until the point of time in which KiRo’s action takes place.
Afterwards, two successor states are generated: One of the resulting
world states is a state according to the known consequences of the
success of KiRo’s action. The other state reflects the failure of the
action. In this case, we have a new problem: The consequences of a
successful action are known – in case of failure, anything can happen.
The most frequent kind of failure is the inability of KiRo to hit the
ball. For this reason, the failing case is simulated by letting the ball
pass the failing rod without changing its movement parameters. The
resulting world state is not used as a starting point for a new planning
step; it is directly evaluated using the heuristic utility function (see
Subsection 3.6).

3.5 Estimating the Success Probabilities

In order to estimate the success probability for a given action on
a certain rod in a given world state, a Bayesian approach is em-
ployed. The first step is to classify the ball movements by a 4-tuple
K���� � ��� ��� � ��� �NM , where

� � � is the distance in � -direction to the rod.
� ��� is the minimal distance in y-direction to a figure on this rod .
�
� � is the relative velocity in � -direction. “Relative” means in this
context e.g. “approaching” or “departing”

�
� � is the relative velocity in � -direction.

Each of these values is discretized according to a seven step scale.
The task is now to calculate the success probability� �	��
 ��� � ��� ��� � ��� �
 of the action given this tuple. Using Bayes’ rule

yields

� �	��
 � � � � � ��� � ��� �
 �
� � ��� � ��� ��� � ��� �
 �?
5D � �	�
� � � � � � � ��� � ��� �

In order to simplify the computation of the conditional probability,
two independence assumptions are made:

1.
� � ��� � ��� ��� � ��� �
 � � � ���
5D � � ���
�D � ��� �
5D � ��� �

2.
� � � � � � � ��� � ��� �
 �
?� � � � �
 �
BD � � � �
 �?
5D � ��� �
 �
5D � ��� �
 �
 .

This “naive Bayes” assumption is clearly not met; this, however, is
usually the case in naive Bayes approaches (otherwise they would
not be called “naive”). Using this assumption, we are able to give an
easy to compute estimate for the success probability:

��
�� �	��
 ��� � ��� ��� � ��� �

�� ��������� ���	� ��������� � �!� ����"#��� ���	� ���$"���� ���	� ���%����������&�	� �������'�	� ���$"(�'�	� ���$"��'�

3.6 The Utility Function

Table soccer poses a highly dynamic environment where only little
time is available for selecting the most appropriate action. Due to
the high uncertainties in sensing and acting, it is infeasible to create
and carry out a complete plan for reaching the final aim of scoring
a goal. It is necessary to plan with a limited horizon and to use an
utility function for evaluating world states. Planning in this fashion is
similar to depth-limited minimax search with a heuristic evaluation
of the leafs of the game tree. The utility of inner nodes is estimated
using a rollback procedure [1].

The heuristic utility function is used to estimate the world states
contained in the leafs of the search tree – provided one has not
reached a scored goal yet. The principles underlying this function
are:

� If a goal is either scored or going to be scored (i.e. ball behind the
keeper, moving towards the goal), a value of 100 is returned if it
is the opponent’s goal, otherwise 0.

� The closer the ball is to the opponent’s goal wall, the better.
� If the distance between the ball and both front walls is equal, it is

neither important who controls the ball nor whether the ball is on
the left or right of the field. The closer it gets to one of the walls,
the bigger the importance of these facts.

4 Results

The decision-theoretic planner has been fully implemented in the
KiRo system and tested using a simulator and the real table soccer
system.

4.1 Computational Costs

The implemented system runs on a 1.7 GHz AMD processor. On this
processor, the vision analysis phase, the world modeling step and
action execution (see Section 2) require together roughly 5 msec.
With a cycle time of 20 msec, this gives us approximately 15 msec
per cycle for planning.

Table 1 shows the worst case runtimes for different search depths.
The search depth is in this case defined as the number of plan it-
erations. One planning step constructs a subtree of the depth 3; a

Cognitive Robotics Workshop 2004 36

search depth of � therefore corresponds to a tree depth of � � . The ta-
ble shows that search depth values over 3 are clearly not feasible for
KiRo with the current processor speeds. However, with newer, faster
CPUs we might even be able to go to search depth of 3.

Search depth Runtime

1 0.3 msec
2 10 msec
3 23 msec
4 45 msec
5 80 msec

Table 1. Worst case runtimes

4.2 Performance Experiments

Two kinds of performance experiments have been conducted. The
simulator has been used to compare the reactive and the decision-
theoretic planning action selection directly by playing against each
other. On the real table, games against human adversaries were per-
formed to test both approaches indirectly.

4.3 Results on the Simulator

Two kinds of experiments were conducted on the simulator: In a
first run, the decision-theoretic planning procedure had a fixed search
depth of two. Using this setting, a number of games has been played.
While the program using the reactive action selection scheme shot
in average one goal in 10 minutes, the decision-theoretic approach
scored once in 1.5 minutes.

As many of these goals were own goals by the reactive control sys-
tem, a second criteria was employed: Field superiority. In this con-
text, a team is called field superior if it is capable of keeping the ball
in the opponent’s half most of the time. The field superiority value
of a team is therefore the percentage of time during which the ball
was in the opponent’s half of the field. Table 2 shows the results for
the decision-theoretic planning approach, ordered by the employed
search depth.

Search depth Field superiority value

1 64%
2 72%
3 74%
4 57%

Table 2. Field superiority values for the decision-theoretic planning
approach

The decision theoretic planning approach is field superior. The
field superiority increases with the search depth until the efficiency
gets decreased due to the excessive time consumption.

4.4 Results on Physical Table Soccer System

The good results from the simulation experiments could not be repli-
cated on the real table soccer system. Since we do not have a table
with robot control for both sides, we had to conduct the tests indi-
rectly by playing against humans. The setting of these experiments

was as follows. Every opponent team consisted of two players. The
teams were not allowed to switch their positions, and every team had
to play four matches against the robot. During two of these, the reac-
tive action selection was controlling the robot; the other two matches
were performed by the planning approach. The order of the matches
was randomly drawn and the human opponents did not know against
which action selection they were playing.

In 56 Matches, the reactive approach was on average able to shoot
a goal in 0.6 minutes, while it took the human opponents 1.56 min-
utes to score. The planning approach hit the goal once in 0.84 min-
utes and admitted goals by the human teams on average every 1.19
minutes.

5 Conclusion

We presented a decision-theoretic planning approach to play table
soccer. The presented approach used a forward-simulation scheme as
well as an opponent model and a naive Bayesian approach to estimate
the success probabilities of its own actions.

This approach was able to dominate a reactive action selection
mechanism in direct matches performed on a simulator, but proved
to be inferior in indirect comparisons playing on the real table soccer
table against human teams. While the result on the real table soccer
table is disappointing, the simulation results have shown that the ap-
proach has potential. In particular, there are a number of parameters
that appear to be worthwhile to be experimented with. The oppo-
nent model, for example, is currently very simple and could, e.g., be
trained by recording real games. Furthermore, the success probabil-
ity should also be adapted to the real table. Finally, the execution of
actions themselves might be able to be enhanced. Summarizing, the
decision-theoretic planning approach has shown promise but still has
to live up to its expectations.

REFERENCES
[1] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Struc-

tural assumptions and computational leverage. Journal of Artificial In-
telligence Research, 11:1–94, 1999.

[2] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1), 1986.

[3] K. Dorer. Behavior networks for continuous domains using situation-
dependent motivations. In Proc. 16th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI), pages 1233–1238, Stockholm, Sweden, 1999.

[4] K. Dorer. The magmaFreiburg Soccer Team. In M. Veloso, E. Pag-
ello, and H. Kitano, editors, RoboCup-99: Robot Soccer World Cup III,
Lecture Notes in Artificial Intelligence, pages 600–603. Springer-Verlag,
Berlin, Heidelberg, New York, 2000.

[5] P. Haddawy and M. Suwandi. Decision-theoretic refinement planning
using inheritance abstraction. In K. Hammond, editor, Proc. Second In-
ternational Conference on Artificial Intelligence. University of Chicago,
Illinois, AAAI Press, 1994.

[6] P. Maes. Situated agents can have goals. In P. Maes, editor, Designing
Autonomous Agents: Theory and Practice from Biology to Engineering
and Back, pages 49–70. MIT Press, Cambridge, MA, 1990.

[7] T. Weigel, J.-S. Gutmann, A. Kleiner, M. Dietl, and B. Nebel. CS-
Freiburg: Coordinating Robots for Successful Soccer Playing. IEEE
Transactions on Robotics and Automation, 18(5):685–699, October
2002.

[8] T. Weigel and B. Nebel. KiRo – An Autonomous Table Soccer Player. In
Proc. Int. RoboCup Symposium ’02, pages 119 – 127. Springer-Verlag,
Fukuoka, Japan, 2002.

Cognitive Robotics Workshop 2004 37

1

Cognitive Robotics Workshop 2004 38

On-line Decision-Theoretic Golog for Unpredictable
Domains

Alexander Ferrein and Christian Fritz and Gerhard Lakemeyer 1

Abstract. DTGolog was proposed by Boutilier et al. as an integra-
tion of decision-theoretic (DT) planning and the programming lan-
guage Golog. Advantages include the ability to handle large state
spaces and to limit the search space during planning with explicit
programming. Soutchanski developed a version of DTGolog, where
a program is executed on-line and DT planning can be applied to
parts of a program only. One of the limitations is that DT planning
generally cannot be applied to programs containing sensing actions.
In order to deal with robotic scenarios in unpredictable domains,
where certain kinds of sensing like measuring one’s own position are
ubiquitous, we propose a strategy where sensing during deliberation
is replaced by suitable models like computed trajectories so that DT
planning remains applicable. In the paper we discuss the necessary
changes to DTGolog entailed by this strategy and an application of
our approach in the ROBOCUP domain.

1 Introduction

Boutilier et al (2001) proposed DTGolog, an integration of Markov
Decision Processes (MDPs) [12] and the programming language
Golog [8], which is based on Reiter’s variant of the situation cal-
culus [13]. Golog is equipped with familiar control structures like
sequence and while-loops, but also nondeterminism, which allow for
complex combinations of actions operating on fluents (predicates and
functions changing over time). DTGolog extends Golog by adding
familiar MDP notions like stochastic actions and rewards. Moreover,
decision-theoretic planning is incorporated in the form of an MDP-
style optimization method, which takes a program ρ and computes a
policy (another program), which follows the controls of ρ except that
it chooses among nondeterministic actions in order to maximize ex-
pected utility up to a given horizon of actions. The advantage over
traditional MDP’s is that the state space need not be represented
explicitly and that the search space can be narrowed effectively by
Golog’s control structures.

One serious limitation of DTGolog is that it does not account for
sensing actions.2 The reason for this limitation is that DTGolog oper-
ates in an off-line modus, that is, it computes a policy for the whole
program, which is then handed to an execution module. When the
program contains actions sensing fluents that can take on a large,
perhaps infinite number of values, finding a policy quickly becomes
infeasible, if not impossible. For this reason Soutchanski [15] intro-
duced an on-line version of DTGolog, which interleaves policy opti-
mization and execution. The main idea is that a user can specify for

1 Computer Science Department, Knowledge-Based Systems Group RWTH
Aachen, D-52056 Aachen {gerhard,fritz, ferrein}@cs.rwth-aachen.de

2 The only exception are sensing actions which are introduced by the opti-
mizer to determine the state after a stochastic action.

which parts of the program an MDP-style policy is to be computed.
As an example, consider the program optimize(ρ1); sense(φ); if φ

then ρ2 else ρ3. The idea is, roughly, that first a policy is computed
for the subprogram ρ1, which is then executed, followed by an action
sensing the truth value of φ. Finally, depending on the outcome either
ρ2 or ρ3 is executed, both of which may themselves contain further
occurrences of optimize.

In order to see that Soutchanski’s approach is problematic for de-
cision making in highly dynamic domains, it is useful to distinguish
two very different forms of sensing, which we refer to as active and
passive sensing. An example of active sensing is an automatic taxi
driver asking a customer for her destination. Typically, this form of
sensing happens only occasionally and should be part of the robot’s
control program. An example of passive sensing is keeping track of
one’s own position, which happens frequently, often in the order of
tens of milliseconds. It would make little sense to explicitly represent
such passive sensing actions in the robot’s control program, for these
would make up the bulk of the program and render reasoning about
the program all but impossible. While Soutchanski does not say so
explicitly, he clearly is concerned only with active sensing actions,
as all his sensing actions are part of the control program.

In highly dynamic domains, passive sensing is ubiquitous as a
robot has to constantly monitor its own position and its environment.
The aim of this paper is to show how decision-theoretic planning can
be adapted to account for this form of sensing. The starting point for
our investigations is the work by Grosskreutz and Lakemeyer [5],
who integrated passive sensing into Golog. The idea is, roughly,
that when reasoning about a program (e.g. projecting its outcome)
one uses models of how fluents like the robot’s position change. (To
model the movement of a robot they use simple linear functions of
time to approximate the robot’s trajectories.) During actual execution
these models are replaced by passive sensing actions which are rep-
resented as so-called exogenous actions, which periodically update
fluents like the position of the robot and which are inserted by the
interpreter of the program.

Assuming we have appropriate models of how the relevant fluents
change during deliberation, could we then simply adopt Soutchan-
ski’s approach or even the original DTGolog if we ignore active sens-
ing? The answer, in short, is No. What is missing in both cases is that,
after a policy has been computed, its execution must be carefully
monitored. This is because the model of the world used during de-
liberation is only a rough approximation of the real world and things
may very well turn out differently and may even result in aborting
the current policy. For example, when a driver initiates passing a car
and another vehicle suddenly appears speeding from behind, it may
be advisable to let the other car pass first. Monitoring then means to
compare assumptions made by the model of the world (such as com-

Cognitive Robotics Workshop 2004 39

puted agent trajectories) with the actual values obtained by sensing
during execution. As we will see, this can be achieved by annotating
the policy with appropriate information.

Given that we are motivated by robots operating in highly dy-
namic and unpredictable domains, deliberation and decision making
should happen quickly, preferably in less than a second. For arbi-
trary Golog programs this clearly cannot be guaranteed.3 Here we
are concerned with control programs for robots that operate contin-
uously over longer periods of time. In such scenarios it makes little
sense to find optimal policies for the robot’s actions from start to fin-
ish, since it is impossible to predict what the world will be like after
even a few seconds. Instead one is content to peek into the future to
plan perhaps only a handful of actions with highest utility, like pass-
ing another car. As we will demonstrate at the end of the paper, under
these assumptions, efficient decision-theoretic planning is achievable
and can lead to overall good performance.

Since an application like an automatic taxi driver is currently
still out of reach, we have chosen robotic soccer, in particular, the
ROBOCUP MIDDLE SIZE LEAGUE as a benchmark. While the en-
vironment is still fairly controlled (a fixed playing field with four
mobile robots on each team), game situations are nevertheless chal-
lenging due to their dynamics and unpredictability. To keep things
simple, we only consider the case of passive sensors, that is, Golog
programs as supplied by a user do not contain explicit sensing ac-
tions.

In related work, Poole [11] incorporates a form of decision-
theoretic planning into his independent choice logic. While he also
distinguishes passive from active sensing, he does not consider the
issue of on-line DT planning. Other action logics addressing uncer-
tainty include [14], where abduction is the focus, and [6], which ad-
dresses symbolic dynamic programming and which itself is based
on [1]. Finally, [7] also discuss ways of replacing sensing by models
of the environment during deliberation.

The rest of the paper is organized as follows. First, we give a brief
overview of DTGolog and its underlying semantics. Then we sketch
out our approach to on-line decision-theoretic planning, followed by
a discussion of applying decision-theoretic to ROBOCUP’s MIDDLE

SIZE LEAGUE and some concluding remarks.

2 The Situation Calculus and DTGolog

2.1 The Situation Calculus

Golog is based on Reiter’s variant of the Situation Calculus [13, 10],
a second-order language for reasoning about actions and their ef-
fects. Changes in the world are only due to actions so that a situation
is completely described by the history of actions since the initial sit-
uation S0. Properties of the world are described by fluents, which are
predicates and functions with a situation term as their last argument.
For each fluent the user defines a successor state axiom describing
precisely when a fluent value changes or does not change after per-
forming an action. These, together with precondition axioms for each
action, axioms for the initial situation, and foundational axioms as
well as unique names and domain closure assumption, form a so-
called basic action theory [13].

2.2 Off-line DTGolog

DTGolog uses basic action theories to give meaning to primitive
actions and it inherits Golog’s programming constructs such as se-

3 In the coffee-delivery example in [2], the robot needed several seconds or
even minutes to find a policy.

quence, if-then-else, while-loops, and procedures, as well as non-
deterministic actions. From MDPs DTGolog borrows the notion of
reward, which is a real number assigned to situations indicating the
desirability of reaching that situation, and stochastic actions. To see
what is behind the latter, consider the action of intercepting a ball
in robotic soccer. Such an action routinely fails and we assign a low
probability (0.2) to its success. To model this in DTGolog, we define
a stochastic action intercept . It is associated with two non-stochastic
or deterministic actions interceptS and interceptF for a successful
and failed intercept, respectively. Instead of executing intercept di-
rectly, nature chooses to execute interceptS with probability 0.2 and
interceptF with probability 0.8. The effect of interceptS can be as
simple as setting the robot’s position to the position of the ball. The
effect of interceptF can be to teleport the ball to some arbitrary other
position and setting the robot’s position to the old ball position.4

While the original Golog merely looks for any sequence of primi-
tive actions that corresponds to a successful execution of a program,
DTGolog takes a program and converts it into another simplified pro-
gram, called a policy, which is a tree of conditional actions. This pol-
icy, roughly, follows the advice of the original program in case of
deterministic actions and settles on those choices among nondeter-
ministic actions which maximize expected utility. The search for the
right choices is very similar to the search for an optimal policy in an
MDP. One advantage of using Golog compared to a regular MDP is
that the search can be arbitrarily constrained by restricting the num-
ber of nondeterministic actions.

DTGolog is defined in terms of a macro BestDo(p, s, h, π, v, pr),
which ultimately translates into a situation calculus expression.
Given a program p and a starting situation s, BestDo computes a
policy π with expected utility v and probability pr for a successful
execution. h denotes a finite horizon, which provides a bound on the
maximal depth of any branch in the policy. For space reasons we
only consider the definition of BestDo for nondeterministic choice
and stochastic actions. (See [2] for more details.)

Suppose a program starts with a nondeterministic choice between
two programs p1 and p2, written as (p1|p2). Then

BestDo((p1|p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1
.BestDo(p1; p, s, h, π1, v1, pr1

) ∧

∃π2, v2, pr2
.BestDo(p2; p, s, h, π2, v2, pr2

) ∧

((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr
1
∧ v = v1) ∨

(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr
2
∧ v = v2)

Here BestDo commits the policy to the best choice among the
two alternatives, where “best” is defined in terms of a multi-objective
optimization of expected value and success probability. See [2] for an
example of how (vi, pi) ≥ (vj , pj) can be defined.

Now suppose that a is a stochastic action with nature’s choices
n1, n2, . . . , nk.

BestDo(a; p, s, h, π, v, pr)
def
=

∃π
′

.BestDoAux ({n1, . . . , nk}, p, s, h, π
′

, v, pr)

π = a; senseEffect(a); π′

.

Here the policy is a; senseEffect(a); π′ where π′ is computed
by BestDoAux below. The action senseEffect(a) is inserted in
order to maintain the MDP assumption of full observability. Its job

4 While this model is certainly simplistic, it suffices in most real game situ-
ations, since all that matters is that the ball is not in the robot’s possession
after a failed intercept.

Cognitive Robotics Workshop 2004 40

is to make sure that after performing a the robot gathers enough
information to distinguish between the outcomes ni. In the case of
intercept , the sensing would involve finding out whether the robot
has the ball denoted by the fluent haveBall(s).

BestDoAux ({n1, . . . , nk}, p, s, h, π, v, pr)
def
=

¬Poss(n1, s) ∧ BestDoAux ({n2, . . . , nk}, p, s, h, π, v, pr) ∨
Poss(n1, s) ∧
∃π′, v′, pr ′.BestDoAux ({n2, . . . , nk}, p, s, h, π′, v′, pr ′) ∧
∃π1, v1, pr1

.BestDo(n1, do(n1, s), h − 1, π1, v1, pr1
) ∧

π = if (ϕ1, π1, π
′) ∧

v = v′ + v1 · prob(n1, s) ∧
pr = pr ′ + pr

1
· prob(n1, s)

BestDoAux ({}, p, s, h, π, v, pr)
def
= π = Stop ∧ v = 0 ∧ pr = 0

Note that BestDoAux produces a policy of the form
if (ϕ1, π1, if (ϕ2, π1, . . .)) accounting for all outcomes of nature’s
choices. The ϕi are user-defined tests which allow the robot to dis-
tinguish between them. In our intercept example, these could be
haveBall(s) for interceptS and ¬haveBall(s) for interceptF . A
policy contains Stop if in the respective branch no further actions
can be executed, i.e. an action was not possible.

2.3 On-line DTGolog

The original version of DTGolog, which we just described, operates
in an off-line modus, that is, it first computes a policy for the whole
program and only then initiates execution. As was observed already
in [4], this is not practical for large programs and certainly not for
applications with tight real-time constraints such as ROBOCUP. In
the extreme one would only want to reason about the next action
of a program, execute it and then continue with the rest of the pro-
gram. This is the basic idea of an on-line interpretation of a Golog
program [4]. To make this work, a so-called transition semantics is
needed, which takes a configuration consisting of a program and a
situation and turns it into another configuration. Formally, one in-
troduces a predicate Trans(δ, s, δ′, s′), which first appeared in [3],
expressing a possible transition of program δ in situation s to the
program δ′ leading to situation s′ by performing an action. For space
reasons we only consider the case of while-loops.

Trans(while(ϕ, p), s, δ′

, s
′) ≡

∃δ
′′

.Trans(p, s, δ
′′

, s
′) ∧ ϕ[s] ∧ δ

′ = δ
′′;while(ϕ, p)5

Given such definitions for all constructs, the execution of a com-
plete program can be defined in terms of the reflexive and transitive
closure of Trans .6

A nice feature of on-line interpretation is that the step-wise exe-
cution of a program can easily be interleaved with other exogenous
actions or events, which are supplied from outside. This is how we
handle periodic sensor updates for position estimation, for example.
(See [5] for details of how this can be done in Golog.)

With the basic transition mechanism in hand, it is, in principle,
not hard to reintroduce off-line reasoning for parts of the program.
In the case of DTGolog, Soutchanski proposed for that purpose an
interleaving of off-line planning and on-line execution. We show an

5 ϕ[s] denotes the situation calculus formula obtained from ϕ by restoring
situation variable s as the suppressed situation argument for all fluent names
mentioned in ϕ. Also note that free variables are universally quantified in
the following formulas.

6 One also needs the notion of a final configuration, an issue we ignore here
for simplicity.

excerpt of his interpreter implemented in Prolog. We only consider
the case of executing deterministic and sensing actions, leaving out
stochastic actions:

online(E,S,H,Pol,U) :-
incrBestDo(E, S, ER, H, Pol1, U1, Prob1),
(final(ER, S, H, Pol1, U1), Pol=Pol1, U=U1 ;

reward(R, S), Pol1 = (A : Rest),
%% deterministic action

(agentAction(A), doReally(A), !,
online(ER, do(A,S), H, PolFut, UFut),
Pol = (A : PolFut), U is R + UFut ;
%% sensing action
senseAction(A), doReally(A), !,
online(ER, do(A,S), H, PolFut, UFut),
Pol=(A: PolFut), U is R + UFut ;
...

)
).

Roughly, the interpreter online calculates a policy π for a
given program e up to a given horizon h, executes its first action
(doReally(a)) and recursively calls the interpreter with the remain-
ing program again.

To control the search while optimizing Soutchanski proposes an
operator optimize defined by the following macro:

IncrBestDo(optimize(p1); p2, s, pr, h, π, u, pr)
def
=

∃p
′

.IncrBestDo(p1; Nil, s, p
′

, h, π, u, pr) ∧

(p′ 6= Nil ∧ pr = (optimize(p′); p2) ∨

p
′ = Nil ∧ pr = p2).

This has the effect that p1 is optimized and the resulting policy
is executed before p2 is even considered. As mentioned already in
the introduction, one advantage is that a user can deal with explicit
(active) sensing actions by restricting optimize to never go beyond
the next sensing action.

Nevertheless the approach has a number of shortcomings. First
note that, in the definition of the interpreter online, after executing
only one action of a computed policy, the optimizer is called again.
This means that large parts of the program are re-optimized over and
over again, which is computationally too expensive for real-time de-
cision making. Also note that it is only checked during the optimiza-
tion phase whether an action is executable. Hence the interpreter ig-
nores the possibility that an action, which was possible at planning
time, becomes impossible to execute due to changes in the environ-
ment.

While there are easy fixes to these drawbacks, the funda-
mental problem of this approach is that it is not possible to
do optimization ahead of sensing actions. Consider the program
p1; sense(ϕ); if ϕ then p2 else p3. The condition must be eval-
uated before one is able to decide whether to execute p2 or p3, i.e.
the sensing action must be executed online to evaluate the value of ϕ.
The forementioned operator optimize allows for limiting the search
for an optimal policy for that case. Using optimze the program can
be rewritten as optimize(p1); (sense(ϕ)); if ϕ then p2 else p3.
This program instructs the interpreter to first optimize p1 without re-
garding the rest of the program. Then, the sensing action is executed
to get the needed value from the environment. Afterwards, the con-
ditional can be optimized and executed, resp.

In real-time domains sensor updates arrive with high frequency.
The proposed active sensing in Soutchanski’s interpreter is not feasi-
ble as is renders the applicability of the decision-theoretic planning
approach impossible.

We propose a different kind of online interpreting decision-
theoretic plans in Golog which is feasible for real-time domains. Our
approach differs mainly in that we use passive sensing instead of the
active sensing proposed by Soutchanski. We therefore do not have

Cognitive Robotics Workshop 2004 41

any restrictions with sensing actions. Instead we use models of the
world in the planning phase. To be able to validate if the model as-
sumptions hold while executing a plan we annotate the policies in a
special way desribed in Section 3.1. In Section 3.2 we show how an-
notated policies are executed and how invalid policies are detected.
We deployed our approach in the RoboCup domain and show some
of the results in Section 4.

3 On-line DTGolog for Passive Sensing

As the re-optimization of a remaining program is generally not fea-
sible in real-time environments, our first modification of on-line DT-
Golog is to make sure that the whole policy and not just the first
action is executed. For this purpose we introduce the following oper-
ator solve(p, h) for a program p and a fixed horizon h.

Trans(solve(p, h), s, δ′

, s
′) ≡

∃π, v, pr .BestDo(p, s, h, π, v, pr)

∧ δ
′ = applyPol(π) ∧ s

′ = s.

The predicate BestDo first calculates the policy for the whole pro-
gram p. For now the reader may assume the definition of the previous
section, but we will see below that it needs to be modified. This pol-
icy is then scheduled for execution as the remaining program. How-
ever, as discussed in the introduction, the policy is generated using an
abstract model of the world to avoid sensing, and we need to monitor
whether π remains valid during execution. To allow for this special
treatment, we use the special construct applyPol , whose definition
is deferred until later.

3.1 Annotated Policies

In order to see why we need to modify the original definition of
BestDo and, for that matter, the one used by Soutchanski, we need
to consider, in a little more detail, the idea of using a model of the
world when planning vs. using sensor data during execution. The fol-
lowing fragment of the control program of our soccer robots might
help to illustrate the problem:

while game on do . . . ;

solve(. . . ;

if ∃x, y(ball pos(x, y) ∧ reachable(x, y))

then intercept

else . . . ; . . . , h)

endwhile

While the game is still on, the robots execute a loop where they
determine an optimal policy for the next few (typically less than
six) actions, execute the policy and then continue the loop. One of
the choices is intercepting the ball which requires that the ball is
reachable, which can be defined as a clear trajectory between the
robot and the ball. Now suppose BestDo determines that the if-
condition is true and that intercept has the highest utility. In that
case, since intercept is a stochastic action, the resulting policy π

contains . . . intercept ; senseEffect(intercept); Note, in partic-
ular, that the if-condition of the original program is not part of the
policy. And this is where the problem lies. For during execution of
the policy it may well be the case that the ball is no longer reach-
able because an opponent is blocking the way. In that case intercept

will fail and it makes sense to abort the policy and start planning for
the next moves. For that, the if-condition should be re-evaluated us-
ing the most up-to-date information about the world provided by the
sensors and compared to the old value. Hence we need to make sure
that the if-condition and the old truth value are remembered in the
policy.

In general, this means we need to modify the definition of BestDo

for those cases involving the evaluation of logical formulas. Here we
consider if-then-else and test actions. While-loops are treated in a
similar way.

BestDo(if (ϕ, p1, p2); p,s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, pr) ∧

π = M(ϕ, true); π1 ∨

¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧

π = M(ϕ, false); π2

The only difference compared to the original BestDo is that we
prefix the generated policy with a marker M(ϕ, true) in case the ϕ

turned out to be true in s and M(ϕ, false) if it is false. The treat-
ment of a test action ?(ϕ) is even simpler, since only the case where
ϕ is true matters. If ϕ is false, the current branch of the policy is
terminated, which is indicated by the Stop action.

BestDo(?(ϕ); p, s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π
′

.BestDo(p, s, h, π
′

, v, pr) ∧

π = M(ϕ, true); π′ ∨

¬ϕ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

In the next subsection, we will see how our annotations will allow
us to check at execution time whether the truth value of conditions in
the program at planning time are still the same and what to do about
it when they are not. Before that, however, it should be mentioned
that explicit tests are not the only reason for a possible mismatch be-
tween planning and execution. To see that note that when a primitive
action is entered into a policy, its executability has been determined
by BestDo. Of course, it could happen that the same action is no
longer possible at execution time. It turns out that this case can be
handled without any special annotation.

3.2 Execution and Monitoring

Now that we have modified BestDo so that we can discover
problems at execution time, all that is left to do is to define
the actual execution of a policy. Given our initial definition of
Trans(solve(p, h), s, δ′, s′), this means that we need to define
Trans for the different cases of applyPol(π). To keep the defini-
tions simple, let us assume that every branch of a policy ends with
Stop or nil, where nil represents the empty program.

Trans(applyPol(Nil), s, δ′

, s
′) ≡ s = s

′ ∧ δ
′ = nil

Trans(applyPol(Stop), s, δ′

, s
′) ≡ s = s

′ ∧ δ
′ = nil

Given the fact that configurations with nil as the program are
always final, that is, execution may legally terminate, this simply
means that nothing needs to be done after Stop or nil.

In case a marker was inserted into the policy we have to check
the test performed at planning time still yields the same result. If this
is the case we are happy and continue executing the policy, that is,
applyPol remains in effect in the successor configuration. But what
should we do if the test turns out different? We have chosen to simply

Cognitive Robotics Workshop 2004 42

abort the policy, that is, the successor configuration has nil as its pro-
gram. While this may seem simplistic, it seems the right approach for
applications like ROBOCUP. For consider the case of an intercept. If
we find out that the path is blocked, the intercept will likely fail and
all subsequent actions in the policy become meaningless. Moreover,
a quick abort will enable immediate replanning according to the con-
trol program, which is not a bad idea under the circumstances.

Trans(applyPol(M(ϕ, v); π), s, δ′

, s
′) ≡ s = s

′∧

(v = true ∧ ϕ[s] ∧ δ
′ = applyPol(π) ∨

v = false ∧ ¬ϕ[s] ∧ δ
′ = applyPol(π) ∨

v = true ∧ ¬ϕ[s] ∧ δ
′ = nil ∨

v = false ∧ ϕ[s] ∧ δ
′ = nil)

If the next construct in the policy is a primitive action other than
a stochastic action or a senseEffect , then we execute the action and
continue executing the rest of the policy. As discussed above, due to
changes in the world it may be the case that a has become impossible
to execute. In this case we again abort the rest of the policy with the
successor configuration 〈nil, s〉.

Trans(applyPol(a; π), s, δ′

, s
′) ≡

∃δ
′′

.Trans(a; π, s, δ
′′

, s
′) ∧ δ

′ = applyPol(δ′′) ∨

¬Poss(a[s], s) ∧ δ
′ = nil ∧ s

′ = s

If a is a stochastic action, we obtain

Trans(applyPol(a; senseEffect(a); π), s, δ′

, s
′) ≡

∃δ
′′

.Trans(senseEffect(a); π, s, δ
′′

, s
′) ∧

δ
′ = applyPol(δ′′))

Note the subtlety that a is ignored by Trans . This has to do with
the fact that stochastic actions have no direct effects according to
the way they are modeled in DTGolog. Instead one needs to per-
form senseEffect to find out about the actual effects. Of course, even
though Trans ignores a, care must be taken by the implementation
that it is executed in the real world.7 As in the original DTGolog we
also assume that senseEffect actions are always executable.

Finally, if we encounter an if -construct, which was inserted into
the policy due to a stochastic action, we determine which branch of
the policy to choose and go on with the execution of that branch.

Trans(applyPol(if (ϕ, π1, π2)), s, δ
′

, s
′) ≡

ϕ[s] ∧ Trans(applyPol(π1), s, δ
′

, s
′) ∨

¬ϕ[s] ∧ Trans(applyPol(π2), s, δ
′

, s
′)

We end this section with a few notes about the implementation of
our on-line decision-theoretic interpreter called Readylog.8

We begin with a (very) rough sketch of the main loop of the inter-
preter.

/******** Interpreter mainloop ******/
/* (1)- exogenous action occured */
icpgo(E,H) :- exog_occurs(Act,H), exog_action(Act),!,

icpgo(E,[Act|H]).

/* (2) - performing a step in program execution */
icpgo(E,H) :- trans(E,H,E1,H1),icpxeq(H,H1,H2),!,

icpgo(E1,H2).

/* (3) - program is final -> execution finished */
icpgo(E,H) :- final(E,H).

7 This can be done similar to Soutchanski’s interpreter by inserting an ap-
propriate doReally(a) literal (see Section 2.3 or icpxeq in our case (see
above)).

8 Readylog stands for “real-time dynamic Golog.”

solve(nondet(
[kick(ownNumber, 40),
dribble_or_move_kick(ownNumber),
dribble_to_points(ownNumber),

5 if(isKickable(ownNumber),
pickBest(var_turnAngle, [-3.1, -2.3, 2.3, 3.1],
[turn_relative(ownNumber, var_turnAngle, 2),
nondet([[intercept_ball(ownNumber, 1),

dribble_or_move_kick(ownNumber)],
10 [intercept_ball(no_ByRole(supporter), 1),

dribble_or_move_kick(no_ByRole(supp.))]])]),
nondet([[intercept_ball(ownNumber, 1),

dribble_or_move_kick(ownNumber)],
intercept_ball(ownNumber, 0.0, 1)]))]), 4)

Figure 1. The bestInterceptor program performed by an offensive player.
Here, nondet(Σ) denotes the nondeterministic choice of actions.

/* (4) - waiting for an exogenous action to happen */
icpgo(E,H) :- wait_for_exog_occurs, !, icpgo(E,H).

/******** Executing actions ******/
/* (1) - No action was performed so

we don’t execute anything */
icpxeq(H,H,H).

/* (2) - The action is not a sensing one:
exec. and ignore its sensing */

icpxeq(H,[Act|H],H1) :- not senses(Act,_),
execute(Act,_,H), H1=[Act|H]).

/* (3) - The action is a sensing one for F:
execute sensing action*/

icpxeq(H,[Act|H],H1):-senses(Act,F),
execute(Act,Sr,H),H1=[e(F,Sr),Act|H].

First, it checks whether an exogenous event occurred and if so
inserts it into the history. Next, it is checked if a transition to a new
configuration can be made executing the next possible action. If there
is no successor configuration reachable a test for a final configuration
is conducted. In case (4) where none of the previous cases apply the
interpreter waits until some exogenous event occurs, e.g. the robot
has reaches a certain position.

For the execution the predicate icpxeq exists checking whether the
action to be executed is a sensing action or not. This is very similar to
Soutchanski’s doReally . Note that we still allow for passive sensing
actions we only avoid them during plan generation.

We put a lot of effort into tuning the perfomance of the interpreter.
One major speed-up was achieved by integrating a progression mech-
anism for the internal database in the spirit of Lin and Reiter [9] (step
5 in the loop). For space reasons we leave out all details except to say
that this is indispensable for maintaining tractability because the ac-
tion history would otherwise grow beyond control very quickly.

Additional speed-ups were obtained by using a Readylog prepro-
cessor. It takes a complete domain axiomatization as input and gen-
erates optimized Prolog code, i.e. run-time invariants like static con-
ditions are evaluated at compile-time to save the time of evaluating
them many times at run-time.

4 Empirical Results in RoboCup

We used the described version of Readylog for our ROBOCUP MID-
DLE SIZE robot team at the world championships 2003 in Padua,
Italy, and at the German Open 2004 in Paderborn. In this Section
we show some details of the implementation of our soccer agent
and present some results of the use of decision-theoretic planning
in Golog in the soccer domain.

Among the basic actions we used the most important
were goto pos(x, y, θ), turn(θ), dribble to(x, y, θ), intercept ,
kick(power), and move and kick(x, y, θ).

While the goalie was controlled without Readylog in order to
maintain the highest possible level of reactivity, all other players of
our team had an individual Readylog procedure for playing. We as-
signed fixed roles to the three field players: defender, supporter, and

Cognitive Robotics Workshop 2004 43

ball behavior when turning with ball

move_kick/dribble

move/dribble/intercept

Figure 2. The set of alternatives for the attacker when it is in ball
possession. The red boxes denote opponents, the black ones are teammates.

Everything else are field markings.

attacker. Only the best positioned player to the ball started to deliber-
ate, i.e. solved the MDP given by the program in Fig. 1, otherwise it
performed a program according to its role like defending the team’s
goal.

The set of alternatives made up from the bestInterceptor program
is best described by Figure 2. In line 3 of Fig. 1 the choice is between
a dribbling to the free goal corner or to dribble thereto but finishing
the action with a shot as soon as the goal is straight ahead. In line 6
the agent decides among four angles to turn to in order to push the
ball to either side where it can be intercepted by a teammate, using
the pickBest construct.

Figure 3 shows an example decision tree made up from this pro-
gram. For readability we pruned some similar branches. The root
node stands for the situation were the agent switched to off-line
mode, i.e., the current situation. The boxes symbolize agent choices,
i.e. the agent can decide which of the alternatives to take. The circles
are nature’s choices, denoting the possible outcomes of stochastic ac-
tions. Numbers of outgoing edges in these nodes are the probabilities
for the possible outcomes. The numbers in the boxes are the rewards
for the corresponding situation. The actually best policy in the situa-
tion of the example is marked by a thick line.

natures choices

agent choices
 move_kick

kick

turn

intercept(me)

intercept(TM)

move_kick

move_kick

0.8

0.2

0.8

0.2

10000

10000

 4169

 4169

costs: −70

costs: −70

costs: −70

costs: −70

 4169

 4169

 4169

costs: −12

costs: −7

 4557

4776

4623

Figure 3. A (pruned) example decision tree for the bestInterceptor
program.

Indispensable for a successful acting agent using decision-
theoretic planning is a reasonable reward function. For this scenario,
however, we used a rather primitive reward function based solely on
the velocity, relative position and distance of the ball towards the op-
ponents goal. In future work this could be refined for improving the
overall play.

Naturally, the time a player spent deliberating depended highly on
the number of alternatives that were possible. In this respect, whether
or not the ball was kickable made the most difference (all times in
seconds):

examples min avg max
without ball 698 < 0.01 0.094 0.450

with ball 117 0.170 0.536 2.110

The hardware used was an on-board Pentium III-933.

With the described decision making method we shot 13 goals at
the world championships and scratched the final round by one goal.
In the end we placed 10th out of 24 and ended 5th (or 7th depending
on ranking algorithm) out of 13.

5 Conclusion

In this paper, we proposed a novel method of on-line decision-
theoretic planning and execution in Golog, which is particularly
suited for robotic applications with frequent sensor updates like mea-
suring one’s own position and that of other agents and objects. We
overcame the problem of Soutchanski’s approach, which cannot plan
past the next sensing action, by eliminating explicit sensor updates of
the above kind from a robot control program altogether and replac-
ing them instead with models that allow the approximate calculation
of otherwise sensed values during planning. However, this also re-
quired annotating policies with information about the models so that
discrepancies with the real world could be detected while executing
the policy. Our approach was applied in the ROBOCUP domain with
encouraging results.

One weakness of the current implementation is that rewards are
assigned manually in a rather ad-hoc manner. In the future we hope
to employ learning methods to improve the overall performance.

REFERENCES
[1] C. Boutilier, R. Reiter, and B. Price, ‘Symbolic dynamic programming

for first-order MDPs’, in IJCAI, pp. 690–700, (2001).
[2] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, ‘Decision-

theoretic, high-level agent programming in the situation calculus’, in
Proc. of AAAI-00, pp. 355–362. AAAI Press, (2000).

[3] G. De Giacomo, Y. Lésperance, and H. Levesque, ‘ConGolog, A con-
current programming language based on situation calculus’, Artificial
Intelligence, 121(1–2), 109–169, (2000).

[4] G. De Giacomo and H. Levesque, ‘An incremental interpreter for high-
level programs with sensing’, in Logical Foundation for Cognitive
Agents: Contributions in Honor of Ray Reiter, eds., Hector J. Levesque
and Fiora Pirri, 86–102, Springer, Berlin, (1999).

[5] Henrik G. and G. Lakemeyer, ‘On-line execution of cc-Golog plans’, in
Proc. of IJCAI-01, (2001).

[6] A. Großmann, S. Hölldobler, and O. Skvortsova, ‘Symbolic dynamic
programming with the Fluent Calculus’, in Proceedings of the IASTED
(ACI-2002), pp. 378–383, (2002).

[7] Y. Lespérance and H.-K. Ng, ‘Integrating planning into reactive high-
level robot programs’, in Proc. (CogRob-2000), pp. 49–54, (2000).

[8] H. Levesque, R. Reiter, Y. Lesperance, Fangzhen Lin, and Richard B.
Scherl, ‘GOLOG: A logic programming language for dynamic do-
mains’, Journal of Logic Programming, 31(1-3), 59–83, (1997).

[9] F. Lin and R. Reiter, ‘How to progress a database’, Artificial Intelli-
gence, 92(1-2), 131–167, (1997).

[10] J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University, (1963).

[11] D. Poole, ‘The independent choice logic for modelling multiple agents
under uncertainty’, Artificial Intelligence, 94(1-2), 7–56, (1997).

[12] M. Puterman, Markov Decision Processes: Discrete Dynamic Program-
ming, Wiley, New York, 1994.

[13] R. Reiter, Knowledge in Action, MIT Press, 2001.
[14] M. Shanahan, ‘The event calculus explained’, Lecture Notes in Com-

puter Science, 1600, (1999).
[15] M. Soutchanski, ‘An on-line decision-theoretic golog interpreter’, in

Proc. IJCAI-2001, Seattle, Washington, (August 2001).

Cognitive Robotics Workshop 2004 44

1

Cognitive Robotics Workshop 2004 45

Learning Partially Observable Action Models
Eyal Amir

Computer Science Department
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
eyal@cs.uiuc.edu

Abstract. In this paper we present tractable algorithms for
learning a logical model of actions’ effects and precondi-
tions in deterministic partially observable domains. These
algorithms update a representation of the set of possible ac-
tion models after every observation and action execution. We
show that when actions are known to have no conditional
effects, then the set of possible action models can be rep-
resented compactly indefinitely. We also show that certain
desirable properties hold for actions that have conditional ef-
fects, and that sometimes those can be learned efficiently as
well. Our approach takes time and space that are polynomial
in the number of domain features, and it is the first exact so-
lution that is tractable for a wide class of problems. It does
so by representing the set of possible action models using
propositional logic, while avoiding general-purpose logical
inference. Learning in partially observable domains is diffi-
cult and intractable in general, but our results show that it can
be solved exactly in large domains in which one can assume
some structure for actions’ effects and preconditions. These
results are relevant for more general settings, such as learn-
ing HMMs, reinforcement learning, and learning in partially
observable stochastic domains.

1 Introduction

Agents that act in complex domains usually have limited
prior knowledge of their actions’ preconditions and effects
(thetransition modelof the world). Such agents need to learn
about these action to act effectively, and they also need to
track the state of the world, when their sensory information
is limited. For example, a robot moving from room to room
in a building can observe only its immediate environment.
Upon discovering a switch in the wall, it may not know the
consequences of flipping this switch. After flipping it, the
agent may observe those effects that occur in its immediate
environment, but not those outside the room. When it leaves
the room and discovers some change in the world, it may
want to ascribe this change to flipping the switch.

Learning transition models in partially observable do-
mains is hard. In stochastic domains, learning transition
models is central to learning Hidden Markov Models
(HMMs) [17] and to reinforcement learning [8], both of
which afford only solutions that are not guaranteed to ap-
proximate the optimal. In HMMs the transition model is
learned using the Baum-Welch algorithm, which is a spe-
cial case of EM. It is a hill-climbing algorithm which is
only guaranteed to reach a local optima, and there is no time
guarantee for convergence on this local optima.Reinforce-
ment learningin partially observable domains [7] can be

solved (approximately) by interleaving learning the POMDP
with solving it (the learning and solving are both approxi-
mate because finite memory or finite granularity is always
assumed) [3, 12, 13]. It is important to notice that this prob-
lem is harder than solving POMDPs. In some cases, one can
solve the POMDP with some guarantee for relatively fast
convergence and approximation, if one knows the underlying
transition model [9, 14]. Also, in deterministic cases, com-
puting the optimal undiscounted infinite horizon policy in
(known) POMDPs is PSPACE-hard (NP-complete if a poly-
nomial horizon) in the number of states [11], but reinforce-
ment learning has no similar solution known to us.

In this paper we present a formal, exact, many times
tractable, solution to the problem ofsimultaneously learn-
ing and filtering (SLAF) preconditions and effects of actions
from experiences in partially observable domains. We put
emphasis on the solution being tractable as a function of the
number of state featuresrather than the (exponentially larger)
number of states.

First, we present a formal system that captures this prob-
lem precisely for possibly nondeterministic actions. It main-
tains a set of pairs〈state,transition-relation〉 that are consis-
tent with the actions and observations collected so far (the
transition belief state). Then, we present a generic algorithm
that uses logical deduction and learns transition models in
deterministic partially observable domains.

We present more tractable algorithms for special cases of
SLAF. We examine actions that are (1)always executable
or sometimes inexecutable(depending on deterministic pre-
conditions), and (2)conditionalor nonconditional(whenever
executable, have the same effect). For the case of STRIPS ac-
tions (always executable, nonconditional) we show that our
algorithm runs in time linear in the number of propositional
domain features and the space taken to represent our transi-
tion belief state. We can maintain this transition belief state
in polynomial space (in the number of features and actions
available in our domain) under very relaxed conditions. We
present a more general algorithm (than our STRIPS one) that
treats other cases with a polynomial time per time step, when
actions are known to act as 1:1 mapping on states, and they
provide an approximation otherwise.

Our algorithms are the first to learn exact action models
in partially observable domains. They are also first to find
an action model at the same time that they determine the
agent’s knowledge about the state of the world. They draw
on intuitions and results of [1] for known (nondeterministic)
action models. If we assume that our transition model is fully
known, then our results reduce to those of [1] for determin-
istic actions.

Cognitive Robotics Workshop 2004 46

A wide range of virtual domains satisfy our assumptions
of determinism and structured actions, and we are in the pro-
cess of testing our algorithms in large domains, including
over1000 features (see [6] for current progress).

Previous work on learning action’s effects and precon-
ditions focused on fully observable domains. [5, 19] learn
STRIPS actions with parameters by finding the most gen-
eral and most specific in a version space of STRIPS oper-
ators. [15] uses a general-purpose classification system (in
their case, MSDD) to learn the effects and preconditions of
actions, identifying irrelevant variables. [2] presents an ap-
proach that is based on inductive logic programming. Most
recently, [16] showed how to learn stochastic actions with no
conditional effects (i.e., the same stochastic change occurs at
every state in which the action is executable). The common
theme among these approaches is their assumption that the
state of the world is fully observed at any point in time. [18]
is the only work that considers partial observability, and it
does so by assuming that the world is fully observable, giv-
ing approximate computation in relevant domains.

2 Filtering Transition Relations

West East

offoff

=⇒

West East

onon

¬sw∧ ¬lit ∧ E sw-on sw∧ lit ∧ E

Figure 1. Two rooms and flipping the light switch

Consider a simple world with two rooms, one with a
switch, and the other with a light bulb whose state can be
observed only when the agent is in that room (see Figure
1). Assume that our agent initially knows nothing about the
three actions go-E (go to the Eastern room), go-W (go to the
Western room), and sw-on (flip the switch toon). Our agent’s
problem is to determine the effects of these actions (to the ex-
tent that it can, theoretically), while also tracking the world.

We describe the combined problem of filtering (updating
the agent’s belief state) and learning the transition model for-
mally. A transition systemis a tuple〈P,S,A,R〉, where
• P is a finite set of propositional fluents;
• S ⊆ Pow(P) is the set of world states;
• A is a finite set of actions;
• R ⊆ S ×A× S is the transition relation.
Here, aworld state, s ∈ S, is a subset ofP that contains
propositions true in this state, andR(s, a, s′) means that state
s′ is a possible result of actiona in states.

A transition belief stateis a set of tuples〈s,R〉 wheres is
a state andR a transition relation. LetR = Pow(S×A×S)
be the set of all possible transition relations onS,A. Let
S = S ×R. Everyρ ⊆ S is atransition belief state. When
we hold a a transition belief stateρ we consider every tu-
ple 〈s,R〉 ∈ ρ possible. With this formal system we assume
that observations are given to us (if at all) as logical sen-
tences after performing an action. They are eitherstate for-
mulae(propositional combinations of fluent names) orOK
or ¬OK (observing the action is possible or impossible to

execute). We denote the former kind of observation witho,
and the latter withOK,¬OK, respectively.

Definition 1 (Transition Filtering Semantics) Let ρ ⊆ S

be a transition belief state. Thefiltering of ρ with actions
and observations〈a1, o1, . . . , at, ot〉 is
1. Filter[ǫ](ρ) = ρ;
2. Filter[a,OK](ρ) =

{〈s′, R〉 | 〈s, a, s′〉 ∈ R, 〈s,R〉 ∈ ρ};
3. Filter[a,¬OK](ρ) =

{〈s,R〉 | 〈s,R〉 ∈ ρ, ∀s′ ∈ S 〈s, a, s′〉 /∈ R};
4. Filter[o](ρ) = {〈s,R〉 ∈ ρ | o is true ins};
5. Filter[〈ai, oi, . . . , at, ot〉](ρ) =

Filter[〈ai+1, oi+1, . . . , at, ot〉]
(Filter[oi](Filter[ai](ρ))).

We call Step 2progression witha, Step 3disqualifyinga, and
Step 4filtering with o.

The intuition behind this definition is that every transition
relation,R, and initial state,s, produce a set of state-relation
pairs{〈si, R〉}i∈I in the result of an action. If an observa-
tion discards some statesi, the pair〈si, R〉 is removed from
this set. We conclude thatR is not possible when all pairs
including it are removed from the set.

A nondeterministic domain descriptionD is a finite set
of transition rulesof the form “a causesF if G” which de-
scribe the effects of actions, forF andG propositional state
formulae. We say thatF is theheadandG is thetail of those
rules. WhenG ≡ TRUE we write “a causesF ”.

The semantics of a domain description that we choose is
compatible with thestandard semanticsbelief update oper-
ator of [20]. We define it below by firstcompletingthe de-
scription and then mapping the completed description to a
transition relation.

For domain descriptionD we define a transition system
withPD andAD the sets of propositional fluents and actions
mentioned inD, respectively. For actiona and fluentf , let

GD(a, f) =
∨

{G | “a causesF if G” ∈ D, f ∈ L(F)},

a disjunction of the preconditions of rules that possibly affect
fluentf (an empty disjunction is equivalent to FALSE). We
use “a keepsf if G” as a shorthand for the rules “a causesf
if f∧G” and “a causes¬f if ¬f∧G”. It designates thenon-
effectsof actiona. DefineComp(D), thecompletion ofD

Comp(D) = D ∪ {“a keepsf if ¬GD(a, f)” |
a ∈ A, f ∈ P, GD(a, f) 6≡ TRUE}.

This definition is well behaved, in the sense that
Comp(D) = Comp(D ∪D′), if D′ ⊆ Comp(D).

Let FD(a, s) = {F | “a causesF if G” ∈ D, s |= G},
the set of effects ofa in s, according toD.D defines a tran-
sition relationRD as follows

RD = {〈s, a, s′〉 | s, s′ ∈ S, a ∈ A, s′ |= FD(a, s)} (1)

When there is no confusion, we writeR for RD. We say
that two domain descriptionsD1, D2 are equivalent (D1 ≡
D2), if RD1

= RD2
.D is acomplete domain description, if

RD = RComp(D). In that case we say thatR is completely
defined byD.

Cognitive Robotics Workshop 2004 47

Time step 1 2 3 4 5 6 7
Action go-W sw-on go-E sw-on go-W go-E
Location E ¬E ¬E E E ¬E E
Bulb ? ¬lit ¬lit ? ? lit ?
Switch ¬sw ? ? ¬sw sw ? sw
Possible OK ¬OK OK OK OK OK

Figure 2. An action-observation sequence (table entries are observations). Legend:E: east;¬E: west;lit: light is on;¬lit: light is off; sw:
switch is on;¬sw: switch is off;OK: action executable;¬OK: action not executable.

Example 2 Consider the scenario of Figure 2 and assume
that actions are deterministic, unconditional, and always ex-
ecutable (assuming no action was performed at step 2). Then,
every action affects every fluent either negatively, positively,
or not at all. Consequently, every transition relationR is
completely defined by someD such that (viewing a tuple as
a set of its elements)

D ∈
∏

a∈







go-W
go-E
sw-on







{

a causesE,
a causes¬E
a keepsE

}

×

{

a causessw,
a causes¬sw
a keepssw

}

×

{

a causeslit ,
a causes¬lit
a keepslit

}

Say that initially we know the effects of go-E, go-W, but do
not know what sw-on does. Then, transition filtering starts
with the product set ofR (of 27 possible relations) and all
possible23 states. Also, at time step 4 we know that the world
state is exactly{E,¬lit ,¬sw}. We try sw-on and get that
Filter[sw-on](ρ4) includes the same set of transition rela-
tions but with each of those transition relations projecting
the state{E,¬lit ,¬sw} to an appropriate choice fromS.
When we receive the observationso5 = ¬E ∧ ¬sw of time
step 5,ρ5 = Filter[o5](Filter[sw-on](ρ4)) removes from
the transition belief state all the relations that gave rise to
¬E or to ¬sw. We are left with transition relations satisfy-
ing one of the tuples in

{

sw-oncausesE,
sw-onkeepsE

}

×{ sw-oncausessw }×

{

sw-oncauseslit
sw-oncauses¬lit
sw-onkeepslit

}

Finally, when we perform action go-W, again we update
the set of states associated with every transition relation in
the set of pairsρ5. When we receive the observations of time
step 6, we concludeρ6 = Filter[o6](Filter[go-W](ρ5)) =







〈{

¬E
lit
sw

}

,







sw-oncausesE,
sw-oncausessw,
sw-oncauseslit ,
go-E...







〉

,

〈{

¬E
lit
sw

}

,







sw-onkeepsE,
sw-oncausessw,
sw-oncauseslit ,
go-E...







〉







(2)

SLAF reduces to filtering (updating the agent’s belief
state) [1, 20, 10] when the transition model is fully specified.

Theorem 3 Letρ = σ × {R}, whereσ ⊆ S andR ⊆ S ×
A × S, and let〈ai, oi〉i≤t be a sequence of actions and ob-
servations. IfFilterR[〈ai, oi〉i≤t](σ) is the belief-state fil-

tering1 of σ with 〈ai, oi〉i≤t, thenFilter[〈ai, oi〉i≤t](ρ) =
FilterR[〈ai, oi〉i≤t](σ)× {R}.

3 Logical Filtering of Transition Models

The example in the previous section illustrates how the ex-
plicit representation of transition belief states may be doubly
exponential in the number of domain features and the number

1 Filtering semantics as defined in [1].

of actions. In this section we follow the intuition that propo-
sitional logic can serve to representsρmore compactly.From
here forth we assume that our actions are deterministic.

In the following, for a set of propositional formulae,Ψ,
L(Ψ) is the signature ofΨ, i.e., the set of propositional sym-
bols that appear inΨ.L(Ψ) is the language ofΨ, i.e., the set
of formulae built withL(Ψ). Similarly,L(L) is the language
of L, for a set of symbolsL.

3.1 Representing Transition Belief States

We define a propositional logical language that allows us to
represent sets of domain descriptions (thus, sets of transi-
tion relations). LetP1,P2 ⊆ L(P) be sets of state formulae
such thatP1 includes only literals orFALSE, P2 includes
only terms (conjunctions of literals) that are not equivalent to
FALSE, and for allϕ,ψ ∈ P1 ∪ P2, if ϕ ≡ ψ, thenϕ = ψ
orϕ ≡ TRUE. We define a propositional vocabulary

L(P1,P2) = {aF
G | a ∈ A, F ∈ P1, G ∈ P2}.

Theorem 4 For every ruler =“ a causesF if G”, for F,G
state formulae, there is a set of transition rulesTR = {“ a
causesli if ti” }i∈I , with a set of indicesI, termsti, and
literals li, such thatr ≡ TR (i.e., we can exchanger for
TR, and get an equivalent domain description).

In the rest of this paper we implicitly assume thatP1,P2 ⊆
L(P) are sets of state formulae as above. Also,D is acom-
pletedomain description with effects inP1 and preconditions
in P2. We also assume that if¬∃s′RD(s, a, s′) for some
s ∈ S, a ∈ A, then there is a rule “a causesFALSE if G”
such thats |= G.

For set of formulaeP2 we defineBottom(P2) = {G ∈
P2 | G 6≡ FALSE, ∀G′ ∈ P2 [(G′ |= G) ∧ (G′ 6≡
FALSE)] ⇒ G = G′}, i.e.,Bottom(P2) is the set of
strongest preconditions inP2.

Definition 5 We define the theory

TL
D = rulesD ∧ implied-weaker-rules∧

implied-stronger-rules∧ exec-precondsD
(3)

Cognitive Robotics Workshop 2004 48

rulesD = {aF
G ∈ L | “a causesF if G” ∈ D}

implied-weaker-rules=
∧

F ∈ P1

G, G′ ∈ P2

a ∈ A

(aF
G′ ∧ (G⇒ G′)⇒ aF

G)

implied-stronger-rules=
∧

F ∈ P1

G, G′, G′′ ∈ P2

G′′ ≡ G ∨ G′

a ∈ A

(aF
G ∧ a

F
G′ ⇒ aF

G′′) ∧

∧

F, F ′, F ′′ ∈ P1

F ′′ ≡ F ∧ F ′

G ∈ P2

a ∈ A

(aF
G ∧ a

F ′

G ⇒ aF ′′

G)

exec-precondsD =
{¬aFALSE

G ∈ L | G ∈ Bottom(P2),
∀G′ ∈ P2 ((G |= G′)⇒ “ a causesFALSEif G′” /∈ D)}.

The intention is thataF
G ∈ L is true inTL

D exactly when “a
causesF if G” is in D or there is a stronger transition rule
“a causesF ′ if G′” in D.

The following theorem shows how we can represent deter-
ministic transition relations (with conditional effects) using
only the positive causality statements2.

Theorem 6 (Representing Deterministic Actions)1. TD

is a complete theory
2. If TD |= aF

G, then for everys, s′, if RD(s, a, s′) ands |=
G, thens′ |= F .

3. If TD |= ¬a
F
G, then there ares, s′ such thatRD(s, a, s′)

ands |= G, s′ |= ¬F .

Consequently, for every pair of complete domain descrip-
tionsD1, D2,D1 ≡ D2 iff TD1

≡ TD2
. Thus, every transi-

tion relationR has a unique theoryTD and every theory de-
fines a unique transition relation. (We writeTR for the theory
representing transition relationR.)

Corollary 7 (Always-Executable, Deterministic) If in D
all actions are always executable, then3 exec-preconds=
{¬aFALSE

G | a ∈ A, G ∈ Bottom(P2)} and

TD ≡ rulesD ∧ exec-preconds∧
∧

F ∈ P1

G, G′ ∈ P2

a ∈ A

(aF
G′ ∧ (G⇒ G′)⇒ aF

G) ∧

∧

F ∈ P1

G ∈ P2

a ∈ A

¬(aF
G ∧ a

¬F
G) ∧

∧

F ∈ P1

G, G′, G′′ ∈ P2

G′′ ≡ G ∨ G′

a ∈ A

(aF
G ∧ a

F
G′ ⇒ aF

G′′)

Defineaf◦ = af
f ∧ a

¬f
¬f .

Corollary 8 (Unconditional, Always-Exec., Deterministic)
Let P2 = {TRUE}, and assume thatD possibly includes
sentences of the form “a keepsF ”, and no sentences of the
form “a causes FALSE”. Then,

TD ≡ rulesD ∧
∧

f∈P,a∈A

(af ∨̄a¬f ∨̄af◦).

We encode sets of domain descriptions as follows: For a
setR ⊂ P(S × A × S) let4 TR =

∨

R∈R TR. For a tuple
〈s,R〉, s ∈ S, we defineT〈s,R〉 = TR ∧ s. Finally, for a
transition belief state,ρ, we defineTρ =

∨

〈s,R〉∈ρ T〈s,R〉.

2 At present it is not clear to the author how one can observe non-
causality in nondeterministic settings.

3 D is omitted as a subscript because it is not relevant.
4 We assume that the set of fluentsP is finite.

Example 9 Consider ρ6 from Example 2 (equation 2).
There, we considered only deterministic, same-effect,
always-executable actions. We takeP1 to include only unit
clauses, andP2 = {TRUE}. We can writeρ6 using a logi-
cal formula that is satisfied only by the tuples inρ6:

Tρ6
≡

(

¬E∧
sw∧

lit

)

∧

(

go-W¬E∧
go-Wsw◦∧
go-Wlit◦

)

∧

(

go-EE∧
go-Esw◦∧
go-Elit◦

)

∧

{

(sw-onE ∨ sw-onE◦)∧
sw-onsw∧
sw-onlit

)

∧
∧

f∈P,a∈A
(af ∨̄a¬f ∨̄af◦)

Notice that, e.g.,¬go-E¬E and¬go-EE◦ are logical conse-
quences ofTρ6

.
The same way allows us to represent a much larger set of

transition relations. For example, in the previous section we
avoided listing the contents of the set of tuplesρ0 because it
was too large (27 possible relations cross-combined with all
23 world states). Now we can write it simply as follows:

(

go-W¬E

go-Wsw◦

go-Wlit◦

)

∧

(

go-EE∧
go-Esw◦∧
go-Elit◦

)

∧

(

(sw-onE ∨ sw-on¬E ∨ sw-onE◦)∧
(sw-onsw ∨ sw-on¬sw ∨ sw-onsw◦)∧
(sw-onlit ∨ sw-on¬lit ∨ sw-onlit◦)

)

∧
∧

f∈P,a∈A
(af ∨̄a¬f ∨̄af◦)

Thus, we can represent a transition belief state,ρ, with a
logical formula,ϕ, over the propositional state fluents and
the propositional symbols for effect sentences.ϕ represents
the set of tuples〈s,R〉 that satisfy it. We call this logical
representation atransition belief formula. It follows thatϕ |=
base, if we takebaseto be the subformula ofTD that is not
rulesD in the appropriate case of Corollaries 7, 8 because
baseis independent ofD in those cases.

3.2 Filtering Logical Action Models

For a deterministic (possibly conditional) action,a, define
the effect model ofa for time t to be

Teff(a, t) =
∧

l∈P1,G∈P2
((at ∧ a

l
G ∧Gt)⇒ lt+1) ∧

∧

l∈P1
(lt+1 ∧ at ⇒ (

∨

G∈P2
(al

G ∧Gt)))
(4)

whereat is a propositional symbol asserting that actiona
occurred at timet, and we use the convention thatϕt =
ϕ[P/Pt], i.e.,ϕt is the result of replacing every propositional
symbol ofϕ with the same propositional symbol that now
has an added subscript,t. The first part of the conjunction is
the assertion that ifa executes at timet, and it causesl, if
G holds, andG holds at timet, thenl holds at timet + 1.
The second part of the conjunction says thatl is true at time
t+ 1 aftera’s execution only ifa has an effectl conditional
on someG, and thisG is true at timet.

For an always-executable, non-conditional action,a, we
get a simpler formula

Teff(a, t) ≡
∧

l∈P1
((at ∧ (al ∨ (al

l ∧ lt))⇒ lt+1) ∧
∧

l∈P1
(lt+1 ∧ at ⇒ (al ∨ (al

l ∧ lt)))

Definition 10 (Logical Transition Filtering)
Progression: Filter[a](ϕ) = CnLt+1(ϕt∧at∧Teff(a, t))
Filtering: Filter[o](ϕ) = ϕ ∧ o

Cognitive Robotics Workshop 2004 49

Thus,Filter[a](ϕ) is the set of consequences ofϕt in the
vocabularyLt+1 = Pt+1 ∪ L, the vocabulary that includes
only fluents of timet + 1 and effect propositions fromL.
The following theorem shows that filtering a transition belief
formula is equivalent to filtering a transition belief state.

Theorem 11 For ϕ transition belief formula,a action,

Filter[a]({〈s,R〉 ∈ S | 〈s,R〉 satisfiesϕ}) =
{〈s,R〉 ∈ S | 〈s,R〉 satisfiesFilter[a](ϕ)}

3.3 Distribution Properties

Several distribution properties always hold for filtering of
transition belief states (or formulae). The first one follows
from set theoretical considerations. 11.

Corollary 12 For ϕ,ψ transition belief formulae,a action,
1. Filter[a](ϕ ∨ ψ) ≡ Filter[a](ϕ) ∨ Filter[a](ψ)
2. |= Filter[a](ϕ ∧ ψ)⇒ Filter[a](ϕ) ∧ Filter[a](ψ)

Stronger properties hold if filtering an action is a 1:1 map-
ping between state-transition-relation pairs.

Corollary 13 Leta be an action, andϕ,ψ be transition be-
lief formulae. Then,Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧
Filter[a](ψ), if
1. For every transition relationR possible withϕ ∨ ψ, a

maps states in{s | 〈s,R〉 |= ϕ} 1:1 to states inS, or
2. Whenever〈s1, R〉 |= ϕ ∨ ψ, 〈s2, R〉 |= ϕ ∨ ψ, then
s1 = s2.

Corollary 14 For actiona, states ∈ S, andϕ,ψ transition
belief formulae,

Filter[a](s∧ϕ∧ψ) ≡ Filter[a](s∧ϕ)∧Filter[a](s∧ψ)

This last corollary explains the relationship between learn-
ing in fully observable and partially observable worlds. Our
algorithms for learning world models will be more tractable
when our agent observes more of the environment. We see
in Section 4 that polynomial-time algorithms exist for SLAF
when filtering distributes over conjunctions.

Finally, whenTeff(a, t) ≡ T 1 ∧ T 2 andϕ ≡ ϕ1 ∧ ϕ2,
such thatL(T 1) ∩ L(T 2) = ∅ andL(ϕi) ⊆ L(T i), for
i ∈ {1, 2}, then the filtering factors into filtering ofϕ1, ϕ2

separately. More generally, the following holds.

Theorem 15 Leta be an action, lets ∈ S be a state, letP1

include literals inP and FALSE, letPi
2 (i ∈ {1, 2}) include

clauses inPi such thatL(P) = L(P1)∪̇L(P2), and let
ϕi ∈ L(L(P1,P

i
2) ∪ P) (i ∈ {1, 2}) be transition belief

formulae. Then,

Filter[a](ϕ ∧ ψ) ≡ Filter[a](ϕ) ∧ Filter[a](ψ)

4 Factored Learning and Filtering

Learning world models is easier when filtering dis-
tributes over logical connectives. The computation becomes
tractable, with the bottleneck being the time to filter each part
separately. Figure 3 presents an algorithm for SLAF using
this observation. Filtering of a single fluent (done in function
Fluent-SLAF) and more efficient solutions are the focus of
the rest of this section.

PROCEDURE Factored-SLAF(〈ai, oi〉0<i≤t,ϕ)
∀i, ai action,oi observation,ϕ transition belief formula.
1. Fori from 1 to t do,

(a) Setϕ← Step-SLAF(oi,ai,ϕ).
(b) Eliminate subsumed clauses inϕ.

2. Returnϕ.

PROCEDURE Step-SLAF(o,a,ϕ)
o an observation sentence (conjunction of literals),a an
action,ϕ a transition belief formula.
1. If ϕ is a literal, then returno∧Fluent-SLAF(o,a,ϕ).
2. If ϕ = ϕ1 ∧ ϕ2, return Step-SLAF(o,a,ϕ1)∧Step-

SLAF(o,a,ϕ2).
3. If ϕ = ϕ1 ∨ ϕ2, return Step-SLAF(o,a,ϕ1)∨Step-

SLAF(o,a,ϕ2).

PROCEDURE Fluent-SLAF(o,a,ϕ)
o an observation sentence (conjunction of literals),a an
action,ϕ a fluent.
1. ReturnCnLt+1(ϕt ∧ at ∧ Teff (a, t)).

Figure 3. SLAF using distribution over∧,∨

4.1 Always-Executable STRIPS Actions

STRIPS actions [4] are deterministic and unconditional (but
sometimes not executable). In this section we examine them
with the assumption that our they always executable. We re-
turn to inexecutability in Section 4.2.

Let Lf = {f} ∪ {af , a¬f , af◦ | a ∈ A} be the propo-
sitional vocabulary including only the propositional fluent
symbol f and effect propositions mentioningf . We say
thatϕ is a fluent-factored transition belief formula, if ϕ =
base∧

∧

f∈P ϕf , with L(ϕf) ⊆ Lf . When a transition be-
lief formulaϕ is fluent-factored, then the result of filtering is
also a fluent-factored formula.

Theorem 16 Letϕ = base∧
∧

f∈P ϕf be a fluent-factored
transition belief formula, withL(ϕf) ⊆ Lf . Then,

Filter[a](ϕ) ≡ base∧
∧

f∈P

Filter[a](ϕf)

andL(Filter[a](ϕf)) ⊆ Lf . Also, ifo is a conjunction of
literals, thenFilter[o](ϕ) is fluent-factored.

We are left with the problem of filtering eachϕf with a
ando. LetL0

f = Lf \ {f}.

Theorem 17 Let ϕf be a transition belief formula with
L(ϕf) ⊆ Lf . Then,

Filter[a](ϕf) ≡ (f ⇒ (af ∨ ((ϕf ⇒ f) ∧ af◦)))∧
(¬f ⇒ (a¬f ∨ ((ϕf ⇒ ¬f) ∧ af◦)))∧
Cn(ϕf) ∩ L(L0

f)

We can computeCn(ϕf) ∩ L(L0
f) without general-

purpose automated deduction, if we keepϕf in a the fol-
lowing form

(¬f ∨ explf) ∧ (f ∨ expl¬f) ∧ ξf

whereexplf , expl¬f , andξf are inL(L0
f). Every formula

in L(Lf) is logically equivalent to a formula in this form,

Cognitive Robotics Workshop 2004 50

PROCEDURE AE-STRIPS-SLAF(〈ai, oi〉0<i≤t,ϕ)
∀i, ai an action,oi an observation,ϕ =

∧

f∈P ϕf a fluent-
factored transition belief formula.
1. Fori from 1 to t do,

(a) Setϕ←
∧

f∈P AE-STRIPS-Fluent-SLAF(oi,ai,ϕf).
(b) Eliminate subsumed clauses inϕ.

2. Returnϕ.

PROCEDURE AE-STRIPS-Fluent-SLAF(o,a,ϕ)
o conjunction of literals,a action,ϕ = (¬f∨explf)∧(f∨
expl¬f) ∧ ξf in f -free form.
1. Setexpl′f = af ∨ (af◦ ∧ explf)).
2. Setexpl′¬f = a¬f ∨ (af◦ ∧ expl¬f)).
3. If f does not appear (positively or negatively) ino, then

setξ′f = ξf .
4. Else, ifo |= f (we observedf), then

(a) Setξ′f ← ξf ∧ expl′f .
(b) Setexpl′f ← TRUE andexpl′¬f ← FALSE.

5. Else (we observed¬f),
(a) Setξ′f ← ξf ∧ expl′¬f .
(b) Setexpl′f = FALSE andexpl′¬f = TRUE.

6. Return(¬f ∨ expl′f) ∧ (f ∨ expl′¬f) ∧ ξ′f

Figure 4. SLAF with always-executable STRIPS.

which we callf -free form. Figure 4 presents a complete al-
gorithm for SLAF using this observation and form.

Now, we examine the size of the formula that results from
filtering. A transition belief formulaϕ in CNF is inf -k-CNF
if every clause mentioningf or¬f has at mostk literals. For
example,f ∨ af is in f -2-CNF, butaf

1 ∨ a
¬f
2 is in f -0-CNF.

We also say thata, o determinef inϕ if ϕ |= af orϕ |= a¬f

or o |= f or o |= ¬f .

Corollary 18 Let ϕ =
∧

f∈P ϕf be a fluent-factored
transition belief formula, ando a conjunction of lit-
erals. Then, Procedure AE-STRIPS-SLAF(〈a, o〉, ϕ) re-
turns a fluent-factored transition belief formulaϕ′ ≡
Filter[o](Filter[a](ϕ)) in timeO(|ϕ|). Further, if ϕ is in
f -k-CNF andϕ, a, o determinef , thenϕ′ is in f -1-CNF.
Otherwise,ϕ′ is in f -(k + 1)-CNF.

Thus, our transition belief formula remains compact, if we
know the effect of our action ona in ϕ, or we observef
frequently enough. For example, if we observe every fluent
every 4 actions, then our transition belief state is always in
5-CNF, meaning that it is of size at mostO(n · m5) for n
fluents andm actions (this is much better than the worst case
which can be doubly-exponential inn,m).

4.2 STRIPS Actions

Assume that we allow actions to fail but we always
observe such success and inexecutability. In both exe-
cutable/inexecutable cases we learn something about the ex-
ecutability of the action under consideration. Unfortunately,
this prevents factoring for the general case of actions, unless
one of the conditions of section 3.3 holds. In the rest of this
section we assume that either one of those conditions holds,
or we accept the approximation offered by Corollary 12. De-

fine

al
e ≡

∧

G∈Bottom(P2)(¬a
FALSE
G ⇒ al

G)

al◦
e ≡

∧

G∈Bottom(P2)(¬a
FALSE
G ⇒ al◦

G)

LetB(a) ≡
∧

l∈P1
(al

e ⇒ lt+1) ∧ base.

Corollary 19 (STRIPS-SLAF of a literal) Letl be a literal
in L(P1,P2) anda an action. Ifl ∈ P1, then

Filter[a,OK](l) ≡ (lt+1 ⇔ (al
e ∨ a

l◦
e)) ∧ ¬aFALSE

l ∧ B(a)

Filter[a,¬OK](l) ≡ lt+1 ∧ a
failed
l ∧ base

If l /∈ P1 (i.e., l is an effect literal), then

Filter[a,OK](l) ≡ l ∧ ¬aFALSE
TRUE ∧ B(a)

Filter[a,¬OK](l) ≡ l ∧ afailed
TRUE ∧ base

Now we replace Procedure Fluent-SLAF in Figure 3 with
Procedure STRIPS-Fluent-SLAF of Figure 5.

PROCEDURE STRIPS-Fluent-SLAF(o,a,ϕ)
o conjunction of literals,a action,ϕ fluent.
1. If l ∈ P1, then

(a) If o |= OK, then return
(lt+1 ⇐⇒ (al

e ∨ a
l◦
e)) ∧ ¬aFALSE

l ∧ B(a).
(b) (o |= ¬OK) Returnlt+1 ∧ a

failed
l ∧ base.

2. (l ∈ P1) If o |= OK, then returnl∧¬aFALSE
TRUE ∧B(a).

3. Returnl ∧ afailed
TRUE ∧ base.

Figure 5. SLAF with STRIPS actions, observing success/failure.

4.3 Conditional Effects

A similar formula to the one above holds for the general case
of deterministic actions (possibly conditional). We assume
thata has preconditions using the propositions in{l1, ..., lk}.

Theorem 20 Filtering for a literal l ∈ P1 satisfies

Filter[a,OK](l) ≡ (let+1 ⇒
∨

G ∈ Bottom(P2, {l1, ..., lk})
G |= lp

(ale
G ∧

∧

j≤k((alj

G ⇒ ljt+1)∧

(a¬lj

G ⇒ ¬ljt+1))))

5 Conclusions

We presented general principles and algorithms for learning
and filtering in partially observable domains. Some of our re-
sults guarantee polynomial-time filtering of transition belief
states indefinitely. In particular, STRIPS domains in which
actions are always executable (or when the preconditions for
those actions are known) can be learned in polynomial time,
if fluents are observed frequently enough.

We expect our algorithms to generalize to action schemas,
where actions are parametrized in various ways (e.g., objects
on which they operate, and numbers that modify the extent
of the action). We plan to explore this direction in the future,
as well as extending this work to agents that have a prior dis-
tribution, knowledge, or preference over the possible worlds
or the actions’ effects.

Cognitive Robotics Workshop 2004 51

REFERENCES
[1] Eyal Amir and Stuart Russell, ‘Logical filtering’, in

Proc. Eighteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI ’03), pp. 75–82. Morgan Kaufmann,
(2003).

[2] Scott Benson, ‘Inductive learning of reactive action models’,
in Proceedings of the 12th International Conference on Ma-
chine Learning (ICML-94), (1995).

[3] Lonnie Chrisman, ‘Abstract probabilistic modeling of action’,
in Proc. National Conference on Artificial Intelligence (AAAI
’92). AAAI Press, (1992).

[4] Richard Fikes, Peter Hart, and Nils Nilsson, ‘Learning and
executing generalized robot plans’,Artificial Intelligence, 3,
251–288, (1972).

[5] Yolanda Gil, ‘Learning by experimentation: Incremental re-
finement of incomplete planning domains’, inProceedings
of the 11th International Conference on Machine Learning
(ICML-94), pp. 10–13, (1994).

[6] Brian Hlubocky and Eyal Amir, ‘Knowledge-gathering agents
in adventure games’, inAAAI-04 Workshop on Challenges in
Game AI. AAAI Press, (2004).

[7] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra, ‘Planning and acting in partially observable
stochastic domains’,Artificial Intelligence, 101, 99–134,
(1998).

[8] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.
Moore, ‘Reinforcement learning: a survey’,Journal of Artifi-
cial Intelligence Research, 4, 237–285, (1996).

[9] Michael Kearns, Yishay Mansour, and Andrew Y. Ng, ‘Ap-
proximate planning in large pomdps via reusable trajectories’,
in Proceedings of the 12th Conference on Neural Information
Processing Systems (NIPS’99), pp. 1001–1007. MIT Press,
(2000).

[10] Fangzhen Lin and Ray Reiter, ‘How to Progress a Database’,
Artificial Intelligence, 92(1-2), 131–167, (1997).

[11] Michael L. Littman,Algorithms for sequential decision mak-
ing, Ph.D. dissertation, Department of Computer Science,
Brown University, 1996. Technical report CS-96-09.

[12] R. Andrew McCallum, ‘Instance-based utile distinctions for
reinforcement learning with hidden state’, inProceedings
of the 12th International Conference on Machine Learning
(ICML-95). Morgan Kaufmann, (1995).

[13] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and
Leslie Pack Kaelbling, ‘Learning finite-state controllersfor
partially observable environments’, inProc. Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’99). Mor-
gan Kaufmann, (1999).

[14] Andrew Y. Ng and Michael Jordan, ‘Pegasus: A policy search
method for large mdps and pomdps’, inProc. Sixteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI ’00), pp.
406–415. Morgan Kaufmann, (2000).

[15] Tim Oates and Paul R. Cohen, ‘Searching for planning op-
erators with context-dependent and probabilistic effects’, in
Proc. National Conference on Artificial Intelligence (AAAI
’96), pp. 863–868. AAAI Press, (1996).

[16] Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kael-
bling, ‘Learning probabilistic relational planning rules’. AAAI
Press, (2004).

[17] L. R. Rabiner, ‘A tutorial on hidden Markov models and se-
lected applications in speech recognition’,Proceedings of the
IEEE, 77(2), 257–285, (February 1989).

[18] Matthew D. Schmill, Tim Oates, and Paul R. Cohen, ‘Learning
planning operators in real-world, partially observable environ-
ments’, inProceedings of the 5th Int’l Conf. on AI Planning
and Scheduling (AIPS’00), pp. 246–253. AAAI Press, (2000).

[19] Xuemei Wang, ‘Learning by observation and practice: an
incremental approach for planning operator acquisition’, in
Proceedings of the 12th International Conference on Ma-
chine Learning (ICML-95), pp. 549–557. Morgan Kaufmann,
(1995).

[20] Mary-Anne Winslett, Updating Logical Databases, Cam-
bridge University Press, 1990.

Cognitive Robotics Workshop 2004 52

1

Cognitive Robotics Workshop 2004 53

Paper Session III

August 23, 15:30 - 17:30

• Building Polygonal Maps from Laser Range Data, J. Latecki, R. Lakaemper, X. Sun,
D. Wolter

• Hierarchical Voronoi-based Route Graph Representations for Planning, Spatial
Reasoning and Communication, J. O. Wallgrün

• Schematized Maps for Robot Guidance, D. Wolter, K-F Richter

• How can I, robot, pick up that object with my hand, A. Morales, P.J. Sanz, A.P. del
Pobil

1

Cognitive Robotics Workshop 2004 54

*

Cognitive Robotics Workshop 2004 55

Building Polygonal Maps from Laser Range Data
Longin Jan Latecki

�

and Rolf Lakaemper
�

and Xinyu Sun
�

and Diedrich Wolter
�

Abstract. This paper presents a new approach to the problem of
building a global map from laser range data, utilizing shape based
object recognition techniques originally developed for tasks in com-
puter vision. In contrast to classical approaches, the perceived en-
vironment is represented by polygonal curves (polylines), possibly
containing rich shape information yet consisting of a relatively small
number of vertices. The main task, besides segmentation of the raw
scan point data into polylines and denoising, is to find corresponding
environmental features in consecutive scans to merge the polyline-
data to a global map. The correspondence problem is solved using
shape similarity between the polylines. The approach does not re-
quire any odometry data and is robust to discontinuities in robot po-
sition, e.g., when the robot slips. Since higher order objects in the
form of polylines and their shape similarity are present in our ap-
proach, it provides a link between the necessary low-level and the
desired high-level information in robot navigation. The presented in-
tegration of spatial arrangement information, illustrates the fact that
high level spatial information can be easily integrated in our frame-
work.

1 INTRODUCTION

The problems of self-localization and robot mapping are of high im-
portance to the field of mobile robotics. Robot mapping describes
the process of acquiring spatial models of physical environments
through mobile robots. Self-localization is the method of determin-
ing the robot’s position with the robot’s internal spatial representa-
tion. The central method required is a matching of sensor data, which
- in the typical case of a laser range finder as the robot’s sensor -
is called scan matching. Whenever a robot needs to cope with un-
known or changing environments, localization and mapping have to
be carried out simultaneously, this technique is called SLAM (Si-
multaneous Localization and Mapping). To attack the problem of
mapping and/or localization, mainly statistical techniques are used
(Thrun [15], Dissanayake et al. [3]), e.g., the extended Kalman filter,
a linear recursive estimator for systems described by non-linear pro-
cess models and/or observation models, are the basis for most current
SLAM algorithms. Bayesian rules build the foundation of the models
employed. For localization, often partially observable Markov deci-
sion processes (POMDP) are utilized.

The robot’s internal geometric representation forms the basis for
these techniques. It is build atop of the perceptual data read from
the laser range finder (LRF). Typically, either the planar location of
reflection points read from the LRF is used directly as the geomet-
ric representation, or simple features in the form of line segments

�
Temple University, Philadelphia, USA, email: latecki@temple.edu�
email: lakamper@temple.edu�
email: xysun@euclid.math.temple.edu�
University of Bremen, Bremen, Germany email: dwolter@informatik.uni-
bremen.de

or corner points are extracted (Cox [2]; Gutmann and Schlegel [5];
Gutmann [7]; Röfer [14]). Although robot mapping and localization
techniques are very sophisticated they do not yield the desired per-
formance. We observe that these systems use only a very primitive
geometric representation. As the internal geometric representation is
a foundation for the sophisticated techniques in localization and map-
ping, shortcomings on the level of the geometric representation affect
the overall performance. The main goal of this paper is the introduc-
tion of an elaborate and cognitively motivated geometric represen-
tation and a reasoning formalism for robot mapping. A successful
geometric representation must result in a much more compact repre-
sentation than uninterrupted perceptual data, but must neither discard
valuable information nor imply any loss of generality. We claim that
the representation proposed in this paper, namely polygonal curves or
polylines, representing parts of object surfaces being obtained from
segmented scans, fulfills these demands. The relation among the ob-
jects is based on shape similarity and on qualitative arrangement in-
formation. Representing the passable space explicitly by means of
shape is not only adequate for mapping applications but also helps to
bridge the gap from metric information needed to topological knowl-
edge due to the object centered perspective offered. Moreover, an
object-centered representation is a crucial building block in dealing
with changing environments, as such a representation allows us to
separate the partial changes from the unchanged parts. In this paper
we focus on incremental building of the object representation.

There exist approaches to map building that apply more sophis-
ticated geometric method to scan data, e.g., Forsberg et al. [4] and
Jensfelt and Christensen [9]. However, they focus on extraction of
linear structures only, why we not only consider extraction of polyg-
onal structures but also on similarity of polygonal structures. The
similarity of polygonal structures is a driving force of our approach.

2 MAP BUILDING PROCESS

Map Building is the process of memorizing perceived objects and
features the robot has passed by, merging corresponding objects in
consecutive scans of the local environment. The robot’s internal spa-
tial representation is referred to as a map, in the case of a feature
based spatial representation it is commonly referred to as a feature
map [15]. A key challenge in map building is to match a local sen-
sor reading against the global map. Multiple problems occur, e.g.,
the noise of the data perceived must be filtered in a way to obtain
the required features, and the correspondence between perceived ob-
jects must be found on the basis of the filtered (visual) features, since
additional information, i.e., odometry, has proven to be inaccurate.
This excludes the possibility of simply superimposing consecutive
scans on top of one another, as can be seen in the example shown
in Figure 1(a). It shows the effects of accumulated errors in rotation
and distance measure, because the geometrical properties of the envi-

Cognitive Robotics Workshop 2004 56

ronment indicated by the LRF purely interpreted in connection with
odometry increasingly differ from reality, resulting in large displace-
ments of the perceived objects and block-like representations in the
global map. Odometry is designed to record the distance the robot
has traveled and the rotational angle the robot has turned with re-
spect to the starting position. However, odometry makes unreliable
recording on a large scale.

Using alignment based on shape similarity, we can construct a sig-
nificantly better map by correcting the errors of the odometry or even
discarding the recording of the odometry completely. The alignment
is computed using stable objects in the map to calculate the current
position of the robot. Assuming that some objects in two consecutive
scans are not moving, we align the stationary objects in the second
scan to the corresponding objects in the first scan. The robot’s move-
ment and its position defining the global position of the scanned envi-
ronment is achieved by the resulting movement and rotational angle
computed by the alignment. An example global map computed us-
ing our alignment algorithm is shown in Figure 1(c). The scans are
aligned iteratively, then superimposed on each other without any in-
formation from the odometry. The row scan data alignment based on
robot’s odometry is shown in Figure 1(a). The quality of the map in
(c) is much better, and the objects can be easily identified. To have a
fair comparison, the map in (c) should be compared to the map in (b).
The map (b) is obtained from (a) with a simple algorithm that cor-
rects significant rotation errors of the odometry by finding rotation
angles that maximize the proximity of long lines and rotated accord-
ing the scans accordingly. Although the improvement from (b) to (c)
is significant, we can still find some fuzziness in certain areas of (c).
This is due to the nature of the perceived data, which introduces noise
in several ways:

1. Scanning an object with a fractal or nonrigid shape. An example
of such can be a plant in any office building. The locations of the
scan points on such objects are mostly random, and the record-
ings of the scan points are not going to provide us useful position
information, even if the robot is not moving.

2. Scanning objects too far away. Scanning objects far away in-
evitably will create more error than scanning objects close by, due
to uneven ground or other movement/vibration effects. Aligning
all objects in the scans, the error introduced by this defective data
will accumulate and propagate.

3. Scanning moving objects. Objects are aligned under the assump-
tion that only the robot moves, being the only source of change of
the distance between them. But once there is a moving object in
the scan, such an assumption is no longer true, and the alignment
will not be reliable, especially when the moving object is near the
scanner.

In the following we will address these problems, and discuss their
solutions in our framework.

One shortcoming of the recursive alignment process is that when
errors occur, they will not be corrected nor eliminated. In fact, they
are most likely to be accumulated and propagated as show in Fig-
ure 1(c). Another drawback is that each scan still exists indepen-
dently of the others, i.e., we are not creating a global map composed
of objects in the common sense of the word, but composed of a set of
unrelated polylines. Hundreds of laser scans are printed on paper and
human eyes can easily identify objects from the printout, but these
scans cannot be used by robot localization because these objects are
not present in the internal robot representation.

Hence a process is needed that can deal with these problems, and
that can create a global map composed of just a few objects. We

propose such a process that we call merging in this paper. In order to
describe it, we need to introduce some notation.

A global map is built iteratively as the robot moves. We denote the
scan and the global map at time � by ��� and ��� respectively. Each
scan ��� and the global map ��� is composed of polylines. We assume
that the range data is mapped to locations of reflection points in the
Euclidean plane, using a local coordinate system. These points are
segmented into individual polylines with a simple heuristic: Travers-
ing the reflection points following the order of the LRF, an object
transition is said to be present wherever two consecutive points are
further apart than a given distance threshold (20 cm in the case of our
example map). The precise choice of the threshold is not crucial as
subsequent processing accounts for differences. The obtained polyg-
onal objects are further simplified to reduce the influence of noise
(Section 3.1). We apply discrete curve evolution (DCE, described
below) followed by least square fitting of line segments to obtain the
simplified polyline objects.

To create the global map � , we start with the first global map
� � being equal to the first scan � � . Assuming we have created the
global map ����� � at time �
	�� , we use ����� � and �
� to create ��� in
the following steps:

� We extract a virtual scan ������ � from the global map ����� � . ������ �

is the part of the global map to which the previous scan ����� � was
merged. The virtual scan �� ��� � is a corrected version of the actual
scan � ��� � . The noise correction was achieved by merging in the
previous step of �
��� � to the global map ����� � .

� We use shape similarity (described in Section 3) to find the corre-
spondence between objects in � � and �� ��� � , which can be a many-
to-many correspondence. Since �� ��� � is part of the global map
����� � , we obtain the correspondence between ��� and parts of the
global map.

� We align polylines in � � to the corresponding polylines in � ��� � .
We repeatedly apply the least squares method to find the optimal
translation and rotation. The main difference in comparison to the
standard approaches is that the corresponding points are limited to
polylines with similar shape. Thus, we greatly reduce the problem
of local minimum. This allows us to align ��� to ����� � even if the
robot displacment is large (see Figure 3).

� Finally, we merge the aligned scan � � to � ��� � to create � � . Merg-
ing an aligned new scan to the global map adds newly detected
polylines in the surrounding area to the global map while not dis-
carding the existing polylines no longer seen by the robot. The
goal is to produce a global map composed of a few polylines. The
details of merging are presented in Section 4.

Repeating this procedure iteratively for each new scan, we are able
to create a global map that remembers all the objects and features
along the path the robot has traveled. The result can be seen in Fig-
ure 1(d), which displays the final global map as a set of polylines.
We used exactly the same raw input data for all four maps in Figure
1. This feature-based approach yields a compact representation, and
most importantly, it represents the robot’s surroundings by a single
set of non-overlapping polylines that can be easily recognized and
compared using shape similarity.

3 STRUCTURAL REPRESENTATION OF
SHAPE

A first step in the presented approach is to extract shape information
from data acquired by a laser range finder (LRF). Polygonal lines,
termed polylines, serve in our approach as a fundamental building

2

Cognitive Robotics Workshop 2004 57

(a) (b)

–1000

–500

0

500

1000

–400 –200 200 400 600 800 1000 1200
t

(c) (d)

Figure 1. (a) A global map built using the information from odometry only. (b) A global map with significant rotation errors corrected. (c) A global map built
using the proposed alignment only. (d) A real global map built using the proposed merging approach.

3

Cognitive Robotics Workshop 2004 58

block. They already capture more context than other features typi-
cally employed in scan matching approaches (e.g., simple line seg-
ments or even uninterpreted data). The richness of perceivable shapes
in a regular indoor scenario yields a more reliable matching than
other feature-based approaches, as mixups in determining features
are more unlikely to occur. At the same time, we are able to construct
a compact representation for an arbitrary environment. However, we
exploit even more context information than represented by a single
polyline considering shape as a structure of polylines. This allows us
with basically no extra effort to cope with environments displaying
mostly simple shapes.

3.1 Grouping and Simplification of Polylines

Polylines extracted from raw scan data still carry all the informa-
tion (and noise) retrieved by the sensor. To make the representation
more compact and to cancel out noise, we employ a technique called
Discrete Curve Evolution (DCE) introduced by Latecki & Lakämper
[11, 12] which achieves these goals without losing valuable shape
information. DCE is a context-sensitive process that proceeds itera-
tively. Though the process is context-sensitive, it is based on a local
relevance measure for a vertex � and its two neighbor vertices ����� 5:

��� ���	�
���
����� � � ���	������� � �
����� 	�� � �����
���
Hereby, � denotes the Euclidean distance. The process of DCE is
very simple and proceeds in a straightforward manner. The least rel-
evant vertex is removed until this relevance measure exceeds a given
threshold, thereby defining the level of polygon simplification. Con-
sequently, as no relevance measure is assigned to end-points, they
remain fixed. The choice of a specific simplification threshold is not
crucial, refer to Figure 2 for results. Implementation of DCE can
benefit from the observation that a polyline can be represented si-
multaneously as a double-linked list and a self-balancing tree which
reflects the order of relevance measures. Thus, the overall complex-
ity is � ����� �"!#� � . Proceeding this way we obtain a cyclic, ordered
vector of polylines.

3.2 Similarity of Polylines

Matching scans against the global map within the context of a shape
based representation is naturally based on shape matching. This
somehow revives a notion in Lu and Milos’ fundamental work [13]
”scan matching is similar to model-based shape matching” that so
far has not received much attention. In the presented approach we
adopt a shape matching originated from computer vision that has
proven successful in the context of shape retrieval [12]. It may eas-
ily be adapted to our needs. The property of invariance to change of
scale as often desired in computer vision approaches is not adequate
in our domain and must be excluded.

To compute the similarity measure between two polygonal curves,
we establish the best possible correspondence of maximal convex
arcs, where a convex arc is a left- or right-arcuated arc. To achieve
this, we first decompose the polygonal curves into maximal subarcs
that are likewise bent. Since a simple one-to-one comparison of max-
imal arcs of two polylines is of little use, due to the fact that the
curves may consist of a different number of such arcs and even sim-
ilar shapes may have different small features, we allow for 1-to-1, 1-
to-many, and many-to-1 correspondences of maximal arcs. The main$

Context is respected in the course of simplification as vertices’ neighbor-
hood changes.

idea here is that we have at least on one of the contours a maxi-
mal convex arc that corresponds to a part of the other contour com-
posed of adjacent maximal arcs. The best correspondence, i.e., the
one yielding the lowest similarity measure, can be computed using
dynamic programming, where the similarity of the corresponding vi-
sual parts is as defined below. Using dynamic programming, the sim-
ilarity between corresponding parts is computed and aggregated. The
computation is described extensively in [12]. The similarity induced
from the optimal correspondence of polylines % and & will be de-
noted � � %
��&'� .

Basic similarity of arcs is defined in tangent space, a multi-valued
step function representing angular directions of line-segments only.
This representation was previously used in computer vision, in par-
ticular in [1]. Denoting the mapping function by (, the similarity
gets defined as follows:

�*) � %
��&'�+� � �,� �.-/� %�� 	 -0� &'��� � � 1 �

2 � (43 �65 � 	
(47 �65 ���98�3;: 7<� � � 5
where

-/� %�� denotes the arc length of % , and the whole integral is over
arc length. The constant 8 3;: 7 is chosen to minimize the integral (cp.
[12]). Obviously, the similarity measure is a rather a dissimilarity
measure as the identical curves yield = , the lowest possible measure.
This measure differs from the original work in that it is affected by an
absolute change of size rather than a relative one (cp. [12]). It should
be noted that this measure is based on shape information only, neither
the arcs’ position nor orientation are considered. This is possible due
to the large context information of polylines; position and orientation
will be accounted for when computing the actual matching.

3.3 Matching of Polylines

Computing the actual matching of two structural shape representa-
tions extracted from scan and map is performed by finding the best
correspondence of polylines which respects the cyclic order. We must
also take into account that (a) not all polylines may get matched as
the features’ visibility changes and (b) that due to segmentation noise
(cp. section 3.1) it is not necessarily a one-to-one correspondence.
Furthermore, any correspondence of polylines induces an alignment
of the polylines which constraints the scan’s origin. For example,
matching a polyline perceived in front of the robot to a polyline that
is based on the estimated position of the robot to its right, the robot
must have turned right. Hence, we demand all induced alignments
to be alike. To enable efficient computation of the matching, an esti-
mation of the induced alignment is required. It can either be derived
from odometry (if available) or simply reflect the assumption that the
robot has not moved. We stress that we do not use any odometry data
in our approach.

Let us assume that >? � �.?
� � ?

� �A@B@�@�� ?DC � and >?FE ��.? E
� � ? E

� ��@�@B@�� ? EC0G � are two cyclic ordered vectors of polylines. De-
noting correspondence of

?�H
and

? EI by relation J , the task can be
formulated as minimization as follows.K

L"MN*O : MN GQPSR6T,U � � >?�H � >? E I �;�V%XW �6Y �.J�� 	Z� >? � 	[� >? E � ��\� min

Hereby, % denotes a penalty for not matching a polyline. This is nec-
essary, as not establishing any correspondence would otherwise yield
the lowest possible similarity = . The similarity measure � is com-
posed of the shape similarity measure presented in Section 3.2 and
the alignment measure considering the difference between the align-
ment induced by the corresponding polylines’ and the estimated one.

4

Cognitive Robotics Workshop 2004 59

(a) (b) (c)

(d) (e) (f)

Figure 2. The process of extracting polygonal features from a scan. Raw scan points (a) are grouped to polylines (b), then simplification by means of DCE is
performed. Figures (c) to (f) show various simplification levels (1,5,10, and 15 respectively) highlighting that the precise choice the simplification level is not

critical for shape information obtained. The grid denotes 1 meter distance.

Considering alignments becomes necessary when many featureless
shapes, e.g., chairs’ legs, need to be tracked.

We use an adequate extension of the dynamic programming
scheme to compute the best correspondence. The extension regards
the ability to detect even 1-to-many and many-to-1 correspondences
of polylines and results in a linear extra effort such that the over-
all complexity is � ��� � � . Observe that

�
is very low, it was around

10 for our example map, since this is the number of polylines in
a scan. The outlined matching is powerful enough to track shapes
even if no odometry information is available and the robot has trav-
eled a remarkable distance between two consecutive scans. Figure 3
shows the polyline correspondence computed by our method, where
the corresponding polylines from two different scans are connected
by dashed lines. As can be observed, approaches based on the nearest
point rule fail in this case.

Figure 3. Exemplary results of the shape based matching for two scans
(green and blue polylines; the grid denotes 1m distance).

4 MERGING

Merging an aligned new scan to the global map adds newly detected
features in the surrounding area to the global map while not discard-

ing the existing features no longer seen by the robot. It produces a
global map composed of polylines.

It is common that portions of the same object may be perceived
as several independent objects in a single scan. Such a phenomenon
can happen when there is another object blocking the view, or sim-
ply because of the angle and the distance from which the object is
viewed. During the merging process, we need to accurately identify
objects in each scan, look for their corresponding objects in the exist-
ing global map, calculate the updated position of the object, remove
moving objects, remove areas where there are objects with nonrigid
shape, and more importantly, merge several objects into a single ob-
ject whenever possible.

The main idea of the presented merging process is to simulate the
robot laser scanner to merge the aligned scan � � to the global map
� ��� � . As output we obtain an updated global map � � . The simu-
lated laser rays emanate from the current robot pose and follow the
parameters of the robot scan device. This means for our data that the
simulated rays move counter-clockwise in steps of =�@ ��� and cover
the angle of ���"=�� . If a ray intersects a polyline in � � , we select the
closest intersection point to the robot pose, which is called a simu-
lated scan point (ssp). We are creating at most 361 ssps. Furthermore,
we add all end points of polylines in � � to the list of newly created
scan points with proper ordering (since we know between which scan
rays they lie). From each ssp ��� in ��� , we find the closest point �	� on
� ��� � . If the distance from � � to � � is below a certain threshold, then
we take a weighted average of the two points to create a new point
for the new global map ��� . We use a larger weight for the point �	� in
����� � , since we have more confidence about its position. If the closet
point cannot be found within a certain distance, the ssp � � will be a
new point on the new global map.

Since we want every polyline vertex in a global map � ��� � to have
a corresponding point in the new global map, we have the following
rule. If two consecutive ssps � ��
 and � �
� have two corresponding
closest points � ��
 and � ��� in � ��� � , and there is a vertex � between
����
 and ����� , we create a new ssp �	�
� in ��� that is the closest point

5

Cognitive Robotics Workshop 2004 60

to � in the part of ��� between �	��
 and �	� � . Then we take a weighted
average of the two points � � � and � to create a new point for the new
global map � � . This step is illustrated in Figure 4.

v

L

L

p p

2

s1g1

p

1

p sv

pg2

s2

Figure 4. � is a vertex of a polyline
� � of the global map � ��� � . � is

between the closest points � ��
 and � ��� to two consecutive simulated scan
points (ssps) � ��
 and � �
� on polyline

� � in � � . In such case, we create a
new ssp � � � in the scan � � as the closest point to � on a polyline

� � of the
scan � � . Then we take a weighted average of the two points � �
� and � to

create a new point for the new global map � � .

The next step is to create a set of ordered polylines from the newly
created points (ncps) in the global map ��� . The following facts guide
this process:

1. All ncps in the global map ��� are ordered. They either inherited
their order from the simulated scan rays or where sorted in be-
tween two ssps (who inherited their order from the simulated scan
rays).

2. All consecutive ncps whose predecessors belonged to the same
polyline either in � ��� � or in � � are classified as belonging to the
same polyline.

3. The parts of polylines in ����� � that are not predecessors of any
ncps are integrated in � � as separate polylines.

First we connect all consecutive (in scan order) ncps in the new
global map that belong to the same polyline. We further merge con-
secutive polylines � � and � � to a single polyline � if the last vertex
of � � and the first vertex of � � had predecessors in the same polyline
either in ��� or in ����� � . The motivation for this step is that the poly-
line � is likely to represent a single object in � � (created from � �
and � ��� �), since whenever two consecutive points are in the same
object either in �
� or in ����� � , they can be classified as belonging to
the same object. This rule implies that separate portions of the same
object will be connected if they are ever detected as points of the
same object. The only exception to this rule is a bifurcation, which
may be caused by dynamic object, e.g., a moving door. To resolve
bifurcations, we create two disjoint polylines in a global map.

The created polylines in the new global map � � may not be
properly ordered. A polyline � is properly ordered if the order of
its vertices is constant with the arc length distance to its first ver-
tex � i.e., vertex � proceeds � if the arc length distances satisfy�
	 � ���/����� �
	 � �*����� . We apply recursively the following simple
rule to obtain properly ordered polylines: Let �4���
�	� be three con-
secutive vertices in a polyline � , if the inner angle at � is less then
a certain threshold (which is

Y =�
 in our case), then vertex � is re-
moved. This rule not only makes polylines properly ordered, but also

removes scan artifacts due to sensor noise or due to objects with fine
shape features like plants. This rule is justified by the fact that sharp
inner angles cannot be created by three consecutive laser rays unless
they hit an object with fine shape.

For objects with fine shape, we obtain a dense sequence of sharp
inner angles. Since this rule would remove them completely, these
kind of objects requires a special treatment. Such objects have dif-
ferent reflections patters for different scans, thus, their shape may
change from scan to scan. These object are not considered in the
merging process, but they are placed on the global map after merg-
ing. To (temporarily) remove objects, we use a bounding box around
them, called “eraser box”, to erase the areas where the perceived data
is highly unreliable. We create an eraser box in a scan by creating a
bounding rectangle containing all consecutive vertices in each poly-
line of � � with inner angles that are less than

Y =�� . If such a sharp
angle is span by three consecutive scan points, it is very unlikely that
these points result from scan readings of a real object with a stable
shape. Thus, such sharp angles indicate either noisy readings or an
object with fuzzy shape, like plants. The processing of eraser boxes
is composed of three main steps: (1) for each scan we identify eraser
boxes, (2) we transfer the eraser boxes to the global map, and (3) we
merge overlapping eraser boxes in the global map to a single eraser
box that contain them. We need these three steps, because the data
in a small area may appear to be reliable in a given scan, but ap-
pears highly unreliable in most of the other scans. Thus, we mark
the whole area unreliable regardless of the quality of any single scan.
The data inside the eraser boxes on the global map is not used for
further iterations of building the global map.

In order to create stable global maps, we can only merge perceived
stationary objects, i.e., we need to detect moving objects and remove
them from actual scans before merging. To remove moving objects,
we use the result of shape matching to identify corresponding objects
in scan � ��� � and � � , say � ��� � is matched to � � . We can also easily
remember in the process of merging that � ��� � is merged into the
object � ��� � in ����� � . Since � � and � ��� � represent the same real
object, their distance after alignment should be very small. If this
is not the case, the object � � is moving, in which case we need to
backtrack to its first appearance in the scans, remove it, and redo the
merging process again to remove any unwanted effects it may have
caused.

Finally, we apply DCE and least square fitting to create a new set
of simplified polylines. An example result is shown in Fig. 1(d).

5 CONCLUSIONS

We have presented a comprehensive geometric model for robot map-
ping based on shape information. Shape matching has been tailored
to the domain of scan matching. The matching is powerful enough
to disregard pose information and cope with significantly differ-
ing scans. This improves performance of today’s scan matching ap-
proaches dramatically. In this paper we concentrate on solving geo-
metric problems related to global map building, and do not include
any statistical methods, to demonstrate the power of the proposed ge-
ometric approach. However, we are aware that statistical methods are
needed to guarantee robust performance. A suitable extension of our
approach to include statistical methods will be presented in a separate
paper.

6

Cognitive Robotics Workshop 2004 61

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Founda-
tion under grant INT-0331786 and the grant 16 1811 705 from Tem-
ple University Office of the Vice President for Research and Grad-
uate Studies. It was carried out in collaboration with the SFB/TR
8 Spatial Cognition, project R3 [Q-Shape] support by the Deutsche
Forschungsgemeinschaft (DFG). All support is gratefully acknowl-
edged.

REFERENCES
[1] M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell

(1991). An efficiently computable metric for comparing polygonal shapes.
IEEE Trans. PAMI, 13:209–206.

[2] Cox, I.J., Blanche – An experiment in Guidance and Navigation of an Au-
tonomous Robot Vehicle. IEEE Transaction on Robotics and Automation
7:2, 193–204, 1991.

[3] Dissanayake, G. ,Durrant-Whyte, H., and Bailey, T., A computation-
ally efficient solution to the simultaneous localization and map building
(SLAM) problem. ICRA’2000 Workshop on Mobile Robot Navigation and
Mapping, 2000.

[4] J. Forsberg, U. Larsson, and A. Wernersson. Mobile Robot Navigation us-
ing the Range-Weighted Hough Transform. IEEE Robotics and Automa-
tion Magazine 21, pp. 18-26, 1995.

[5] Gutmann, J.-S., Schlegel, C., AMOS: Comparison of Scan Matching Ap-
proaches for Self-Localization in Indoor Environments. 1st Euromicro
Workshop on Advanced Mobile Robots (Eurobot), 1996.

[6] Gutmann, J.-S. and Konolige, K., Incremental Mapping of Large Cyclic
Environments. Int. Symposium on Computational Intelligence in Robotics
and Automation (CIRA’99), Monterey, 1999.

[7] Gutmann, J.-S., Robuste Navigation mobiler System, PhD thesis, Univer-
sity of Freiburg, Germany, 2000.

[8] D. Hähnel, D. Schulz, and W. Burgard. Map Building with Mobile Robots
in Populated Environments, Int. Conf. on Int. Robots and Systems (IROS),
2002.

[9] P. Jensfelt and H. I. Christensen. Pose Tracking Using Laser Scanning
and Minimalistic Environmental Models, IEEE Trans. on Robotics and
Automation, 2001.

[10] B. Kuipers. The Spatial Semantic Hierarchy, Artificial Intelligence 119,
pp. 191–233, 2000.

[11] L. J. Latecki and R. Lakämper (1999). Convexity Rule for Shape De-
composition Based on Discrete Contour Evolution. Computer Vision and
Image Understanding 73:441–454.

[12] L. J. Latecki and R. Lakämper (2000). Shape Similarity Measure Based
on Correspondence of Visual Parts. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence 22:1185-1190.

[13] Lu, F., Milios, E. (1997). Robot Pose Estimation in Unknown Environ-
ments by Matching 2D Range Scans. Journal of Intelligent and Robotic
Systems 18:3 249–275

[14] Röfer, T., Using Histogram Correlation to Create Consistent Laser Scan
Maps . IEEE Int. Conf. on Robotics Systems (IROS). Lausanne, Switzer-
land, 625–630, 2002.

[15] Thrun, S. (2002). Robot Mapping: A Survey, In Lakemeyer, G. and
Nebel, B. (eds.): Exploring Artificial Intelligence in the New Millenium,
Morgan Kaufmann, 2002.

7

Cognitive Robotics Workshop 2004 62

1

Cognitive Robotics Workshop 2004 63

Hierarchical Voronoi-based Route Graph
Representations for Planning, Spatial Reasoning, and

Communication
Jan Oliver Wallgr ün1

Abstract. In this paper we propose a spatial representation ap-
proach for a mobile robot operating in an office-like indoor envi-
ronment which is intended to provide an interface between low-
level information required for navigation and abstract information
required for high-level symbolic reasoning about routes. The repre-
sentation is based on a route graph [16] that links navigational deci-
sion points via edges corresponding to route segments. We describe
a particular route graph representation that is derived from the gener-
alized Voronoi diagram of the environment and enables the robot to
incrementally construct the representation autonomously. Since the
Voronoi-based route graph still reflects irrelevant features of the envi-
ronment, our proposed representation is a hierarchical structure con-
sisting of route graph layers representing the environment at different
levels of granularity. It is shown how the more abstract layers can be
derived from the original route graph by using relevance measures to
assess the significance of the vertices. We provide examples of how
planning, spatial reasoning, and communication can benefit from this
kind of representation.

1 Introduction

In the context of mobile robot control systems, a crucial step is to de-
cide in which way spatial information about the robot’s environment
required to solve different subtasks like path planning, path execu-
tion, localization, spatial reasoning, etc. should be stored. Since any
truly autonomous mobile robot will have to be able to construct and
maintain its model of the environment on its own based on observa-
tions, the representation will have to bridge the gap from low-level
sensor data to entities needed for high-level reasoning.

Representations used in current mobile robot systems can be
grouped into two main classes: Metric approaches [12, 10, 14] rely
on an absolute coordinate system superimposed onto the environ-
ment to specify position and orientation of spatial entities. Topologi-
cal representations on the other hand represent the environment by a
graph structure that explicitly stores spatial relations like adjacency
or connectivity between the entities represented by the vertices [7, 3].

In this paper we describe a so-called route graph representation
(a concept introduced in [16]) which is a special kind of topologi-
cal map in which the graph structure describes qualitatively different
routes through the environment. The vertices in this representation
correspond to navigational decision points, while the edges corre-
spond to route segments connecting the decision points. The rep-
resentation and the involved procedures are intended to serve as a

1 Department of Mathematics and Informatics, Universität Bremen, Germany
email: wallgruen@informatik.uni-bremen.de

navigation and mapping module within a hybrid control architecture
combining reactive and deliberative components.

Our particular route graph representation is based on the general-
ized Voronoi diagram (GVD) which is a retraction of the free parts of
the working space onto a network of one-dimensional curves reflect-
ing the connectivity of free space (see figure 1). The GVD allows us
to derive a route network from information about the obstacle bound-
aries. The graph corresponding to the GVD, the generalized Voronoi
graph (GVG), forms the core of our route graph representation and
is annotated with additional information like relative positions of the
vertices. While the resulting route graph can be used for navigation
by applying a simple motion behavior to travel along edges until the
next vertex is reached [3], it still contains parts that are caused by
insignificant features of the environment like small niches or that re-
sult from noise in the sensor data and that are irrelevant for high-level
reasoning. Therefore, we develop a way to deal with this problem by
deriving more abstract route graphs from the original GVG employ-
ing measures to assess the relevance of the Voronoi vertices and the
regions accessible by them. Based on the ability to abstract from the
GVG, we propose a hierarchical organized multi-layer representation
with the original GVG at the bottom level and layers containing route
graphs representing the environment at different levels of granularity
stacked on top of it. Corresponding features in adjacent layers are
linked with each other allowing to switch to a finer or coarser level
of granularity. We argue in favor of such a representation for a mo-
bile robot system for application in office-like indoor scenarios show-
ing how it is particularly well-suited to provide an interface between
low-level navigational information and abstract information required
for high-level planning, reasoning, and communication. Planning and
spatial reasoning based on this representation can be performed in a
hierarchical manner to make them more efficient.

The paper is structured as follows: Section 2 describes the
Voronoi-based route graph representation scheme and briefly dis-
cusses advantages of the representation and important issues like
incremental construction and localization. In section 3 the idea of
a hierarchization of the Voronoi-based route graph is elaborated and
relevance measures are proposed to derive such a representation from
the original route graph. Section 4 presents planning and reasoning
examples within this kind of representation and section 5 provides
first results of the experimental evaluation of the described approach.

2 Voronoi-based route graph representation

The GVD is a generalization of standard Voronoi diagrams [1] that
handles other geometric primitives, e. g. line segments [9, 6], instead
of only point sites. It is also related to the idea of a shape’s skeleton

Cognitive Robotics Workshop 2004 64

(a) (b)

Figure 1. (a) The generalized Voronoi diagram (GVD) (fine lines) of a 2D
environment, (b) the corresponding generalized Voronoi graph (GVG) with

vertices placed at the position of the corresponding meet points for
visualization.

introduced in [2] and has been first used in robotics as an intermediate
representations to solve motion planning tasks given complete infor-
mation about the working space of the robot (usually by providing a
geometric description of the boundaries of the obstacles) [13, 8]. In
the two-dimensional case it contains all points of free space that are
center of maximal inscribed circles (circles that are maximally ex-
panded without intersecting the obstacle boundaries) that touch the
obstacle boundaries at at least two points. Figure 1a shows a sim-
ple two-dimensional environment and the corresponding GVD (fine
lines) consisting of curves that intersect at meet points and end up in
corners of the environment.

As described in [3] simple motion behaviors to follow a Voronoi
curve from one meet point to the next or get from a point aside the
GVD to one on the GVD can be defined. Therefore, the general-
ized Voronoi graph (GVG), which is the graph corresponding to the
GVD (see figure 1b) with vertices corresponding to meet or corner
points and edges connecting vertices joined by Voronoi curves, is
well-suited to serve as a topological map [3, 17]. The robot can travel
from one vertex of the GVG to any other by repeatedly applying the
Follow-Voronoi-Curve behavior while keeping track of the robot’s
position within the graph structure. The only additional information
required for this is the clockwise order of departing edges for each
vertex. It is also possible to construct this kind of representation au-
tonomously during an exploration by tracing the Voronoi curves with
the same behavior and registering the meet points encountered to-
gether with their departing edges.

However, in real world applications noisy and discrete sensor data
together with the instability of the underlying GVD, which may show
additional or missing vertices and edges if the boundary information
changes slightly, require to store more information about the envi-
ronment and more complex procedures to make the approach robust
enough to be applicable. In addition, to construct a complete GVG
by tracing every single Voronoi curve of the GVD is quite costly and
can be avoided by making better use of the sensor data.

To overcome these problems, we developed a representation that
extends the GVG with additional annotations to vertices and edges
together with procedures for localization and incremental construc-
tion for a robot equipped with a laser range finder [15]. We will
briefly describe this approach in the following.

2.1 The GVG-based representation

Besides the graph structure and the clockwise order of edges the fol-
lowing information is contained in our representation:

1. Vertices are labeled with asignature (see figure 2a) that con-

(a)

generating points

maximal inscribed circle

δ

ε

φ
R1

R2

R3

(b)

γ

α

β

e

Figure 2. Different kinds of annotations to the GVG-based route graph: (a)
Vertex signature containing the distance of the generatingpoints (radius of
the maximal inscribed circle) and angles between the connections to the
generating points, (b) relative position information givenby the angles

between departing edges and the length of the edges.

tains the angles and distance to the generating points (those points
where the maximal inscribed circle centered on the Voronoi meet
point touches the obstacle boundaries). This information can be
used to distinguish vertices.

2. The approximate relative position of vertices is represented by an-
notating the edges with the approximate distances and vertices
with the approximate angles between departing edges (see figure
2b).

3. Every edge is annotated with a description of the Voronoi curve
corresponding to this edge since this curve may deviate from the
direct connection between the two vertices.

4. Additional information about which edges are traversable (not too
close to obstacles) for the robot and which edges lead to still un-
explored areas is also annotated to the graph structure.

In the remainder of the text we will for simplicity still call this
extended representation a GVG.

2.2 Path planning, localization, and incremental
construction

Path planning in this extended GVG can still be done by applying
standard graph search techniques which now might employ the anno-
tations, for instance to plan shortest paths. For execution of a planned
path and for incrementally constructing this representation during ex-
ploration a robust localization within the graph structure is required.

Therefore, we developed a localization scheme that compares alo-
cal GVG computed from a single360◦ scan taken from the robot’s
current position with the (partially constructed)globalGVG to iden-
tify correspondences taking into account the vertex signature, the
relative position information, and odometry information about the
last movement. The local GVG describes how the GVG looks in the
neighborhood of the robot’s current position as far as this can be de-
rived from the sensor data available from this point. The comparison
scheme searches for a similar subgraph instead of an exact isomor-
phism. This way robust localization can be achieved despite the in-
stability caused by the imperfect sensors.

Incremental construction of the global representation is achieved
by sequentially merging local GVGs computed for different positions
starting with the local GVG computed for the start position of the
robot. Thus, it makes maximal use of the information available from
each observation avoiding unnecessary exploration steps. It uses the
results of the comparison scheme employed for localization to iden-
tify parts of the local GVG that can be used to complement the global
GVG. The idea of merging local GVGs to construct the global rep-
resentation is illustrated in figure 3 that shows how a global GVG

Cognitive Robotics Workshop 2004 65

Figure 3. A sequence of growing global GVGs (starting with the local
GVG of the robot’s start position) constructed during the exploration of an

unknown environment.

grows over time (see [15] for details on the localization and con-
struction algorithms).

The GVG-based route graph is a rather compact representation of
the essential spatial information required for navigation that can be
augmented with additional (e. g. semantic) information if needed.
The topological localization approach avoids special efforts required
to keep the annotated metric information globally consistent since
successful navigation is possible without globally consistent metric
information. In addition, the Voronoi-based approach allows system-
atic exploration of an unknown environment by keeping track of
which edges still need to be explored until the GVG is complete.
Path planning within the GVG is more efficient than in most met-
ric approaches because the representation only represents qualitative
different routes.

3 Hierarchization of the Voronoi-based route
graph

Voronoi-based route graphs as described in the previous section con-
tain the information required for successful navigation. However,
they also contain details not required for many tasks since not all
meet points of the underlying GVD really correspond to decision
points relevant for navigation. Some are caused by minor features of
the environment like small dents or niches and some are merely the
result of noise in the sensor data. For high-level reasoning, planning,
and for communication issues a more abstract level of representation
would be preferable if it is still linked to the detailed level required
for actually acting within the environment. In addition, the relevant
vertices are also those that are very stable and thus less likely to be
missing in one of the local GVGs. Hence, localization can also ben-
efit from a more abstract level of representation only containing the
relevant vertices. Therefore, our goal is to construct a hierarchically
structured multi-layer route graph representation that bridges from
detailed navigational information to abstract high-level information
about the environment and allows to efficiently reason in a hierar-
chical manner. Every layer of this representation consists of a route

graph that models the environment at a certain level of granularity
and its features are linked to those of the next higher and next lower
layer in a way that allows to switch to a finer or coarser level. To
derive more abstract layers from the original GVG a measure is re-
quired that assesses the relevance of individual Voronoi vertices for
navigation and we will develop such a measure in the next section.

3.1 Assessing the relevance of Voronoi vertices

The GVG as described in section 2 is mainly an undirected Graph
RG = (V, E) (with additional annotations) containing only vertices
of degree one (the corner vertices) or of degree three or higher (the
inner vertices). As figure 2a illustrates, the lines connecting a Voronoi
vertexv with its generating points on the obstacle boundaries sepa-
rate different parts of free space that are accessible via one ofv’s de-
parting edges. We will call each such area, that can be reached from
v without crossing one of the connecting lines again, a regionRv

i of
v. For each Voronoi vertex of degreen there existn such regions.
If v is part of a cycle in the route graph, the regions corresponding
to the two edges ofv that also belong to this cycle will be identical
since the edges provide access to the same part of the environment,
just from different directions.

How relevant a Voronoi vertexv is for navigation depends directly
on its regions. To be regarded as a decision point, at least three of
v’s regions need to be significant enough to be judged as different
continuations after arriving at this point. Otherwise, no real decision
is to be made at this point. In addition, having two very significant
regions can not make up for the third region being insignificant, e. g.
a small niche in a corridor will not create a decision point in front of
it irrespective of how long the corridor continues in both direction.
Furthermore, having many insignificant regions will not make up for
the third most significant one being still insignificant, e. g. two small
niches on opposing sides of the corridor will not cause a decision
point either.

Therefore, assuming we have a second measure called RSM (for
region significance measure) that assesses the significance of each
region ofv, it makes sense to take the RSM value ofv’s third most
significant region as the relevance value ofv. Using maxRSMv

3 to
denote the k-highest RSM value of a region ofv, we thus define
our Voronoi vertex relevance measure (VVRM) for allv ∈ V with
degree(v) ≥ 3 as:

VVRM(v) = maxRSMv
3 .

We now need to define the RSM measure in a way that captures
the notion of a significant region in the context of navigation in an in-
door environment. The two major factors that we wanted to account
for in our measure are the following: First, the distance fromv to
the remotest goals belonging to the region should influence the sig-
nificance of the region, since a region is clearly more significant if
one can reach goals within it that are far from the current position.
Second, we wanted to include the aspect of visibility to ensure that
a region is assessed as less significant if most of it can be perceived
from a larger area aroundv.

An additional constraint on our measure is that the significance
values should be computable from the information contained in the
GVG alone without referring to a geometric description of the bound-
aries of obstacles because this is the only information available in our
mapping approach. Furthermore, cyclic regions should be treated as
maximally significant so that cycles in the graph will never be split
up when deriving a coarser route graph from the GVG (see section
4.1).

Cognitive Robotics Workshop 2004 66

A

B

R1

R2

R3

Figure 4. Computation of the RSM value for the regionR1 to the left of
vertexA: The length of the path toB lying within the maximal inscribed

circle (dashed line) is subtracted from the length of the complete path toB
yielding the length of the solid thick part of the path.

A

B C

R1

R3R2

Figure 5. RegionR1 of vertexA is caused by a small niche in a wall.
SinceA lies in a large area the distance along the GVD fromA to the corner
verticesB andC is rather big. However, most part of the connection to these
vertices lies within the maximal inscribed circle and will thus be subtracted
during the RSM computation resulting in a small RSM value for regionR1.

Hence, we define the RSM measure as follows:

1. RSM(Rv
i) = ∞, if v and the departing edge corresponding toRv

i

belong to a cycle in the route graph.
2. Otherwise, the shortest paths fromv to the corner vertices belong-

ing toRv
i in terms of the distance along the GVD are considered.

As illustrated in figure 4, it is determined for which corner vertex
the length of this path minus the length of the part of this path ly-
ing within the maximal inscribed circle ofv is maximal, and this
is returned as the value RSM(Rv

i).

In the non-cyclic case the distance of the furthest corner vertex
contained in the region is used to measure how far the robot could
travel into this region. The subtraction of the length of the part that
lies in the maximal inscribed circle ofv introduces the notion of vis-
ibility as mentioned above. For instance in figure 5 the small niche
that causes Voronoi vertexA in a wide hallway will be assessed as
insignificant since the most part of the path toB or C is contained
within the maximal inscribed circle centered onA meaning most
parts of the corresponding region are visible from every point within
this circle.

Given the complete global GVG the individual RSM values for a
vertexv can be easily computed by applying a slightly modified ver-
sion of Dijkstra’s single source shortest path algorithm [5]. Picking
the 3rd highest value then yields VVRM(v). The modifications have
to ensure that

• only the edgeeRv
i

departing fromv into the regionRv
i is consid-

ered connected tov when relaxing the edges of the start vertex in
the first step, and

• cycles leading back tov via a different edge thaneRv
i

will be
detected and a value of∞ will be returned.

With the worst-case time complexity of the dominating shortest
path algorithm beingO(|E| + |V | log |V |), we end up with a total
time complexity for computing VVRM(v) with degree(v) = n of
O(n(|E| + |V | log |V |)).

The computation of the relevance values as described above as-
sumes that a complete GVG is available. However, when we want
to compute the relevance values for the vertices in a local GVG or
for a still only partially constructed global GVG, we have to adapt
this approach: We then treat all vertices that mark the boundary of
the explored area like corner vertices and compute the relevance val-
ues as before. Doing this, all RSM values for regions which contain
edges marked as unexplored and which do not correspond to a cycle
in the graph will just be lower bounds on the true significance value
of the region and will be marked as such. VVRM(v) of any vertexv
only yields the exact relevance value if all RSM values for this vertex
from the 3rd highest on are exact values and not just lower bounds.
Otherwise, the fact that one of these RSM values could actually be
higher could result in a higher 3rd highest RSM value for this vertex.
Thus, VVRM(v) in this case is also just a lower bound on the real
relevance value ofv. Lower bound estimates of relevance values are
updated when more information allows to make an estimate closer
to the true relevance value and such vertices are treated like vertices
with an relevance value of∞ when deriving a coarser route graph
layer, as long as the exact value cannot be determined.

3.2 Coarser level route graphs and abstraction
relation

Unfortunately we can only give a short description on how the sim-
plification algorithm that derives a coarser route graph from the orig-
inal route graph works here. The algorithm removes every vertexv
with an relevance value that is not higher than a given thresholdθ
together with the subgraphs that correspond to the regions ofv that
are classified as insignificant by the RSM value. In certain cases it
becomes necessary to replacev by a new vertex of degree one to en-
sure that every relevant vertex has a departing edge for every signifi-
cant region accessible from it. Replaced substructures of the original
GVG will be represented either by a single vertex or a single edge in
the coarser route graph.

Figure 6 shows the result of applying this algorithm to the GVG
previously shown in figure 1.θ was set to 1000mm in this example, a
value that already produces quite abstract representations since most
of the vertices caused by small dents and niches are removed. Figure
7 illustrates how parts of the original GVG (shown at the bottom) are
represented by a vertex or an edge in the coarser route graph (top).
When we are building up the multi-layer representation correspond-
ing features of adjacent layers are linked as indicated by the arrows.
Thus, we have two kinds of edges in our hierarchical representation:
route graph edges horizontally connecting vertices within the same
route graph layer and abstraction edges vertically connecting vertices
and edges in one layer with subsets in the layer below.

4 Path planning, reasoning, and communication
with the hierarchical GVG-based route graph

In this section we point out on how we think path planning, spatial
reasoning, and communication about spatial information can bene-
fit from the hierarchical route graph representation described in the
previous section.

Cognitive Robotics Workshop 2004 67

(a) (b)

Figure 6. Results of the simplification algorithm: The original GVG (a) is
transformed into a coarser route graph (b).

Figure 7. A two-layer hierarchical route graph representation with the
original GVG at the bottom and a coarser route graph layer on top of it. Two
examples of how parts of the detailed level are represented bya vertex or an

edge of the coarser level are shown by the arrows.

4.1 Path planning

A hierarchical route graph representation like the two-layer exam-
ple from the previous section can be employed for hierarchical path
planning. The edges in the coarse layer in a way correspond to macro
operations like driving from one door to the next along a corridor
or passing an object on one side. Thus, planning on the high-level
(e.g. by using graph search techniques) results in a plan that is not
directly executable with the low-level navigation procedures of the
robot. However, the abstraction relation allows to recursively break
down more abstract operations into finer operations until a plan at the
detailed level of the original GVG is reached.

The definition of the relevance measures and the simplification
algorithm used assure that cycles in the original GVG are either re-
tained at a coarser level or that a complete subgraph containing the
cycle is replaced by a vertex or an edge. But a cycle will never split
up when changing to a higher level of abstraction. This guarantees
that a shortest path planned on a higher level will always result in
the shortest path at the bottom level as well, when it is recursively
transformed into an executable plan.

4.2 Spatial Reasoning

In [11] we described an approach to reason about the relative posi-
tions of the decision points within the low-level GVG-based route
graph by propagating intervals for the distance and angles (called
distance-orientation intervals (DOIs)) annotated to the graph struc-
ture along the sequence of edges connecting two vertices. This ap-
proach is similar to the composition of spatial relations in qualita-

tive spatial reasoning [4]. The DOIs represent the uncertainty in the
metric relative position information assuming certain maximal error
boundaries. Reasoning about relative positions of the decision points
in the route graph can for instance be applied to determine potential
candidates for loops in the environment that need to be closed while
constructing the representation during an exploration. Another appli-
cation is judging if an unexplored junction in a partially constructed
route graph might be a good shortcut to a place visited earlier.

This reasoning about routes can also benefit from the hierarchical
organization of the route graph representation. Intermediate results
from the low-level propagation can be stored as relative position in-
formation at the higher levels. This would allow to employ a hierar-
chical propagation scheme that uses the distance orientation intervals
at the highest level if they are available or switches to a lower level
whenever this is not the case, adding the result to the higher level
after it has been computed. On the long run the higher level will be
completely annotated speeding up the relative position computation
significantly.

4.3 Communication

The most abstract route graph layer in our representation provides
a compact description of the environment that is rather independent
of the particular properties of the range sensor of the robot that con-
structed the representation. Therefore, this information is much bet-
ter suited to be communicated to another spatial agent than the de-
tailed description given by the original GVG. Scenarios that come to
mind here are multi-robot exploration scenarios in which the individ-
ual robots exchange knowledge about parts of the environment they
have explored so far. However, there are of course limits to the degree
of difference in the sensors that can be dealt with without further de-
veloping reasoning mechanism to handle e. g. problems arising from
differences in the individual GVGs caused by obstacles that can be
seen by one robot but not the other due to different heights in which
the range sensors are mounted.

Another application scenario in which the abstract route graph
level can be employed beneficially is human-robot communication
about routes. Augmenting the route graph with semantic information
for instance stemming from door recognition modules will allow the
robot to generate route instructions to guide a person to a certain
goal. In addition, such a representation will make it easier to match a
route description given by a human instructor to the robot’s model of
the environment and translate it into a detailed sequence of actions,
since the abstract route graph with all irrelevant vertices and edges
removed will be much closer to the route graph the instructor had in
mind when generating the description.

5 Experimental results

In first experiments we tested the relevance measures and the sim-
plification algorithm on real data collected with our Pioneer 2 robot
while it was driving along a corridor in our office building. Figure
8a shows a section of the GVG constructed during this exploration
run. 8b shows the route graph computed from this GVG (again for a
threshold value of 1000mm). It demonstrates how the algorithm suc-
cessfully removes vertices and edges caused by small dents or noise
resulting in a route graph that only contains edges for traveling along
the corridor and for entering the rooms on both sides.

In a second experiment we used a simulation to perform two ex-
ploration runs with different noise ratios in the range sensor data.
Applying the simplification algorithm to both GVGs constructed

Cognitive Robotics Workshop 2004 68

(a) (b)

Figure 8. Example of a coarse route graph (b) computed from a GVG
constructed with a real robot that drove down a corridor withflanking offices.

(a) (b)

(c)

Figure 9. Simulation of different sensor properties: (a) shows the GVGof
a robot with high and (b) of one with low sensor noise. Identical coarse route

graphs are computed from both GVGs (c).

during those runs (shown in figure 9a and 9b) resulted in identical
route graphs for both cases shown in 9c, only varying slightly in the
exact positions of the vertices. This demonstrates that our coarser
route graph representation is better suited to allow multiple robots
equipped with different range sensors to exchange spatial knowledge
than the original GVGs.

6 Conclusions

We have proposed a hierarchically organized Voronoi-based route
graph representation for robot navigation and exploration tasks in
office-like indoor scenarios. The representation bridges the gap be-
tween low-level spatial information for navigation and abstract route-
based representations well-suited for high-level planning and spatial
reasoning. We showed how such a representation can be constructed
using a Voronoi vertex relevance measure and how it can be em-
ployed for hierarchical planning, spatial reasoning, and robot-robot
or human-robot communication. We hope to further explore these ap-
plications in the future. In addition, we plan to address other issues
involved in generating suitable abstract route graphs like the fact that

multiple Voronoi vertices located close to each other may be treated
more adequately as a single decision point, something that is impor-
tant for human-robot communication.

ACKNOWLEDGEMENTS

The author wishes to thank Christian Freksa, Reinhard Moratz, Frank
Dylla, and Diedrich Wolter as well as two anonymous reviewers for
valuable comments and suggestions. This research was supported by
the German Research Foundation (DFG) grant SFB/TR 8 ’Spatial
Cognition’.

REFERENCES
[1] F. Aurenhammer, ‘Voronoi diagrams - a survey of a fundamentalge-

ometric data structure’,ACM Computing Surveys, 23(3), 345–405,
(1991).

[2] H. Blum, ‘A transformation for extracting new descriptorsof shape’, in
Models for the Perception of Speech and Visual Form, ed., W. Wathen-
Dunn, pp. 362–380, Cambridge, MA, (1967). M.I.T. Press.

[3] H. Choset and J. Burdick, ‘Sensor based exploration: Thehierarchical
generalized Voronoi graph’,The International Journal of Robotics Re-
search, 19(2), 96–125, (2000).

[4] A. G. Cohn, ‘Qualitative spatial representation and reasoning tech-
niques’, in KI97: Advances in Artificial Intelligence. Proceedings of
the Twenty-first Annual German Conference on Artificial Intelligence,
eds., G. Brewka, C. Habel, and B. Nebel, pp. 1 – 30. Springer; Berlin,
(1997).

[5] E. W. Dijkstra, ‘A note on two problems in connection with graphs’,
Numerische Mathematik, 1, 269–271, (1959).

[6] D. G. Kirkpatrick, ‘Efficient computation of continuous skeletons’, in
20th Annual Symposium on Foundations of Computer Science, pp. 18–
27. IEEE, (1979).

[7] B. J. Kuipers and Y.-T. Byun, ‘A robust, qualitative method for robot
spatial learning’, inAAAI 88. Seventh National Conference on Artificial
Intelligence, pp. 774–779, (1988).

[8] J.-C. Latombe,Robot Motion Planning, Kluwer Academic Publishers,
1991.

[9] D. T. Lee and Robert L. Drysdale III, ‘Generalization of Voronoi di-
agrams in the plane’,SIAM Journal on Computing, 10(1), 269–271,
(1981).

[10] F. Lu and E. Milios, ‘Robot pose estimation in unknown environments
by matching 2d scans’, inIEEE Computer Vision and Pattern Recogni-
tion Conference (CVPR), (1994).

[11] R. Moratz and J. O. Wallgrün, ‘Spatial reasoning about relative orien-
tation and distance for robot exploration’, inSpatial Information The-
ory: Foundations of Geographic Information Science. Conference on
Spatial Information Theory (COSIT), eds., W. Kuhn, M.F. Worboys,
and S. Timpf, Lecture Notes in Computer Science, pp. 61–74. Springer
Heidelberg, (2003).

[12] H. Moravec and A. Elfes, ‘High resolution maps from anglesonar’, in
Proceedings of the IEEE Conference on Robotics and Automation, pp.
116–121, (1985).

[13] C. Ó’Dúnlaing and C. K. Yap, ‘A retraction method for planning the
motion of a disc’,Journal of Algorithms, 6, 104–111, (1982).

[14] S. Thrun, D. Fox, and W. Burgard, ‘A probabilistic approach to concur-
rent mapping and localization for mobile robots’,Machine Learning,
31, 29–53, (1998). also appeared in Autonomous Robots 5, 253–271
(joint issue).

[15] J. O. Wallgr̈un, ‘Exploration und Pfadplanung für mobile Roboter
basierend auf Generalisierten Voronoi-Graphen’, Diploma thesis,
Fachbereich Informatik, Universität Hamburg, (2002).

[16] S. Werner, B. Krieg-Br̈uckner, and T. Herrmann, ‘Modelling naviga-
tional knowledge by route graphs’, inSpatial Cognition II, volume
1849 ofLNCS,LNAI, 295–316, Springer, (2000).

[17] D. Van Zwynsvoorde, T. Simeon, and R. Alami, ‘Building topological
models for navigation in large scale environments’, in2001 IEEE In-
ternational Conference on Robotics and Automation (ICRA’2001), pp.
4256–4261, (2001).

Cognitive Robotics Workshop 2004 69

1

Cognitive Robotics Workshop 2004 70

Schematized Aspect Maps for Robot Guidance
Diedrich Wolter and Kai-Florian Richter 1

Abstract. We present an approach to mobile robot guidance. The
proposed architecture grants an abstract interface to robot naviga-
tion allowing to bridge from perception to high level control. The
approach is based upon a comprehensive map representing metric,
configurational, and topological knowledge. Robot instruction and
localization is dealt with by communicating and reasoning about
cyclic ordering information of shape-features.

1 Motivation

Service robots are a growing field of interest and are higly relevant,
not only for the research community but also for companies that try
to take a share in an emerging market. Within near future, office com-
plexes populated with various heterogenous service robots are a very
probable scenario resulting in a range of different problems, for ex-
ample coordination among the robots and interaction with human
users.

A key point to instructing robots is to communicate spatial in-
formation, for example when commanding a robot to visit a certain
place. To provide sufficient control over the various robots, a com-
patible method of instruction is required for all of them. As a con-
sequence, the spatial representations of the individual robots would
need to be compatible with each other. In the presence of different
robot systems from various vendors, equipped with different sensors,
this is a non-trivial task. Moreover, the chosen method of instruction
needs to mediate between the technical abilities of a robot and its
often data-driven spatial representation and features desired in a user
interaction that are based on more abstract spatial information.

To consolidate these different demands we propose a central robot
guidance system. A qualitative language, i.e. relational information,
is applied for communication with the robots. Allowing for an easy
formalization, qualitative information offers a good means for a spec-
ification of such a system, which also respects individual robots’ ca-
pabilities. In particular, a system based on qualitative information can
serve as an interface to a human user. Furthermore, with robot guid-
ance it is possible to restrict the spatial representation of an individual
robot to the needs of its specific task, like cleaning of the floor. There
is no need to represent the complete working environment within
each single robot. Especially within dynamic environments the man-
agement, i.e. construction and maintenance, of a spatial representa-
tion is a difficult task that has not been solved thoroughly yet [20].
Freeing individual service robots from this burden, our proposed ar-
chitecture is a slender one.

The robot guidance outlined here does not rely upon a precise or
even correct map of the environment. Typically, environments are
subject to steady changes. Therefore, handling of unreliable, or even
conflicting knowledge is of high importance. The proposed guidance

1 Universiẗat Bremen, Germany email:{dwolter,richter}@sfbtr8.uni-
bremen.de

system is well-suited to cope with uncertainty as robust qualitative
ordering information gets used.

2 Related Work

Many robot architectures have been proposed that address the con-
struction of a versatile mobile robot. Hereby, the robot’s spatial rep-
resentation is the key point. Mapping and localization issues have
been covered by various authors (see [20] for an overview). It is gen-
erally agreed upon that a helpful robot map is not a single-layered
representation, but provides different modalities of access, metric in-
formation and topological knowledge play key roles here [11, 18].
To respect uncertainty, successful robot architectures typically rely
upon a stochastic modeling as a method of localization within a set
of possible states [19].

The goal of all approaches mentioned is to gain complete metric
knowledge of the environment the robot is located in. With increasing
size of environments, the problem gets more difficult as compute-
time increases and mix-ups in the localization occur. But not all this
information may need to be acquired for the construction of a service
robot. For example, a robot that is designed to collect garbage in a
local surrounding like a single room needs a (spatial) representation
that allows for a search strategy, but does not need to know where the
room it cleans is located in a larger office complex. Local information
is sufficient in guiding a robot from one usage site to another. Thus,
with global guidance individual internal representations can be kept
at a manageable size. Additionally, it allows to concentrate on a given
task, i.e. to only use knowledge needed for the task at hand.

Multi-robot scenarios have been investigated and approaches to
distributed robot systems have been proposed [5, 4]. However, these
approaches rely upon a shared spatial representation that is commu-
nicated among the individual robots. Therefore, a compatibility on
the lower levels of the internal spatial representation is necessary,
which makes it difficult to combine different robot architectures. To
obtain an open interface, a more abstract communication is advan-
tageous. Similar to the localization based on regions of same con-
figuration as presented within this approach, Schlieder [17] presents
a qualitative approach to ordering of point-like landmarks; all land-
marks are assumed visible. Another qualitative approach based on
extended—but more abstract—uniquely identifiable features is pre-
sented by Barkowsky et al. [2]. In contrast to these approaches we use
complex, extended features and only demand some features’ visibil-
ity. Moreover, our shape-features need not be uniquely identifiable.
Shape processing similar to the features employed in our approach
has been proven feasible in the context of robot mapping [14]. Bi-
ologically inspired approaches similar to ours exist (e.g., [6]), too.
Such view-based approaches typically employ a direct matching of
sensor information perceived at certain view-points. Therefore, these
approaches do not allow to mediate between different sensors.

Cognitive Robotics Workshop 2004 71

Schematic maps are well-suited for communication [7]. As any
service robot needs some kind of internal map, communication by
means of pictorial information seems promising [8]. We apply a map-
like spatial representation in our system to allow for this kind of in-
teraction.

3 Robot Guidance System (RGS)

We propose a single central guidance system that manages several
service robots that can be–to some degree–heterogenous. This robot
guidance system (RGS) is built on the basis of a map of the working
environment. The spatial representation derived from this map can
be used for interaction with the robots (see section 6) and is suitable
for the different tasks of the given robots as it allows for access in
different aspects. With aspects we refer to different kinds of (spa-
tial) information that is representable in a map. Depending on the
task, it is possible to focus on certain aspects while ignoring others
(cf. [3, 10]). The aspects represented include metric, configurational,
and topological information. Accordingly, we term this representa-
tion multi-aspect map; its details are presented in section 5. Central
to the multi-aspect map is the handling of polygonal shape-features
extracted from range information. We cover issues related to them in
the next section.

The configurational knowledge used in our approach is ordering
information, which is a qualitative spatial representation. Qualitative
representations summarize similar quantitative states into one qual-
itative characterization. From a practical viewpoint, a possibly infi-
nite number of states is represented by means of equivalence classes.
Therefore, this kind of representation is well suited to handle uncer-
tainty.

4 Shape-Features

The spatial representation applied in the proposed architecture is
based upon polygonal shape-features that represent boundaries of
passable space. Using polygonal shape-features allows us to achieve
the advantages in feature-based localization while avoiding its short-
comings: A feature-based representation is a compact one. Percep-
tual information gets interpreted and abstracted to form a feature.
Moreover, features offer an object-based access to the information
stored. Object-based access to a system’s spatial representation is a
fundamental prerequisite for interaction and communication.

The drawback of any feature-based approach is the necessity to re-
liably recognize features from perceptual data. The higher the num-
ber of features present in an environment, the more susceptible the
recognition process is to any mix-up. Furthermore, if features are
sparse (or even not present at all) correct localization is most likely
to fail. Therefore, it is necessary to choose features that are distinc-
tive and can be observed from any position within the environment.
Shape information provides an excellent choice, as shape offers a
great variety. Moreover, a direct link to pictorial information as rep-
resented by aspect maps is established (see Section 5).

Within a typical indoor scenario, a robot will be able to perceive
sufficient information for reliable operation. Processing of polygonal
shape features, which we callpolylines, is necessary in perception
and localization.

4.1 Processing Shape-Features

Let us assume that range information (typically acquired by a laser
range finder) is mapped to the Euclidean plane. Reflection points are

grouped to polylines. A simple heuristic may be used to implement
this grouping: Whenever consecutive points are too far apart (a 20cm
threshold has been used in our experiments), an object transition
is assumed. Range finder information can be ordered in a counter-
clockwise manner. We will denote the counter-clockwise ordering of
objectsP beforeQ asP ≺ Q, meaning thatQ directly follows after
P . Proceeding this way, we obtain an ordered list of polylines from a
range finder scan. Figure 1 illustrates this. These polylines still rep-
resent all the information read form the range finder. However, this
data contains some noise and is much more precise than actually re-
quired by the proposed system. Therefore, a generalization is applied
that cancels noise as well as makes the data compact without loosing
valuable shape information.

(a) (b) (c)

Figure 1. The process of extracting polygonal features from a scan consists
of two steps: First, polygonal lines are set up from raw scanner data (a) (1
meter grid, the cross denotes the coordinate system’s origin). The lines are

split, wherever two adjacent vertices are too far apart (20 cm). The resulting
set of polygonal lines (b) is then simplified by means of discrete curve

evolution with a threshold of 2. The resulting set of polygonal lines consists
of less data though still capturing the most significant shape information.

4.2 Discrete Curve Evolution (DCE)

The generalization process used for noise cancelation in our ap-
proach is called discrete curve evolution (DCE). It has been devel-
oped by Latecki & Lak̈amper [13, 14]. This process may be con-
sidered as an schematization (see 5.2). It describes a context sensi-
tive process of simplifying a discrete curve by deletion of vertices
and allows to reduce the influence of noise and to simplify a shape
by removingirrelevant shape features. DCE proceeds in a straight-
forward manner: From a given polyline, the leastrelevantvertex is
removed. This process is repeated until the least relevant vertex is
more relevant than a given threshold. To determine a vertex’ rele-
vance, a measure is defined for a vertexv and its left and right neigh-
boru andw:

K(u, v, w) = |d(u, v) + d(v, w)− d(u, w)|

whered denotes the Euclidean distance. For vertices that do not have
two neighbors no relevance measure is defined. Consequently, end-
points remain fixed. An exemplary result is depicted in figure 1.

DCE may be implemented efficiently. As vertices can be repre-
sented within a double-linked polyline structure and a self-balancing
tree (reflecting the order of relevance measures) simultaneously, the
overall complexity isO(n log n). Since we apply DCE to segmented
polylines, the number of a polyline’s vertices is much smaller than
the number of points read from the sensor.

4.3 Similarity of Polylines

A crucial method for localizing a robot is matching the robot’s sen-
sor readings against a map. As the spatial representation used here

Cognitive Robotics Workshop 2004 72

relies upon shape features, detecting correspondences between poly-
lines perceived and ones stored in the map is the solution at hand.
The matching process relies on a similarity measure for polylines. To
each pair of possibly corresponding polylines a measure of matching
plausibility is assigned.

However, the proposed architecture does not rely exclusively on
the correspondence of features, instead it is used alongside with con-
figurational knowledge that poses constraints upon the matching.
Therefore, discussion of the actual matching is delayed to section 4.4
and the following description focuses on computing the similarity of
two given polylines.

The pair of polylines, whose similarity needs to be computed, is on
the one hand perceived by the mobile robot and on the other hand ex-
tracted from the multi-aspect map. This map is specially designed to
be adaptable to any robot’s capabilities. Nevertheless, there may be
remarkable differences between the two polylines (e.g., due to noisy
perception). Therefore, we need a careful approach to determine sim-
ilarity. We utilize a similarity measure of polylines originating from
Computer Vision [12]. It can easily be adopted to polylines describ-
ing environmental features [21]. We briefly summarize the computa-
tion of similarity of polylines as presented in [12, 21].

The similarity measure is based on a matching of maximal left- or
right-arcuated arcs. Any polyline’s partioning into consecutive non-
empty sequences of arcs is called a grouping, if consecutive groups
overlap in exactly one line segment. This entails that any grouping
covers the whole polyline.

GroupingsG, H are said to correspond (denotedG ∼ H), if there
exist a bijectionfG,H between the two groupings such that on the
level of maximum arcs only mappings of type 1-to-1, 1-to-many, or
many-to-1 exist. Based on a similarity of arcsSarcs that is presented
below, the similarity measure for polylines is defined.

Spoly(g, h) = min
G∼H

Σx∈GSarcs(x, fG,H(x))

Similarity of arcs is defined in tangent space, a multi-valued step
function mapping a curve into the interval[0, 2π) by representing
angular directions of line segments only. Furthermore, arc lengths
are normalized. Denoting the mapping function byT , the similarity
gets defined as follows:

Sarcs(c, d) =

∫ 1

0

(Tc(s)−Td(s) + Θc,d)2ds · (1 + (l(c)− l(d))2)

wherel(c) denotes the arc length ofc. The constantΘc,d is chosen to
minimize the integral (it respects for different orientation of curves)
and is given byΘc,d =

∫ 1

0
Tc(s)− Td(s)ds. In contrast to the orig-

inal work, absolute instead of relative size is considered, since this is
more adequate in our domain. The correspondence yielding the best
similarity is computed using dynamic programming.

4.4 Similarity of Views

On the basis of an individual similarity of polylines we define a simi-
larity of views, cyclic ordered sets of polylines. Whereas similarity of
polylines respects only the spatial context of a single polyline, views
account for a larger context. It is, thus, a much more distinctive mea-
sure. Similarity of views will be the fundamental building block in
localizing the robot within the central map and also gets used in the
construction process of the map itself.

The similarity is based on the individual similarities of corre-
sponding features. Thus, the aim is to find a correspondence relation
between features that optimizes the summed up similarity. However,

we must also consider that (a) the cyclic ordering≺ must not be vi-
olated and (b) not all features present in one view need to have a
counterpart in the other. Whereas the latter may be viewed as a soft
constraint, configurational knowledge is reliable and thus poses hard
constraints upon the recognition process. By introducing a penaltyP
for leaving a feature unmatched, we can formulate the computation
of views’ similarity by means of dynamic programming similar to
aproximate string-matching. Therefore we must linearize the cyclic
ordering. This can be done by selecting any feature of one view as
the first one, and then considering every linearization of the second
view. This yields an overall complexity ofO(n3) wheren denotes
the number of features.

To be more precise, let us assume thatF1 ≺ F2 ≺ . . . ≺ Fn and
F̂1 ≺ F̂2 ≺ . . . ≺ F̂m are two linearized views. A matrixM of size
n × m is set up and is initialized by settingM1,1 to Spoly(F1, F̂1)
leaving the remains empty. A cellMi,j may be computed when all
cellsMi′,j′ with i′ < i, j′ < j have been computed. The cell’s value
is then given by:

min
{
S(Fi, F̂j) + Mi−1,j−1, P (F̂j) + Mi,j−1, P (Fi) + Mi−1,j

}
The first term denotes a 1-to-1 matching of featuresFi and F̂j ex-
tending the matching of previous features stored inMi−1,j−1. The
second and third term addresses the possibility that a feature is not
matched at all. The penalty measureP is chosen to scale linearly
with the size of the feature, as it is much more likely to overlook a
small object than a larger one.

5 Multi-Aspect Map

In this section we give further details on the spatial representation
we use. As stated earlier, this representation, a map, is multi-aspect.
It is suitable for navigational tasks, can be used on different levels
of abstraction, and allows for different aspects in access. This multi-
aspect map is the fundamental representation of our RGS; it is used
for localization, path-planning, and interaction with the robots.

We termed the set of spatial representations that get used in our
RGSmulti-aspect mapsince the different kinds of information cor-
respond to differentaspectsof the environment. The environmental
representation can be accessed depending on a given task, for ex-
ample topological information for path-planning or metric informa-
tion for shape matching, and depending on the given context, i.e. the
given robot. Our representation is, thus, customized for a specific
situation while still originating from a single source. Use of such a
multi-aspect map is comparable to the approach taken in the project
’Spatial Structures in Aspect Maps’ [3, 10]; here, the idea is to extract
from a given map-like representation all (spatial) information that is
needed for a given task and, by focusing on the aspects relevant for
the task, providing a cognitively adequate representation.

The basis for the multi-aspect map is a representation of the envi-
ronment; its properties are described in section 5.1. There are three
different kinds of information stored in the multi-aspect map: Met-
ric information denotes the shape of the environmental features. The
spatial configuration of the features, which corresponds to ordering
information, is also explicitely stored in the map. Both kinds of infor-
mation are needed for robot localization. Topological information is
used for path-planning. It is stored as a graph. All kinds of informa-
tion are present and accessible on different abstraction levels; these
levels are adapted to the given robots and their respective sensors.
The way we construct the multi-aspect map is detailed in section 5.2.

Cognitive Robotics Workshop 2004 73

5.1 Properties of the Map

A map of the environment is the basic representation of the RGS.
The map’s structure is polygonal, i.e. its basic elements are polylines.
Such a map can be obtained in different ways. One way is to use an
existing map, i.e. an electronic version of a building’s blueprint. This
requires that all elements of the dataset can be addressed directly, i.e.
it is possible to access objects individually, and that such an existing
dataset is rich enough to contain all the information needed for the
different tasks.

The map can also be obtained by using a robot that explores the en-
vironment and builds a map of it. Many approaches to robot mapping
have been proposed [20, 9]. Even though they typically rely either on
simple line segments or uninterpreted data, they can be extended to
deal with polygonal lines, or polylines may be extracted from their
output. An example of such map extracted from laser range finder
data is depicted in figure 2.

5.2 Constructing a Multi-Aspect Map

Construction of the multi-aspect map is a three-step process. First,
we construct the maps designated for the different robots, i.e.
schematizing the map of the environment to an adequate abstraction
level. Next, we determine for each schematized map a graph reflect-
ing the envionment’s topological structure. Based on this graph we
then calculate regions of similar order and, thus, partition the plane.

5.2.1 Schematizing maps

Roughly speaking, map schematization describes a simplification—
or even an elimination—of map objects, respecting essential spa-
tial relations. Schematizing maps, hence, involves simplification of
shape information. Complex polylines are simplified to obtain sim-
pler ones that still show off the most important shape information
while hiding the details. To simplify shapes, various techniques have
been proposed. The DCE process as presented in section 4.2 is one
promising approach to shape simplification. It has been successfully
applied to shape simplification in map schematization [1]. Besides
DCE, other approaches to shape simplification have been proposed,
too. For example, the Curvature Scale Space proposed by Mokhatar-
ian et al. is based on a simplification process’ history [15, 16]; a
Gaussian convolution filter is applied to accomplish the simplifica-
tion. Simplification by means of smoothening changes shapes glob-
ally, whereas simplification by vertex removal like in DCE is com-
posed out of local changes. Since any simplification must be checked
for admissibility, e.g., to prevent violation of topological constraints
(see below), DCE’s discrete structure is advantageous here.

Due to the more complex structure of map schematization com-
pared to simplification of a single polyline, the DCE process needs
to be adapted, though. On the one hand, not every point of the struc-
ture can be removed, for example points that belong to multiple ob-
jects. They must be preserved to retain the fact that multiple objects
meet at this point. On the other hand, as the spatial information has
to remain correct for the different tasks to remain accomplishable,
we take into account relational information of the map’s entities. We
need to take care that by removing vertices there does not occur a
violation of any relational information. After an evolution step may,
for example, (parts of) an entity be resided left to another entity while
it was located right to it prior to this step, or two entities may now
overlap. For further details of the necessary extensions to DCE for
map schematization see [1].

(a) (b) (c)

Figure 2. The base map (a), and two different schematization levels:
medium (b) and maximum (c)

Additionally, as small objects do not provide relevant features they
get removed from the map. Just like the degree of schematization, the
size threshold depends on the sensors used by the different robots.
Figure 2 depicts some schematization levels as an example.

Theoretically, the maximum number of different abstraction levels
corresponds to the number of inner points of all polygonal lines as
the process of discrete curve evolution is stepwise and removes one
vertex in each step. Practically, the actual number of different ab-
straction levels that get stored in the RGS is much smaller. Schema-
tized maps are only needed on certain levels of abstraction; these
levels are determined by the robots’ perceptual abilities. These abil-
ities are taken into account when setting the levels’ DCE thresholds.
Each marks a level of adequate abstraction. All schematization levels
in-between are deemed qualitatively equal to either of them and are
not considered. Thus, although quantitatively the number of possible
maps is quite high, the number of maps that really get constructed is
rather low due to the qualitative abstraction involved.

5.2.2 Regions of similar order

Next, we determine a graph embedded in the map that reflects the en-
vironment’s topological structure. We consider structure from a more
abstract point of view, as we are only interested in noticeable differ-
ences, for example when moving through a door into another room.
The graph is calculated based on the schematized map and gets used
for path-planning (see 5.3). For example, Voronoi graphs are suitable
for this purpose [18].

This graph is taken as the basis for determiningregions of similar
order: The graph is said to intersect with the boundary of a region
whenever traversing its edges yields a high dissimilarity of views
at nearby positions (see 4.4). Practically, computing the similarity
for nearby views along the graph’s edges is performed by a subsam-
pling of similarity values at a given number of locations on the edges.
Each time the value exceeds a given threshold a new region is gener-
ated. For each region a single, prototypical view is stored in the map,
which gets used in the localization process.

5.3 Using the Multi-Aspect Map for Robot
Navigation

Two tasks in robot navigation are carried out using the multi-aspect
map, namely qualitative localization and topological path-planning.
Prior to using the map for communicating with a robot, the adequate
level of schematization needs to be chosen. We select the appropriate
level from the multi-aspect map regarding the level of generalization

Cognitive Robotics Workshop 2004 74

used by the robot for feature extraction. This ensures that features
stored in the map are perceivable to the robot, i.e. they are not too
small to be detected by the robot when not close-by.

The map’s topological aspect is used to plan a robot’s path from
a given location to a goal region. We calculate a qualitative path by
means of graph-search determining the regions the robot passes by.
A prerequisite for successful navigation is that the robot can be lo-
calized; we describe this process in detail in the next section.

6 Instructing a Robot

To command a robot to a given area of the environment, the robot
needs first of all to be localized within the multi-aspect map in order
to plan a path. Localization combines the similarity of shape features
with configurational knowledge. It is covered in section 6.1. Know-
ing the robot’s position within the map, a path that leads the robot to
its goal region can be computed. As will be presented in section 6.2
a single motion primitive is sufficient to guide the robot along this
path.

6.1 Localization

For the RGS it is sufficient to localize a robot qualitatively. The term
qualitative localization as opposed to metric localization is chosen to
stress that only information required for the guidance task is used.
The robot’s position is represented by qualitative regions of similar
order. Hence, localization means to recognize the region a robot cur-
rently visits. Similarity of views (see section 4.4) is the clue here.
Therefore, the approach to localization taken here relates to view-
based approaches (cf. [6]); however, the presented approach is more
abstract, since sensor information is always interpreted first. Such a
more abstract approach is advantageous here, as different robots uti-
lizing different sensors (e.g., laser range finder mounted at differing
heights) need to be localized.

To localize the robot, individual plausibilities are computed for the
robot being in a particular region by determining the similarity be-
tween the prototypical view associated with the individual region and
the view perceived by the robot. These plausibility values can easily
be coupled with a stochastical approach to localization like Markov
localization (cf. [19]). Plausibility values are therefore scaled such
that the overall sum yields 1. The robot is said to visit the region
which has currently the highest belief state.

27.31

20.02
11.39

0.00
0.35

14.86

11.21
14.86

(a) (b) (c) (d)

Figure 3. (a): An excerpt from the utilized path network shown on the
medium level schematization. Blocks denote the borderline of regions of
similar order. (b): The prototypical view associated with the network’s

lowest segment of (a). The shape-features extracted from a scan taken at the
lower end of the hallway (c) are matched against the prototypical views

stored for each region. The membership probability in % is given in (d). As
can be observed, matching a single view already yields the right localization.

6.2 Instruction

Once the robot is localized, instruction can be realized with just
one motion primitive that needs to be implemented into each mo-
bile robot: moving the robot inbetween two features it has perceived.
It moves along until the order of features changes, i.e. a feature be-
comes invisible or a new feature emerges and, thus, probably a new
region is entered. This motion primitive is sufficient to guide the
robot from cell to cell, i.e. along the different regions of similar or-
der; its path is determined using the topological graph (see 5.2.2). For
the purpose of localization the belief state is updated accordingly.

7 Conclusion

In this paper, we proposed a central system that can be used to guide
various service robots acting in an environment. It allows to inte-
grate different kinds of service robots within a larger context, while
offering a single interface for the human user to all robots involved.
This single interface is one of the system’s main advantages, as a
user does not need to remember and to switch to different interaction
modes depending on the robot currently addressed. The specifics of
the robot remain abstract to the user. Interaction is cognitively ade-
quate since the user can concentrate on the task the robot is about to
perform.

We use a single spatial representation—amulti-aspect map—in
the system; this representation allows to access just the information
needed for a given navigational task and robot, namely metric, order-
ing, or topological information on different abstraction levels. This
is another main advantage of the proposed architecture: reasoning
about the environment, i.e. localization and navigation, takes place
on a qualitative level. We apply a partitioning of the environment
in regions of similar order, which is a novel approach. It is robust
but detailed. We employ these regions and a matching ofshape-
featuresin robot localization. We can, thus, perform this localization
on a qualitative level, which is very robust, keeps the communication
compact, and allows for an efficient path execution algorithm.

The prime focus of this paper has been to present the general
structure of our proposed architecture and to point out its advan-
tages. While individual aspects have already been implemented, fu-
ture work comprises the integration of these parts and an evalutation
of the whole system.

Acknowledgements

This work is part of the projects R3-[Q-Shape] and I2-[MapSpace] of
the Transregional Collaborative Research Center (SFB/TR 8) Spatial
Cognition funded by the Deutsche Forschungsgemeinschaft (DFG).
We would like to thank Prof. Latecki for discussion and comments.

REFERENCES
[1] Barkowsky, T., Latecki, L.J.,& Richter, K.-F. (2000). Schematizing

maps: Simplification of geographic shape by dicrete curve evolution.
In: C. Freksa, W. Brauer, C. Habel, & K.F. Wender (eds.), Spatial Cog-
nition II (pp. 41–53). Berlin: Springer.

[2] Barkowsky, T., Berendt, B., Egner, S., Freksa, C., Krink, T., Röhrig,
T., & Wulf, A. (1994). The REALATOR: How to construct reality. In:
ECAI’94 Workshop W12 Spatial and Temporal Reasoning.

[3] Berendt, B., Barkowsky, T., Freksa, C., & Kelter, S. (1998). Spatial rep-
resentation with aspect maps. In: C. Freksa, C. Habel, & K.F. Wender,
Spatial Cognition (pp. 157–175). Berlin: Springer.

[4] Burgard, W., Moors, M., Fox. D., Simmons, R., & Thrun, S. (2000).
Collaborative multi-robot exploration. In: Proc. of the IEEE Interna-
tional Conference on Robotics & Automation (ICRA).

Cognitive Robotics Workshop 2004 75

[5] Cohen, W. (1996). Adaptive mapping and navigation by teams of sim-
ple robots. Journal of Robotics & Autonomous Systems 18:411-434.

[6] Franz, M.O., B. Scḧolkopf, H.A. Mallot, &H.H. Bülthoff (1998).
Learning view graphs for robot navigation.Autonomous Robots, 5, pp.
111–125

[7] Freksa, C. (1999). Spatial aspects of task-specific wayfinding maps – A
representation-theoretic perspective. In: J.S. Gero & B. Tversky (eds.),
Visual and Spatial Reasoning in Design (pp. 15–32). Key Centre of
Design Computing and Cognition, University of Sidney.

[8] Freksa, C., Moratz, R., & Barkowsky, T. (2000). Schematic maps for
robot navigation. In: C. Freksa, W. Brauer, C. Habel, & K.F. Wender
(eds.), Spatial Cognition II (pp. 100–114). Berlin: Springer.

[9] Gutmann, J.-S. & Konolige, K. (1999). Incremental Mapping of Large
Cyclic Environments. In: International Symposium on Computational
Intelligence in Robotics and Automation (CIRA’99), Monterey.

[10] Klippel, A, Richter, K.-F., Barkowsky, T. & Freksa, C. The Cogni-
tive Reality of Schematic Maps. In: A. Zipf, T., & L. Meng (eds.),
Map-based Mobile Services – Theories, Methods and Implementations.
Berlin: Springer. to appear.

[11] Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelli-
gence 119:191–233.

[12] Latecki, L.J. & Lak̈amper, R. (2000): Shape Similarity Measure Based
on Correspondence of Visual Parts. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI) 22(10):1185–1190.

[13] Latecki, L.J. & Lak̈amper, R. (1999). Convexity rule for shape decom-
position based on discrete contour evolution. Computer Vision and Im-
age Understanding 73:441–454.

[14] Latecki, L.J., Lak̈amper, R., & Wolter, D. (2003). Shape Similarity and
Visual Parts.Proceedings of Discrete Geometry for Computer Imagery,
Naples, Italy, November 2003.

[15] Mokhtarian, F. & Bober, M. (2003).Curvature Scale Space Representa-
tion: Theory, Applications and MPEG-7 Standardization.Kluwer Aca-
demic Press.

[16] Mokhtarian, F. & Mackworth, A. K. (1992). A theory of mulitscale,
curvature-based shape representation for planar curves.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(8):789–805.

[17] Schlieder, C. (1995). Reasoning about ordering, In: A. Frank and W.
Kuhn (eds.), Proceedings of the 3rd International Conference on Spatial
Information Theory.

[18] Thrun, S. (1998). Learning Metric-Topological Maps for Indoor Mobile
Robot Navigation. Artificial Intelligence, 99:21–71.

[19] Thrun, S. (2000). Probabilistic Algorithms in Robotics. Artifical Intel-
ligence, 21(4): 93–109.

[20] Thrun, S. (2002). Robot Mapping: A Survey, In: G. Lakemeyer & B.
Nebel (eds.), Exploring Artificial Intelligence in the New Millenium.
Morgan Kaufmann.

[21] Wolter, D. and Latecki, L. J. (2004). Shape Matching for Robot Map-
ping, In: Zhang, C., Guesgen, H.W., and Yeap,W.K., Proceedings of 8th
Pacific Rim International Conference on Artificial Intelligence, Auck-
land, New Zealand, to appear

Cognitive Robotics Workshop 2004 76

1

Cognitive Robotics Workshop 2004 77

How can I, robot, pick up that object with my hand ?
Antonio Morales and Pedro J. Sanz and Angel P. del Pobil 1

Abstract. This paper describes a practical approach to the robot
grasping problem. An approach that is composed of two different
parts. First, a vision-based grasp synthesis system implemented on
a humanoid robot able to compute a set of feasible grasps and to
execute any of them. This grasping system takes into account gripper
kinematics constraints and uses little computational effort.

Second, a learning framework aimed at discovering the visual fea-
tures that predict a reliable grasp. A grasp characterization scheme
based on a set of visual features is developed in order to describe and
compare grasps. In addition, a practical measure of grasp reliability
is designed and implemented.

Moreover, an algorithm aimed at predicting the performance of
an untested grasp using the results observed on previous similar at-
tempts is presented. A second algorithm that actively selects the next
grasp to be executed in order to improve the predictive quality of the
accumulated experience is introduced, too.

An exhaustive database of experimental data is collected and used
to test and validate both algorithms.

1 INTRODUCTION

The ability for manipulating and using objects are some of the most
relevant skills that robots have to master in order to interact with its
environment and constitute a key component for many robotic appli-
cations. Robotic manipulation can be studied at many levels, from
the mechanical and physical interactions between different objects,
through the proper design of mechanical robot hands, to the purpose-
ful use of different objects. Traditionally, roboticist has focused on
the former aspects, and for a good reason. Usually, complex manip-
ulations , from the point of view of a robot, require a precise knowl-
edge of the complex physics involved and the use of carefully de-
signed hands. As a consequence, little attention has been paid on the,
high-level, cognitive activities related with the purpose of manipula-
tion and the nature of the manipulated objects.

This paper is the summary of a large project that has been focused
on the improvement of the grasping capabilities of a robot in order to
be able to grasp objects within unstructured environments. This un-
structuredness is derived from the uncertain conditions of the objects
to be grasped, and the little practical knowledge of the conditions that
make a grasp stable.

We focus on the grasping problem, consisting of determining the
kind grasp necessary to carry out certain manipulation tasks on an
object. A grasp is defined both by the contacts on the objects surface
and the hand and arm configuration necessary to reach them. More-
over, we focus on the pick up task. That is, we grasp the object in
order to lift and transport it.

1 Intelligent Robotics Lab., Univertitat Jaume I, Castellon, Spain. e-mail:
{morales, sanzp}@icc.uji.es, pobil@ieee.org

Extensive research on this field during the last two decades has
established a strong theoretical framework[15, 13, 2]. However, most
of this research has been based on perfect models or ideal operational
conditions. These assumptions often become unrealistic in real world
applications.

Briefly, the principles of our approach are two: first, the use of
sensorial, mainly visual, information to reduce the uncertainty in the
environment; second, the development of a learning framework to
apprehend the features of the environment that predict the outcome
of the actions of the robot.

The development of this project yields two clearly separated parts:
the development of a practical grasping system, and the design and
implementation of a complete learning scheme.

The main features of the grasping in system (described in sec. 2),
is that it makes use of sensorial inputs, mainly vision, to acquire rel-
evant information for the grasping task, in particular the shape and
location of the objects to grasp. In addition to this, we also develop
a couple of grasp synthesis algorithm able to compute two and three
finger grips from this information, using a small computational time,
and meeting theoretical stability conditions. Finally, an algorithm to
adapt the computed grips to the particular features of the gripper used
is necessary, too.

Once this system is developed we face the problem of grip selec-
tion. Given a object, many different feasible grips can be performed
on it, and it is thus critical to characterize the quality of candidate
grips in order to execute the most reliable ones.

In this paper we introduce an ambitious approach that tries to
use experience of real grasping actions to tune the behavior and
the reliability assessment capabilities of the grasping system. More
specifically we follow an active learning approach. According to this
paradigm, the agent is allowed to interact with its environment. More
specifically, it can execute actions which have an impact on the gen-
eration of training data. Exploration refers to the process of selecting
actions in active learning. In the framework of our problem, the pos-
sible actions are the different candidate grips, at a given moment.
Actions are selected by the agent in an ”intelligent” way in order to
minimize the cost and duration of the learning process.

To reach this goal we develop a learning scheme that is composed
of four main parts:

• A grasp characterization scheme that provides a unique descrip-
tion of any grasp (sec. 3). This characterization scheme is based
on nine high-level vision-based descriptors. In this way, we repre-
sent each grip as a point in a multidimensional space.

• An experimental test (sec. 3.1) by means of which the robot can
determine the reliability of a given grasp. This is achieved by ex-
ecuting the grasp and applying on it a set of practical tests to esti-
mate the degree of stability.

• A set of techniques for predicting the reliability of a grasp from
its similarity to other grasps (sec. 4). These techniques use the

Cognitive Robotics Workshop 2004 78

Figure 1. The UMASS Torso. A humanoid robotic system developed at the
Laboratory for Perceptual Robotics in the University of Massachusetts[17].

characterization schema described in previous point, and are based
on pattern classification and recognition techniques.

• An exploration algorithm (sec. 5) that makes use of the problem
representation previously built to decide the next action, the grasp
to be executed, in order to obtain a better knowledge of the en-
vironment with a lower cost, that is, with a minimum number of
executions.

Finally, we carry out an experimental validation of these methods
using real data from repeated grasping actions of the robot. We col-
lect an extensive set of samples from real grasping executions (sec.
3.2), and use them to tune, test and validate our methods (secs. 4.3
and 5.1).

2 A PRACTICAL GRASPING SYSTEM

We have implemented a robotic grasping system on the UMass hu-
manoid torso, at the Laboratory for Perceptual Robotics in the Uni-
versity of Massachusetts[17]. This humanoid robot consists of two
Whole Arm Manipulators from Barrett Technologies, two Barrett
hands with tactile sensors at the fingertips and a BiSight stereo head.

The stereo vision system estimates the two-dimensional location
of the target object on the table, and provides a monocular image for
surface curvature analysis (see [12] for more details). Once a grip
is selected (consisting of contact locations and a hand posture), the
hand is preshaped and positioned above the object. It moves down,
closes the fingers so that the object is grasped, lifted and transported
to a designated location.

The main modules/steps of the functioning of this robotic grasping
system are the following:

1 Image processing: analyzes an image of an unknown planar ob-
ject, extract its contour and identify triplets of grasping regions.

2 Grip synthesis: determines a number of feasible grasps selecting
the grasping points for each region triplet; after that, generates
finger configurations that could actually be applied to the object
in order to perform a grip action.

3 Grasp selection: perform an ‘intelligent’ selection of the grip to
execute.

4 Execution: execute the grip with support of visual and tactile
feedback.

(a) Photo (b) Kinematics

Figure 2. Barrett Hand, http://www.barretttechnology.com

Details about the first, second, and fourth sections of a system of
this kind, concerned with the generation of candidate grasping con-
figurations, are fully described in [10, 11, 12], though in the next
subsections we introduce the basic concepts.

2.1 Grasp synthesis

We define a grasp as the set of three contact points on an object
contour, and the corresponding force directions, perpendicular to the
contour, which meet in the grasp force focus. We call hand configura-
tion each possible grip obtained applying the kinematics constraints
of a robot hand to a grasp as defined above.

To avoid misunderstandings, in all this text when referring to
grasps and configurations together, the term grip is used.

We assume a real-time system acting in an unstructured environ-
ment, which detects unknown objects and, through analysis of visual
data, selects and executes a stable grip of such objects.

Fast computation is necessary in order to achieve a real-time inter-
action with the external world. The ability to cope with uncertainties,
in terms of knowledge of friction coefficients or visual and position-
ing errors, is a must in an uncontrolled environment.

2.2 Configurations

With a perfectly homogeneous three-finger hand, for which the fin-
gers are all the same, the three possible ways of combining fingers
with contact points in a grasp are not distinguishable. This is not the
case for the Barrett Hand, for which the kinematics of the thumb
is different from that of the other two fingers. A photo of the hand
is reproduced in Fig. 2(a). Its kinematics are depicted in Fig. 2(b).
The hand has four degrees of freedom: the three finger extensions
e1, e2, e3 and the spread angle θ.

For each grasp there are three possible positions of the thumb. Af-
ter deciding where to place the thumb, there are still potentially infi-
nite ways of making the hand touch the object at three contact points.
However, when the action line of the thumb is fixed as well, only
one solution is possible. A one-dimensional search along all possible
thumb force directions gives the best Barrett Hand configuration for
a grasp after the thumb position has been defined . Thus, every grasp
ideally generates three different configurations, one for each thumb
position. When no solutions are found for a thumb position within
a grasp, due to the constraints deriving from the hand geometry and
kinematics, no corresponding configurations are produced.

Cognitive Robotics Workshop 2004 79

(a) Grasp (b) Config. 1 (c) Config. 2

Figure 3. Generating configurations from a grasp

Typically, dozens of configurations can be generated for an ob-
ject, mostly depending on the number of regions found. In Fig. 3(b)
and 3(c) two configurations generated from the grasp of Fig. 3(a) are
depicted.

2.3 Two-finger grips

A particular kind of three-finger grasp is obtained as an extension of
two-finger grasps. To generate a two-finger grasp, only two regions
are needed, and they must be nearly parallel and facing each other
(with friction, regions that are not perfectly parallel can also be used
for two-finger grips).

Starting from a real two-finger grasp, if one of the regions is large
enough to carry two Barrett Hand fingers, then a virtual two-finger
grasp is generated. So, there is a special group of three-finger grasps
that are computed in a completely different way, and thus have differ-
ent properties and characteristics. From now on we will refer to them
as two-finger grasps, meaning that two of the fingers are positioned
on the same grasping region.

Each two-finger grasp can generate only one configuration, that is
a two-finger configuration, as the thumb must be the finger opposed
to the other two. An example of a two-finger grasp and its configura-
tion are shown in Fig. 4 (a) and (b).

2.4 Implementation and results

The modules described in the previous sections have been imple-
mented and tested. In a first stage they have been tested isolated,
using as inputs images of different objects [10, 11]. These tests show

(a) Grasp (b) Configuration

Figure 4. Example of two-finger grip

that our implementation obtains the same results as do other classi-
cal works [5, 14] employing a few milliseconds on a common PC
computer.

On a second stage they have been embedded on the control sys-
tem of the UMass humanoids torso for building a complete grasping
system[12]. Nearly 70 real grasp executions have been performed
using this system. These experiments have consisted in placing an
object in front of the robot and grasping it by executing one of the
hand configurations computed for the object. The selection of the
configuration to execute have been done by a human operator.2

These experiments show the usefulness and validity of the devel-
oped algorithms. However, they also shown the limitations of the
grasping system. The first main problem is that the grasp synthesis
algorithms produce a large number of possible grips, and there is no
clear rule for preferring one to the others. Regarding to this problem,
we propose a set quality criteria [3] that gives a value for each grasp.
However, this method is not satisfactory enough since it is purely a
priory, with no feedback from reality.

A second main problem, is the unexpected bad performance of
some a priory stable grasp. Though this can be caused by the in-
accuracy of the sensor inputs and the execution controllers, it also
strongly affected by risks not anticipated during the stability study
used to design the grasp synthesis algorithms.

These limitations have motivated the development of the learn-
ing framework that uses experience for determining the features of
grasps that asses its stability and reliability.

3 GRASP CHARACTERIZATION SCHEME
AND RELIABILITY MEASUREMENT

A characterization scheme to provide a way to describe grasps so
that they can be used by the learning procedures has been developed.
We have opted for a scheme that measures a set of properties of each
grasp. In this way a grasp will be represented by n measurements
becoming a point in an n-dimensional space. This scheme consists
of nine of these high-level features that have been designed in order
to meet the next requirements:

Vision-based computation. The features are computed from
visually-extracted information.

Hand constraining. Features take into account particular character-
istics of the hand.

Location and orientation invariance. Displacements and rotations
of the object do not affect the values of the features.

Object independence. Grasps with the same physical properties
have the same characterization independently of the object for
which they are computed.

Physical meaning. Features are computed to measure physical
properties relevant to grasping.

Stability and reliability. Features consider stability and reliability
hazards of a grasp.

To summarize, every grip is described by a nine-elements tuple,
and therefore, can be abstracted as a point in a nine-dimensions
space. This space would contain all the possible grip descriptors.

Due to the limitations of space, we only describe in detail one of
the grasp descriptors, as an example of the kind how these require-
ments are actually applied in the design of the descriptors. For further

2 In http://www.robot.uji.es/people/morales/experiments
there is an exhaustive description, including video recordings, of all these
experiments.

Cognitive Robotics Workshop 2004 80

Figure 5. Geometrical representation of the Finger Limit Criterion.

details and a better explanation of all the descriptors the reader is re-
ferred to [3].

An example of grasp descriptor: The Finger Limit criterion

When trying to grip large objects, there is a limit in the extension of
the fingers . Due to the way the Barrett Hand grips objects, there is a
finger extension value that, if overcome, causes the grip to shift from
a fingertip grip to a fingerside grip on the part edge, which is more
risky and less stable although still possible (see Fig. 5). Therefore, a
threshold on the maximum optimal finger extension η has been set
in order to avoid marginal contacts: qFG = ε1 + ε2 + ε3 where
εi = (ei−η

λ
)2 if ei > η, else 0. The threshold λ is an estimation of

the positioning error.

3.1 Experimental measurement of grasp reliability

A key issue in our experimental approach is the definition of a prac-
tical measurement of the reliability of a grasp. In order to do this a
single object is placed on a table within the robot workspace. Using
visual information the robot locates the object and computes a set of
feasible grasp configurations. One of the configurations is selected,
either manually by a human operator, or automatically by the robot,
and executed.

If the robot has been able to lift the object safely, a set of stability
tests are applied in sequence. These are aimed at measuring the sta-
bility of the current grasp. They consist of three consecutive shaking
movements of the hand which are executed with an increasing accel-
eration. After each movement the tactile sensors are used to check
whether the object has been dropped off.

This protocol provides us with a qualitative measure of the success
of a grasp. Thus, an experiment may result in five different reliability
classes: E indicates that the system was not able of lifting the ob-
ject at all; D, C, B indicate that the object was dropped, respectively,
during the first, second, or third series of shaking movements; finally
A means the object did not fall and was returned successfully to its
initial position on the table. Hence, we define Ω = {A, B, C, D, E}
as the set of reliability classes.

3.2 Experimental sample dataset

To acquire a sample database large enough to validate the proposed
methods, a series of exhaustive experiments have been carried out.

Table 1. SAMPLE DATASETS

E D C B A Total
LIGHT 102 84 33 27 18 264
LOW 38.6% 31.8% 12.5% 10.2% 6.8% (22)

LIGHT 51 97 56 38 118 360
HIGH 14.2% 26.9% 15.6% 10.6% 32.8% (34)

HEAVY 95 92 29 2 2 220
HIGH 43.1% 41.8% 13.2% 0.9% 0.9% (23)

Sample distributions among classes for the different data sets. The figures in
brackets in the “Total” column indicates the number of different grip

configurations really tested.

Four real objects has been built for this experiment: two with simple
shapes and two with more complex shapes. In order to build the sam-
ple database the four objects are presented to the grasping system,
and a sufficiently large number of grips are executed. The reliability
of these grips is obtained applying the test described in section 3.1.

A particular execution of a grip configuration can be influenced
by many unpredictable factors. To avoid this problem, each grip is
executed a sufficiently large number of times, by varying the location
and orientation in the presentation of the object.

The number of feasible grips that are computed for each single ob-
ject is usually large, varying from several dozens to more than one
hundred. The repetition above mentioned could lead to a non practi-
cal number of executions, so for each object only a few configuration
grips are selected to be executed. This selection consists of the most
representative configurations of each object. Each configuration grip
is executed 12 times, 4 times for three different orientations of the
object.

Since we are also interested in studying the grasping performances
in different circumstances, several characteristics of the environment
are tested. These are the weight of the objects and the friction co-
efficient. Two qualitative categories for each of both conditions are
distinguished: heavy and light objects, and high and low friction. The
different weight is obtained by making two different sets of objects
similar in appearance, but made of different material. Different con-
tact friction is achieved by using a latex fingertip to envelope the
fingers.

A series of experiments where done following this experimen-
tal protocol. Three different combinations of physical properties
were tested: light objects and low friction (light/low), heavy objects
and high friction (heavy/high); and light objects and high friction
(light/high). More than eight hundred samples were obtained from
this exhaustive experimentation. Table 1 shows the number of differ-
ent grips executed and the percentages of grips that resulted in each
class of Ω.

4 GRASP RELIABILITY PREDICTION

The learning methodology that we propose is composed of two main
algorithmic components. First, a prediction scheme that computes
the most likely reliability class of an untested grip, using previous
experience as reference. This component assumes the existence of a
set of previously executed grips having the values of the descriptors
and their reliability class known.

The second component, that will be referred as exploration func-
tion, is responsible of building such set of previous attempts by suc-
cessive selection of the most appropriate grip candidates. In this sec-
tion we focus on the first component.

Cognitive Robotics Workshop 2004 81

In theoretical terms a data set of previous experience is composed
of N executed triplets. Each grip gi, i = 1 . . . N is described by
the nine visual features q1, . . . q9 introduced in subsection 3. The 9-
dimensional space GS is formed by the ranges of the values of the
features. Moreover, we have also recorded the performance of the
grip and have assigned it to a class ωi ∈ Ω for each gi.

A prediction function tries to assess the most likely reliability class
for a candidate grasp gq ∈ GS using as reference the previous expe-
rience. There exists a wide bibliography on the building of such func-
tions based on the Bayesian decision theory and other non-statistical
approaches. In this work we have studied three different approaches
for the implementation of the prediction function.

4.1 Density estimation

The first one is a statistical parametric method[4]. It assumes that the
samples that belong to every reliability category are distributed in the
feature-space according to a particular density function. In our imple-
mentation this is a multivariate normal density. We use the existent
datasets to estimate the parameters of this density functions, in our
case, the mean µωi and the covariance matrix Γωi where ωi ∈ Ω. For
our purposes we are interested of the posterior probability p(ωi|gq).

p(ωi|gq) ≈ exp

(

−1

2
(x − µωi)

T Γ−1
ωi

(x − µωi)

− 1

2
log det Γωi + log p(ωi)

)

(1)

The most likely class is, then, the one with a higher conditional
probability.

4.2 Voting KNN classification rule

A prediction function has the form F (g) = ω̄ where g ∈ GS and
ω̄ ∈ Ω. There exists a wide bibliography on the building of such
functions based on the Bayesian decision theory [4]. In this paper we
have chosen the approach of the non-parametric techniques, in par-
ticular the voting k-nearest neighbor (KNN) rule [6, 4], for modeling
this function. The non-parametric techniques do not assume any den-
sity distribution of the features and the classes. To predict the class of
a query point gq , the KNN rule counts the K-nearest neighbors and
chooses the class that most often appears, the most voted.

In our implementation we have introduced some modifications to
the basic schema. First we use the euclidean metric for measuring the
distance between the points in the GS . We weighted the contribution
of each of the KNN points according to its distance to the query point.
This gives more importance to the closer points. The kernel function
used is K(d) = 1

1+(d/T)
, where T is an adjustable parameter, and d

is the distance.
We define KNN(gq) = {(gi, ωi), i = 1 . . . k, gi ∈ GS , ωiinΩ}

as the k closest points to gq and di their corresponding distances
from gq . The probability corresponding to a class ω̄ are computed
using this expression:

p(ω̄, gq) =
∑

gi∈KNN(gq)
ωi=ω̄

K(di)
∑

gj∈KNN(gq) K(dj)
(2)

Function P is also an expression of the posterior prob-
ability [6]. Our predictor would be defined as F (gq) =
argmaxω∈Ω{p(ω, gq)}. That is, the class predicted ω is the one with
the largest probability p(ω, gq).

Table 2. COMPARISON USING THE LIGHT/HIGH SAMPLE DATASET

0 1 2 3 4 ē
random 23.5% 26.2% 20.3% 20.7% 9.3% 0.415
density est. 35.0% 20.3% 15.6% 17.2% 11.9% 0.365
knn 51.1% 21.7% 13.3% 11.1% 2.8% 0.223

Percentages of misclassifications depending on the error distance. Distance 0
indicates successful classifications.

4.3 Validation and comparison of the methods

Three basic questions need to be answered about the prediction ca-
pabilities of the rules described in this section: first, are they able to
predict anything at all?; second, are they able to generalize across
different objects?; and third, did we have enough data to properly
construct a risk function? To answer these questions we have devel-
oped a cross-validation method named leave-one-grasp-out valida-
tion similar to the well known leave-one-out validation and n-fold
cross-validation [4]. This consists of the following steps: 1) given
the whole data set, remove all the points of a particular grasp con-
figuration and use this subset as validation set; 2) use the remaining
samples for predicting the outcomes of the validation set and com-
pute the mean error; 3) repeat steps 1) and 2) for all configurations.
The validation error will be the mean error of the iterations of step 2).
The goal of removing all the points of a configuration from the data
set is to eliminate points similar to the query grasp in the experience
dataset, thus testing generalization properties.

The error metric is based on the concept of misclassification error
distance. The distance between two consecutive classes is defined as
1, that between A and C as 2, etc. In this way define the error distance
e(gq) = {0, . . . , 4} for the prediction of a given query grip. Given a
set of predictions G = {gi, i = 1 . . . n}, we define the average error
metric ē(G) =

∑

e(gi)/4.
Moreover, we compare these prediction methods against the the-

oretical results that would be obtained by a prediction method that
would have chosen randomly the predicted class.

The performance of this methods is obtained using the validation
procedure described above. Table tab:fullsize shows the results ob-
tained for one the sample datasets (light objects and high friction).
The results in the other two cases were similar. The figures obtained
indicate the the KNN prediction function improves clearly the other
prediction functions, moreover it obtains better results that the naive
random prediction.

This results show its validity of KNN function for prediction
within this problem. Finally, we also measure the evolution of the
performance of the KNN prediction method with different sizes of
the sample dataset (fig. 6) and we conclude that the performance im-
proves when the available experience dataset is larger[8, 9].

5 ACTIVE LEARNING FOR EXPERIENCE
ACQUISITION

The results of the analysis of prediction methods indicate that it is
possible to predict reasonably well the reliability class of a grasp if
enough previous experience is available. In this part of the project we
question if it is possible to reach a similar degree of performance with
less experience. In particular we aim at designing an exploration pro-
cedure that guides the continuous execution of grasps with the goal
of acquiring the maximum performance possible with the minimum
number of executed trials.

Cognitive Robotics Workshop 2004 82

20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Size sensitivity graph

Training dataset size

M
ea

n
pr

ed
ic

tio
n

er
ro

r

Figure 6. Evolution of the error when the size of the available data set
varies. The Solid black line represents the errors obtained by the KNN

prediction method, while the dashed line is the threshold of the random error.

In practice, the task of such exploration procedure is to select the
next grasp to execute among a set of candidates. This selection must
be done in order to improve the predictive capabilities of the stored
experience, i.e., the set of already executed grasps.

The algorithm we propose assumes that at any point during the
training of the grasping system a set of candidate grips gi ∈ GS is
proposed and the algorithm has to select the next grasp to be exe-
cuted. To accomplish this task, it can take into account the results of
previous experiments.

The approach we propose for the selection is inspired in the idea
hinted by Thrun [16], “queries are favored that have the least pre-
dictable outcome”. That is, those candidates which category is less
predictable are preferred. This idea is based on the intuition that such
candidates are located in areas where the implicit model represented
by the experience data set is less clear.

We implement this idea by defining the term prediction confi-
dence. For every grip candidate gi, a class ωi ∈ Ω is computed
using the KNN prediction scheme defined in the previous section.
The confidence of that prediction is simply p(ωi, gi). In formal terms
the prediction confidence for a grip gq is defined as Fconf (gq) =
max{p(ω|gq)}, ω ∈ Ω. We use only the KNN prediction function
since it proved to obtain the better results in the analyses described
in previous section.

Once defined the notion of confidence, it is easy to describe
the exploration function. It chooses the candidate with a mini-
mum confidence value. Given a set of m grasp candidates Gq =
{g1, . . . , gm} ⊂ GS , the exploration function is defined as,

Fexp(Gq) = argmin
gi∈Gq

Fpred(gi) (3)

Hereinafter, we will refer to this method as the minimum confi-
dence exploration, or simply the risk exploration function.

Summarizing, this procedure procedure predicts a query point
based on its similarity to its neighbors. This is a case of instance-
based also known as memory-based learning [1], which is a numeric
variant of the more symbolic case-based reasoning [18]. These ap-
proaches do not construct an explicit representation of the target
function when training samples are provided, but simply store them.

0 50 100 150 200 250
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prediciton error evolution

Steps − Size of the experience dataset

M
ea

n
pr

ed
ic

tio
n

er
ro

r

random
confidence

Figure 7. Evolution of the prediction error using the Light/High sample
dataset.

5.1 Validation of the exploration procedure

The performance of the exploration/selection procedure is measured
by the predictive capability of the set of samples selected/executed,
which reliability class is known. This can be easily measured by us-
ing this dataset to predict the class of the samples contained in a
secondary validation test. We have designed a validation framework
that follows this principle. In its design we also take inspiration from
the running of the robot in the training environment or in a learn-
ing experiment. In this situation the robot will execute a sequence
of selection-execution actions. Each of these actions will follow the
next steps:

1. One or more objects appear in the workspace of the robot. The
grasps for them are computed. These are the grasp candidates

2. The robot selects one of them by using the exploration function.
3. The grasp is executed and the reliability test is applied.
4. The new grasp and the performance outcome are added to the ex-

perience dataset.

For the execution of the validation algorithm, we take the whole
sample dataset available and extract a subset, validation dataset from
it. The remaining is used as a pool dataset. In a sequence of selection
steps, a small subset of candidate samples are extracted randomly
from this pool. The exploration function, in our case, the minimum
confidence rule, is applied to select one of these candidates. The se-
lected candidate is added to the experience dataset and the discarded
candidates are returned back to the pool. The performance measure-
ment is done by using the samples in the experience dataset for pre-
dicting the samples in the validation set. The sequence is repeated
until the pool dataset is emptied or it contains few samples.

This procedure is repeated a sufficiently large number of times
varying the contents of the pool and validation datasets and the per-
formance measurements for each size of the experience dataset are
averaged.

Figure 7 presents the evolution of the prediction error for differ-
ent sizes of the Light/High sample dataset, that is equivalent to the
number of steps of the algorithm described in the above paragraphs.
The graph in dashed lines shows the evolution of the prediction er-
ror when the sample to execute is selected randomly among the set

Cognitive Robotics Workshop 2004 83

of candidates. This case would represent the evolution when no spe-
cific exploration rule is applied. From this graph, and similar ones
obtained using the other sample datasets, we conclude that the pro-
posed exploration procedure clearly improves the random selection
function, and is able to reach maximum performance levels with less
than a hundred trials.

6 CONCLUSION

This paper is the summary of large project [7] aimed at improving
the grasping skills of a robot to work in the face of unknown con-
ditions and uncertainty. We have approached this problem following
two different ways.

The goal of the first part is to develop and to implement a grasping
system able to use vision for extracting and using relevant informa-
tion for grasp synthesis. The visual approach allows the system to
deal with unknown objects. We have already emphasized the inclu-
sion of the particular kinematics of the robotic hand within the grasp
synthesis algorithms. As a result we have developed a couple of al-
gorithms able to compute two and three-finger grasp for unknown
objects using vision as only input, and a third algorithm that con-
strains their results to the hand geometry.

Moreover, these algorithms have resulted to be fast and suitable to
use in real-time manipulation activities. Finally, a complete imple-
mentation on the UMass Torso has shown the strengths and limita-
tions of the grasping system. This observations have motivated the
approached followed in the next part of the project.

In this second part, we have presented the development of a learn-
ing framework for assessing robot grasp reliability. This framework
is based on two learning algorithms and a representation of the data,
built on a grasp characterization scheme composed of nine high level
vision-based descriptors.

The first algorithm is aimed at predicting the reliability of an
untested grip from its comparison to previous recorded attempts. The
second algorithm, based on the idea of active learning, is an explo-
ration rule that has to select among a set of candidate grips the next
one to execute, having the goal of improving the predictive perfor-
mance of the accumulated experience.

An experimental measurement of the reliability of a grasp have
been developed and used to gather an exhaustive database of sample
grips. Several validation frameworks that make use of this database,
have been designed to test and validate the usefulness and properties
of the proposed algorithms.

The results have proved that the algorithms proposed in this work
are able to carry out the expected tasks with a reasonable level of
performance, despite the complex and unpredictable nature of the
task space.

Moreover, the experimental and practical approach followed indi-
cates a possible path that service robotic applications willing to be
used in every-day human environments could follow. The inclusion
of active learning schemes in robot systems is an appropriate way to
improve their adaptability to unmodeled or partially unknown envi-
ronments and, thus, building real intelligent robot systems.

ACKNOWLEDGMENTS

This work could not have been possible without the priceless help
and collaboration of Andy Fagg and Eris Chinellato.

This work has been funded in part by the Ministerio de
Ciencia y Tecnologı́a under project DPI2001-3801, by the Gen-
eralitat Valenciana under projects GRUPOS 03/153, GV01-244,

CTIDIA/2002/195, by the Fundació Caixa-Castelló under project
P1-1B2001-28. The second author has been supported by the Minis-
terio de Ciencia y Tecnologı́a under a FPI Program graduate fellow-
ship.

This work is also partly funded by grants CISE/CDA-
9703217 and IRI-9704530, DARPA MARS DABT63-99-1-0004,
and NASA/RICIS. The authors wish to thank Roderic Grupen, David
Wheeler, Robert Platt and Danny Radhakrishnan, who have provided
much of the foundation which allowed the robot experiments.

REFERENCES
[1] D.W. Aha, ‘Lazy learning’, Artificial Intelligence Review, 11, 7–10,

(1997).
[2] A. Bicchi and V. Kumar, ‘Robotic grasping and contact: A review’, in

IEEE Intl. Conf. on Robotics and Automation, (April 2000).
[3] E. Chinellato, A. Morales, R.B. Fisher, and A.P. del Pobil, ‘Visual fea-

tures for characterizing robot grasp quality’, IEEE Transactions on Sys-
tems, Man and Cybernetics (Part C), (2004). In Press.

[4] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wi-
ley & Sons, Inc., 2nd edn., 2001.

[5] B. Faverjon and J. Ponce, ‘On computing two-finger force-closure
grasps of curved 2D objects’, in IEEE Intl. Conf. on Robotics and Au-
tomation, pp. 424–429, (1991).

[6] T. M. Mitchell, Machine Learning, McGraw Hill, 1997.
[7] A. Morales, Learning to predict grasp reliability with a mul-

tifinger robot hand by using visual features, Ph.D. disserta-
tion, Departament of Computer and Engineering Science, Univer-
titat Jaume I, Castellón, Spain, January 2004. http://www.
robot.uji.es/people/morales/thesis.

[8] A. Morales, Chinellato E, A.H. Fagg, and A.P. del Pobil, ‘Experimental
prediction of the preformance of grasps tasks from visual fetures’, in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 3423–3428,
Las Vegas, Nevada, (October 2003).

[9] A. Morales, Chinellato E, A.H. Fagg, and A.P. del Pobil, ‘Using expe-
rience for assessing grasp reliability’, in International Conference on
Humanoid Robots (Humanoids 2003), Karlsruhe, Germany, (October
2003). On CD-ROM.

[10] A. Morales, G. Recatalá, P.J. Sanz, and A.P del Pobil, ‘Heuristic vision-
based computation of planar antipodal grasps on unknown objects’, in
IEEE Intl. Conf. on Robotics and Automation, pp. 583–588, Seoul, Ko-
rea, (May 2001).

[11] A. Morales, P.J. Sanz, and A.P. del Pobil, ‘Vision-based computation of
three-finger grasps on unknown planar objects’, in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, pp. 1693–1698, Lausanne, Switzer-
land, (October 2002).

[12] A. Morales, P.J. Sanz, A.P del Pobil, and A.H. Fagg, ‘An experiment
in constraining vision-based finger contact selection with gripper ge-
ometry’, in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp.
1711–1716, Lausanne, Switzerland, (October 2002).

[13] A.M. Okamura, N.S. Smaby, and M.R Cutkosky, ‘An overview of dex-
tereous manipulation’, in IEEE Intl. Conf. on Robotics and Automation,
pp. 255–260, San Francisco, California, (April 2000).

[14] J. Ponce and B. Faverjon, ‘On computing three-finger force-closure
grasps of polygonal objects’, IEEE Transactions on Robotics and Au-
tomation, 11(6), 868–881, (1995).

[15] K.B. Shimoga, ‘Robot grasp synthesis: A survey’, International Jour-
nal of Robotics Research, 3(15), 230–266, (June 1996).

[16] S. Thrun, ‘Exploration in active learning’, in The Handbook of Brain
Theory and Neural Networks, ed., Michael A. Arbib, 381–384, MIT
Press, (1995).

[17] UMass humaniod torso. http://www-robotics.cs.umass.
edu.

[18] D. L. Waltz, ‘Memory-based reasoning’, in The Handbook of Brain
Theory and Neural Networks, ed., Michael A. Arbib, 661–662, MIT
Press, (1995).

Cognitive Robotics Workshop 2004 84

1

Cognitive Robotics Workshop 2004 85

Paper Session IV

August 24, 9:00 - 10:30

• On Ability to Automatically Execute Agent Programs with Sensing, S. Sardina, G.
DeGiacomo, Y. Lesperance, H. Levesque

• Have Another Look: On Failures and Recovery in Perceptual Anchoring, M.
Broxvall, S. Coradeschi, L. Karlsson, A. Saffiotti

• Flexible Interval Planning in Concurrent Temporal Golog, A. Finzi, F. Pirrri

1

Cognitive Robotics Workshop 2004 86

*

Cognitive Robotics Workshop 2004 87

On Ability to Autonomously Execute Agent Programs
with Sensing

Sebastian Sardina1 and Giuseppe De Giacomo2 and Yves Lespérance3 and Hector J. Levesque4

Abstract. Most existing work in agent programming assumes an
execution model where an agent has a knowledge base (KB) about
the current state of the world, and makes decisions about what to
do in terms of what is entailed or consistent with this KB. Planning
then involves looking ahead and gauging what would be consistent
or entailed at various stages by possible future KBs. We show that in
the presence of sensing, such a model does not always work properly,
and propose an alternative that does. We then discuss how this affects
agent programming language design/semantics.

1 INTRODUCTION

There has been considerable work on formal models of delibera-
tion/planning under incomplete information, where an agent can per-
form sensing actions to acquire additional information. This problem
is very important in agent applications such as web information re-
trieval/management. However, much of the previous work on formal
models of deliberation—i.e., models of knowing how, ability, epis-
temic feasibility, executabiliy, etc. such as [14, 4, 9, 11, 19]—has
been set in epistemic logic-based frameworks and is hard to relate
to work on agent programming languages (e.g. 3APL [8], AgentS-
peak(L) [17]). In this paper, we develop new non-epistemic formal-
izations of deliberation that are much closer and easier to relate to
standard agent programming language semantics based on transition
systems.

When doing deliberation/planning under incomplete information,
one typically searches over a set of states, each of which is associ-
ated with a knowledge base (KB) or theory that represents what is
known in the state. To evaluate tests in the program and to determine
what transitions/actions are possible, one looks at what is entailed
by the current KB. To allow for future sensing results, one looks
at which of these are consistent with the current KB. We call this
type of approach to deliberation “entailment and consistency-based”
(EC-based). In this paper, we argue that EC-based approaches do
not always work, and propose an alternative. Our accounts are for-
malized within the situation calculus and use a simple programming
language based on ConGolog [6] to specify agent programs as de-
scribed in Section 2, but we claim that the results generalize to most
proposed agent programming languages/frameworks. We point out

1 Dept. of Computer Science, University of Toronto, Toronto, Canada, email:
ssardina@cs.toronto.edu

2 Dip. Informatica e Sistemistica, Univer. di Roma “La Sapienza”, Roma,
Italy, email: degiacomo@dis.uniroma1.it

3 Dept. of Computer Science, York University, Toronto, Canada, email: les-
peran@cs.yorku.ca

4 Dept. of Computer Science, University of Toronto, Toronto, Canada, email:
hector@cs.toronto.edu

that this paper is mainly concerned with the semantics of the deliber-
ation process and not much with the actual algorithms implementing
this process.

We initially focus on deterministic programs/plans and how to for-
malize when an agent knows how to execute them. For such deter-
ministic programs, what this amounts to is ensuring that the agent
will always know what the next step to perform is, and no matter
what sensing results are obtained, the agent will eventually get to the
point where it knows it can terminate. In Sections 3 and 4, we de-
velop a simple EC-based account of knowing how (KHowEC). We
show that this account gives the wrong results on a simple example
involving indefinite iteration. Then, we show that whenever this ac-
count says that a deliberation/planning problem is solvable, there is
a conditional plan (a finite tree program without loops) that is a so-
lution. It follows that this account is limited to problems where the
total number of steps needed can be bounded in advance. We claim
that this limitation is not specific to the simple account and applies
to all EC-based accounts of deliberation.

The source of the problem with the EC-based account is the use of
local consistency checks to determine which sensing results are pos-
sible. This does not correctly distinguish between the models that sat-
isfy the overall domain specification (for which the plan must work)
and those that do not. To get a correct account of deliberation, one
must take into account what is true in different models of the do-
main together with what is true in all of them (what is entailed). In
Section 5, we develop such an entailment and truth-based account
(KHowET), argue that it intuitively does the right thing, and show
how it correctly handles our test examples.

We end by reviewing the paper’s contributions, discussing the
lessons for agent programming language design, and sketching other
related results that we have but were left out due to lack of space.

2 THE SITUATION CALCULUS AND
INDIGOLOG

The technical machinery we use to define program execution in the
presence of sensing is based on that of [7, 6]. The starting point in the
definition is the situation calculus [12]. We will not go over the lan-
guage here except to note the following components: there is a spe-
cial constant S0 used to denote the initial situation, namely that situ-
ation in which no actions have yet occurred; there is a distinguished
binary function symbol do where do(a, s) denotes the successor sit-
uation to s resulting from performing the action a; relations whose
truth values vary from situation to situation are called (relational) flu-
ents, and are denoted by predicate symbols taking a situation term as
their last argument. There is a special predicate Poss(a, s) used to
state that action a is executable in situation s. We assume that actions

Cognitive Robotics Workshop 2004 88

return binary sensing results, and we use the predicate SF (a, s) to
characterize what the action tells the agent about its environment. For
example, the axiom

SF (senseDoor(d), s) ≡ Open(d, s)

states that the action senseDoor(d) tells the agent whether the door
is open in situation s. For actions with no useful sensing information,
we write SF (a, s) ≡ True.

Within this language, we can formulate domain theories which de-
scribe how the world changes as a result of the available actions.
Here, we use basic action theories [18] of the following form:

• A set of foundational, domain independent axioms for situations
Σ as in [18].

• Axioms describing the initial situation, S0.
• Action precondition axioms, one for each primitive action a, char-

acterizing Poss(a, s).
• Successor state axioms for fluents of the form

F (~x, do(a, s)) ≡ γ(~x, a, s)
providing the usual solution to the frame problem.

• Sensed fluent axioms, as described above, of the form
SF (A(~x), s) ≡ φ(~x, s)

• Unique names axioms for the primitive actions.

To describe a run of a program which includes both actions and
their sensing results, we use the notion of a history, i.e., a sequence
of pairs (a, µ) where a is a primitive action and µ is 1 or 0, a sensing
result. Intuitively, the history σ = (a1, µ1) · . . . · (an, µn) is one
where actions a1, . . . , an happen starting in some initial situation,
and each action ai returns sensing value µi. We use end[σ] to denote
the situation term corresponding to the history σ, and Sensed[σ] to
denote the formula of the situation calculus stating all sensing results
of the history σ. Formally,

end[ε] = S0, where ε is the empty history; and
end[σ · (a, µ)] = do(a, end[σ]).

Sensed[ε] = True;
Sensed[σ · (a, 1)] = Sensed[σ] ∧ SF (a, end[σ]);
Sensed[σ · (a, 0)] = Sensed[σ] ∧ ¬SF (a, end[σ]).

Next we turn to programs. We consider a very simple deterministic
language with the following constructs:

a primitive action
δ1; δ2 sequence
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop

This is a small subset of ConGolog [6] and we use its single step
transition semantics in the style of [16]. This semantics introduces
two special predicates Trans and Final: Trans(δ, s, δ′, s′) means
that by executing program δ in situation s, one can get to situation
s′ in one elementary step with the program δ′ remaining to be exe-
cuted; Final(δ, s) means that program δ may successfully terminate
in situation s.

Offline executions of programs, which are the kind of executions
originally proposed for Golog and ConGolog [10, 6], are character-
ized using the Do(δ, s, s′) predicate, which means that there is an
execution of program δ that starts in situation s and terminates in sit-
uation s′. This holds if there is a sequence of legal transitions from
the initial configuration up to a final configuration:

Do(δ, s, s′)
def
= ∃δ

′

.T rans
∗(δ, s, δ′, s′) ∧ Final(δ′

, s
′),

where Trans∗ is the reflexive transitive closure of Trans. An of-
fline execution of δ from s is a sequence of actions a, . . . , an such
that: D ∪ C |= Do(δ, s, do(an, . . . , do(a1, s) . . .)), where D is an
action theory as mentioned above, and C is a set of axioms defining
the predicates Trans and Final and the encoding of programs as
first-order terms [6].

Observe that an offline executor has no access to sensing results,
available only at runtime. IndiGolog, an extension of ConGolog to
deal with online executions with sensing, is proposed in [7]. The se-
mantics defines an online execution of a program δ starting from a
history σ. We say that a configuration (δ, σ) may evolve to configu-
ration (δ′, σ′) w.r.t. a model M (relative to an underlying theory of
action D) iff 5 (i) M is a model of D ∪ C ∪ {Sensed[σ]}, and (ii)

D ∪ C ∪ {Sensed[σi]} |= Trans(δ, end[σ], δ′, end[σ′])

and (iii)

σ
′ =

8

>

>

>

>

<

>

>

>

>

:

σ · (a, 1) if end[σ′] = do(a, end[σ])
and M |= SF (a, end[σ])

σ · (a, 0) if end[σ′] = do(a, end[σ])
and M 6|= SF (a, end[σ]).

σ if end[σ′] = end[σ],

The model M above is only used to represent a possible environment
and, hence, it is just used to generate the sensing results of the corre-
sponding environment. Finally, we say that a configuration (δ, σ) is
final whenever

D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ]).

Using these two concepts of configuration evolution and final con-
figurations, one can define various notions of online, incremental, ex-
ecutions of programs as a sequence of legal configuration evolutions,
possibly terminating in a final configuration.

3 DELIBERATION: EC-BASED ACCOUNT

Perhaps the first approach to come to mind for defining when an
agent knows how/is able to execute a deterministic program δ in a
history σ goes as follows: the agent must always know what the next
action prescribed by the program is and be able to perform it such
that no matter what sensing output is obtained as a result of doing
the action, she can continue this process with what remains of the
program and, eventually, reach a configuration where she knows she
can legally terminate. We can formalize this idea as follows.

We define KHowEC(δ, σ) to be the smallest relation R(δ, σ) such
that:

(E1) if (δ, σ) is final, then R(δ, σ);
(E2) if there exists an action a such that (δ, σ) may evolve to configura-

tion (δ′, σ·(a, µ)) for some δ′ and µ w.r.t. some model of theory D,
and R(δ′, σ ·(a, µi)) holds for every configuration (δ′, σ ·(a, µi))
such that (δ, σ) may evolve to w.r.t. some model Mi of theory D,
then R(δ, σ).

The first condition states that every terminating configuration is in the
relation KHowEC . The second condition states that if a configuration
performs an action transition and for every consistent sensing result,
the resulting configuration is in KHowEC , then this configuration is
also in KHowEC .

5 This definition is more general than the one in [7], where the sensing re-
sults were assumed to come from the actual environment rather than from
a model (a model can represent any possible environment).

Cognitive Robotics Workshop 2004 89

Note that, here, the agent’s lack of complete knowledge in a his-
tory σ is modeled by the theory D ∪C ∪ {Sensed[σ]} being incom-
plete and having many different models. KHowEC uses entailment
to ensure that the information available is sufficient to determine
which transition should be performed next. KHowEC uses consis-
tency to determine which sensing results can occur, for which the
agent needs to have a subplan that leads to a final configuration. Due
to this, we say that KHowEC is an entailment and consistency-based
(EC-based) account of knowing how.

This EC-based account of knowing how seems quite intuitive and
attractive. However it has a fundamental limitation: it fails on pro-
grams involving indefinite iteration. The following simple example
from [9] shows the problem.

Consider a situation in which an agent wants to cut down a tree.
Assume that the agent has a primitive action chop to chop at the tree,
and also assume that she can always find out whether the tree is down
by doing the (binary) sensing action look. If the sensing result is 1,
then the tree is down; otherwise the tree remains up. There is also
a fluent RemainingChops(s), which we assume ranges over the
natural numbers N and whose value is unknown to the agent, and
which is meant to represent how many chop actions are still required
in s to bring the tree down. The agent’s goal is to bring the tree down,
i.e., bringing about a situation s such that Down(s) holds, where

Down(s)
def
= RemainingChops(s) = 0

The action theory Dtc is the union of:

1. The foundational axioms for situations Σ.
2. Duna = {chop 6= look}.
3. Dss contains the following successor state axiom:

RemainingChops(do(a, s)) = n ≡
(a = chop ∧ RemainingChops(s) = n + 1) ∨
(a 6= chop ∧ RemainingChops(s) = n).

4. Dap contains the following two precondition axioms:

Poss(chop, s) ≡ (RemainingChops > 0),
P oss(look, s) ≡ True.

5. DS0
= {RemainingChops(S0) 6= 0}.

6. Dsf contains the following two sensing axioms:

SF (chop, s) ≡ True,

SF (look, s) ≡ (RemainingChops(s) = 0).

Notice that sentence ∃n.RemainingChops(S0) = n (where the
variable n ranges over N) is trivially entailed by this theory so “in-
finitely” hard tree trunks are ruled out. Nonetheless, the theory does
not entail the sentence RemainingChops(S0) < k for any con-
stant k ∈ N. Hence, there exists some n ∈ N, though unknown
and unbounded, such that the tree will fall after n chops. Because
of this, intuitively, we should have that the agent can bring the tree
down, since if the agent keeps chopping, the tree will eventually
come down, and the agent can find out whether it has come down
by looking. Thus, for the program

δtc = while ¬Down do chop; look endWhile

we should have that KHowEC(δtc, ε) (note that δtc is deterministic).
However, this is not the case:

Theorem 1 Let δtc be the above program to bring the tree down.
Then, for all k ∈ N, KHowEC(δtc, [(chop, 1) · (look, 0)]k) does not
hold. In particular, when k = 0, KHowEC(δtc, ε) does not hold.

PSfrag replacements

δtc

[]

look ; δtc

look ; δtc

δtc

(chop, 1)

(chop, 1)

(chop, 1)

(chop, 1) (chop, 1)

(chop, 1)

(chop, 1)

(look, 0)

(look, 0) (look, 0)

(look, 1)
(look, 1)

δtc

δtc
1

1
0

0
chop

chop
look

look

√

√

Figure 1. Online execution tree of program δtc. Each box represents a
configuration with the remaining program at the top and the current history

at the bottom. Terminating configurations are marked with a check sign.

Thus, the simple EC-based formalization of knowing how
gives the wrong result for this example. Why is this so? Intu-
itively, it is easy to check that if the agent knows how (to ex-
ecute) the initial configuration, i.e., KHowEC(δtc, ε) holds, then
she knows-how (to execute) every possible finite evolution of
it, i.e., for all j ∈ N, KHowEC(δtc, [(chop, 1) · (look, 0)]j) and
KHowEC((look; δtc), [(chop, 1) · (look, 0)]j · (chop, 1)). Now con-
sider the hypothetical scenario in which an agent keeps chopping and
looking forever, always seeing that the tree is not down. There is no
model of Dtc where δtc yields this scenario, as the tree is guaranteed
to come down after a finite number of chops. However, by the above,
we see that KHowEC is, in some way, taking this case into account
in determining whether the agent knows how to execute δtc (see Fig-
ure 1). This happens because every finite prefix of this never-ending
execution is indeed consistent with Dtc. The problem is that the set
of all of them together is not. This is why KHowEC fails, which can
also be viewed as a lack of compactness issue. In the next section, we
show that KHowEC’s failure on the tree chopping example is due to a
general limitation of the KHowEC formalization. Note that Moore’s
original account of ability [14] is closely related to KHowEC and
also fails on the tree chopping example [9].

4 KHowEC ONLY HANDLES BOUNDED
PROBLEMS

In this section, we show that whenever KHowEC(δ, σ) holds for
some program δ and history σ, there is simple kind of conditional
plan, what we call a TREE program, that can be followed to exe-
cute δ in σ. Since for TREE programs (and conditional plans), the
number of steps they perform can be bounded in advance (there are
no loops), it follows that KHowEC will never be satisfied for pro-
grams whose execution cannot be bounded in advance. Since there
are many such programs (for instance, the one for the tree chopping
example), it follows that KHowEC is fundamentally limited as a for-
malization of knowing how and can only be used in contexts where
attention can be restricted to bounded strategies. As in [19], we define
the class of (sense-branch) tree programs TREE with the following
BNF rule:

dpt ::= nil | a; dpt1 |senseφ; if φ then dpt1 else dpt2

where a is any non-sensing action, and dpt1 and dpt2 are tree pro-
grams.

This class includes conditional programs where one can only test a
condition that has just been sensed. Thus as shown in [19], whenever
a TREE program is executable, it is also epistemically feasible, i.e.,

Cognitive Robotics Workshop 2004 90

the agent can execute it without ever getting stuck not knowing what
transition to perform next. TREE programs are clearly determinis-
tic.

Let us define a relation KHowByEC : Program × History ×
TREE . The relation is intended to associate a program δ and history
σ for which KHowEC holds with some TREE program(s) that can
be used as a strategy for successfully executing δ in σ.

We define KHowByEC(δ, σ, δtp) to be the least relation
R(δ, σ, δtp) such that:

(A) if (δ, σ) is final, then R(δ, σ, nil);
(B) if (δ, σ) may evolve to configurations (δ′, σ · (a, 1)) and

(δ′, σ · (a, 0)) w.r.t. some models M1 and M2, respec-
tively, of theory D, and there exist δ

tp
1

and δ
tp
0

such that
R(δ′, σ · (a, 1), δtp

1
) and R(δ′, σ · (a, 0), δtp

0
) hold, then

R(δ, σ, (a; if φ then δ
tp
1

else δ
tp
0

endIf)) where φ is the condi-
tion on the right hand side of the sensed fluent axiom for a (i.e.,
action a senses the truth value of formula φ).

(C) if there exists an action a and a program δ′ for which (δ, σ) may
evolve to configuration (δ′, σ · (a, µ)) only for some unique sens-
ing outcome µ and some model M of theory D, and there exist δ′′

such that R(δ′, σ · (a, µ), δ′′) holds, then R(δ, σ, (a; δ′′)).

Condition (A) deals with the simple case of a terminating config-
uration; condition (B) handles the case in which the current config-
uration can perform a step with some (sensing) action a and where
both sensing outcomes 1 and 0 are eventually possible/consistent;
and condition (C) deals with the simpler cases of a non-sensing ac-
tion step and a sensing action step for which there is only one con-
sistent sensing outcome.

It is possible to show that whenever KHowByEC(δ, σ, δtp) holds,
then KHowEC(δ, σ) and KHowEC(δdp, σ) hold, and the TREE

program δtp is guaranteed to terminate in a Final situation of the
given program δ (in all models).

Theorem 2 For all programs δ, histories σ, and programs δtp, if
KHowByEC(δ, σ, δtp) then we have that

• KHowEC(δ, σ) and KHowEC(δdp, σ) hold; and
• There is a common execution for δtp and δ from end[σ]:

D ∪ C ∪ {Sensed[σ]} |=
∃s.Do(δtp, end[σ], s) ∧ Do(δ, end[σ], s).

In addition, every configuration captured in KHowEC can be exe-
cuted using a TREE program.

Theorem 3 For all programs δ and histories σ, if KHowEC(δ, σ),
then there exists a program δtp such that KHowByEC(δ, σ, δtp).

Since the number of steps a TREE program performs can be
bounded in advance, it follows that KHowEC will never hold for
programs/problems that are solvable, but whose execution requires
a number of steps that cannot be bounded in advance, as it is the
case with the program in the tree chopping example. Thus KHowEC

is severely restricted as an account of knowing how; it can only be
complete when all possible strategies are bounded.

5 DELIBERATION: ET-BASED ACCOUNT

We saw earlier that the reason KHowEC failed on the tree chopping
example was that it required the agent to have a choice of action that

guaranteed reaching a final configuration even for histories that were
inconsistent with the domain specification such as the infinite history
corresponding to the hypothetical scenario described in the previous
paragraph. There was a branch in the configuration tree that corre-
sponded to that history. This occurred because “local consistency”
was used to construct the configuration tree. The consistency check
kept switching which model of D ∪ C (which may be thought as
representing the environment) was used to generate the next sens-
ing result, postponing the observation that the tree had come down
forever. But in the real world, sensing results come from a fixed envi-
ronment (even if we don’t know which environment this is). It seems
reasonable that we could correct the problem by fixing the model of
D∪C used in generating possible configurations in our formalization
of knowing how. This is what we will now do.

We define when an agent knows how to execute a program δ in
a history σ and a model M (which represents the environment),
KHowInM(δ, σ, M), as the smallest relation R(δ, σ) such that:

(T1) if (δ, σ) is final, then R(δ, σ);
(T2) if (δ, σ) may evolve to (δ′, σ·(a, µ)) w.r.t. M and R(δ′, σ·(a, µ)),

then R(δ, σ);

The only difference between this and KHowEC is that the sens-
ing results come from the fixed model M . Given this, we obtain the
following formalization of when an agent knows how to execute a
program δ in a history σ:

KHowET (δ, σ)
iff

for every model M such thatM |= D ∪ C ∪ {Sensed[σ]},
KHowInM(δ, σ, M) holds.

We call this type of formalization entailment and truth-based, since
it uses entailment to ensure that the agent knows what transitions she
can do, and truth in a model to obtain possible sensing results.

We claim that KHowET is actually correct for programs δ that
are deterministic. For instance, it handles the tree chopping example
correctly:

Proposition 4 KHowET (δtc, ε) holds w.r.t. theory Dtc.

Furthermore, KHowET is strictly more general than KHowEC . For-
mally,

Theorem 5 For any background theory D and any configuration
(δ, σ), if KHowEC(δ, σ) holds, then KHowET (δ, σ). Moreover, there
is a background theory D∗ and a configuration (δ∗, σ∗) such that
KHowET (δ∗, σ∗) holds, but KHowEC(δ∗, σ∗) does not.

6 DISCUSSION AND CONCLUSION

In an extended version of this paper, we show how the notion of
ability to achieve a goal can be defined in terms of our notions of
knowing how to execute a deterministic program. We observe that
an EC-based definition of ability inherits the limitations of the EC-
based definition of knowing how. Then, we examine knowing how
to execute a nondeterministic program. We consider two ways of
interpreting this: one (angelic knowing how) where the agent does
planning/lookahead to make the right choices, and another (demonic
knowing how) where the agent makes choices arbitrarily. We discuss
EC-based and ET-based formalizations of these notions. Finally, we
show how angelic knowing how can be used to specify a powerful
planning construct in the IndiGolog agent programming language.

Cognitive Robotics Workshop 2004 91

In this paper, we have looked at how to formalize when an agent
knows how to execute a program, which in the general case, when the
program is nondeterministic and the agent does lookahead and rea-
sons about possible execution strategies, subsumes ability to achieve
a goal. First, we have shown that an intuitively reasonable entail-
ment and consistency-based approach to formalizing knowing how,
KHowEC , fails on examples like our tree chopping case and that,
in fact, KHowEC can only handle problems that can be solved in a
bounded number of steps, i.e. without indefinite iteration.

The problems of accounts like KHowEC when they are formal-
ized in epistemic logic, such as Moore’s [14], had been pointed out
before, for instance in [9]. However, the reasons for the problems
were not well understood. The results we have presented clarify the
source of the problems and show what is needed for their solution.
A simple meta-theoretic approach to knowing how fails; one needs
to take entailment and truth into account together. (Even if we use a
more powerful logical language with an knowledge operator, knowl-
edge and truth must be considered together.)

Our non-epistemic accounts of knowing how are easily related to
models of agent programming language semantics and our results
have important implications for this area. While most work on agent
programming languages (e.g. 3APL [8], AgentSpeak(L) [17], etc.)
has focused on reactive execution, sensing is acknowledged to be
important and there has been interest in providing mechanisms for
run-time planning/deliberation. The semantics of such languages are
usually specified as a transition system. For instance in 3APL, con-
figurations are pairs involving a program and a belief base, and a
transition relation over such pairs is defined by a set of rules. Evalu-
ating program tests is done by checking whether they are entailed by
the belief base. Checking action preconditions is done by querying
the agent’s belief base update relation, which would typically involve
determining entailments over the belief base — the 3APL semantics
abstracts over the details of this. Sensing is not dealt with explicitly,
although one can suppose that it could be handled by simply updating
the belief base (AgentSpeak(L) has events for this kind of thing).

As mentioned, most work in the area only deals with on-line re-
active execution, where no deliberation/lookahead is performed; this
type of execution just involves repeatedly selecting some transition
allowed in the current configuration and performing it. However, one
natural view is that deliberation can simply be taken as a different
control regime involving search over the agent program’s transition
tree. In this view, a deliberating interpreter could first lookahead and
search the program’s transition tree to find a sequence of transitions
that leads to successful termination and later execute this sequence.
This assumes that the agent can chose among all alternative tran-
sitions. Clearly, in the presence of sensing, this idea needs to be
refined. One must find more than just a path to a final configura-
tion in the transition tree; one needs to find some sort of conditional
plan or subtree where the agent has chosen some transition among
those allowed, but must have branches for all possible sensing re-
sults. The natural way of determining which sensing results are pos-
sible is checking their consistency with the current belief base. Thus,
what is considered here is essentially an EC-based approach.

Also in work on planning under incomplete information, e.g.
[3, 15, 5], a similar sort of setting is typically used, and finding a
plan involves searching a (finite) space of knowledge states that are
compatible with the planner’s knowledge. The underlying models of
all these planners are meant to represent only the current possible
states of the environment, which, in turn, are updated upon the hypo-
thetical execution of an action at planning time. We use models that
are dynamic in the sense that they represent the potential responses

of the environment for any future state. In that way, then, what the
above planners are doing is deliberation in the style of KHowEC . An
interesting case arises with answer set planning/programming, e.g.
[2, 20, 21]. There, plans are found by inspecting all models of an
underlying logic program and, hence, they seem, in principle, to be
more in the lines of our ET-based approach to deliberation. Nonethe-
less, all these approaches are eventually restricted to propositional
languages and, as a result, only bounded problems can be expressed.

Our results show that the ET-based view of deliberation is funda-
mentally flawed when sensing is present. It produces an account that
only handles problems that can be solved in a bounded number of
actions. As an approach to implementing deliberation, this may be
perfectly fine. But as a semantics or specification, it is wrong. What
is required is a much different kind of account, like our ET-based
one.

Finally, we point out that even though one might argue that re-
sults concerning the indistinguishability of unbounded nondetermin-
ism [13, 1] (e.g., a∗b being observationally indistinguishable from
a∗b+aω) are a problem for our approach, this is not the case because
we are assuming that agents can reason about all possible program
executions/futures.

REFERENCES

[1] K.R. Apt and E.R. Olderog, Verification of Sequential and Concurrent
Programs, Springer-Verlag, 1997.

[2] Chitta Baral and Michael Gelfond, Reasoning Agents in Dynamic Do-
mains, chapter 12, 257–275, Kluwer, 2000.

[3] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, ‘Planning in non-
deterministic domains under partial observability via symbolic model
checking’, in Proc. of IJCAI-01, pp. 473–478, (2001).

[4] Ernest Davis, ‘Knowledge preconditions for plans’, Journal of Logic
and Computation, 4(5), 721–766, (1994).

[5] Giuseppe De Giaccomo, Luca Iocchi, Daniele Nardi, and Riccardo
Rosati, ‘Planning with sensing for a mobile robot’, in Proc, of ECP-
97, pp. 156–168, (1997).

[6] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121, 109–169, (2000).

[7] Giuseppe De Giacomo and Hector J. Levesque, ‘An incremental inter-
preter for high-level programs with sensing’, in Logical Foundations
for Cognitive Agents, eds., Hector J. Levesque and Fiora Pirri, 86–102,
Springer-Verlag, (1999).

[8] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. J. Ch. Meyer,
‘A formal semantics for an abstract agent programming language’, in
Proc. of ATAL-97, pp. 215–229, (1998).

[9] Yves Lespérance, Hector J. Levesque, Fangzhen Lin, and Richard B.
Scherl, ‘Ability and knowing how in the situation calculus’, Studia Log-
ica, 66(1), 165–186, (2000).

[10] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl, ‘GOLOG:
A logic programming language for dynamic domains’, Journal of Logic
Programming, 31, 59–84, (1997).

[11] Fangzhen Lin and Hector J. Levesque, ‘What robots can do: Robot
programs and effective achievability’, Artificial Intelligence, 101, 201–
226, (1998).

[12] John McCarthy and Patrick Hayes, ‘Some philosophical problems from
the standpoint of artificial intellig ence’, in Machine Intelligence, eds.,
B. Meltzer and D. Michie, volume 4, 463–502, Edinburgh University
Press, (1979).

[13] Robin Milner, Communication and Concurrency, Prentice Hall, 1989.
[14] Robert C. Moore, ‘A formal theory of knowledge and action’, in Formal

Theories of the Common Sense World, eds., J. R. Hobbs and Robert C.
Moore, 319–358, (1985).

[15] Ron Petrick and Fahiem Bacchus, ‘A knowledge-based approach to
planning with incomplete information and sensing’, in Proc. of AIPS-
02, pp. 212–221, (2002).

[16] Gordon Plotkin, ‘A structural approach to operational semantics’, Tech-
nical Report DAIMI-FN-19, Computer Science Dept., Aarhus Univer-
sity, Denmark, (1981).

Cognitive Robotics Workshop 2004 92

[17] Anand S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logica com-
putable language’, in Agents Breaking Away (LNAI), eds., W. Vander
Velde and J. W. Perram, volume 1038, 42–55, Springer-Verlag, (1996).

[18] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[19] Sebastian Sardina, Yves De Giacomo, Giuseppe Lespénce, and Hector
Levesque, ‘On the semantics of deliberation in IndiGolog – from theory
to implementation’, Annals of Mathematics and Artificial Intelligence,
41(2–4), 259–299, (2004). Previous version appeared in Proc. of KR-
2002.

[20] T. Son, C. Baral, and S. McIlraith, ‘Extending answer set planning with
sequence, conditional, loop, non-deterministic choice, and procedure
constructs’, in Proceedings of the AAAI Spring Symposium on Answer
Set Programming: Towards Efficient and Scalable Knowledge Repre-
sentation and Reasoning.

[21] Tran Son, Phan Huy Tu, and Chitta Baral, ‘Planning with sensing ac-
tions and incomplete information using logic programming’, in Pro-
ceedings of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning, LPNMR 2004, Lecture Notes in Com-
puter Science, pp. 261–274, Fort Lauderdale, FL, USA. Springer.

Cognitive Robotics Workshop 2004 93

1

Cognitive Robotics Workshop 2004 94

Have another look
On Failures and Recovery Planning in Perceptual

Anchoring
Mathias Broxvall and Silvia Coradeschi and Lars Karlsson and Alessandro Saf£otti

Applied Autonomous Sensor Systems, Örebro University, Sweden
{mathias.broxvall,silvia.coradeschi,lars.karlsson,alessandro.saf£otti}@aass.oru.se

Abstract. An important requirement for autonomous systems is
the ability to detect and recover from exceptional situations such as
failures in observations. In this paper we demonstrate how techniques
for planning with sensing under uncertainty can play a major role in
solving the problem of recovering from such situations. In this £rst
step we concentrate on failures in perceptual anchoring, that is how to
connect a symbol representing an object to the percepts of that object.
We provide a classi£cation of failures and present planning-based
methods for recovering from them. We illustrate our approach by
showing tests run on a mobile robot equipped with a color camera.

1 Introduction

There is an increasing demand for intelligent robots capable of robust
operation in unconstrained environments. One of the great challenges
for these robots is the need to cope autonomously with exceptional
situations that arise during the execution of the assigned tasks. Ex-
plicit coding of all the possible exceptions is clearly unfeasible for
environments and tasks of a realistic complexity. A more effective
approch is to endow the system with the ability to use knowledge-
based techniques to reason about the state of the execution, detect
anomalies, and automatically generate a contingency plan.

Most existing systems that take this approach (e.g., [8, 2, 11, 17,
19]) focus on the external state of the world, looking for discrepan-
cies between the observed state and the expected one. Discrepancies
can originate in the failure of actions performed by the robot as well
as in exogenous events. There is however another common cause of
problems in the execution of robot plans, which is more related to
the internal state of the robot: failures in perception, including the
inability to acquire the perceptual data needed to perform the desired
actions. The ability of the robot to detect perceptual failures and to
recover from them is pivotal to its providing autonomous and robust
operation. In this context, Murphy and Hershberger [16] have sug-
gested a two-step approach: a generate and test strategy for classify-
ing sensor failures, and a recovery strategy where the failing sensory
process is replaced with an equivalent process.

Several works in the £eld have addressed the problem of plan-
ning for perceptual actions. Perception planning has been studied as
a means for gathering better visual information [14, 1], for achieving
safer landmark-based navigation [15, 9], for performing tasks that in-
volve sensing actions [10, 13], and for generating image processing
routines [3]. None of these works, however, deal with the problem of
failures in the perceptual actions and of the automatic recovery from

these failures.
We propose to use AI planning techniques to automatically gen-

erate a plan to recover from failures in the perceptual processes. We
focus on one speci£c type of perceptual process: perceptual anchor-
ing. Perceptual anchoring is the process of creating and maintaining
the right correspondence between the symbols used by the planner
to denote objects in the world and the perceptual data in the sensori-
motoric system that refer to the same objects. In a previous paper
[4] a simple case of anchoring failure due to the accumulation of
uncertainty has been investigated. In this paper, we extend that in-
vestigation and analyze all the different cases of ambiguity that can
make the anchoring process fail. For each case, we show how that
situation can be automatically detected and isolated, and how we can
use a planner to generate a sequence of actions to recover from the
failure when possible.

In the next section, we give a brief reminder of perceptual anchor-
ing. In section 3 we classify the different ways in which anchoring
can fail, and explain how they can be detected. In section 4 we show
how the failure situation can be modeled in a planner and a recov-
ery plan generated automatically for those cases that can be £xed.
Finally, we demonstrate our technique by presenting a series of ex-
periments run on a mobile robot equipped with a color camera.

2 Perceptual Anchoring

Autonomous systems embedded in the physical world typically in-
corporate two different types of processes: high-level cognitive pro-
cesses, that perform abstract reasoning and generate plans for ac-
tions; and sensory-motoric processes, that observe the physical world
and act on it. These processes have different ways to refer to physical
objects in the environment. Cognitive processes typically (although
not necessarily) use symbols to denote objects, like ‘b1’. Sensory-
motoric processes typically operate from sensor data that originate
from observing these objects, like a region in a segmented image. If
the overall system has to successfully perform its tasks, it needs to
make sure that these processes “talk about” the same physical ob-
jects. This has been de£ned as the anchoring problem [7], illustrated
in Fig. 1:

Anchoring is the process of creating and maintaining the cor-
respondence between symbols and sensor data that refer to the
same physical objects.

Cognitive Robotics Workshop 2004 95

Autonomous SystemPhysical World

Sensori−motoric system

Symbolic reasoning system

table1

room3

Anchoring

observe

denote
cup22 symbols

sensor data

door5

Figure 1. The perceptual anchoring problem.

In our work, we use the computational framework for anchoring
de£ned in [5]. In that framework, the symbol-data correspondence
for a speci£c object is represented by a data structure called an an-
chor. An anchor includes pointers to the symbol and sensor data be-
ing connected, together with a set of properties useful to re-identify
the object, e.g., its color and position. These properties can also be
used as input to the control routines.

Consider for concreteness a mobile robot equipped with a vision
system and with a symbolic planner. Suppose that the planner has
generated the action ‘GoNear(b1)’, where the symbol ‘b1’ denotes
an object described in the planner as ’a tall green gas bottle’.1 The
‘GoNear’ operator is implemented by a sensori-motor loop that con-
trols the robot using the position parameters extracted from a region
in the camera image. In order to execute the ‘GoNear(b1)’ action,
the robot must make sure that the region used in the control loop is
exactly the one generated by observing the object that the planner
calls ‘b1’. Thus, the robot uses a functionality called Find to link the
symbol ‘b1’ to a region in the image that matches the description ’a
tall green gas bottle’. The output of Find is an anchor that contains,
among other properties, the (x, y) position of the gas bottle, which
is used by the ‘GoNear’ routine. While the robot is moving, a func-
tionality called Track is used to update this position using new per-
ceptual data. Should the gas bottle go temporarily out of view, e.g.,
because it is occluded by another object, the Reacquire functionality
would be called to update the anchor as soon as the gas bottle is in
view again. More details about perceptual anchoring can be found in
[5, 6, 7].

A central ingredient in all the anchoring functionalities is the
matching between the symbolic description given by the planner and
the observed properties of the percepts generated by the sensor sys-
tem. Matching is needed to decide which percepts to use to create
or update the anchor for a given symbol. Matching between a sym-
bolic description and a percept can be partial or complete [6]. It is
complete if all the observed properties in the percept match the de-
scription and vice-versa. It is partial if all the observed properties in
the percept match the description, but there is some property in the
description that have not been observed (or not reliably).2 For exam-

1 Throughout this paper, we use examples inspired by an ongoing rescue
project where the robot is supposed to £nd overheated and dangerous gas
bottles in a burnt building.

2 Note that matching does not have to be a binary concept, but can be con-
sidered in degrees. In such cases, we use a threshold to determine what is
partial and what is complete; the threshold can be raised if there are several
matching candidates.

ple, consider the description “a gas bottle with a yellow mark”. A gas
bottle in an image where no mark is visible provides a partial match,
since the mark might not be visible from the current viewpoint.

3 Anchoring with ambiguities

An important challenge in the anchoring process is how to treat am-
biguous cases, that is cases for which it is not clear to what perceptual
data the symbol should be associated. The £rst step to treat ambigui-
ties is to detect that an ambiguity is actually present. The second step
is then to try to resolve the ambiguity if possible or otherwise admit
failure. In this section we concentrate on the detection of ambiguity,
while in the next section we present how some classes of ambiguous
situations can be recovered from using planning techniques.

To better characterize the ambiguous cases we need £rst to clar-
ify the distinction between de£nite and inde£nite descriptions for an
object. A description is de£nite when it denotes an unique object, for
instance ”the cup in my of£ce”, supposing that I have just one cup
in my of£ce. Linguistically one use in this case the article ”the”. An
inde£nite description requires that the object corresponds to the de-
scription, but not that it is unique, for instance ”a red cup”. De£nite
descriptions are especially challenging when an object is conceptu-
ally unique, but its perceptual properties do not characterize it un-
equivocally, for instance ”the cup that I have seen before”. This is
a common event in the Reacquire functionality when more than one
object matches the description of a previously seen object (in Reac-
quire descriptions are always de£nite). An example of this situation
is shown later in this paper.

An important case in anchoring is when we have multiple candi-
date percepts matching the description and by consentrating on this
we can indentify a number of different failures. The important vari-
ables when detecting and identifying an ambiguity in anchoring are
the number of candidate percepts that match a description completely
and partially, and whether the description involved is de£nite or in-
de£nite. In the following, we give a classi£cation of these ambigu-
ities. We also describe what the Find and Reacquire functionalities
return in each case, and what could constitute a recovery from the
situation.

Case 1: no candidates. In this case no object matching the descrip-
tion is found. Therefore, both Find and Reacquire return a failure
message. If the object might be somewhere else we generate a search-
plan. If one has exhausted the search possibilities, there is a failure.

Case 2: one or more partially matching candidates. A partial
matching indicates that one has inadequate information about some
relevant properties of the perceived object(s). When this happens,
both functionalities create temporary anchors for each of the candi-
dates and return these anchors to be used by the recovery planner.
Sometimes, one might still be able to determine whether this is the
requested object - one might e.g. have prior information that there
are no other similar objects around — and in those occasions, the
case turns into one of a complete matching (see below). However,
in most situations one will need to try to acquire more information
about the object(s) in question, in order to get a complete match.
Therefore, one needs to generate a recovery plan. The anchors cre-
ated by the functionalities let the planner access to information about
these objects while the recovery plan is constructed and executed. If
the situation is successfully disambiguated, the planner informs the
anchoring module which of the candidate perceived objects should
be used for anchoring.

Case 3: a single completely matching candidate. This is the ideal

Cognitive Robotics Workshop 2004 96

case: one just picks that candidate. Both functionalities create an an-
chor and return it to the planner.

Case 4: one completely matching candidate, and some partially
matching ones. The inde£nite case is simple: one can just pick the
completely matching candidate. For the de£nite case, that is also an
option. However, if one is cautious and wants to ascertain that there is
not an ambiguity hidden here, one might want to acquire more infor-
mation to be able to rule out the candidates with incomplete matches.
In our current implementation in the inde£nite case the Find func-
tionality creates an anchor with the completely matching candidate
and returns it to the planner. In the de£nite case both functionalities
create anchors both for the complete matching candidate and the in-
complete matching ones. They then return the anchors while making
a distinction between the completely and partially matching ones.

Case 5: multiple completely matching candidates. Again, the in-
de£nite case is simple: just pick one of the candidates. The Find
functionality creates an anchor with the completely matching can-
didate and returns it to the planner. In the de£nite case, however, this
constitutes a serious problem: as the matchings are complete, the sit-
uation cannot be resolved by getting more perceptual information.
Instead, the description has to be considered insuf£cient, and needs
to be made more precise. (how to do that is not adressed in this pa-
per).

Finally, we should point to some particular dif£cult situations:
when the description is not only insuf£cient but also wrong; when
important characteristics of the object have changed in a way we
cannot predict (e.g. the shape has been deformed); and when our per-
cepts are not just uncertain but misleading (e.g. a re¤ection is taken
to be a color mark). In such cases, we might get mismatches that
should have been matches, and vice versa, which in turn leads to an
erroneous estimate of the situation and possibly also a misclassi£ca-
tion of what case we have.

4 Recovery planning for anchoring

In order to recover from cases 1, 2 and (optionally) 4 above, we en-
code the situations as planning problems for a conditional possibilis-
tic/probabilistic planner called PTLplan [12]. The other cases either
do not need to be solved (case 3) or cannot be solved (case 5).

PTLplan searches in a space of epistemic states, or e-states for
short, where an e-state represents the agent’s incomplete and uncer-
tain knowledge about the world at some point in time. An e-state can
be considered to represent a set of hypotheses about the actual state
of the world, for instance that a certain gas bottle has a mark on it
or has not a mark on it. The planner can reason about perceptive ac-
tions, such as looking at an object, and these actions have the effect
that the agent makes observations that may help it to distinguish be-
tween the different hypotheses. Each different observation will result
in a separate new and typically smaller e-state, and in each such e-
state the agent will know more than before. For instance, looking at
a gas bottle may result in two observations leading to two possible
e-states: one where the agent knows there is a mark, and one where
it knows there isn’t a mark on that side.

A recovery situation in anchoring typically occurs when the robot
is executing some higher-level plan and encounters one of the am-
biguous but recoverable cases above. Such a situation is handled in
£ve steps:

1. The problematic situation is detected and classi£ed as above, and
the top-level plan is halted.

2. The planner automatically formulates an initial situation by con-
sidering the properties of the requested object and of the perceived
objects, and generating different hypotheses for which of the ob-
jects corresponds to the requested object. It also formulates a goal
that the requested object should be identi£ed if present.

3. The planner searches for a plan taking as parameters the e-state
and the goal.

4. The plan is executed, and either the requested object is found and
identi£ed and can be anchored, or it is established that it cannot
be identi£ed.

5. If recovery was successful, the top-level plan is resumed.

The domain description used for anchoring recovery planning typi-
cally is not the same as is used for top-level plans (although in our
case the planner is the same). Typically, the actions involved would
be restricted to certain perceptual actions, and the description of the
locality may be more detailed to facilitate search.

4.1 Formulating the initial situations and goals

In case 1, where no candidate for the requested object (say b1) has
been found, a search needs to be performed. Therefore, the initial
situation consists of a number of hypotheses of where the object can
be found, including the hypothesis that it is nowhere around. For in-
stance, if there are four places in the room of interest, and we have
already searched at one of them, the hypotheses might be that b1 will
be visible from one of the remaining places, or from none (f below).
Note that the term following the “=” is the value of the property to
the left of the “=”, and the numbers are degrees of possibility associ-
ated with each hypothesis:

1.0 (visible-from b1 = r1 2)
1.0 (visible-from b1 = r1 3)
1.0 (visible-from b1 = r1 4)
0.5 (visible-from b1 = f)

To the above is added information about the topology of the room
that is to be searched, and the description of the object to be an-
chored, e.g. (shape b1 = gasbottle). The goal is formulated as (ex-
ists (?x) (nec (visible-from b1 = ?x))), which means that the agent
has determined from what place the object is visible.

In case 2, where there are one or more partially matching per-
ceived objects, the agent needs to £gure out which of them actually
matches the requested object b1. Thus, the hypotheses consists of the
different ways b1 can be anchored, based on the known properties of
b1 and the perceived properties of the perceived objects. Based on
the descriptions d for the requested object and di for each perceived
object poi, two extra descriptions are formulated for every di: £rst,
a description d+

i which completely matches d; and second, a non-
matching description d−

i which contains the different ways in which
at least one incompletely speci£ed property in di may not match with
d. For instance, if d = (mark b1 = t) and d1 = (mark po1 = t f)
(i.e. either true or false), then d+

i = (mark po1 = t) and d−

i =
(mark po1 = f). Each hypothesis then consists of the conjunction of
one d+

i for one of the poi and d−

j for all remaining j 6= i. To each
hypothesis is also added the statement (anchor b1 = poi) denoting
that b1 should be anchored to the object anchored by poi. There is
also one hypothesis that no object matches: d−

j for all j, and (anchor
b1 = f). Finally, if the planner wishes to take a cautious approach and
ascertain that no more than one object is matching, it might also add
a number of hypotheses consisting of d+

i , d+

j for two of the poi, poj

and dk for all remaining k 6= i, j, and (anchor b1 = f).
For instance, if b1 is known to be a green gas bottle with a mark

on it — (mark b1 = t) — and we perceive two green gas bottles po1

Cognitive Robotics Workshop 2004 97

and po2 but are not able to see any marks on them from the current
perspective, the (incautious) hypotheses might be:

1.0 (mark po1 = t), (mark po2 = f), (anchor b1 = po1)
1.0 (mark po1 = f), (mark po2 = t), (anchor b1 = po2)
0.5 (mark po1 = f), (mark po2 = f), (anchor b1 = f)

In addition, each of the two hypotheses can be subdivided further
into three different hypotheses regarding from where the mark can
be detected: (mark-visible-from po1 = r1 1) and so on.

The goal is achieved once a speci£c action (anchor b1 x) has
been performed. This action has as a precondition that x is the only
remaining anchor for b1: (nec (anchor b1 = x)). Thus, all other
candidate anchors have to be eliminated before anchor is applied.

Case 4 is quite similar to case 2 above, but consists of one hypoth-
esis where the completely matching percept is chosen for anchoring,
and a number of hypotheses where there are other objects matching
too.

4.2 Generating the recovery plan

After the initial situation and the goal have been established, plan
generation starts, using the appropriate domain description. The fol-
lowing action, for instance, is for looking for marks (and other visual
characteristics) on objects such as gas bottles.

(ptl-action
:name (look-at ?y)
:precond (((?p) (robot-at = ?p)) ((?y) (perceived-object ?y)))
:results (cond

((and (mark ?y = t) (mark-visible-from ?y = ?p))
(obs (mark! ?y = t)))

((not (and (mark ?y = t)
(mark-visible-from ?y = ?p)))

(obs (mark! ?y = f))))
:execute ((aiming-at me ?y)

(anchor-£nd ?y :when (aiming-at me ?y))))

In short, the precond part states that the action requires a per-
ceived object ?y and a current position ?p. The result part states
that if ?y has a mark, and if the robot looks at ?y from the ?p from
which the mark is visible, then the robot will observe the mark (and
thus know that there is a mark), and otherwise it will not observe
any mark. The obs form is the way to encode that the agent makes a
speci£c observation.

The plans generated by PTLplan are conditional: after each action
with observation effects (and with more than one alternative out-
come), the plan branches. The plan below is generated for looking
for marks on a single perceived object from three different positions,
starting from a fourth position. Note how a conditional branching fol-
lows after each application of look-at: the £rst clause “(mark! po-4
= t/f)” of each branch is the observation one should have made in or-
der to enter that branch, and the subsequent clauses are actions. The
action (anchor b1 x) at the end of each branch represents the deci-
sion to anchor b1 to some speci£c perceived object (or to no object
at all, if x = f).

((move r1 2) (look-at po-4)
(cond

((mark! po-4 = f) (move r1 3) (look-at po-4)
(cond

((mark! po-4 = f) (move r1 4) (look-at po-4)
(cond

((mark! po-4 = t) (anchor b1 po-4) :success)
((mark! po-4 = f) (anchor b1 f) :success)))

((mark! po-4 = t) (anchor b1 po-4) :success))
((mark! po-4 = t) (anchor b1 po-4) :success)))

Figure 2. Our robot investigating two bottles

We omit the details of how the plan is generated here, as our ap-
proach is not dependent on the particular planning algorithm. Ac-
tually, another planner with corresponding expressive power could
have been used instead.

4.3 Plan execution

The anchoring plan is then executed: the actions such as (look-at po-
4) are translated into executable perceptive and movement tasks (see
£eld :execute in the de£nition of look-at above). The anchor action
has a special role: it causes the symbol of the requested object to be
anchored to a speci£c perceived object. The robot can then continue
performing the task in its top-level plan that was interrupted.

5 Tests on a robot

To be able to test the methods described above we have implemented
and integrated them with a fuzzy behavior based system, the Think-
ing Cap [18], used for controlling a mobile robot. We have used this
system to run a number of scenarios yielding different kinds of ambi-
guities. We give here a brief description of the system, the scenarios
and the resulting executions.

The platform we have used is a Magellan Pro Research Robot.
equipped with standard sonars, bumpers and IR sensors. In addition
to the standard setup we have connected a camera and use a sim-
ple image recognition system to detect and extract information about
objects matching a number of prede£ned patterns.

Apart from the anchoring, plan execution and planning modules
described in the previous sections the complete system also consists
of a number of other parts which allows the robot to navigate in-
door environments safely and perceive the surroundings. Perception
is accomplished by continuously receiving percepts from the vision
system, associating them with earlier percepts and storing them for
later use by the anchoring system.

In these test the robot operates in a room containing one or more
gas bottles (Figure 2). These bottles can be of various colors and can
optionally have a mark on some side. Typical tasks we have given
the robot is to look for gas bottles matching a speci£c description,
approaching them, moving around in or exiting the room and re-
identifying previously found gas bottles. The actions available to the
robot were to look for a speci£c object at a speci£c place, to look
at a previously seen object, to move to different positions or near to
an object, to select a speci£c object for anchoring, and to perform
self-localization by moving to a £xed position.

Cognitive Robotics Workshop 2004 98

Scenario 1: No ambiguity. The £rst and simplest scenario we have
run is when we placed a green gas bottle in the room clearly visible
from the robot’s location and gave the planner the task to look for and
approach b1 with the symbolic description ((color green) (shape
gasbottle)). Initially, the plan executor called the Find functional-
ity. Since there was only one completely matching percept (case 3)
the system anchored b1 to this percept and continued with the plan.
The position property of the b1 anchor was used to approach the gas
bottle and £nish the original task.

Scenario 2: Searching the room. For the next tests we look at case
1, where we have no matching candidates to a Find. We set this up
by partially obstructing the gas bottle so that it could be seen only
from certain positions in the room. Next, we started the robot at a
position where the gas bottle was not visible and gave it again the task
to look for and approach b1 The £rst call to the Find functionality
failed. This triggered the planner to generate a recovery plan from
a description of the current world state, using the information that
there should somewhere be a gas bottle. The result was a conditional
plan that would navigate to different parts of the room, looking for
the gas bottle, and announcing success when it was found. After this,
the original task of approaching b1 could continue.

Scenario 3: Partially matching objects. In this scenario we choose
to look at case 2 were the system perceives one or more objects only
partially matching the description. We did this by using a red gas
bottle with a mark on it which was not visible from the initial posi-
tion. We then asked the system to look for b1 matching ((color red)
(mark t) (shape gasbottle)) and the Find functionality was called.

At this point in time the system perceived a red gas bottle but could
not determine whether it was marked on some side. Thus we had only
one partially matching candidate. The system now created a tempo-
rary anchor Anchor-1 for this object and the planner generated a
recovery plan using the knowledge that Anchor-1 might be the same
as b1 and then should have a mark visible from some side. The plan-
ner produced a conditional plan which would navigate through the
room and observe Anchor-1 to see if a mark was visible from the
different viewpoints and to halt when the mark was found. The robot
navigated through the room, found the mark and concluded that the
observed gas bottle was the right one.

We also successfully ran the same scenario with more advanced
setups where we either had no mark on the gas bottle, or where we
had two gas bottles of which only one was marked.

Scenario 4: Planning to reacquire. In order to test a reacquire ambi-
guity we had to setup a scenario where the position of an object could
not be used to uniquely identify a previously acquired object. To do
this we started with two gas bottles in front of the robot, one of the
gas bottles had a mark on the side facing the robot. Next, we asked
the robot to look for b1 with the inde£nite description ((marked
yes) (shape gasbottle)); to exit to a corridor in the opposite side of
the room; and £nally to again enter the room and reacquire b1.

In the initial Find we got one partial and one completely matching
candidate (case 4) and the marked gas bottle was anchored to b1. Af-
ter this the robot navigated to the opposite side of the room; entered
the corridor and went back into the room again. The accumulated un-
certainty in the robot’s self localization was now so large that when
the robot was doing the £nal reacquire, it failed to determine which
percept corresponded to b1. Since the mark on the initially anchored
gas bottle could not be seen from this position we had an ambiguity
due to multiple partial matchings (case 2). Thus the planner was trig-
gered to resolve the ambiguity and it generated a plan to investigate

both gas bottles to see which one was marked. The result was that
the robot reacquired the right gas bottle.

We also tested alternative versions of this setup where instead of
failing due to bad self localization we either moved the gas bottles
or introduced a new gas bottle before acquiring them again. Moving
without observing, or introducing new bottles always gave ambigui-
ties. Due to the implicit tracking done by the vision system, moving
them while observed gave only ambiguities if the gasbottles over-
lapped from the cameras viewpoint during movement. In either case
these version gave the same kind of ambiguities and was also solved
correctly by observing the gas bottles from different positions until
the mark was found.

Scenario 5: Planning for relocalization. Since our implemented
system mainly uses odometry for localization the degree of uncer-
tainties in the position of objects increases monotonically with move-
ment, unless the objects are observed. This means that even though
we have acquired an object and have a position property we may get
only a partial matching during a later reacquire on the same object.

To see that this case could be handled, we setup a scenario with
two identical gasbottles where we let the robot acquire one of them as
b1. Next, we moved the robot (out of the room and back) and asked
it to go near b1. Because of odometry errors the position property of
b1 could not be used to acquire the right gasbottle and instead we
got an ambiguity (case 2). The solution generated by the planner was
to use a self localization action to remove the odometry error and
acqurie the right gas bottle.

6 Conclusions

There are two main contributions in this paper. Firstly, we have high-
lighted the usefulness of knowledge-based planning in robotics in the
context of autonomous recovery from perceptual errors. Our results
indicate that this direction is very promising for what concerns re-
covery from anchoring failures, in particular as the complexity and
variety of the problems involved motivates the use of on-line plan-
ning as opposed to a hard-coded approach.

Secondly, we have presented a classi£cation of different cases that
can be the outcome when an embedded agent such as a robot is at-
tempting to anchor symbols to percepts. We have also shown how to
use planning techniques to automatically recover from some of these
cases, and we have demonstrated our approach on a mobile robot
confronted with a number of failure situations.

7 Acknowledgements

This work has been supported by The Swedish Research Council
(Vetenskapsrªadet) and by the Swedish KK foundation.

REFERENCES
[1] C. Barrouil, C. Castel, P. Fabiani, R. Mampey, P. Secchi, and C. Tessier.

Perception strategy for a surveillance system. In Proc. of ECAI, pages
627–631, 1998.

[2] M. Beetz and D. McDermott. Expressing transformations of structured
reactive plans. In Proc. of the European Conf. on Planning,, pages 64–
76. Springer, 1997.

[3] Michael Beetz, Tom Arbuckle, Armin B. Cremers, and Markus Mann.
Transparent, ¤exible, and resource-adaptive image processing for au-
tonomous service robots. In Proc. of the 13th European Conference on
Arti£cial Intelligence, pages 158–170. John Wiley and Sons, 1998.

[4] M. Broxvall, L. Karlsson, and A. Saf£otti. Steps toward detecting and
recovering from perceptual failures. In Proc. of the 8th Int. Conf. on
Intelligent Autonomous Systems (IAS), Amsterdam, NL, 2004.

Cognitive Robotics Workshop 2004 99

[5] S. Coradeschi and A. Saf£otti. Anchoring symbols to sensor data: pre-
liminary report. In Proc. of the 17th AAAI Conf., pages 129–135, Menlo
Park, CA, 2000. AAAI Press.

[6] S. Coradeschi and A. Saf£otti. Perceptual anchoring of symbols for
action. In Proc. of the 17th IJCAI Conf., pages 407–412.

[7] S. Coradeschi and A. Saf£otti. An introduction to the anchoring prob-
lem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003. Special
issue on perceptual anchoring.

[8] R.E. Fikes, P. Hart, and N.J. Nilsson. Learning and executing general-
ized robot plans. Arti£cial Intelligence, 3(4):251–288, 1972.

[9] J. Gancet and S. Lacroix. PG2P: A perception-guided path planning
approach for long range autonomous navigation in unkown natural en-
vironments. In Proc. of IROS, Las Vegas, NV, 2003. To appear.

[10] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Planning with
sensing for a mobile robot. In Proc. of the 4th European Conf. on
Planning, pages 158–170. Springer, 1997.

[11] K.Z. Haigh and M.M. Veloso. Interleaving planning and robot execu-
tion for asynchronous user requests. Autonomous Robots, 5(1):79–95,
1998.

[12] L. Karlsson. Conditional progressive planning under uncertainty. In
Proc. of the 17th IJCAI Conf., pages 431–438. AAAI Press, 2001.

[13] L. Karlsson and T. Schiavinotto. Progressive planning for mobile
robots: a progress report. In M. Beetz, J. Hertzberg, M. Ghallab, and
M. Pollack, editors, Advances in Plan-Based Control of Robotic Agents,
pages 106–122. Springer, Berlin, DE, 2002.

[14] S. Kovacic, A. Leonardis, and F. Pernus. Planning sequences of views
for 3-D object recognition and pose determination. Pattern Recogni-
tion, 31:1407–1417, 1998.

[15] A. Lazanas and J.C. Latombe. Motion planning with uncertainty: A
landmark approach. Arti£cial Intelligence, 76(1-2):285–317, 1995.

[16] Robin R. Murphy and David Hershberger. Classifying and recovering
from sensing failures in autonomous mobile robots. In Proc. AAAI-96,
pages 922–929, 1996.

[17] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N. Muscettola, P.P. Nayak,
M.D. Wagner, and B.C. Williams. An autonomous spacecraft agent
prototype. Autonomous Robots, 5(1):1–27, 1998.

[18] A. Saf£otti, K. Konolige, and E.H. Ruspini. A multivalued-logic ap-
proach to integrating planning and control. Arti£cial Intelligence, 76(1–
2):481–526, 1995.

[19] L. Seabra-Lopes. Failure recovery planning in assembly based on ac-
quired experience: learning by analogy. In Proc. IEEE Intl. Symp. on
Assembly and Task Planning, Porto, PT, 1999.

Cognitive Robotics Workshop 2004 100

1

Cognitive Robotics Workshop 2004 101

Flexible Interval Planning in Concurrent Temporal Golog
Alberto Finzi and Fiora Pirri 1

Abstract. In this paper we present an approach to flexible plan-
ning and scheduling based on a suitable mapping of the Constraint
Based Interval Planning paradigm [7, 2] into the Situation Calculus.
We show how this representation is particular suitable for executive
control processes, and illustrate this with an example.

1 Introduction

A central feature in executive control is flexible tasks alternation,
yielding switching-time criteria, based on tasks, goal and the current
situation needs. Inin vitro domains2, robots are requested to per-
forming multiple tasks either simultaneously or in rapid alternation,
using diverse sensing and actuating tools, like navigation, visual ex-
ploration, mapping, perceptual analysis, etc. To guarantee that such
multiple-task performance can be achieved, some approaches have
proposed that executive control processes supervise the selection, ini-
tiation, execution, and termination of actions. In this sense, a well
known approach to executive control is Constraint Based Interval
Planning (CBIP), amalgamating planning, scheduling and resources
optimization for reasoning about the competing activities involved
in a flexible concurrent plan (see [7, 2, 4]). The CBIP approach, like
similar ones, emerged from the planning community, and have shown
a strong practical impact in executive control processes [10, 18].

From the vantage point of cognitive robotics a question to be
addressed is how executive control processes interact with basic
perceptual-motor and cognitive processes used for performing indi-
vidual tasks, how priorities among individual processes can be estab-
lished, and how resources can be allocated to them during multiple-
task performance (see [5, 8, 3]).

In particular, when dealing with the executive control it seems that
approaches (such as the CBIP) tailored to the practical needs of reac-
tive planning are more suitable. In this paper we show that CBIP per-
spective, on executive control processes, with all its arsenal of spec-
ifications in terms of flexible time, alternation constraints, resources
optimization, failure recovering, and tasks scheduling, can be easily
imported into the framework of the Situation Calculus([16, 9]), ex-
ploiting already established temporal and concurrent extensions of
basic theory of actions, as those provided by [12, 14, 13, 17, 5]. The
resulting language is one naturally belonging to the Concurrent Tem-
poral Golog (CTG) families of languages, and it offers the possibil-
ity of manipulating flexible plans on a multiple time line. The paper
is just introductory, and several problems still need to be addressed
and solved; among these we mention the need of indexing situations
so as to ensure multiple independent timelines, a suitable formaliza-
tion of forgetting executed processes, progressing to the current set
of processes, side effects of processes, and failure management. The
mapping proposed is somehow obvious due to the expressive power

1 University of Rome “La Sapienza”
2 Domains requiring effective robots performance, even if suitably con-

strained so as to keep possible domino effects under control

of the Situation Calculus, but here can be meaningful, as it would of-
fer to the temporal planning community a way to compare the Golog
specification environment with the CBIP modeling constructs, and it
provides a new account for deploying Golog at the executive control.
In fact, we show how it can be used to implement a parallel control
system for a particularly difficult task such as therobocup rescue.

2 Preliminaries

2.1 Situation Calculus and Golog

The Situation Calculus (SC) [9] is a sorted first order language
representing dynamic domains by means ofactions, situations,
andfluents. Actionsandsituationare first order terms. A situation
denotes a history of actions compound with the binary symbol
do: do(a, s) is the situation obtained by executing the actiona
after the sequences. The constant symbolS0 stands for the initial
situation (i.e. the empty sequence). In this work, we assume the
Temporal Concurrent Situation Calculus presented in [12, 15, 14].
To represent time in the Situation Calculus, one of the arguments to
the action function symbol is the time of the action’s occurrence. For
example,startGoing(a, 12.01) is the action of starting to move
toward a at time 12.01. All actions are viewed as instantaneous.
The function symboltime(a) denotes the occurrence time of action
a, while start(s) denotes the start time of situations. The latter is
defined as:start(do(a, s)) = time(a), and time(a) is defined,
for each action terma, to be its temporal argument, for example,
time(startGo(a, t)) = t. In this paper, we will use the notations[~t]
to represent the situations with ~t free temporal variables. Following
[16], we represent concurrent actions as sets of primitive actions:
the actions are sorted in simple actiona and concurrentc. a ∈ c
means that the simple actiona is one of the concurrent actions inc.
We rely on the standard interpretation of sets and their operations
and relations. Since in the concurrentSC, situations are lists of
concurrent actions, we have situation terms likedo({a1, a2}, s).
A fluent is a predicate whose last argument is a situation, e.g.
at(hill, do(endGo(hill, 10), break, do(stratGo(hill, 2.1), S0))).
Fluents predicates denote properties that can change with the action
execution.

In theSC concurrent durative actions are considered asprocesses
[12, 16], represented by fluents, and durationless actions are to start
and terminate the processes. For example,going(hill, s) is started
by the actionstartGo(hill, t) and it is ended byendGo(hill, t′).

Domain Theory. In theSC a dynamic domain can be described
by aBasic Action Theory(BAT) which is composed of the classes
of axioms:Σ∪ DS0∪ Dssa∪ Duna∪ Dap. HereΣ is the set of foun-
dational axioms for situations. We refer to the version introduced
in [14] in order to represent timed concurrent actions. For example,
these axioms impose that, given a situationdo(c, s), all the actions
a ∈ c occur at the same time (i.e.coherent(c)).

Cognitive Robotics Workshop 2004 102

Duna are uniqueness axioms for each action.DS0 is a sets of sen-
tences describing the initial state (i.e.S0) of the domain.
Dssa specify thesuccessor state axioms, for each fluentF (~x, s) .

Here we assume the successor state axioms modified in order to rep-
resent concurrent actions. This slight modification can be illustrated
by the following example:

pointingTo(x, do(c, s)) ≡ startPointingTo(x) ∈ c∨
pointing(x, s) ∧ endPointingTo(x) 6∈ c.

Finally, Dap represents the action precondition axioms. In order to
extend thePoss predicate to concurrent actions, the following ax-
ioms are introduced:

Poss(a, s) ⊃ Poss({a}, s).
Poss(c, s) ⊃ (∃a)a ∈ c ∧ (∀a)[a ∈ c ⊃ Poss(a, s)].

In a concurrent domain,action preconditions axiomson simple ac-
tions are not sufficient: two simple actions may each be possible, but
their concurrent execution should not be permitted. This problem is
calledprecondition interaction problem[16] (see [11] for a discus-
sion) and its solution requires some additional precondition axioms.

Temporal Concurrent Golog. Golog is a situation calculus-based
programming language for denoting complex actions composed of
the primitive (simple or concurrent) actions defined in theBAT .
Golog programs are defined by means of standard (and not so-
standard) Algol-like control constructs: i. action sequence:p1; p2,
ii. test:φ?, iii. nondeterministic action choicep1|p2, iv. conditionals,
while loops, and procedure calls. An example of a Golog program is:

while ¬at(hill, 3) do
if ¬(∃x)going(x) do π(t, (t < 3)? : startGo(hill, t))

The semantics of a Golog programδ is aSC formulaDo(δ, s, s′)
meaning thats′ is a possible situation reached byδ once executed
from s. Some of the construct definitions are the following

Do(nil, s, s).
Do((p1 : p2) : p3, s, s

′)
.
= Do(p1 : (p2 : p3), s, s

′)
Do(a : p, s, s′)

.
= Do(p, do(a, s), s′)

Do(p1|p2, s, s
′)

.
= Do(p1, s, s

′) ∨Do(p2, s, s
′)

Do(π(x, p(x)), s, s′)
.
= (∃x)Do(p(x), s, s′)

In this paper we consider a Golog language version endowed with
the parallel execution between processes. Analogously to [3] concur-
rency is modeled by interleaved processes and the parallel construct
‖ is defined as follows:

1. Do(p1‖p2, s, s
′)

.
= Do(p2‖p1, s, s

′).
2. Do((p1 : p2) : p3‖p, s, s′)

.
= Do(p1 : (p2 : p3)‖p, s, s′).

3. Do(p1‖nil, s, s′)
.
= Do(p1, s, s

′).
4. Do(a1 : p1‖a2 : p2, s, s

′)
.
= Do(a1 : p1‖p2, do({a2}, s), s′)∨

Do(p1‖a2 : p2, do({a1}, s), s′) ∨Do(p1‖p2, do({a1, a2}, s), s′).
5. Do((φ)? : p1‖p, s, s′)

.
= φ[s] ∧Do(p1‖p, s, s′).

6. Do((p1|p2)‖p3, s, s
′)

.
= Do(p1‖p2, s, s

′) ∨Do(p1‖p3, s, s
′).

7. Do(π(x, p(x))‖p, s, s′)
.
= (∃x)Do(p(x)‖p, s, s′).

2.2 Constraint Based Interval Planning

In this section we briefly introduce the ontology and the basic con-
cepts of Constraints Based Interval Planning paradigm, whose prim-
itives are illustrated in Figure 1 (note that[d, D] denotes the interval
whered is the minimum time distance andD the maximum).

Figure 1. Interval relations in the underlying temporal model.

Attributes and Intervals The CBIP paradigm assumes a dynamic
system modeled as a set ofattributeswhose state changes over time.
Each attribute, calledstate variable, represents a concurrent thread,
describing its history over time as a sequence of states and activities.
Both states and activities are represented by temporal intervals called
tokens. The history of states for a state variable over a period of time
is called atimeline. For example, given a rover domain,position is a
possible attribute;going(a, b) from time1 to 3, andat(b) from time
3 to 5 are intervals representing, respectively, an activity and a state.
Each token can be described by the tuple〈v, p(~x), ts, te〉, wherev
is the attribute (e.g.position), p is the name of an activity,~x are
its parameters (e.g.going(a, b)), andts, te are numerical variables
indicating start and end times respectively.

To represent intervals on a timeline we will use the notation
[t1, t2] p [t3, t4], meaning thatp is s.t.ts ∈ [t1, t2] andte ∈ [t3, t4]
(e.g. given the timelinepos, [0, 0] at(hill) [3, 4]).

Domain Constraints. Given a set of attributesA and a set of in-
tervalsI, a CBI modelM = (A, I, R) is specified by a set of con-
straintsR, that is, each tokenT = 〈v, p(~xp), ts, te〉 has its owncon-
figuration constraintGT (v, ~xp, ts, te), calledcompatibility(see [7]),
representing all the possible legal relations with other intervals; for
example compatibility establishes which token must proceed, follow,
be co-temporal, etc. to others in a legal plan. These relations are, in
turn, defined by equality constraints between parameter variables of
different tokens, and by simple temporal constraints on the start and
end variables. The latter are specified in terms of metric version of
temporal relationsa la Allen[1]. Here we restrict our attention to the
following set of temporal relations:meets, met by, contained by,
contains, before[d, D], after[d, D], starts, ends. For instance,
going(x, y) meets at(y), andgoing(x, y) met by at(x) specifies
that eachgoing interval is followed and preceded by a stateat.

Planning Problem. Given theCBI modelM specifying the plan-
ning domain, aplanning problemis defined byP = (M, Pc), where
Pc is acandidate plan, representing an incomplete instance of a plan.
The candidate plan consists of: i. aplanning horizonspecified by
a pair of temporal values(hs, he), with hs < he; ii. a timeline
Tσ = (Tσ1 , . . . , Tσn) for each state variableσ, containing a set
of tokensTi = 〈σ, P (~x), tsi , tei〉; iii. a set of ordering constraints
among the token in the timeline:hs ≤ te1 ≤ ts2 ≤ . . .; iv. the
set of constraints{C1, . . . , Cn} associated with the tokens laying
on the timelines. For instance, given the rover domain with the at-
tributesLocation andNavigation, a candidate plan can be repre-
sented by a planning horizon(0, 10), and by the two timelines for the
Location (Lc) andNavigation (Nv) attributes, and the two asso-
ciated incomplete sequence of tokens (together with their respective

Cognitive Robotics Workshop 2004 103

constraints), e.g.

Lc : [0, 0] at(a) [3, 3] [5, 10] going(d, e) [6, 10],
Nv : [0, 0] stop [3, 5] [6, 9] move [8, 10],

Notice that thecandidate plandefines both the initial situation and
the goals. A tokenTi in a candidate planis said to befully sup-
portedif its GTi compatibility is satisfied, in a sense to be specified.
For instance,[5, 10] going(d, e), in the example above is not fully
supported, sincegoing(d, e) met by at(d) is to be satisfied. A can-
didate plan is called apotential behaviorif: a. each token on each
timeline is fully supported; b. all timelines fully cover the planning
horizon; c. all timeline tokens are bound to a single value. In other
worlds, apossible behaviorrepresents a possible evolution of the dy-
namic system. A candidate plan can be seen as an incomplete speci-
fication of a possible behavior where gaps, unsupported tokens, and
uninstantiated variables can be found (see example above). A candi-
date plan is said to be acomplete planif it satisfies both the proper-
ties a. and b. specified above. More generally, a candidate plan is a
plan depending on aplan identification function(see [7] for further
details).

Given theplanning problemspecified by theCBI modeland the
candidate plan, the planning task is to provide acomplete planwith
the maximum flexibility: the planner should minimally ground the
(temporal and not) variables to allow for on-line binding of the val-
ues. For example, given the rover example, assuming the candidate
plan presented above (assuming also that each activity takes at least
one time unit), asufficient plancould be

Lc : [0, 0]at(a)[3, 3]going(a, d)[4, 8]at(d)[6, 9] going(d, e) [6, 10],
Nv : [0, 0] stop [3, 3]move[4, 8]stop[6, 9]move[8, 10].

Notice that the above specification completely fill the timelines till
the end of the horizon and each token is fully supported.

3 Representing the Temporal Model in the
Temporal Concurrent SC

In this section we show how to represent a CBI Model in the Tempo-
ral ConcurrentSC framework.

Attributes and Intervals. For each token〈v, p(~x), ts, te〉 we
introduce a fluentPv(~x, ts, s) and two actionsstart p(~x, t) and
end p(~x, t) representing, respectively, thep(~x) process (herets is
the start time) starting and ending events.

The temporal model will be defined by a BAT. In particular the
successor state axiom (SSA) is defined as follows:

Pv(~x, ts, do(c, s)) ≡ ∃a.P start(~x, a, s) ∧ a ∈ c ∧ time(a) = ts∨
(∃t).Pv(~x, t, s) ∧ ¬(∃a′).P end(~x, a′, s) ∧ a′ ∈ c.

Here P start(~x, a, s) (P end(~x, a, s)) is true if a starts
(ends) Pv(~x, ts, s) in s. Continuing the previous example,
〈Lc, going(x), ts, te〉 can be represented by thegoing(x, t, s)
fluent whoseSSA is represented as follows:

going(x, t, do(c, s)) ≡ start going(x, t) ∈ c∨
going(x, t, s) ∧ (∀t′)end going(x, t′) 6∈ c.

Thestart p andend p actions are specified by action precondi-
tions axioms, whereφp(~x, t, s) are sentences specifying the condi-
tions under which thestart andend actions can be executed:

Poss(start p(~x, t), s) ≡ φp(~x, t, s)
Poss(end p(~x, t), s) ≡ φp(~x, t, s)

Domain Constraints. Given the CBI modelM = (A, I, R), the
R constraints can be captured in the temporal BAT by exploiting the
axiom preconditions needed in the concurrent action specification
(to address the precondition interaction problem). For instance, the
constraint on the token duration can be expressed by:

Poss(c, s) ⊃ (∃t)[A ends(~x, a, s) ∧A(~x, t, s) ∧ a ∈ c ⊃
d ≤ time(a)− t ≤ D]

whereA end(~x, a, s) (A start(~x, a, s)) is true if a ends (starts)
A(~x) in s. Analogously the Allen-like temporal constraints intro-
duced above (see Figure 1) can be easily represented in the concur-
rent temporal BAT (see Figure 1):

• A(~x) meets B(~x):

Poss(c, s) ⊃ ∃a.A end(~x, a, s) ∧ a ∈ c ⊃
∃a′.B start(~x, a′, s) ∧ a′ ∈ c.

• A(~x) met by B(~x):

Poss(c, s) ⊃ ∃a.A start(~x, a, s) ∧ a ∈ c ⊃
∃a′.B end(~x, a′, s) ∧ a′ ∈ c.

• A(~x) starts B(~x):

Poss(c, s) ⊃ ∃a.A start(~x, a, s) ∧ a ∈ c ⊃
∃a′.B start(~x, a′, s) ∧ a′ ∈ c.

• A(~x) ends B(~x):

Poss(c, s) ⊃ ∃a.A end(~x, a, s) ∧ a ∈ c ⊃
∃a′.B end(~x, a′, s) ∧ a′ ∈ c.

• A(~x) contained by B(~x):

Poss(c, s) ⊃ [∃a.A start(~x, a, s) ∧ a ∈ c ⊃ B(~x, s)∧
¬∃a′.B end(~x, a′, s) ∧ a′ ∈ c]∧

[∃a.B end(~x, a, s) ∧ a ∈ c ⊃ ¬A(~x, s)∨
∃a′.A end(~x, a′, s) ∧ a′ ∈ c].

• A(~x) contains B(~x) is recursively defined once we introduce
two auxiliary fluent/processesAmeetsB(~x) and AendsB(~x),
s.t.:

A(~x) starts AmeetsB(~x), AmeetsB(~x) cont by A(~x),
A(~x) starts AendsB(~x), AendsB(~x) cont by A(~x),
AmeetsB(~x) meets B(~x), AmeetsB(~x) cont by AendsB(~x),
AendsB(~x) ends B(~x).

• A(~x) before[d, D] B(~x) is recursively defined by:

A(~x) meets A bf B(~x, d, D), A bf B(~x, d, D) meets B(~x),

whereA bf B(~x, d, D, s) is an auxiliary fluent/process whose
duration ranges over the interval[d, D].

• A(~x) after[d, D] B(~x) :

Poss(c, s) ⊃ ∃a, t.A start(~x, a, s) ∧ a ∈ c ∧ time(c) = t ⊃
after B(~x, t, d, D, s).

whereafter B(~x, t, d, D, s) is an auxiliary fluent which is true
if there exists an actiona endingB(~x), with d ≤ time(s) −
time(a) ≤ D.

Once all the temporal constraints are specified in this way, the
Poss(c, s) definition can be obtained by the closure of its necessary
conditions.

Cognitive Robotics Workshop 2004 104

Planning Problem. Once the domain temporal constraints have
been represented in the Concurrent Temporal Situation Calculus, the
planning problem is defined by acandidate planrepresenting both
the initial situation and the system goals. We recall that the candidate
plan is defined by: i. a planning horizon(th, Th); ii. timelines Ti

for each state variableσi; iii. ordering constraints between tokens
in the same timelines; iv. a set of constraintsCi each of the kind:
[tsi , Tsi] pi(~r) [tei , Tei].

To represent thecandidate planasgolog programin the concur-
rent temporal golog, we do not deploy occurencies and narratives
[13] since it is not a domain constraint, as it defines the control
knowledge (goals). We assume a complete specification ofDS0 ; the
Golog scripting language is used to represent theCi constraints (in
the SC we have to distinguish among initial situation and goals).
This is possible introducing, for eachCi, a procedure definition of
the following kind:

proc(ci, (Tei > horizon)? |((Tei ≤ horizon)∧
(∃t, t′).end Pi(~r, t, t

′)∧
tsi ≤ t′ ≤ Tsi ∧ tei ≤ t ≤ Tei)?).

This procedure is composed of only two tests: if the end time
constraint is beyond the horizon the constraint is neglected, other-
wise, the start and end timepoints have to satisfy the temporal con-
straints. Hereend Pi(~r, t, t

′, s) is a fluent properties which is true
iff Pi(~x, t, s) ends ins at t′. For example,[5, 10]going(d, e)[6, 10]
can be represented as

proc(c2, (10 > horizon)? |(10 ≤ horizon)∧
(∃t, t′).end going(d, e, t, t′)∧

5 ≤ t′ ≤ 10 ∧ 6 ≤ t ≤ 10)?).

Given these procedures, an incomplete plan over a timelineTj can
be define by the following procedure:

proc(plan Tj ,
π(n, (select(n))? : planj(n) : c1) :
π(n, (select(n))? : planj(n) : c2) : . . . :
π(n, (select(n))? : planj(n) : ck)),

whereplan(n) is a planner whose depth is bounded byn repre-
senting the maximal number of gaps (tokens) betweenci andci+1.
plan(n) implements a simple planning algorithm, e.g. we can deploy
the following straightforward algorithm:

proc(planj(n),
true? | π(a, (primitive action(a, j))? : a) : plan(n− 1))

whereprimitive action(a, j) is to select a primitive action belong-
ing to theTj timeline. For example, theNavigation timeline intro-
duced in Section 2.2, can be represented by aplan TNav with c2

defined as before andc1 as follows:

proc(c1, (10 > horizon)? |(10 ≤ horizon ∧ end at(a, 0, 3))?).

Once an incomplete plan is over a timelineTi, given a set of time-
lines{Ti}, a candidate plan becomes a parallel execution of its own
procedureplan Ti:

proc(c plan, plan T1 : nil ‖ . . . ‖ plan Tk : nil).

Given aBAT encoding the action theory, and the temporal con-
straints among the activities, any ground situationσ s.t. BAT |=
Do(c plan, S0, σ) represents a CBIpossible behavior. More pre-
cisely, letf(σ) be a behavior at a ground situationσ, M = (I, A, R)
a CBI model, defined inBAT , then for anycandidate planPc there

is aDS0 and ac plan CTGolog procedure such thatp is apossible
behaviorof (M, Pc), if there exists aσ (ground) withf(σ) = p and
BAT |= Do(c plan, S0, σ).

A CBI sufficient planis a complete CBI plan with maximal flexi-
bility. In the SC framework we can represent a sufficient plan as the
couple〈s[~x,~t], Constr(~x,~t)〉 whereConstr(~x,~t) is a minimal set
of constraints (among time variables~t and argument variables~x) s.t.

BAT ∪ {Constr(~x,~t)} |= Do(c plan, s0, s[~x,~t]).

Given this representation, it is possible to show that ifpsc =
〈s[~x,~t], Constr(~x,~t)〉 is s.t. the previous property holds, then the as-
sociatedpCBI CBI plan is asufficient plan. Notice that the mapping
does not work in the other direction, i.e. there exists a CBI flexible
planpCBI which cannot be captured by apsc. This is due to the fact
that a complete CBI plan is identified with a situations[~x], where the
order of two (starting or ending) eventsa1 anda2 belonging to two
different timelines is already decided: at planning time the compiler
decides ifa1 starts before, after, or concurrently witha2. Instead,
in a CBI sufficient plan this order between events can be defined at
execution time. A completeSC mapping of the sufficient CBI plan
needs a more complex representation where each plan is associated
to a set of flexible situations, we leave this issue to future work.

4 Example

We consider a rescue domain where a rover is to explore an unknown
environment in order to map and localize victims. We assume the
rover endowed with a pan-tilt and stero-cameras. Visual perception
is exploited to detect interesting locations where it’s worth to go and
perform the observations. Basically the robot has to provide two main
activities: exploring and mapping; search for victims. While the robot
is in the exploration mode a rough visual perception (vp monitor)
is always active in order to tag the map with salient regions. A more
complex visual analysis is performed (vp analsys) in order to detect
victims, during this activity the rover must be stopped while the pan-
tilt and range-finder are coordinated in order to scan a salient portion
of the visual space.

We consider the following state variables:Pant-tilt, RangeFinder,
LocMap, Navigation, VisualPerception, Mode. Each state variable
is associated with a set of processes/tokens.Pan-tilt can either be
idling in pos ~θ (Pt idle(~θ)), moving toward~θ (Pt moving(~θ)),
or scanning (Pt scanning(~θ)); Range finder3 states areRf idle
and Rf active; LocMap maps and tracks the robot position
via the Lc at(~x) and Lc goTo(x) tokens;Navigation represents
the navigation state through:Nv stop, Nv movingTo(speed),
Nv wandering; Visual Perceptionrepresents the state of the vi-
sual perception module: it can be either idle (V p idle), activated to
detect interesting objects in the environmentV p monitor, or ana-
lyzing an interesting region from~x robot position with pant-tilt inθ:
V p analisys(~x, ~θ). Modecan beMd map(st) orMd search(st),
wherest is ok if the activity succeeds andno if it fails.

Hard time constraints among the activities can be defined by
a temporal model in CBI style. For example,V p monitor and
V p observe(~x, ~θ) are respectively associated with the mapping
and the search modes, hence we haveV p monitor cont by
Md map(st) and V p observe(~x, ~θ) cont by Md search.
The search mode can be started only if the local envi-
ronment is mapped with successMd search(st) met by
Md map(ok). The victim detection requires the rover to be stopped
V p analisys(~x, ~θ) cont by Nv stop. The visual analysis needs

3 It is actually a telemeter returning the precise distance of the point hit.

Cognitive Robotics Workshop 2004 105

the pan-tilt scanningV p analisys(~x, ~θ) cont P t scanning(θ)
and thePt scanning can start only ifmet by P t idle(θ), etc.

Since these constraints are represented by theDAP of theBAT ,
the embedded CBI temporal model is directly combined with the
other dynamic properties specified in theSC language. Now, given
the (0, 1000) plan horizon, the following partial plan should force
the exploration of an unknown environment:

Md : [0, 0]Md map(ok)[10, 100]Md search(ok)[11, 1000]
Nv : [0, 0]Nv idle[0, 1000]
. . .

P t : [0, 0]Pt idle(~θ)[0, 1000]

where, except forMode, each timeline has only the initial activity
defined. Following the approach presented in Section 3, this partial
plan can be translated into the Golog procedure:

proc(c plan,
plan Md : nil ‖ plan Nv : nil‖ . . . ‖ plan Pt : nil),

where plan Md is defined by the two time constraints
[0, 0]Md map(ok)[10, 100]Md search(ok)[11, 1000], and
the other procedures are encoded as generic planners. However, in
order to make this planning activity feasible, the Golog scripting lan-
guage can be exploited to directly encode some control knowledge.
For example, thePlan Pt procedure can be written as follows:

proc(plan Pt, π(t, π(t′, (∃x.Md map(x, t))?|
(∃x.Md search(x, t))? : wait location :

Ptscan : PtIdle : (time = t′ ∧ t− t′ ≤ d)?)),

wherewait location : Ptscan : PtIdle are three Golog proce-
dure defining the expected pant-tilt behavior during the search mode.
The final test enforces a maximald time duration for the whole pro-
cedure execution.

5 Implementation

We provided a constraint logic programming (CLP) [6] implementa-
tion of the CTGolog based control system for the rescue domain.
Since in this setting the CTGolog interpreter is to generate flex-
ible temporal plans, it must be endowed with a constraint prob-
lem solver. Analogous to [14] we rely on a logic programming
language with a built-in solver for linear constraints over the re-
als (CLP(R)). In this setting logical formulas, allowed for the def-
inition of predicates, are restricted to be horn clauses of the form:
A ← c1, . . . , cm|A1, . . . , An, whereci are constraints andAj are
atoms. Specifically, we appeal to the ECRC Common Logic Pro-
gramming System ECLIPSE 5.7. In this way our planner and domain
axioms make use of linear temporal relations like2 ∗ T1 + T2 = 5
and3 ∗ T2 − 5 ≤ 2 ∗ T3, and we rely on ECLIPSE to performing
the reasoning in the temporal domain. The relations managed by the
ECLIPSE built-in constraint solver have # as a prefix, for example, a
temporal constraint represented in the Golog interpreter is:

do(C : A,S,S1) :- concurrent_action(C),
poss(C,S), start(S,T1), time(C,T2), T1 #=< T2,
do(A,do(C,S),S1).

Other temporal constraints are expressed in the action preconditions,
for example, considering the pan-tilt processes:

poss(pt_pos_start(X,T),S) :-
pt_idle(X,T1,S),T1 #< T,start(S,T2),T2 #>= T,
nv_stop(T11,S),T11 #<T.

An example of the successor state axioms is the following.

pt_idle(X,T1,do(C,S)) :-
pt_idle(X,T1,S) not member(pt_pos_start(_,T2),S);
member(pt_pos_end(X,T1),S).

Given the BAT specification, for each timeline it is possible to specify
a control procedure
proc(pt_go(X), pi(t1, [pt_pos_start(X,t1)]:

pi(t2, [pt_pos_end(X,t2)]))).

Once the flexible temporal plan is compiled, it can be executed. We
assume an execution monitorcycleExecwhich sends and receives
commands at each time tick so that constraints can be, step by step
solved and/or propagated. A dummy implementation ofcycleExecis
shown below.
planExec :-

do(c-plan,s0,S),!,cycleExec(1,s0,S,S1).
cycleExec(T,S0,S0,S0) :- !.
cycleExec(T,S0,S,S1) :-

checkMsg(T), exec(T,S0,S,S1), checkMsg(T),
T1 is T+1,!, cycleExec(T1,S1,S,S2).

6 Summary and Outlook

We presented an approach to the embedding of the CBIP paradigm in
the Golog framework. Several issues are left to future work, among
them: progression and forgetting the past, parallel planning over in-
dependent timelines, failure management.

REFERENCES
[1] J.F. Allen, ‘An interval-based representation of temporal knowledge’,

in IJCAI, (1981).
[2] A.K. Jonsson D.E. Smith, J. Frank, ‘Bridging the gap between planning

and scheduling’,Knowledge Engineering Review, 15(1), (2000).
[3] Y. Lesperance G. De Giacomo and H. Levesque, ‘Congolog, a con-

current programming language based on the situation calculus’,121,
(2000).

[4] Malik Ghallab and Herv Laruelle, ‘Representation and control in ixtet,
a temporal planner’, inAIPS 1994, pp. 61–67.

[5] H. Grosskreutz and G. Lakemeyer, ‘ccgolog – a logical language deal-
ing with continuous change’,Logic Journal of the IGPL, 11(2), 179–
221, (2003).

[6] Joxan Jaffar and Michael J. Maher, ‘Constraint logic programming: A
survey’,Journal of Logic Programming, 19/20, 503–581, (1994).

[7] Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and
Benjamin D. Smith, ‘Planning in interplanetary space: Theory and prac-
tice’, in Artificial Intelligence Planning Systems, pp. 177–186, (2000).

[8] Doherty P. Kvarnstrm, J. and P. Haslum, ‘Extending talplanner with
concurrency and resources’.

[9] J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University, (1963). Reprinted in Semantic Information Pro-
cessing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-
417.

[10] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C.
Williams, ‘Remote agent: To boldly go where no AI system has gone
before’,Artificial Intelligence, 103(1-2), 5–47, (1998).

[11] J.A. Pinto, ‘Integrating discrete and continuous change in a logical
framework’,Computational Intelligence, 14(1), 39–88, (1998).

[12] J.A. Pinto and R. Reiter, ‘Reasoning about time in the situation calcu-
lus’, Annals of Mathematics and Artificial Intelligence, 14(2-4), 251–
268, (September 1995).

[13] Javier Pinto, ‘Occurrences and narratives as constraints in the branching
structure of the situation calculus’,Journal of Logic and Computation,
8(6), 777–808, (1998).

[14] Fiora Pirri and Raymond Reiter, ‘Planning with natural actions in the
situation calculus’, 213–231, (2000).

[15] R. Reiter, ‘Natural actions, concurrency and continuous time in the sit-
uation calculus’, inProceedings of KR’96, pp. 2–13, (1996).

[16] Raymond Reiter,Knowledge in action : logical foundations for speci-
fying and implementing dynamical systems, MIT Press, 2001.

[17] Raymond Reiter and Zheng Yuhua, ‘Scheduling in the situation calcu-
lus: A case study’,Annals of Mathematics and Artificial Intelligence,
21(2-4), 397–421, (1997).

[18] B. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. Sulli-
van, ‘Model-based programming of fault-aware systems’,AI Magazine,
(Winter 2003).

Cognitive Robotics Workshop 2004 106

1

Cognitive Robotics Workshop 2004 107

Paper Session V

August 24, 11:00 - 12:30

• Imitation and Social Learning for Synthetic Characters, D. Buchsbaum, B. Blumberg,
C. Breazeaal

• On Reasoning and Planning in Real-Time: An LDS-Based Approach, M. Asker, J.
Malec

• Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus, F. Dylla,
R. Moratz

1

Cognitive Robotics Workshop 2004 108

*

Cognitive Robotics Workshop 2004 109

Imitation and Social Learning for Synthetic Characters
Daphna Buchsbaum and Bruce Blumberg and Cynthia Breazeal1

Abstract. An increasing amount of evidence suggests that in human
infants the ability to learn by watching others, and in particular, the
ability to imitate, could be crucial precursors to the development of
appropriate social behavior, and ultimately the ability to reason about
the thoughts, intents, beliefs, and desires of others [6].

We have created a number of imitative characters and robots [2],
the latest of which is Max T. Mouse, an anthropomorphic animated
mouse character who is able to observe the actions he sees his
friend Morris Mouse performing, and compare them to the actions he
knows how to perform himself. This matching process allows Max to
accurately imitate Morris’s gestures and actions, even when provided
with limited synthetic visual input. Furthermore, by using his own
perception, motor, and action systems as models for the behavioral
and perceptual capabilities of others (a process known as Simulation
Theory in the cognitive literature), Max can begin to identify sim-
ple goals and motivations for Morris’s behavior, an important step
towards developing characters with a full theory of mind.

1 INTRODUCTION

Humans (and many other animals), display a remarkably flexible and
rich array of social competencies, demonstrating the ability to inter-
pret, predict and react appropriately to the behavior of others, and to
engage others in a variety of complex social interactions. We believe
that developing systems that have these same sorts of social abili-
ties is a critical step in designing robots, animated characters, and
other computer agents, who appear intelligent and capable in their
interactions with humans (and each other), and who are intuitive and
engaging for humans to interact with.

Since humans provide our inspiration for designing socially intel-
ligent artificial systems, we have approached the challenge by turning
to theories of how the ability to interpret the actions and intentions of
others, often called theory of mind (ToM), develops in humans. Re-
search in the field of cognitive development suggests that the ability
to learn by watching others, and in particular, the ability to imitate,
are not only important components of learning new behaviors (or new
contexts in which to perform existing behaviors), but could be crucial
precursors to the development of appropriate social behavior, and ul-
timately, theory of mind. In particular, Meltzoff (see [6], [7], [8])
presents a variety of evidence for the presence of imitative abilities
in children from very early infancy, and proposes that this capacity
could be foundational to more sophisticated social learning, and to
ToM. The crux of his hypothesis is that infants’ ability to translate
the perception of anothers action into the production of their own ac-
tion provides a basis for learning about self-other similarities, and the
connection between behaviors and the mental states producing them.

1 MIT Media Laboratory, Cambridge MA, USA email:
daphna@media.mit.edu

In previous work, we began to explore this hypothesis by imple-
menting a facial imitation architecture for an interactive humanoid
robot [2]. In this paper, we present a system that expands upon our
prior research, by providing a robust mechanism for observing and
imitating whole gestures and movements. Furthermore, the charac-
ters presented in this paper are able to use their imitative abilities
to bootstrap simple mechanisms for understanding each other’s low-
level goals and motivations, bringing us a step closer to our goal of
creating socially intelligent artificial creatures.

In the next section we briefly explore the cognitive theories moti-
vating our approach in a bit more detail. Subsequently, we describe
our imitation architecture, and in particular, look at Max and Morris
Mouse, two anthropomorphic animated mouse characters who are
able to interact with each other, and observe each other’s behavior.
We will focus especially on Max’s ability to imitate Morris, and on
our ongoing research into giving these characters other social learn-
ing capabilities, including learning about their environment by ob-
serving each other’s behavior, and gaining the knowledge necessary
to engage in cooperative activities.

2 UNDERSTANDING OTHER’S MINDS

For artificial creatures to possess human-like social intelligence, they
must be able to infer the mental states of others (e.g., their thoughts,
intents, beliefs, desires, etc.) from observable behavior (e.g., their
gestures, facial expressions, speech, actions, etc.). In humans, this
competence is referred to as a theory of mind (ToM) [10], folk psy-
chology [5], mindreading [12], or social commonsense [9].

In humans, this ability is accomplished in part by each participant
treating the other as a conspecific—viewing the other as being like
me. Perceiving similarities between self and other is an important
part of the ability to take the role or perspective of another, allowing
people to relate to and to empathize with their social partners. This
sort of perspective shift may help us to predict and explain others
emotions, behaviors and other mental states, and to formulate appro-
priate responses based on this understanding. For instance, it enables
us to infer the intent or goal enacted by anothers behavior—an im-
portant skill for enabling richly cooperative behavior.

2.1 Simulation Theory

Simulation Theory (ST) is one of the dominant hypotheses about the
nature of the cognitive mechanisms that underlie theory of mind [5],
[4]. It can perhaps best be summarized by the clich to know a man is
to walk a mile in his shoes. Simulation Theory posits that by simu-
lating another persons actions and the stimuli they are experiencing
using our own behavioral and stimulus processing mechanisms, hu-
mans can make predictions about the behaviors and mental states of
others based on the mental states and behaviors that we would pos-
sess in their situation. In short, by thinking as if we were the other

Cognitive Robotics Workshop 2004 110

person, we can use our own cognitive, behavioral, and motivational
systems to understand what is going on in the heads of others.

From a design perspective, Simulation Theory is appealing be-
cause it suggests that instead of requiring a separate set of mecha-
nisms for simulating other persons, we can make predictions about
others by using our own cognitive mechanisms to recreate how we
would think, feel, and act in their situation—thereby providing us
some insight into their emotions, beliefs, desires, and intentions, etc.
We argue that an ST-based mechanism could also be used by robots
and animated characters to understand humans and each other in a
similar way. Importantly, it is a strategy that naturally lends itself to
representing the internal state of others and of the character itself in
comparable terms. This would facilitate an artificial creature’s ability
to compare its own internal state to that of a person or character it is
interacting with, in order to infer their mental states or to learn from
observing their behavior. Such theories could provide a foothold for
ultimately endowing machines with human-style social skills, learn-
ing abilities, and social understanding.

In the following section, we discuss our Simulation Theory-based
imitation and movement recognition architecture, which we have de-
veloped using two 3D computer animated characters, Max and Mor-
ris Mouse.

3 MAX AND MORRIS

Max and Morris are the latest in long line of interactive animated
characters developed by the Synthetic Characters Group at the MIT
Media Lab [11], [1], [3]. They were built using the Synthetic Char-
acters C5m toolkit, a specialized set of libraries for building au-
tonomous, adaptive characters and robots. The toolkit contains a
complete cognitive architecture for synthetic characters, including
perception, action, belief, motor and navigation systems, as well as a
new, high performance graphics layer for doing Java-based OpenGL
3D Graphics. A brief introduction to a few of these systems will be
given here, but it is beyond the scope of this paper to discuss them
all in detail (for more information please see [1], [3]).

3.1 The Motor System

For most character architectures, including the one implicit in this
work, a creature consists broadly of two components: a behavior sys-
tem and a motor system. Where the behavior system is responsible
for working out what the creature ought to be doing, the motor sys-
tem is responsible for carrying out the behavior systems requests.
The primary task of the motor system for a conventional 3D virtual
character is therefore to generate a coordinated series of animations
that take the character from where his body is now to where the be-
havior system would like it to be.

To approach this problem, we have created multi-resolution, di-
rected, weighted graphs, known asposegraphs. To create a charac-
ter’s posegraph, source animation material is broken up intoposes
corresponding to key-frames from the animation, and into collec-
tions of connected poses known asmovements. Animations can be
generated and played out on the character in real-time by interpolat-
ing down a path of connected pose nodes, with edges between nodes
representing allowable transitions between poses. The graph repre-
sents the possible motion space of a character, and any motor action
the character executes can be represented as a path through its pose-
graph.

Within the posegraph representation,movementsare of particular
importance to us here. Movements generally correspond to things we

stand

knock

walk

beg

run

lean

reach

wave

knock_4

knock_3

knock_2

knock_1

Figure 1. An example graph of movement nodes. Large rectangles
represent movements, small squares represent poses. Stacks represent
movements and poses created by blending multiple source animations

together

might intuitively think of as complete actions (e.g, sitting, jumping,
waving), and therefore often match up closely with requests from
the behavior system. While the pose representation provides us with
greater motor knowledge and flexibility, the movement representa-
tion is often a more natural unit to work with. More critically, because
movements correspond closely to motor primitives, or to simple be-
haviors, they also represent the level at which we would like to parse
observed actions, in order to identify and imitate them. Therefore,
inspired by Simulation Theory, our characters recognize and imitate
actions they observe by comparing them with the movements they
are capable of performing themselves, a process we will discuss in
greater detail in the following section.

3.2 Imitation and Movement Recognition

Max the Mouse is able to observe and imitate his friend Morris’s
movements, by comparing them to the movements he knows how to
perform himself. Max watches Morris through a color-coded syn-
thetic vision system, which uses a graphical camera mounted in
Max’s head to render the world from Max’s perspective. The color-
coding allows Max to visually locate and recognize a number of key
end-effectors on Morris’s body, such as his hands, nose and feet.
Currently, Max is hard-wired to know the correspondence between
his own effectors and Morris’s (e.g. that his right hand is like Mor-
ris’s right hand), but previous projects have featured characters using
learned correspondences [2], and a similar extension is planned for
this research.

As Max watches Morris, he roughly parses Morris’s visible be-
havior into individual movements and gestures. Max locates places
where Morris was momentarily still, or where he passed through a
transitionary pose, such as standing, both of which could signal the
beginning or end of an action. Max then tries to identify the observed

Cognitive Robotics Workshop 2004 111

movement, by comparing it to all the movement representations con-
tained within his own movement graph. To do this, Max compares
the trajectories of Morris’s effectors to the trajectories his own limbs
would take while performing a given movement. This process allows
Max to come up with the closest matching motion in his repertoire,
using as few as seven visible effectors (as of writing, we have not
tested the system using fewer than seven). By performing his best
matching movement or gesture, Max can imitate Morris.

Figure 2. First row: Morris (blue) demonstrates an action (covering his
eyes) while Max (brown) watches. Second row: Morris through Maxs eyes.

The colored spheres represent key effectors. Third row: Max reproduces
Morriss action, by performing the movements in his own repertoire that are

closest to what he observed.

3.2.1 Matching Observed Gestures to Movements in the
Graph

As Max watches Morris demonstrate a gesture, he represents each
frame of observed motion by noting the world-space positions of
Morris’s effectors relative to Morris’s ‘root-node’ (the center of Mor-
ris’s body). He then searches his posegraph for the poses (frames)
closest to the beginning of the observed action (e.g. poses with simi-
lar hand, nose, and foot positions to those hes seen), using the Carte-
sian distance between corresponding effectors as his distance metric.
Max uses these best-matching poses as starting places for search-
ing his posegraph, exploring outward along the edges from these
nodes, and discarding paths whose distance from the demonstrated
gesture has become too high. Max can then look at the generated
path through his graph and see whether it corresponds closely to any
of his existing movements, or whether it represents a novel gesture.

One important benefit of using the posegraph to classify observed
motion is that it simplifies the problem of dealing with partially ob-
served (or poorly parsed) input. If Max watches Morris jump, but
doesnt see the first part of the motion, he will still be able to classify
the movement as jumping because the majority of the matching path
in his posegraph will be contained within his own jump movement.

Conversely, if Max has observed a bit of what Morris was doing be-
fore and after jumping, as well as the jump itself, he can use the fact
that the entire jump movement was contained within the matching
path in his graph to infer that this is the important portion of the ob-
served motion. In general, this graph-based matching process allows
observed behaviors to be classified amongst a characters own actions
in real-time without needing any previous examples.

4 IDENTIFYING ACTIONS, MOTIVATIONS
AND GOALS

Max and Morris both choose their actions using a hierarchically or-
ganized action system, composed of individual action units known
as action tuples (detailed in [1]). Each action tuple contains an ac-
tion to perform, trigger contexts in which to perform the action, an
optional object to perform the action on, and do-until contexts indi-
cating when the action has been completed. Within the each level of
the action hierarchy, tuples compete probabilistically for expression,
based on their action and trigger values.

Figure 3. An example action system. Purple rectangles represent tuples.
Red circles are trigger contexts, yellow triangles are objects, and blue

rectangles are actions (do-until contexts not shown)

4.1 Action Identification

By matching observed gestures and movements to his own, Max is
able to imitate Morris. Max can also use this same ability to try and
identify which actions he believes Morris is currently performing.
Max keeps a record of movement-action correspondences, that is,
which action he is generally trying to carry out when he performs a
particular movement (e.g. the ‘reaching’ gesture is most often per-
formed during the ‘getting’ action). When he sees Morris perform a
given movement, he identifies the action tuples it is most likely to be
a part of. He then evaluates a subset of the trigger contexts, known
ascan-I triggers, to determine which of these actions was possible
under the current circumstances. In this way, Max uses his own ac-
tion selection and movement generation mechanisms to identify the
action that Morris is currently performing.

4.2 Motivations and Goals

Another subset of trigger contexts, known asshould-I triggers, can
be viewed as simple motivationsfor example, a should-I trigger for
Maxs eating action is hunger. Similarly, some do-until contexts,
known assuccesscontexts, can represent low-level goalsMaxs suc-
cess context for reaching for an object is holding the object in his
hands. By searching his own action system for the action that Morris
is most likely to be performing, Max can identify likelyshould-Itrig-
gers andsuccessdo-untils for Morriss current actions. For example,
if Max sees Morris eat, he can match this with his own eating action,
which is triggered by hunger, and know that Morris is probably hun-
gry. Similarly, Max can see Morris reaching for, or jumping to get, an

Cognitive Robotics Workshop 2004 112

object, and know that Morris’s goal is to hold the object in his hands,
since that is the success context for Max’s own ’get’ action. Notice
that in this second case, Max does not need to discern the purpose
of jumping and reaching separately, since these are both subactions
’get’ in his own hierarchy.

object
(cheese)

object
(cheese)

object
(cheese)

object
(cheese)

ReachJump Object Object
high reachable

Hunger Eat

Consume

Cheese

GetFind
object
(cheese)

Holding
object

Near
object

Don't
see

object

Figure 4. A close up of a motivational subsystem in the action system
hierarchy (in this case the hunger subsystem)

We are currently developing mechanisms that allow Max to use
the trigger and do-until information from his best matching action
in order to interact with Morris in a more socially intelligent wayfor
instance, Max might see Morris reaching and help him get the ob-
ject he is reaching for, bringing him closer to more advanced social
behavior such working on cooperative tasks.

5 CONCLUSION

We want to build animated characters and robots capable of rich so-
cial interactions with humans and each other, and who are able to
learn by observing those around them. This paper presents an ap-
proach to creating imitative, interactive characters, inspired by the
literature on infant development and by the Simulation Theory view
of social cognition. Additionally, it introduces our ongoing work to-
wards creating robots and animated characters who are able to un-
derstand simple motivations, goals and intentions, a critical step in
creating artificial creatures who are able to interact with humans and
each other as socially capable partners.

ACKNOWLEDGEMENTS

We would like to thank the members of the Synthetic Characters and
Robotic Life Groups of the MIT Media Lab for their help with, and
contributions to, this project.

REFERENCES
[1] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M.P. Johnson, and

B. Tomlinson, ‘Integrated learning for synthetic characters’,ACM
Transactions on Computer Graphics, 21, 417–426, (2002).

[2] C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, and B. Blumberg,
‘Learning from and about others: Towards using imitation to bootstrap
social understanding of robots’,Artificial Life, forthcoming, (2004).

[3] R. Burke, D. Isla, M. Downie, Y. Ivanov, and B. Blumberg. Creature
smarts: The art and architecture of a virtual brain. Proceedings of the
2001 Computer Game Developers Conference, 2001.

[4] M. Davies and T. Stone,Mental Simulation, Blackwell Publishers, Ox-
ford, 1995.

[5] R. Gordon, ‘Folk psychology as simulation’,Mind and Language, 1,
158–171, (1993).

[6] A. Meltzoff, The Human Infant as Imitative Generalist: A 20-Year
progress report on infant imitation with implications for comparative
psychology, 347–370, Social Learnign in Animals: The Roots of Cul-
ture, Academic Press, New York, 1996.

[7] A. Meltzoff and J. Decety, ‘What imitation tells us about social cogni-
tion: a rapproachment between developmental psychology and cogni-
tive neuroscience’,Transactions of the Royal Society of London B, 358,
491–500, (2003).

[8] A. Meltzoff and A. Gopnik, ‘The role of imitation in understanding
persons and developing a theory of mind’,Developmental Psychology,
24, 470–476, (1993).

[9] M. Meltzoff and M.K. Moore, ‘Explaining facial imitation: A theoreti-
cal model’,Early Development and Parenting, 6, 179–192, (1997).

[10] D. Premack and G. Woodruff, ‘Does the chimpanzee have a theory of
mind?’,Behavioral and Brain Sciences, 1, 515–526, (1978).

[11] B. Tomlinson, M. Downie, M. Berlin, J. Gray, D. Lyons, J. Cochran, and
B. Blumberg. Leashing the alphawolves: Mixing user dfirection with
autonomous emotion in a pack of semi-autonomous virtual characters.
proceedings of the Symposium on Computer Animation, 2002.

[12] A. Whiten and W. Byrne,Machiavellian Intelligence II: Extensions and
Evaluations, Cambridge University Press, 1997.

Cognitive Robotics Workshop 2004 113

1

Cognitive Robotics Workshop 2004 114

On Reasoning and Planning in Real-Time:
An LDS-Based Approach

Mikael Asker and Jacek Malec1

Abstract. Reasoning with limited computational resources (such
as time or memory) is an important problem, in particular in cog-
nitive embedded systems. Classical logic is usually considered inap-
propriate for this purpose as no guarantees regarding deadlines can be
made. One of the more interesting approaches to address this prob-
lem is built around the concept ofactive logics. Although a step in the
right direction, active logics still do not offer the ultimate solution.

Our work is based on the assumption thatLabeled Deductive Sys-
temsoffer appropriate metamathematical methodology to study the
problem. As a first step, we have shown that the LDS-based approach
is strictly more expressive than active logics. We have also imple-
mented a prototype automatic theorem prover for LDS-based sys-
tems.

1 Introduction

Reasoning with limited computational resources (such as time or
memory) is an important problem, in particular in cognitive embed-
ded systems. Usually a decision, based on a principled reasoning pro-
cess, needs to be taken within limited time and given constraints on
the processing power and resources of the reasoning system. There-
fore symbolic logic is often considered as an inadequate tool for im-
plementing reasoning in such systems: classical logic does not guar-
antee that all relevant inferences will be made within prescribed time
nor does it allow to limit the required memory resources satisfacto-
rily. The paradigm shift that occured in Artificial Intelligence in the
middle of 1980s can be attributed to increasing awareness of those
limitations of the the predominant way of representing and using
knowledge.

Since then there have been some attempts to constrain the in-
ference process performed in a logical system in a principled way.
One possibility is to limit the expressive power of the first-order
logical calculus (as, e.g., in description logics) in order to guaran-
tee polynomial-time computability. Another is to use polynomial ap-
proximations of the reasoning process. Yet another is to constrain the
inference process in order to retain control over it. More details about
each of those lines of research can be found in Section 6.

One of the more interesting lines of research in this area during
1990s has focused on logic as a model of an on-going reasoning pro-
cess rather than as a static characterization of contents of a knowl-
edge base. It begun with step-logic [7] and evolved into a family
of active logics. The most recent focus of this research is on model-
ing dialog and discourse. However, other interesting applications like
planning or multi-agent systems have also been investigated, while

1 Department of Computer Science, Department of Computer Sci-
ence, Lund University, Box 118, 221 00 Lund, Sweden, email:
mikael.asker@fagotten.org, jacek@cs.lth.se

some other possibilities wait for analysis. In particular, the possi-
bility of applying this framework to resource-bounded reasoning in
cognitive robotic systems is in the focus of our interest.

Finally, one should name the relations to the large area ofbelief
revisionthat also investigates the process of knowledge update rather
than the static aspects of logical theories. However, there has been
little attention paid to possibilities of using this approach in resource-
bounded reasoning - the work has rather focused on the pure non-
monotonicity aspect of knowledge revision process.

The rest of the paper is divided as follows. Section 2 presents the
background of our investigation. Section 3 introduces the memory
model being the foundation for active logics research. Then Section 4
presents an LDS formalization of the memory model. Section 5 dis-
cusses how the described approach could be used for planning in
real-time for robotic applications. In Section 6 we briefly present re-
lated work. Finally the conclusions and some suggestion of further
work are presented.

2 Background

The very first idea for this investigation has been born from the naive
hypothesis that in order to be able to use symbolic logical reason-
ing in a real-time system context it would be sufficient to limit the
depth of reasoning to a given, predefined level. This way one would
be able to guarantee predictability of a system using this particular
approach to reasoning. Unfortunately, such a modification performed
on a classical logical system yields a formalism with a heavily modi-
fied and, in principle, unknown semantics [22]. It would be necessary
to relate it to the classical one in a thorough manner. This task seems
very hard and it is unclear for us what techniques should be used to
proceed along this line. But the very basic idea of “modified prov-
ability”: A formula is a theorem iff it is provable withinn steps of
reasoning, is still appealing and will reappear in various disguises in
our investigations.

The next observation made in the beginning of this work was that
predictability (in the hard real-time sense) requires very tight control
over the reasoning process. In the classical approach one specifies
a number of axioms and a set of inference rules, and the entailed
consequences are expected to “automagically” appear as results of
an appropriate consequence relation. Unfortunately, this relation is
very hard to compute and usually requires exponential algorithms.
One possibility is to modify the consequence relation in such way
that it becomes computable. However, the exact way of achieving
that is far from obvious. We have investigated previous approaches
(listed in Section 6) and concluded that a reasonable technique for
doing this would be to introduce a mechanism that would allow one
to control the inference process. One such mechanism is available in

Cognitive Robotics Workshop 2004 115

Labeled Deductive Systems [10].
In its most simple, somewhat trivialized, setting a labeled deduc-

tive system (LDS) attaches alabel to every well-formed formula
and allows the inference rules to analyze and modify labels, or even
trigger on specific conditions defined on the labels. E.g., instead of
the classical Modus Ponens ruleA,A→B

B
a labeled deduction system

would useα:A, β:A→B
γ:B

, whereα, β, γ belong to a well-defined lan-
guage (or, even better, algebra defined over this language) of labels,
and whereγ would be an appropriate function ofα and β. If we
were to introduce our original idea of limited-depth inference, then
γ could be, e.g.,max(α, β) + 1 provided thatα andβ are smaller
than some constantN .

A similar idea, although restricted to manipulation of labels which
denote time points, has been introduced instep-logic[7] which later
evolved into a family ofactive logics[9]. Such a restriction is actu-
ally a reasonable first step towards developing a formal system with
provable computational properties. Active logics have been used so
far to describe a variety of domains, like planning [21], epistemic
reasoning [8], reasoning in the context of resource limitations [18]
or modeling discourse. We are definitely interested in pursuing this
line of investigations, however in a manner that is more amenable
to metamathematical investigations. LDS seems to be a perfect tech-
nical choice for that purpose. In particular, various possibilities of-
fered by the freedom of choice of the labeling algebras used to de-
fine the inference rules can be studied. Properties of the consequence
relations defined this way are definitely worth analyzing in order to
gather understanding of what can be achieved in the resource-limited
setting, and what (semantical) price is paid for this.

3 Active Logics

Active logics originated from an attempt to formalize a memory
model, inspired by cognitive psychology research, which was studied
at the University of Maryland during the 1980s [5]. It has been first
formalized bystep logic. However, this formalization has left many
of the interesting properties of the model outside its scope.

The memory model (MM later on) consists of five parts:

• LTM, the long term memory, which contains rules consisting of
pairs of formulae: (trigger, contents). Semantic retrieval is asso-
ciative based on trigger formulae.

• STM, theshort term memory, which acts as the current focus of at-
tention. All new inferences must include a formula from the STM.

• QTM, the quick term memory, which is a technical device for
buffering the next cycle’s STM content.

• RTM, the relevant term memory, which is the repository for de-
fault reasoning and relevance. It contains formulae which have
recently been pushed out of the STM but still may be important
for default resolution.

• ITM, the intermediate term memory, which contains all facts
which have been pushed out of the STM. The contents of the ITM
provides the history of the agents reasoning process. ITM may
provide support for goal-directed behavior.

Three of the parts, LTM, STM and ITM, originate from cognitive
psychology research. The other two, QTM and RTM, have been in-
vented by Drapkin, Miller and Perlis, as an auxiliary technical device.
Figure 1 shows how the parts are connected to each other.

4 Active logics as LDS-s

As the first step we have chosen the first active logic, namely the step
logic SL7 defined in [7]. It is, in its turn, a simplification of MM pre-

sented above. It appeared [2] thatSL7 can be rather straightforwardly
formulated as an LDS. Below, we show how this formalization can
be extended to the original MM. None of the active logic systems de-
fined so far ([18], [17], and [13]) has been able to faithfully capture
its full complexity. Therefore our first conclusion is that LDS offers
a more expressive mechanism to control deduction. This chapter is
based on MM presentation from [5] andLMM from [1].

4.1 LDS

Traditionally a logic was perceived as a consequence relation on a
setof formulae. Problems arising in some application areas have em-
phasized the need for consequence relations betweenstructuresof
formulae, such as multisets, sequences or even richer structures. This
finer-tuned approach to the notion of a logical system introduces new
problems which call for an improved general framework in which
many of the new logics arising from computer science applications
can be presented and investigated. LDS,labeled deductive systems,
was presented in [10] as such a unifying framework.

The first step in understanding LDS is to understand the intu-
itive message, which is very simple: Traditional logics manipulate
formulae, while an LDS manipulatesdeclarative units, i.e., pairs
formula : label , of formulae and labels. The labels should be viewed
as more information about the formulae, which is not encoded inside
the formulae. E.g., they can contain reliability (in an expert system),
where and how a formula was deduced, or time stamps.

A logic is here a pair(`, S`) where` is a structured, possibly
non-monotonic consequence relation on a languageL andS` is an
LDS. ` is essentially required to satisfy no more than identity (i.e.
{A} ` A) and a version of cut.

A simple form of LDS is thealgebraic LDS. There are more ad-
vanced variants,metabases, in which the labels can be databases.

An LDS proof systemis a triple(A, L,R) whereA is an algebra
of labels (with some operations),L is a logical language andR is
a discipline of labeling formulae of the logic (with labels from the
algebraA), together with a notion of adatabaseand a family of
deduction rules and with agreed ways of propagating the labels via
application of the deduction rules.

4.2 Elgot-Drapkin’s Memory Model as an LDS

In our opinion the formalization of MM in step logic is an oversim-
plification. In particular, the STM size limit is omitted so that the
number of formulae in each step may increase rapidly. This problem
has also been recognized in [18], [17] and [13], which present other
formal active logic systems. However, the major deficiency — the
exponential growth of the number of formulae in each reasoning step
— has not been satisfactorily solved by any of those approaches. In
Section 5 we address this problem again, postulating a solution.

Below we present an LDS-based formulation of the Memory
Model in order to show that LDS has substantially larger expressive
power than any of the active logics studied so far.

The labeling algebra is based on the following structure:

Slabels
df
= {LTM ,QTM ,STM , ITM} × Swff × {C, U} × N

3

(1)

where the interpretation of a tuple inSlabels is the following. If
(loc, trigger , certainity , time, position , time-left-in-rtm) ∈ Slabels

is a label, thenloc encodes the memory bank location of the formula
(one ofLTM , QTM , STM or ITM), trigger is used for encoding

Cognitive Robotics Workshop 2004 116

unlimited size

can be inconsistent

unlimited size

semantic retrieval

Direct observation

FIFO queue

active beliefs

limited size

LIFO stack, never
 emptied

old STM contents

repository for default
 resolution and

 relevance
Prohibits faulty default
 conclusions
temporal decay of STM

Modus
Ponens

selection by RTM

entered into STM, no repetition

present in STM

discarded from
 STM

controls flow into STM

 attention
current focus of

LTM

RTM

ITM

QTM

STM

Figure 1. The memory model from [5].

the triggering formula forLTM items (in particular,ε is used to
denote the empty triggering formula),certainty is used in case of
defeasible reasoning to encode the status of the formula (certain or
uncertain),time is the inference time,positiondenotes the formula’s
position inSTM or ITM , and, finally,time-left-in-rtmdenotes the
time the labeled formula should remain in theRTM . R ∈ N is a
constant used to limit the time a formula remains inRTM after it
has leftSTM .

The set of axioms,Saxioms , is determined by the following three
schemata:

(A1) (STM , ε, C, i, i, 0) : Now(i) for all i ∈ N

(CLOCK)
(A2) (QTM , ε,C, i, 0, 0) : α for all α ∈ OBS(i),

i ∈ N (OBS)
(A3) (LTM , γ, C, 0, 0, 0) : α for all (γ, α) ∈ LTM

(LTM)

The first rule, SEMANTIC RETRIEVAL, describes retrieval from LTM
into QTM:

(SR)
(STM , ε, c1, i, p, R) : α, (LTM , β, c2, i, 0, 0) : γ, α Rsr β

(QTM , ε, c2, i, 0, 0) : γ

The relationRsr describes how the trigger formulae control the se-
mantic retrieval.

The “real” inference using either MODUS PONENSor EXTENDED

MODUS PONENSis performed from STM to QTM:

(MP)
(STM , ε, c1, i, p1, R) : α, (STM , ε, c2, i, p2, R) : α → β

(QTM , ε,min(c1, c2), i, 0, 0) : β

(EMP)
(STM , ε, c1, i, p1, R) : P1a
· · ·
(STM , ε, cn, i, pn, R) : Pna
(STM , ε, cn+1, i, pn+1, R) : (∀x)[(P1x ∧ . . . ∧ Pnx) → Qx]

(QTM , ε,min(c1, . . . , cn+1), i, 0, 0) : Qa

where functionmin is defined over the set{U, C} of certainty levels,
with the natural orderingU < C. The idea behind it is that the status
of a consequence should not be stronger than any of its premises.

The next rule, Negative Introspection, allows one to infer lack of
knowledge of a particular formula at timei. In order to express that
we need to define the setSth(i) of conclusions that can be drawn at
timei. Sth(i) can be computed by purely syntactical operations and it
can be defined recursively using the inference rules. It is well-defined
for everyi ∈ N because the consequence relation is “directed” by the
natural ordering of the setN. Every inference rule necessarily incre-
ments the label. Therefore all the elements inSth(i) will be inferred
from a finite number of instances of axiom (A1), namely those for
which labels vary between 0 andi − 1, and from the finite amount
of observations performed until the timei. As every inference rule
increments the label, only a finite number of applications of every
rule is possible before the label reachesi.

Given a finite setSth(i) of i-theorems, we can identify all closed
subformulae occurring in them and not occuring as separate theorems
(functionfcsf). The process of finding all closed subformulae for a
given finite set of formulae (fformulae yields unlabeled formulae) is
computable.

We can now formulate the NEGATIVE INTROSPECTIONrule:

Cognitive Robotics Workshop 2004 117

(NI)
α ∈ fcsf (SSTM(i)), α /∈ fformulae(SSTM(i))

(QTM , ε, C, i, 0, 0) : ¬K(i, pαq)

where the setSth(i) described above is replaced by its memory-bank-
specific counterparts,SQTM(i), Snew-STM(i), SSTM(i) andSRTM(i). Just
like Sth(i), they are computable by purely syntactic operations and
can be defined recursively oni.

The (NI) rule involves the knowledge predicateK that takes as
one of its arguments a formula. Later rules will introduce predicates
Contra andloses which behave similarly. In order to keep the lan-
guage first-order we use the standard reification technique allowing
us to treat formulae (or rather their names) as terms of the language.
In order to make a distinction between formulae and their names,
quoting (shown aspαq, for an arbitrary formulaα) is used.

MM in [5] and step logic use different methods to detect and han-
dle contradictions. Step logic indicates detected contradictions with
the Contra predicate while MM uses instead certainty levels and
the loses predicate which is involved in theRTM mechanism. We
have allowed both possibilities, where CD1 handles the case of equal
certainties while CD2 and CD2’ deal with the case of different cer-
tainties:

(CD1)

(STM , ε, C, i, p1, R) : α
(STM , ε, C, i, p2, R) : ¬α

(QTM , ε,C, i, 0, 0) : Contra(i, pαq, p¬αq)

(CD2)

(STM , ε, c1, i, p1, R) : α
(STM , ε, c2, i, p2, R) : ¬α
c1 < c2

(QTM , ε, c1, i, 0, 0) : loses(pαq)

(CD2’)

(STM , ε, c1, i, p1, R) : ¬α
(STM , ε, c2, i, p2, R) : α
c1 < c2

(QTM , ε, c1, i, 0, 0) : loses(p¬αq)

The next group of rules handles inheritance, i.e., governs the time a
particular formula stays in a memory bank or is moved to another
one. The first inheritance rule says that everything inLTM stays in
LTM forever:

(IL)
(LTM , α, c, i, 0, 0) : β

(LTM , α, c, i + 1, 0, 0) : β

The STM is implemented as a FIFO queue ofsetsof declarative
units, rather than as a FIFO queue of declarative units. This “lazy”
implementation avoids selection among theQTM contents.

One problem with the lazySTM implementation is that limiting
the number of sets in theSTM does not necessarily limit the total
number of elements in those sets, which is the number of formulae
in the STM . If many formulae are moved intoSTM at the same
time step, the sets will contain many elements, theSTM will contain
many formulae and there will be more computation per inference
step. The flow fromQTM to STM must thus be controlled to limit
the amount of computation to realistic levels. And because there is
no selection among theQTM contents, everything that entersQTM
also entersSTM , so the flow intoQTM must be controlled as well.

OurSTM implementation uses the position field in the labels. The
value of the position field should be zero, unless the associated for-
mula is inSTM or ITM . In that case, it contains the time at which
the formula was moved intoSTM by the IQS rule. The position
field then remains unchanged, while the IS rule propagates the for-
mula forwards in time. A functionfmin-STM-pos(i) computes the min-
imum position value of all the declarative units in theSTM at time

i. At time i, the declarative units inSTM can have position values
fmin-STM-pos(i), . . . , i, see Figure 2 below.

A simple way to definefmin-STM-pos(i) would be to set it to
max(0, i − S + 1), whereS is the intended maximum number of
elements inSTM . If a position field in a label isfmin-STM-pos(i) at
time i, then the associated formula can be moved toITM at time
i + 1. The problem with this simple definition is that formulae will
“time out” from STM into ITM , even when no new formulae are
entered intoSTM . That is not the FIFO behaviour described in[5].

Our solution to the “time out” problem is to interpretS as the
maximum number ofnon-emptysets inSTM . We use a more com-
plex definition offmin-STM-pos(i) and do not move anything out from
STM to ITM if nothing is moved in fromQTM to STM . The ex-
act fmin-STM-pos(i) definition, rather cumbersome, is omitted but can
be found in [1].

Useful formulae fromQTM are promoted toSTM . Because of
the “lazy” STM implementation with sets of formulae in each posi-
tion instead of single formulae we do not have to do much selection
here. We just want to avoid multiple copies of the same formula in
STM . We also make use of theRTM content to avoid rework on
contradictions which have already been resolved:

(IQS)

(QTM , ε, c, i, 0, 0) : α
α /∈ fformulae(SSTM(i))
loses(α) /∈ fformulae(SRTM(i))

(STM , ε, c, i + 1, i + 1, R) : α

When new formulae are entered intoSTM from QTM , old formu-
lae must be pushed out ofSTM into ITM , to get a FIFO behaviour
and to limit theSTM size toS. This is done by the (IS) and (ISI)
rules which use the functionfmin-STM-posmentioned above:

(II)
(ITM , ε, c, i, p, r) : α

(ITM , ε, c, i + 1, p,max(0, r − 1)) : α

(IS)
(STM , ε, c, i, p, R) : α
(p > fmin-STM-pos(i)) ∨ (Snew-STM(i + 1) = ∅)
Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM(i))
Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM(i))
loses(pαq) /∈ fformulae(SSTM(i))
(α 6= Now(i)) ∧ (α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM(i))
(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(STM , ε, c, i + 1, p, R) : α

(ISI)
(STM , ε, c, i, p, R) : α
(p = fmin-STM-pos(i)) ∧ (Snew-STM(i + 1) 6= ∅)
Contra(i − 1, pαq, pβq) /∈ fformulae(SSTM(i))
Contra(i − 1, pβq, pαq) /∈ fformulae(SSTM(i))
loses(pαq) /∈ fformulae(SSTM(i))
(α 6= K(i − 1, β)) ∨ (K(i, β) /∈ SQTM(i))
(α 6= Contra(i − 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(ITM , ε, c, i + 1, p, R) : α

We can now define the LDS encoding the memory model:

Definition 1 (Memory model LDS) LMM
df
= (Slabels ,L,RMM),

where the consequence relationRMM is defined by the rules (SR),
(MP), (EMP), (NI), (CD1), (CD2), (IL), (IQS), (IS), (ISI) and (II).

Slabels should be interpreted as an algebra.
The next step would be to show that the behaviour ofLMM is

indeed as expected, namely faithfully implements the behaviour of
MM. Unfortunately, it cannot be done in a formal way because the

Cognitive Robotics Workshop 2004 118

position:
time when entered

into STM
fmin-STM-pos(i) - 1 fmin-STM-pos(i) fmin-STM-pos(i) + 10 1 2 i-1 i

Growth direction
of the STM-ITM

structureITM STM

Figure 2. The structure of theSTM andITM buffer.

original memory model [5] was introduced only as an informal de-
scription of a cognitively plausible reasoning mechanism. Although
this model, according to the authors, has been tested in practice, it has
never been completely formalised. The subsequent formal systems,
step logic and a number of active logics based on it, do not have all
the control mechanisms present in the original MM. Therefore the
correspondence could only be established against our interpretation
of the behaviour as described in the literature. In order to achieve
such result one can interpret theLMM system using structures re-
sembling the ones illustrated in Figure 1. This is the approach we
have taken in our investigations. As usual, some more details can be
found in [1].

One problem withLMM is that the functionsSth(i), SQTM(i),
SSTM(i), Snew-STM(i) andSRTM(i) refer to subsets ofStheorems which
only sometimes agree with the contents of the current database. The
sets are certainly computable, because one can compute them by
starting from the axioms and apply the inference rules to all possible
combinations of declarative units fori time steps.

The sets are contained in the current database if the proof process
is “completed” up to leveli. In an implementation the time proceeds
step by step and at each step the inference rules are applied to ev-
ery possible combination of declarative units. So the “complete” sets
above automatically become part of the current database. But when
describing the system as an algebraic LDS we can’t be sure of the
“completeness level” of an arbitrary database. The requirement for
completeness requires restrictions on the order in which inference
rules are applied; some of the rules can’t be applied to some of the
declarative units until the database has reached a certain level of com-
pleteness.

One of the strengths of LDS is that it can handle features, which
are normally at the meta-level, at the object level. It turns out that
it can handle this ordering of the application of inference rules, too.
The trick consists of including the whole database in the labeling of
formulae. A sketch of such solution is presented in [1].

5 Planning in real-time

Some work on active logics has been devoted to application of this
approach in real-time planning. In particular, Nirkhe [17, 18] has in-
troduced an active logic for reasoning with limited resources and pro-
vided a modal semantics for it. However, the computational issues
have not been addressed by this research.

A later formulation in [21] describes an active logic-based sys-
tem, called Alma/Carne, designed for planning and plan execution in
real-time. Alma is the reasoning part of the agent, based on active
logic, and capable to deal with deadlines. Carne is the plan execution
module, procedural in its nature, cooperating with Alma. However,
the computational complexity issue inherited from the step logic, has
not been addressed here either.

Although the idea behind Alma/Carne is appealing — in some
sense it is rather obvious that a decent real-time cognitive system
should have such a structure — the limitations of active logic, con-
sisting of low granularity, limited to time points, of the reasoning
process, are putting the possibility of practical applications of this
approach into question.

As we have shown above,LMM can offer exactly the same func-
tionality as active logics, but with much richer structure of the labels
attached to formulae. This way we can limit the number of formu-
lae staying in focus to a small, manageable value. We can introduce
a labeling in which not only time points are relevant for predicting
the real-time behaviour of the system, but where the individual ap-
plications of inference rules can be counted, timed and predicted, if
necessary. Therefore a solution similar to Alma/Carne, but based on
LMM (or some other suitable LDS) as the reasoning formalism, is
envisioned as a possible breakthrough leading to the hard-real-time
predictability of a reasoning system. The next step would be to per-
form the worst-case execution time analysis of the reasoning process,
similarly to the one proposed in [16] for a different system.

As the first step in this direction we are developing a prototype
implementation of a theorem prover for LDS-based systems, where
the labeling policy and the “classical part” of an inference rule are
handled in a modular way, allowing one to exchange the label pro-
cessing policy while retaining those parts of inference rules (e.g.,
Modus Ponens or Inheritance) that deal with the actual formulae, in-
tact. The system will provide a framework for experimenting with
different LDS-s, analyzing their computational properties, and lead-
ing to a formalization that can survive the requirements of real-time.
The prototype has been so far applied to simple problems, solvable
in principle by hand. But already at this stage we see the benefit of
the prover as a proof verifier.

6 Related work

The attempts to constrain in a principled way the inference process
performed in a logical system have been done as long as one has
used logic for knowledge representation and reasoning. One possibil-
ity is to limit the expressive power of the first-order logical calculus
(as, e.g., in description logics) in order to guarantee polynomial-time
computability. There is a number of theoretical results in this area
(see, e.g., [6]) but we are rather interested in investigations aimed
at practical computational complexity. One of the more popular ap-
proaches is to use a restricted language (like, e.g., description logics),
see [12, 19, 20] for examples of this approach in practice.

Another possibility is to use polynomial approximations of the
reasoning process. This approach is tightly coupled to the issue of
theory compilation. The most important contributions in this area
are [22, 3, 4, 14]. However, this approach, although it substantially
reduces the computational complexity of the problem, still does not

Cognitive Robotics Workshop 2004 119

provide tight bounds on the reasoning process.
Yet another possibility is to constrain the inference process in or-

der to retain control over it. An early attempt has been reported
in [15]. The next step in this direction was the step-logic [7] that
evolved into a family ofactive logics[9]. Such a restriction is actu-
ally a reasonable first step towards developing a formal system with
provable computational properties. Active logics have been used so
far to describe a variety of domains, like planning [21], epistemic
reasoning [8], reasoning in the context of resource limitations [18]
or modeling discourse. However, none of the proposed systems has
overcome the limitation of the exponential blow-up of the number of
formulae produced in the inference process.

There is a growing insight that logic, if it is to be considered as a
useful tool for building autonomous intelligent agents, has to be used
in a substantially different way than before. Active logics are one
example of this insight, while other important contributions might be
found, e.g., in [11] or [23].

7 Conclusions and future work

We have presented an LDS-based formalization for the memory
model entailing later formal active logic systems. This allows us to
expect that even in the case of more complex, time-limited reasoning
patterns, LDS will appear to be a useful and powerful tool. Actu-
ally, the technical problem with restricting the inference rule appli-
cations to a particular order in order to get hold of non-monotonic
dependencies, can be solved satisfactorily by just extending the la-
beling algebra and then constraining the inference rule invocations
by appropriately constructed predicates over these labels. LDS pro-
vides also far more sophisticated basis for defining semantics of such
resource-limited reasoners, in particular, systems that reason in time
and about time.

The technique described in this paper raises a number of interest-
ing questions that we intend to investigate. First, what is the actual
status of the consequence relationRMM in the spectrum of algebraic
consequence relations defined in [10]? Can this knowledge be used
to better characterize the logic it captures? Is it possible to charac-
terize the time-limited reasoning in such manner that the worst-case
reasoning time (analogously to the worst-case execution time, known
from the area of real-time systems) could be effectively computed?
What would be then the semantical characterization of such a logic?

Another challenging problem is to practically realize a planning
system based on this approach. We expect to be able to implement a
LMM -based planner in the near future, and to experiment with phys-
ical robots in the next stage of the project.

Speaking slightly more generally, we hope that LDS may serve as
a tool for specifying logics that artificial intelligence is looking for:
formalisms describing the knowledge in flux (to quote the famous
title of Peter Gärdenfors) that serve intelligent agents to reason about
the world they are embedded in and about other agents, in real-time,
without resorting to artificial, extra-logical mechanisms.

ACKNOWLEDGEMENTS

The second author would like to thank Michael Fisher for point-
ing out LDS mechanism as a potential tool for implementing time-
limited reasoning.

Sonia Fabre Escusa has made the preliminary implementation of a
theorem prover for theLMM LDS. It allowed us to find a number of
inaccuracies in the text.

REFERENCES
[1] M. Asker, Logical Reasoning with Temporal Con-

straints, Master’s thesis, Department of Computer Sci-
ence, Lund University, August 2003. Available at
http://ai.cs.lth.se/xj/MikaelAsker/exjobb0820.ps .

[2] M. Asker and J. Malec, ‘Reasoning with limited resources: An LDS-
based approach’, inProc. Eight Scandinavian Conference on Artificial
Intelligence, ed., et al. B. Tessem, pp. 13–24. IOS Press, (2003).

[3] M. Cadoli and F. Donini, ‘A survey on knowledge compilation’,AI
Communications, (2001).

[4] M. Cadoli and M. Schaerf, ‘Approximate reasoning and non-omniscient
agents’, inProc. TARK 92, pp. 169–183, (1992).

[5] J. Drapkin, M. Miller, and D. Perlis, ‘A memory model for real-time
commonsense reasoning’, Technical Report TR-86-21, Department of
Computer Science, University of Maryland, (1986).

[6] H.-D. Ebbinghaus, ‘Is there a logic for polynomial time?’,L. J. of the
IGPL, 7(3), 359–374, (1999).

[7] J. Elgot-Drapkin,Step Logic: Reasoning Situated in Time, Ph.D. dis-
sertation, Department of Computer Science, University of Maryland,
1988.

[8] J. Elgot-Drapkin, ‘Step-logic and the three-wise-men problem’, in
Proc. AAAI, pp. 412–417, (1991).

[9] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and D. Perlis, ‘Ac-
tive logics: A unified formal approach to episodic reasoning’, Techni-
cal report, Department of Computer Science, University of Maryland,
(1996).

[10] D. Gabbay,Labelled Deductive Systems, Vol. 1, Oxford University
Press, 1996.

[11] D. Gabbay and J. Woods, ‘The new logic’,L. J. of the IGPL, 9(2), 141–
174, (2001).

[12] G. De Giacomo, L. Iochhi, D. Nardi, and R. Rosati, ‘A theory and im-
plementation of cognitive mobile robots’,J. Logic Computation, 9(5),
759–785, (1999).

[13] A. Globerman,A Modal Active Logic with Focus of Attention for Rea-
soning in Time, Master’s thesis, Department of Mathematics and Com-
puter Science, Bar-Illan University, 1997.

[14] G. Gogic, C. Papadimitriou, and M. Sideri, ‘Incremental recompilation
of knowledge’,JAIR, 8, 23–37, (1998).

[15] H. Levesque, ‘A logic of implicit and explicit belief’, inProc. AAAI 84,
pp. 198–202, (1984).

[16] M. Lin and J. Malec, ‘Timing analysis of RL programs’,Control Engi-
neering Practice, 6, 403–408, (1998).

[17] M. Nirkhe, Time-Situated Reasoning Within Tight Deadlines and Re-
alistic Space and Computation Bounds, Ph.D. dissertation, Department
of Computer Science, University of Maryland, 1994.

[18] M. Nirkhe, S. Kraus, and D. Perlis, ‘Situated reasoning within tight
deadlines and realistic space and computation bounds’, inProc. Com-
mon Sense 93, (1993).

[19] P. F. Patel-Schneider, ‘A decidable first-order logic for knowledge rep-
resentation’, inProc. IJCAI 85, pp. 455–458, (1985).

[20] P. F. Patel-Schneider, ‘A four-valued semantics for frame-based de-
scription languages’, inProc. AAAI 86, pp. 344–348, (1986).

[21] K. Purang, D. Purushothaman, D. Traum, C. Andersen, D. Traum, and
D. Perlis, ‘Practical reasoning and plan execution with active logic’,
in Proceedings of the IJCAI’99 Workshop on Practical Reasoning and
Rationality, (1999).

[22] B. Selman and H. Kautz, ‘Knowledge compilation and theory approxi-
mation’,JACM, 43(2), 193–224, (1996).

[23] M. Wooldridge and A. Lomuscio, ‘A computationally grounded logic
of visibility, perception, and knowledge’,L. J. of the IGPL, 9(2), 257–
272, (2001).

Cognitive Robotics Workshop 2004 120

1

Cognitive Robotics Workshop 2004 121

1

Cognitive Robotics Workshop 2004 122

���������
	��
	���� � ������	�������	���� ��������	����! �"	��$#&%'�)(*#����,+�-
	�� ��#.� �,	��������
	��$� / ����01�.����-

2436587:9);=<?>@>A5B587:C�DFE�GA7IH:5�36C$J,KL365NMPO 1

QSR�TVUVWYX[Z\U\]�^�_a`cbd_Vef_Vgih8jkbde@h�lnm6_poqeLrsgutkrpv*bd_Vefw6xyhdeLosz{rsw6hL|iw[oqxy}l~h�oqhdly��_�ef`[oYhdl�oqxNbd_posefrsgklygk���poqg�z{_�_��6`6xyr\l~hd_pm�lyg�bd_posefrsgklygk��oqz{r\w6hos��hdlyrsg
oqg[m���tkosg6�_\����wcbfbd_VgihIvarqbd���Vr\g6�V_Vgihfb�oqhd_�e�r\g�o�xnlyg6_�ef_V�q}
� _Vgih�z[osef_Vm��Vosxy�Vwkxyw6eV��hdtk_?m6ly`{rsxn_:�posxy�Vw6xywkeaoqg[mug6_V�V_VefedoYbf��_��Phd_Vg6}eflyr\gke���rqbNbd_V`6bd_�ef_Vgihdlng6�4g[op�Ply��oqhdlyrsg[osxi��r\gk��_V`6hde�xnly��_�� �P¡�¢�¡�£n¤Y¥i� �p^�_lygc�_Ve@hdly��oqhd_?tkrpv¦lyhdeL�Vr\g6�V_V`chdw[osxkgk_Vly�\tPz{rqbdtkrirPm�e@hfbdwk��hdwcbd_��posg�z{_os`6`kxyly_pmFlyg*hdtk_�efl~hdw[oYhdlyr\g¦�Vosxy�Vwkxyw6e��§rsb�bd_poqefr\g6lng6�¨|iw[oqxnl~h�oYhdln�_Vx~�osz{rsw6h�bd_Vxnoqhdly��_©`{rseflyhdlyrsgke?lngªmc�cg[o � ly��_VgP�Plybdrsg � _VgihdeV�
« ¬ 7�MP3kK4CI­:®{McGAKL7
¯ r\e@h
�Vw6bfbd_Vgih°bd_Vxylnosz6xn_*bdr\z{rqh
e@�ce@hd_ � e�oYbd_±zkosef_pm²rsg³o=�Vr � }`kxy_�hd_Vx~��m6_�hd_�b � lyg6_pmI�_�r � _�hfbdly�poqx\varqbdx�m � rPmc_Vx �p´atk_�oq`k`kxyly_pm � _�hf}bdly� � _�hdtkrPmce4oqbd_Ihd_�g[m6lyg6��hdr���oslyx�lyg��§bd_p|iwk_�gPhdx~����t[osg6�\lygk��ef`[oYhdl�oqx�Vr\gcj[�sw6b�oqhdlyrsgke�oqg[m=v�tk_Vgµoq�V�Vw6b�oYhd_¨m6lye@h�oqgk�V_�osgkm1rqbdly_Vgih�oqhdlyr\glyg6��rqb � oqhdlyr\g±lye�gkrqh�r\zch�oslyg[oqzkxy_\��¶Iw[oqxnl~h�oYhdln�_ªbd_V`6bd_�ef_Vgih�oqhdlyr\g±rs�ef`[oq�V_©osz6e@hfb�os��hde4��bdr � hdt6_I`kti�cefly�posx{v�rsbdxnmªoqg[mS_�g[osz6xy_Ve4�Vr � `6w6hf}_�bde�hdr � os��_ª`6bd_pmcln��hdlnrsgke�osz{rsw6hSef`[oYhdl�oqx:bd_VxnoYhdlnrsgkeV�4_���_VgFv�t6_Vg`6bd_V��lnef_ª|iw[osgihdl~h�oqhdly��_�lyg6�§rsb � oqhdlyrsgFlyeug6rsh�op�soslyxnosz6xn_�·n¸�¹º�8» � `{rsbf}h�osgih�osef`{_V��hde�oqbd_�hdr\`{rsxnrs�\ly�poqx:oqg[m�`{rseflyhdlyrsg[osx©¼ rqbdly_Vgih�oqhdlyr\g±osgkmm6lye@h�osg6�V_Y½�lygc��rsb � oYhdlyr\g�osz{r\wchNlyg � r\e@h��posef_Ve�`6ti�6efly�poqxyxy��_��Phd_Vg[mc_pmr\zP¾@_V��hdeV�[�aoqxy�Vwkxyl¿m6_Vosxylygk��v�l~hdt�efwk��t�lyg6��rqb � oqhdlyr\g�t[op��_�z{_V_�g�v�_Vxyxlygc�_Ve@hdly��oqhd_Vm�rY��_�b8bd_V�V_Vgih��i_Voqbde�osgkm��\ly��_a�s_Vgk_�b�osx[oqg[m�efrswkgkmÀbd_poY}efr\g6lng6�ue@hfb�oqhd_��\ly_VeV�{_\� �c�{osz{rsw6h�hdr\`{rsxyr\�s�ªrs��bd_V�slyr\gke:ose�lyg�Á?�4�L}ÃÂ· ÄqÅk�kÄ\ÆY¹º�6oqz{r\w6h4bd_�x�oYhdly��_©`{r\efl~hdlyr\g�rqbdly_Vgih�oqhdlyr\gSrs�Nhdtcbd_V_�`{r\lygihde�oselyg�Ç6bd_V�PedocÈ e�É�rswkzkxy_�}A�LbdrsefeI�aoqxy�Vwkxywke�· Ês¹�rsb:osz{rsw6h?rsbdly_Vgih�oqhdlyrsg�rs�hAv�r�xnlyg6_Àef_�� � _Vgihde?ose?lyg�hdtk_©É�ly`{r\xy_��aosxy�Vw6xywke�· ÄsÄq¹Ë�{Çkrqb:bd_poqefr\gc}lygk�°v�lyhdt*�poqxy�Vwkxyl?ose�oqz{rY��_Se@h�oqg[m6oqb�m¨�Vr\g6e@hfb�oslygihf}ºz[osef_Vm*bd_poqefr\gc}lygk�°hd_V��t6gkln|iwk_Ve��posg±z{_Sos`k`6xyln_Vm��8»Ag¨hdt6lne�`[os`{_�buva_SlngP��_�e@hdln�\oqhd_�Vr\g6�V_V`chdw[osx�g6_Vly�\tPz{rsbdt6rirPm6e�· Æq¹Ë�L´�var�bd_Vxnoqhdlyr\g6eSoYbd_��Vrsgk�V_V`chdw[oqxgk_Vly�stcz{rqbde�ly��hdtk_Vl~b�ef`[oYhdlnosx���r\g6jk�\wcb�oqhdlyr\g6eÀ�Vosg
z{_���r\gihdlygcw6r\w6efxy�hfb�osg6e@��rsb � _Vm�lngihdr�_poq��t¨rqhdtk_�bÀv�l~hdt*r\gkx~� � lygkl � osxL��tkosgk�s_\�N_s� �c�lyg�Á?�4�L}ÃÂ�hAvarªm6lyef�Vrsgkgk_���hd_pm�bd_V�\lyr\g6e�¼ �Vr\gcj[�sw6b�oqhdlyrsgF¸Y½?�posg6gkrshrY��_�bdxnos`�¼ËÌ�½{v�l~hdtkr\wch�z{_�lng6��_��Phd_�bdg[oqxnx~�©��r\gkg6_V��hd_pm�¼ºÄs½¿lyg�z{_�hAv�_V_Vg��´atk_�bd_���rsbd_u¸�osgkmªÄ©bd_Vef`��kÄ�oqg[m�Ì�oYbd_��Vr\g6�V_V`chdw[osxyx~��gk_Vly�stcz{rqbdlygk�bd_Vxnoqhdlyr\g6e�z6w6h�gkrqh�¸�osg[m
Ìc��Í��c`6bd_Vefeflyg6��hdtk_Vef_��Vrsgkg6_V��hdlyr\g6e�z{_�}hAv�_V_Vgªhdt6_�bd_Vxnoqhdlyr\g6eIxy_po\mce?hdr���r\gk��_V`6hdwkosx�g6_Vly�\tPz{rsbdt6rirPm��sb�oq`ktke¼º��ÎIÏ?}Ã�qb�os`6t{½���Ç6rsb��§w6bfhdt6_�b � rqhdln�soqhdlyrsg���rsb�|Pwkosxyl~h�oqhdly��_�ef`[oYhdl�oqxbd_posefrsgklygk�uv�_�bd_���_�b?hdrS· ÐY¹L�Çcb�o � _�v�rsbd�PeN��rqb�bd_Vosefr\g6lygk�©oqz{r\w6h�oq��hdlyr\g�oqg[mÀ��tkosgk�s_\�q_\� �6�shdtk_Ñ l~hdw[oYhdlyr\g¦�aosxy�Vwkxyw6e�·n¸VÒs¹�z[oqef_pm*`6bdr\�qb�o ��� lygk�°xnosg6�\wkos�_�ÓIr\xyr\�·y¸pÂs¹Ë��osxyefr²`cbdrq�Plnm6_±� oq�Vlyxnl~hdly_Ve¨��rqb*bd_V`6bd_Vef_�gPhdlyg6�Boqg[mÔbd_posefrsgklygk�osz{rsw6h�ef_�hde�rq�?ef`[oqhdlnoqxaxyri�poqhdlyr\g6eV�L��w6bfbd_VgihÀ�soqbdlnosgihde�oqbd_Soszkxy_�hdrm6_poqxNv�l~hdt�_\� �c����r\gk��w6bfbd_Vg6����· Ìs¹Ë�¿�Vr\gihdlygPwkrswke���t[oqgk�_�·y¸pÌs¹8rqb�m6_�}�Vlyeflyr\g�hdtk_�rsbf�°· Âs¹Ë�
1 ÕsÖ�×8Ø�Ù�Ú�Û�Ü@ÕsÝiÞ�ßÃàyÞVá)âNãpäpå�à ßÃà~ãpåsæèç²éLå�à êYëdìºíAà ß î'ãVï$×NìÃëdð©ëdåkçëdð�ÞVà~á�ñ ò�ó\îsá~áyÞ\ç\ð©ãpìÃÞ�ßÃôVõVöLßÃôdà�÷ ó�ë

ø gc��rqbfhdwkg[oYhd_Vx~�ug6r���rsb � oqx{ef`[oYhdl�oqxkhdtk_�rsbf�i�i_\� �c����rqbabd_Vxnoqhdly��_?`{rs}efl~hdlyr\gFhd_�b � euxyly��_�xy_��§hp�Lbdly�\tih�rsb�z{_Vt6lyg[m���lye�m6_�jkgk_pm¨v�l~hdtklygF�§rsbmc_posxylygk��v�l~hdt�wkgkm6_�bdef`{_��Vl~j[_pm¿�k�Vr\oqbdef_��cg6rpv�xn_Vm6�_s�{´atk_�bd_���rqbd_�_V�i}_�bf�
`cbdrq¾A_V��h � rPm6_Vxylygk�°mP�6gko � ly��mcr � oslyg6eÀg6_V_pmce�hdt6_�g[oqln�_��§rsbf}� oqxylnùVoqhdlyr\g�rq��efw6��t�oIhdt6_Vrsbf��zi��hdt6_:mc_V��_Vxyrs`{_�baoq��oqlng�oqg[m�os�\oslyg��oqx~hdtkr\w6�\t�efw6��tS�Vr\g6�V_V`chde?tkop��_�z{_V_Vg���rqb � osxyx~�ªlygP��_Ve@hdly��oYhd_pm��^�_À`6bd_�ef_VgihIjkbde@h�l�mc_pose�osz{r\wch�|iw[oqxnl~h�oYhdln�_�g[op�Ply��oYhdlnrsg
rsg°hdt6_zkosef_Ve�rs�¿rqbdly_Vgihd_pm�xylygk_�ef_V� � _�gPhdeV�sv�tkly��t�va_��Vrsgkeflnm6_�b�ose��sosxyw[oqzkxy_e@h�oYbfhdlygk�u`{rslngihp�k»AgShdt6lye?��r\gihd_��Ph4va_©v�lyxyx�eftkrpv"r\g6_�v4oV�ªt6rpvµhdt6_bd_�efwkx~hde?osz{r\wch?�Vr\g6�V_V`6hdwkosx�gk_Vly�stcz{rqbdtkrirPm��poqg�z{_�os`6`kxyly_pmªlygShdt6_efl~hdwkoqhdlyr\g°�poqxn��wkxywkeIbd_�ef`���ÓIrsxnrs�6��»Ag�hdt6_©jkbde@h�e@h�oq�_Àrs��hdtklye:v�rsbd�v�_Sv�lyxyx�r\gkx~�¨xyrirs�FoYh�efl � w6x�oYhd_pm¨ef�V_Vgkoqbdlyr\euhdr�r � l~h�osmkmclyhdlyrsg[osx��r � `kxy_��cl~hA���Voswkef_Vmªzi��bd_Vosx¿bdr\z{rsh?�Vrsgihfbdr\x �´atk_�xyrsgk��hd_�b � �\r\osxalye�o��_Vg6_�b�osx�bd_�`6bd_Vef_Vgih�oYhdlnrsg*osgkm
wkedoq�_rq��|Pwkosxyl~h�oqhdly��_�ef`[oYhdlnosx[�Vrsgk�V_�`6hdeaoqz{r\wchLbd_VxnoYhdln�_?`{rsefl~hdlnrsgSxyly��_�_\� �6�
left

�
right

�crsb
inFrontOf

v�lyhdt6lygShdtk_Ieflyhdwkoqhdlyr\gª�posxy�Vw6xnw6e4bd_Vef`��hdt6_4`6bdrs�sb�o ��� lyg6�©x�oqgk�sw[os�s_�ÓIrsxyr\�6�P_s� �c�i`6bdrY�Plnm6lygk��oq��hdlyr\g�� oq�Vlyxyly}hdly_Ve8xyly��_
go(leftOf, exhibit7)

�s^
�m6r�g6rsh�r\g6xy����c`{_V��h�efw6��t��§rsbf}
� oqx8|iw[osxyl~h�oqhdly��_��Vr\g6�V_V`6hdeIz{_Vlygk�ªw6ef_���w6x8lng
os�s_Vgih�`6bdr\�qb�o ��� lygk�z6w6h�oqxyefr�lngªtcw � osg � os��tklygk_Ilngihd_�b�oq��hdlyr\g
· ÌP¸��{Äqús¹Ë�»Ag�hdtklye�`[oq`{_�b4va_�v�lyxyx�`cbd_Vef_Vgih�ef_V��_�b�osx��\oYbdl�oqgihde4rs�Nhdt6_�É�ly`{r\xy_�aoqxy�Vwkxywke�oqh�mclyû¿_�bd_Vgih°xn_���_Vxye°rs���sb�oqgPwkxnoqbdl~hA�Bosgkmµhdt6_Vl~b���rsbfbd_�}ef`{rsg[mclng6�ü�Vr\g6�V_V`chdw[osx�gk_Vly�\tPz{rqbdtkrirPm6eV�I^�_*`6bd_Vef_�gPh�gk_��V_Vefedoqbf�_��chd_�gkeflyr\g6e��§rsbS_��c`6bd_Vefeflyg6��bdr\z{rshSg[op�Ply��oYhdlnrsg=h�osef�Pe � rsbd_°osm6_�}|iwkoqhd_Vx~�i��ý?��hd_�bÀoSzcbdly_��4lygihfbdrPm6wk��hdlnrsg
rq��hdtk_ Ñ l~hdw[oYhdlnrsg¨�aoqxn��wkxywkeoqg[m�hdtk_�`cbdr\�sb�o ��� lygk��xnosgk�sw[oq�_�ÓIrsxyr\�Sv�_Àv�lyxyx8`6bd_Vef_�gPh�oujkbde@hoq`k`cbdr�os��t���r � z6lygklygk�?hdtk_aÉ�ly`{rsxn_?�aoqxy�Vwkxywke�lyg�hdtk_ Ñ l~hdw[oYhdlnrsg��aoqxy}��wkxywke?bd_Vef`���ÓIrsxnrs�6� ^�_�v�lnxyx8�Vxnoqbdl~���°r\w6bIlnm6_poqeIv�l~hdt��Vrsgk��bd_�hd_�_��P}o � `kxy_Ve�oqg[mS_�g[m�v�l~hdtªjkg[oqx��Vrsgk�Vxyw6eflnrsgkeV�

þ ÿ ­:58>@GÃMP5NMcG���E����I5NMcGÃ58>�D¦E�5��PK�7:G@7	�
¶Iwkosxyl~h�oqhdly��_ Ñ `koqhdlnosxLÁ:_Vosefr\g6lygk�¨¼º¶ Ñ ÁI½�lye�oqg*oszke@hfb�oq��hdlyr\g�hdtkoqhefw ��� oqbdlyùV_Ve�efl � lyx�oYb�|iw[oqgihdlyh�oYhdly��_°e@h�oqhd_Ve�lygihdr*r\g6_
|iw[oqxylyh�oYhdly��_��t[oYb�os��hd_�bdlnùVoqhdlyr\g��cÇ6bdr � o©�Vr\�sgkl~hdly��_?`{_�bdef`{_V��hdly��_4hdtk_?|iw[oqxylyh�oYhdly��_� _�hdtkrPm�

���	���s¡
������_Voqhdw6bd_�e�rs�¿hdt6_�m6r � oqlygub�oqhdtk_�bLhdtkosg��������d�P¡��£§¢P¤�hdtk_ � lyg±hd_�b � eurs�:efr � _ªoqbfhdl~j[�Vlnoqx:_��Phd_�bdgkosx4ef�poqxy_
· Ês¹Ë��´at6_hÃvar � oslyg�m6l~bd_V��hdlyrsgke©lyg�¶ Ñ Á³oqbd_Àhdr\`{r\xyrs�\ly�posx�bd_posefrsgklygk�ªosz{rsw6hbd_��\lyr\g6eV�i_\� �6�ihdt6_?Á?�4�L}ÃÂP�Posgkm�`{r\efl~hdlyr\gkosx[bd_poqefr\gklyg6��oqz{r\w6hL`{r\lygih��r\g6jk�\wcb�oqhdlyr\g6eV�[ý?gªrY��_�bd�Ply_�vµlye?�sly��_Vg�lyg�· Äq¹Ë�Ñ rsxy�clyg6��g[op�Ply��oYhdlnrsgªh�osef�Pe4lygP��r\xy��_�eabd_posefrsgklygk��oqz{r\wch�`[oqhdt6e�osev�_VxyxPose�bd_Vosefr\g6lygk��oqz{r\wch��Vr\gcj[�sw6b�oqhdlyrsgkeNrq�krszc¾A_V��hde�rsbNx�oqg[m � oqbd�Pe`{_�bd�V_Vly��_pm�osxyr\g6��hdtk_:v4oV�Sosg[m�hdtPwke�bd_p|iw6lybd_�eahdtk_Ibd_V`cbd_Vef_Vgih�oqhdlyrsgrq��rsbdly_Vgih�oqhdlyrsg"oqg[m=mclye@h�osgk��_�lygc��rsb � oYhdlyr\g²· ÄsÂ6�:¸YÆq¹Ë� ¯ osgi�=oq`6}`cbdr�oq��t6_Veamc_posxkv�l~hdt��\xyrsz[osx�oqxnxyri�V_�gPhfbdly� � _�hfbdly�posx{m6oqh�oP�cÇkrsb � osgi�gkop�cly�\oqhdlyr\gkosxNh�osef�PeIv�_umcr�g6rshIgk_V_pm°oqzkefr\xywchd_uosxyxyri�V_Vgihfbdly�ulyg6�§rsbf}
� oYhdlyr\gÀosz{rsw6h�hdtk_L`{r\efl~hdlyr\g��slyg6e@hd_po\m�va_�g6_V_pm©bd_Vxnoqhdly��_a_��\ri�V_Vgihfbdly�

Cognitive Robotics Workshop 2004 123

bd_V`6bd_�ef_Vgih�oqhdlyr\g6eLoqg[mÀo:� oqe@h8`6bdri�V_�efe8�§rsb�wk`¿m6oqhdlygk�?hdtk_Vef_Lbd_Vxnoqhdlyr\g6em6wcbdlng6��gkoY�Ply��oYhdlyr\g�· Ì�Äc�kÌ\ÌY¹Ë�Ñ _V��_�b�oqx��poqxy�VwkxylNmc_posxylygk��v�l~hdt�bd_Vxnoqhdly��_�`{rseflyhdlyrsg[osx�lygc��rsb � oYhdlyr\gt[op��_°z{_V_Vg1`cbd_Vef_Vgihd_pm=lygübd_V�V_Vgihª��_poqbdeV�?Ç6bd_��cedoPÈ e�m6rswkz6xn_���bdrsefe�posxy�Vw6xywke�· Êq¹[mc_posxye8v�lyhdt�hfbdln`6xy_VeLrq�¿`{r\lygihde�osg[m��posg�oqxyefr©z{_4�cly_�v�_pmose:ou`{r\efl~hdlyr\gkosx�zklygkoqbf��bd_Vxnoqhdlyr\g°z{_�hÃva_V_Vg�o�m6ly`{r\xy_�osg[mªou`{r\lygihp�Ñ ��tkxyly_pm6_�bª`cbdr\`{r\ef_Vmµo��Vosxy�Vwkxyw6eªz[oqef_pm=r\g1xylygk_°ef_V� � _Vgihde�v�l~hdt�Vxyri����rsb4�Vrswkgihd_�bf}º�Vxyri����rsbdly_Vgih�oYhdlnrsgSrq���s_Vgk_�b�oqhdlygk�Àe@h�oqbfhaosg[m�_Vgkm`{r\lygihde�lyg�· ÄqÒs¹Ë�YÏI_�`6bd_Vef_�gPhd_Vm©oI��Î:Ï:}º�sb�oq`kt©rs��¸VÅ?z[oqefln��bd_Vxnoqhdlyr\g6eV�»Aefxyl�osgkm
��rstkgF·y¸�Å\¹�`6bd_Vef_Vgihd_pm�o�hd_�bdg[oqbf��oqxy�_Vzcb�oS��rqb©bd_posefrsgklygk�osz{rsw6harqbdly_Vgih�oqhdlyr\g��c´atklye4osxy�s_Vz6b�oÀ�Vr\gih�oslyg6eao©hfb�os��h�oqzkxy_:efw6zkef_�h�rs�z[oqef_�bd_Vxnoqhdlyr\g6eV�¯ rqb�oqhdù�_�h�osx ��· ÄsÄs¹�_��Phd_Vg[m Ñ ��tkxyly_pmc_�bpÈ e��posxy�Vw6xnw6eV�I»ÃgBo¨jkbde@h�\oYbdlnosgih©hd_Vg�osmkmclyhdlyrsg[osx8bd_VxnoqhdlyrsgkeÀoqbd_ubd_V�\oqb�mc_pm���v�tk_�bd_�hdtk_�hÃvarm6ly`{r\xy_Ve � _�_�hNlygÀr\gk_L`{r\lygihp�pbd_Vefwkx~hdlygk�:lyg�o4bd_Vxnoqhdlyr\g�osxy�_�z6b�oIlyg�hdtk_ef_Vgkef_Irs�8´NoYbdef�Pl�·y¸pÊq¹�v�l~hdt°ÄYÅ�zkosefly��bd_Vxnoqhdlyr\g6eV�{ý?xnefr�osgS_��Phd_Vg[mc_pm��_�bdeflyr\g¨v�l~hdt*Ê\Ò°z[oqefly��bd_VxnoYhdlnrsgkeulye�lngihfbdrPmcwk�V_pm�efw6��t�hdtkoqh�ef`[oY}hdlnosxk��r\g6jk�\wcb�oqhdlyr\g6eL�poqg�z{_�m6lye@hdlygk�swklyeftk_pm�lnguo � rsbd_aj[g6_4�sb�oqlng6_pm� oqeftklyr\g��iý:g�os`6`kxyly�poqhdlyrsg�rsbdly_Vgihd_pm��Vosxy�Vwkxyw6e�mc_posxylygk�Iv�l~hdt�hd_�bdg[oqbf�`{r\lygih?�Vr\gcj[�\wcb�oqhdlyr\g6e�¼Ë´��L�4�4½4lne?`6bd_�ef_Vgihd_pmSlyg
· ÄP¸�¹º�k»Ãh?lye�efwkl~hd_pm��rqbuz{rshdt���tPw � oqg
bdr\z{rqhu�Vr ��� wkg6ly�poqhdlyr\gF· Äqús¹�oqg[m�ef`[oYhdlnosxabd_poY}efr\g6lng6�
lygFbdrsw6hd_��qb�os`6tke�· ÄP¸V¹Ë�LÍ8��_Vg � rsbd_ªjkgk_ª�qb�oslygk_VmF�poqxn��wkxyl�posg�z{_�w6ef_pmShdr�m6r�`koqhdt�lygihd_V�qb�oqhdlyr\g���rqb � rszklyxy_©bdr\z{rshde�· ÄsÌ\¹Ë�[»Ãg· ÌsÅ\¹�o�xylygk_�ef_V� � _�gPh?oq`k`cbdr�os��tª�§rsb?eft[oq`{_ � oqhd��tklygk��lng�o�bdr\z{rqhdln��Vr\gihd_��Ph�lye�`6bd_Vef_�gPhd_Vm��

þ��A« � E�G��LH��ÀK�3[H?K4K4C �!�:5��cE�C)3kE�5��PK�7:G@7	�
ÎI_Vly�stcz{rqbdtkrirPmP}Ãzkosef_pm�bd_posefrsgklygk��mc_Vef��bdlyz{_Ve4v�tk_�hdt6_�b�hAv�ruef`[oYhdl�oqx�Vr\gcj[�sw6b�oqhdlyrsgke�rq�Lrszc¾A_V��hde��Vosg�z{_�hfb�oqgke@�§rsb � _pm�lygihdr�_Vos��t�rqhdtk_�bzi�ue � osxyx{��t[oqgk�_�eI· ÆY¹Ë�c´atk_:�Vr\g6�V_V`6hdwkosx[g6_Vly�\tPz{rsbdt6rirPm�rq�NoÀ|iw[oqxy}l~h�oqhdly��_©ef`[oYhdlnosx�bd_VxnoYhdlnrsg�v�tkly��t�tkrsx�mce4��rsbIo�ef`koqhdlnosx�oYbfb�osg6�_ � _Vgihlye�hdtk_�ef_�h�rs��bd_Vxnoqhdlyrsgkeulygihdr�v�tkly��t±o�bd_Vxnoqhdlyrsg±�Vosg*z{_���tkosgk�s_pmv�l~hdt � lng6l � osx4hfb�osg6e@��rsb � oYhdlyr\gkeV�a_\� �6�4zi�±�Vr\gihdlygPwkrswkeSm6_��§rsb � oq}hdlyr\g�� Ñ wk��t�o�hfb�oqgke@�§rsb � oqhdlyrsgª�poqg�z{_Io � rY��_ � _Vgih8rs�Nrsgk_?r\zP¾@_V��hrs�¿hdtk_?�Vrsg6j[�sw6b�oYhdlnrsg�lng�o©eftkrqbfh�`{_�bdlnrPm�rs�¿hdl � _\�#"Iguhdtk_:m6lyef��bd_�hd_xy_V��_Vx�rs�8�Vrsgk�V_V`chdeV�[g6_Vly�\tPz{rsbdt6rirPm��Vrsbfbd_Vef`{rsg[mce?hdr��VrsgihdlngPw6lyhÃ��r\ghdtk_��_�r � _�hfbdly�?rsbL`kti�cefln�Vosx[xy_V��_�xkrs��m6_�ef��bdly`6hdlyr\g%$i�Vr\gihdlygPwkrswke�`6bdrs}�V_Vefef_Ve � oq`*r\gihdr�lnmc_Vgihdln�Vosx4rsb�g6_Vly�\tPz{rsbdlyg6���Vxnoqefef_Ve�rs�Im6_Vef��bdly`c}hdlyr\gke�· Ðq¹Ë� Ñ `[oYhdlnosx�g6_Vly�\tPz{rsbdt6rirPm6eÀoqbd_��_�bf��g[oqhdwcb�osx�`{_�bd�V_V`chdw[oqxosgkmS�Vrs�\gkl~hdly��_�_�gPhdl~hdly_Ve�oqg[mSrqhdtk_�b�g6_Vly�\tPz{rsbdt6rirPmSe@hfbdw6��hdw6bd_Ve4�Vosgz{_�m6_�bdln�_pm���bdr � ef`[oYhdlnosx�g6_Vly�\tPz{rsbdt6rirPm6eV��_\� �6��hd_ � `{rsb�oqxLg6_Vly�\t6}z{rsbdt6rirPm6eV�ý � rY��_ � _Vgih�rs��osg�oq�_Vgiha�Vosguhdtk_�g�z{_ � rPmc_Vxy_pm�|iw[oqxnl~h�oYhdln�_Vx~�oseIo�ef_V|Pw6_Vgk��_�rq�Lg6_Vly�\tPz{rsbdlyg6��ef`koqhdlnosxNbd_�x�oYhdlyr\gke:v�tkly��t°t6r\xnmª��rqbo\mY¾fos��_Vgih:hdl � _©lygihd_�bd�\oqxyeV� ø eflygk�uhdt6lyeI|iw[oqxylyh�oYhdly��_©bd_V`6bd_Vef_�gPh�oYhdlyr\grs�?hfb�oY¾A_V��hdrqbdln_�e�g6_Vly�\tPz{rsbdt6rirPmc}ºz[oqef_pm¨ef`[oYhdl�oqxabd_posefrsgklygk���posg*z{_wkef_pmSose:o�efl � `kxy_\�kosz6e@hfb�os��h � rPm6_�x�rq��bdr\z{rqh:gkop�cly�\oqhdlyr\g°oqg[mS_��c}`kxyrsb�oYhdlyr\g��6ÎI_�ln�stPz{rsbdtkrirPmce��posg�z{_:��rsb � _Vm�bd_V�Vwcbdefly��_Vx~�Sosg[m�bd_V`6}bd_Vef_Vgihd_pm�zP��t6ln_�b�oqbd��tkly�posx�hfbd_V_©rsb?xnoqhfhdly�V_©e@hfbdw6��hdw6bd_�eV�Ñ ��t6xyln_Vm6_�ba· ÄqÒs¹ � os`k`{_Vm�rqbdly_Vgih�oqhdlyr\gursgihdrIrsb�mc_�bdlygk�c�sÏ:_amc_�j[g6_pmhdtk_:rsbdly_Vgih�oqhdlyr\gªr\gShfbdlnoqgk�\xy_Ve?oqg[m���rsb?_V�_�bf��ef_�h4v�l~hdt � rqbd_Ihdt[oqghdt6bd_V_ª`{r\lygihdeubd_V�Vw6bdefly��_�xy�*�§rsb�_V��_�bf�¨hfbdlnoqgk�\xy_\��ÏI_�_��chfb�oq��hd_pmü¸VÅz[oqefln�°bd_VxnoqhdlyrsgkeShdr¨bd_poqefr\g1oqz{r\w6hªrsb�mc_�bdlygk�¨rs�Àxylygk_�ef_V� � _�gPhde'&Y�´atk_��Vr\g6�V_V`6hdwkosx�g6_Vly�\tPz{rsbdt6rirPm��qb�os`kt°lye©eftkrpv�g°lyg
ÇNly�c��ÌP��´atk_xnosz{_Vxye:oqbd_©lyxyxnw6e@hfb�oqhd_pmSlng�ÇNln�c�[Åc�Çcbdr � hdtk_Àgk_Vly�stcz{rqbdtkrirPm��sb�oq`kt6eIrs�8hdt6_Àlygkm6ly�Pl�mcw[oqx�bd_Vxnoqhdlyr\g6eV�hdtk_�gk_�ln�stPz{rsbdtkrirPm��qb�os`6t�rs�8hdtk_�rY��_�b�oqxnx��Vr\gcj[�sw6b�oqhdlyrsg � wke@h�z{_
2 (') ÝPãVßAëdåYßAàyÞVá�ßÃìÃàyÞVå\äpá~ë+*dãpå-,�ä/.�ìAÞ�ßÃà~ãpå�í�ç102.sß:ß43�ã5*dãpå-,�ä/.�ìAÞ�ßÃà~ãpå�í�ÞVìºëäpëdãpð©ëfßAìºà6*�ÞVá~á îÀà~ð©ÝcãpíÃíAà60�á~ëp÷

mc_�bdly��_pm¿�{»Ag�hdtklye��sxyr\z[oqxLg6_Vly�\tPz{rsbdt6rirPm��qb�os`6t��¿ef`[oYhdlnosx�hfb�osg6e@��rsbf}
� oYhdlyr\gkeL�§bdr � oÀe@h�oYbfh�e@h�oqhd_Ihdr�oÀ�sr�oqx�e@h�oYhd_��posg�z{_�mc_�hd_�b � lygk_Vm��»ºh�t[oqeSz{_V_�g=lygc�_Ve@hdly��oqhd_VmFhdr¨wkef_�hdt6_�gk_Vly�\tPz{rqbdtkrirPm=�sb�oq`kt=rq�hÃvar�rszc¾A_V��hde���rqbSef`koqhdlnosx:g[op�Ply��oqhdlyrsgB· ÄsÒs¹Ë�a»ºh�t[oqe�g6rsh�z{_V_�g¦lyg6}�_Ve@hdly��oqhd_Vmª�i_�h�tkrpvBougk_Vly�stcz{rqbdtkrirPm��qb�os`ktS��rsb�ou�Vr\gcj[�sw6b�oqhdlyrsgrq� � rsbd_��Vr � `6xn_���rqbÀ_V��_Vg�ef_V��_�b�oqx�rszc¾A_V��hde��posg
z{_u�Vr\g6e@hfbdwk��hd_Vmw6eflygk�©_87���ln_�gPhp�i|Pwkosxyl~h�oqhdly��_ � _�hdt6rPm6e�z[osef_Vmur\g�xyri�posx{�Pg6rYv�xy_pmc�_\�ý
`6bdr\z6xy_ � ��rqb�hdtk_�_87u�Vly_Vgih��Vr\g6e@hfbdwk��hdlyr\g¦rs��g6_Vly�\tPz{rsbdt6rirPm�qb�os`6tke���rqb � wkx~hdly`kxy_4r\zP¾@_V��hdeLlye8hdtk_4�Vr � zklygkoqhdrsbdlnoqxk_��c`kxyrseflnrsg�m6w6_hdr©hdt6_:�Vr � z6lng6_pm�gk_Vly�stcz{rqbdtkrirPmcears��osxyx¿r\zP¾@_V��hdeV�kýü`{rqhd_Vgihdl�oqx{efrs}xywchdlnrsg�hdr�hdtklye�`6bdrszkxy_ � lye�hdr�xyri�posxyx~��bd_Ve@hfbdly��hÀhdtk_���r � z6lyg[oqhdlyrsgrq��hfb�osg6eflyhdlyrsgkeV�{»º�Nva_�`[oYbfhdl~hdlnrsg�hdtk_�_�gc�Pl~bdr\g � _Vgih�rs��hdt6_ � rq�Plygk�oq�_Vgih:lygPhdr�e � osxyx�`koqbfhde:osg[m�hdtk_Vg�rsgkx~��hdtk_©gk_�ln�stPz{rsbdtkrirPm�hfb�oqg6}efl~hdlyr\g°�qb�os`kt��§rsbIhdt6_Vef_Àe � osxyxy_�bIef`koqhdlnosx���r\g6jk�\wcb�oqhdlyr\g6eIgk_�_pm6e?hdrz{_I�Vr\g6efl�mc_�bd_pm¿�
þ��ºþ ;1G���KL>AE1D¦E�>A5NMcGAKL7:9F>��LE%�I365
»Ãgª· Ä\Äq¹[o©|iw[osxyl~h�oqhdly��_4ef`koqhdlnosxk�posxy�Vw6xnw6eamc_posxylygk��v�l~hdtuhAv�r�m6l~bd_V��hd_Vmxylygk_©ef_�� � _VgihdeV�6lngShdtk_I�§r\xyxyrYv�lyg6�ªoqxnefr��Vosxyxy_pm<;s£ ���-=>���kose?z[oqefly�À_�g6}hdl~hdly_VeIvaose©`cbd_Vef_Vgihd_pm���´at6_Vef_�mcln`{rsxy_Ve�oqbd_�wkef_pm���rqb©bd_V`6bd_Vef_�gPhdlyg6�ef`koqhdlnosxPrszc¾A_V��hde�v�l~hdtÀlngihfbdlygkefly�Lrsbdly_Vgih�oqhdlyr\g��sý±mcly`{r\xy_

A
lye�m6_�jkgk_pmzi��hAv�r�`{r\lygihdeV�[hdtk_�e@h�oqbfh:`{r\lygih

sA
osgkmªhdtk_�_Vgkmª`{r\lygih

eA
�¿´at6_`cbd_Vef_Vgihd_pm°�posxy�Vw6xywke�m6_Vosxye�v�l~hdt�hdtk_�rsbdly_Vgih�oqhdlyrsg�rs�LhAvarªm6ly`{r\xy_VeV�ý?g°_��6o � `kxy_�rs��hdt6_Àbd_�x�oYhdlyr\g�x~bfbfb©lye©eftkrpv�g�lng�ÇNly�6�8¸\��´at6_���rsw6bxy_�hfhd_�bde�m6_Vg6rshd_�hdt6_�bd_Vxnoqhdly��_�`{r\efl~hdlyr\g¦¼ _s� �c�?=>�A@��:rqb�¡�£y¤Y¥P�f½Irq�4r\g6_rq�Nhdtk_I`{r\lygihde�hdr�hdtk_�rqhdtk_�b:m6ly`{rsxn_�$

A
x~bfbfb

B := A
x
sB ∧A

b
eB ∧B

b
sA ∧ B

b
sA

B
sB e

e

A

A

s

B

A

BDCFEHGJI8KMLON ÙQP�ë4á~ìºìºì�ãpìºà~ëdåqßAÞ�ßÃà~ãpå�ìÃëdáyÞ�ßÃà~ãpåR0Pëdß43Në�ëdå�ß43Nã©ó�à~ÝPãpá~ë�í

S oqef_pm�rsg�o�hÃvarªm6l � _Vgkeflyrsg[osx8�VrsgihdlngPw6r\wke©ef`kos�V_s�
R

2
��hdt6_uxyrs}�Voqhdlyr\g�osgkm�rsbdly_Vgih�oqhdlyr\g°rq�LhÃvar�m6l~û¿_�bd_VgihIm6ly`{r\xy_VeI�posg°z{_Àm6lye@hdlyg6}�swklyeftk_Vm�zi�ubd_V`cbd_Vef_Vgihdlygk��hdtk_?bd_Vxnoqhdly��_�`{rseflyhdlyrsgªrs��e@h�oqbfh?oqg[m�_Vg[m`{rslygPhdeV��´at6lye � _posg6eT=>�A@��Àrqb�¡�£y¤Y¥P�uoqg[m�hdtk_�edo � _U�d���s¡���rsbV��¢W;`{rslygPh?l~��g6r � rsbd_�hdtkosgShdtcbd_V_©`{r\lygihde?oqbd_Àosxyxyrpva_pm�rsg�ouxylygk_\�kosgkmv�l~hdt6r\w6hIhdtklyeIbd_Ve@hfbdly��hdlyr\gYX
�2
'Zq��£�¢k�[��¡�£\�s¡�oqg[m]@�¡��q¢k�:o\m6m6l~hdlyr\g[oqxyxy�¼ËÇNly�c�{Äs½��

r

l
sb i fe

B^C>EHGJI8KR_`Nba%c ßÃë�å\ó�ëdóuó�à~ÝPãpá~ë4ÝPãpà~åqß�ìºë�áyÞ�ßÃà~ãpå�í

´atk_�j6bde@h��Ply_�v xn_Vo\m6eÀhdr�ÄqÅ�d/�s£§¢k�\= eU��fY¥H�q���d� £Ag��h�s¢J;]���s£§¡�i8£A�8�
;q£A�>d/�s£�¢6�8¼ ¾@_V`¿mk½�z[oqefly��bd_Vxnoqhdlyr\g6eV�qlË� _\�Yz{_�hAva_�_Vg�oqgi��hAv�r:mcly`{r\xy_Ve�_��P}oq��hdx~��rsgk_�bd_Vxnoqhdlyrsg�t6r\xnm6e:oqhIosgi��hdl � _\�[ý�m6m6l~hdlyr\g[oqxyxy�Shdtk_���z6wklyxnm

Cognitive Robotics Workshop 2004 124

wk`Ào4bd_Vxnoqhdlyr\g�osxy�_�z6b�o�¼
DRA24

½��qý¨�clyefwkosxylyùpoqhdlyr\g�lyeN�\ly��_VgÀlygÀÇNln�c�Å6� S _V�poqwkef_©rq�N��rqb � lng6�uo�bd_�x�oYhdlyr\g�oqxn�s_Vz6b�o�e@h�osg[m6oqb�m��Vr\g6e@hfb�oslygihf}z[oqef_pm�bd_posefrsgklygk��hd_V��tkgkln|iwk_�e:�poqg°z{_�oq`k`kxyly_pm¿�¿´atk_�wkg6bd_�e@hfbdln��hd_pm��_�bdeflyr\g"xy_po\mce�hdr=o¨bd_Vxnoqhdlyr\gÔoqxy�_Vzcb�oFv�l~hdtBÊsÒ¦z[oqefln��bd_Vxnoqhdlyr\g6e¼
DRA69

½��
rrlr

lllr

lrll

lrrr

rrrl

rrrr

rllr

rlrr

lrrl

llll

llrr

rlll

rrll

llrl

B^CFE`GJI�KRjJN ÙQP�ë�*dãpå2*dëdÝ\ß[.iÞVá¿å�ëdà~ä/P�0Pãpì�P�ãsãqóuï�ãpì8ß[P�ë (
k 0�ÞVíAà6*ìÃëdáyÞ�ßÃà~ãpå�íD0Yî�Õ�*lP�á~à~ëdó�ëdì

A rlrr B A rlll BA rllr B A lrrr B

A lrll BA lrrl B A llrl BA llrr B A llll BA lllr B

A rrll BA rrlr BA rrrl BA rrrr B

A errs BA ells B

A eses BA sese BA rser BA lsel BA srsl BA slsr BA rele BA lere B

B^C>EHGJI8KnmWN Ù^P\ëpo k Þ�ßAãpð©à6*4ìºëdáyÞ�ßAà~ãpå\íLãVï{ß[P�ë�ó�à~ÝPãpá~ë�*�ÞVá6*'.\á6.�í�÷-q å�ß[P�ëó�à~ÝPãpá~ë�*�ÞVá6*
.�á6.�í�ãpìºß[P�ãpäpãpåiÞVá~à ß î�à~í8å�ãVß�ó\ë
,�å�ëdókçPÞVá ß[P�ã/.�ä/P�ß[P�ë4ê\à~í[.iÞVáÝ\ìÃëdíAëdåYß@Þ�ßÃà~ãpå�ð©à~ä/PYß8í�.�äpäpëdíÃß�÷

þ��4r s]t MPE�7?CIE�C�;1G���KL>AEüD¦E�>A5NMcGAKL7:9F>���Eu�:3k5
ø gc��rsbfhdw6g[oYhd_Vx~�

DRA69
� oV�Àgkrqh�z{_�efwH7u�Vly_Vgih��§rsbLbdr\z{rshLg[op�Ply��oY}hdlyr\g�h�osef�PeV��z{_��posw6ef_ � oqgP��mclyû¿_�bd_Vgihumcln`{rsxy_S�Vrsg6jk�\w6b�oYhdlyr\gke�oqbd_`{rir\xy_pmülyg1r\gk_°bd_Vxnoqhdlyrsg��?´atPwke�va_�_��Phd_Vg[m¦hdt6_�bd_V`6bd_Vef_�gPh�oYhdlyr\gv�l~hdt�o\m6m6l~hdlyr\g[oqx�rqbdly_Vgih�oqhdlyr\g��Pgkrpv�xy_pmc�_�osgkmªmc_�bdly��_

DRA77

�

B^C>EHGJI8K�v`Nxw ÞVà~ìºí8ãVï�ó�à~ÝPãpá~ë�í�y{z:ñiíÃãpá~à~ókç\×�ñ�óiÞVí[P�ëdóO|8í[.20�í[.�ð©ëdó}0Yîß[P�ë4í@ÞVð©ëaìºëdáyÞ�ßAà~ãpånz	y�ìÃìºìÃì�|Ë×

ÇNly�c��Æ��§rsb©_��6o � `kxy_��Plyefw[oqxylnù�_VeIhdtk_Àxnoqbd�s_u�Vr\gcj[�sw6b�oqhdlyrsg�ef`kos�V_��rqb4hdtk_�bfbfbfbabd_Vxnoqhdlyr\g��6´atklye � ly�\tih�xy_posm�hdr�|iwkl~hd_:ed|iw6ln�s�\x~��`[oYhdtk_Ve

l~��wkeflygk��hdtk_Vef_u��r\gk��_V`6hde��§rsb�bdr\z{rqh�g[op�Pln�\oqhdlyr\g���":hdt6_�b�bd_VxnoYhdlnrsgkez{_�lng6��_��chfbd_ � _Vx~���Vr�oYbdef_�oqbd_�xyx~bfbp�Pbfbdxnx�oqg[m�xnxyxyx �k^
:varswkxnm���c`{_V��ho � rqbd_S�sr�osx�mcl~bd_V��hd_pm¨z{_VtkoY�Plyrsb�z6bd_poq�Plng6�°wk`�hdtk_�bd_Vxnoqhdlyrsgkeuzi�bd_���oqb�mclygk��hdt6_�osg6�\xy_©ef`[oqgkg6_pm�zi��hdt6_:hAv�rumcln`{rsxy_Ve?|Pwkosxyl~h�oqhdly��_Vx~�i�´at6lye©�\ly��_Ve�w6e©osg�l � `{rsbfh�oqgPh�o\m6m6l~hdlyr\g[oqx�mclye@hdlng6�\w6lneft6lygk����_poYhdw6bd_v�l~hdt��§r\wcbamclne@hdlyg6��hdly��_4�\oqxywk_VeV�\´atk_Vef_?|iw[oqxylyh�oYhdly��_?m6lye@hdlygk��hdlyr\g6e�oqbd_`koqb�oqxnxy_Vxylye � ¼\�L½ursb�osgihdl~}Ã`koqb�oqxnxy_Vxylye � ¼Ëý�½�osgkm � oqhdtk_ � oqhdly�posxyx~�`{rsefl~hdln�_�oqg[m=g6_V��oYhdln�_
oqgk�\xy_VeSz{_�hAv�_V_Vg
A
oqg[m

B
�4xy_po\mclng6�¨hdrhdtcbd_V_�bd_�j[g6lng6�ubd_Vxnoqhdlyr\g6e���rqb�_poq��t�rs�8hdtk_���rsw6b�osz{rY��_ � _Vgihdlnrsgk_pmbd_�x�oYhdlyr\gkeÀ¼ËÇNly�6�kÊ�½��

rrllP

llllA

rrrrA

llrrP

A rrrr B

A rrll B

A llll B

A llrr B

rrrr− rrrr+

rrll− rrll+

llll− llll+

llrr− llrr+

B^C>EHGJI8K5~JN Ú�ë�,iå�ëdó}0iÞVíAë�ìºë�áyÞ�ßÃà~ãpå�í�à~å DRA77

Çkrqb4hdtk_�rqhdtk_�b�bd_Vxnoqhdlyrsgke:oSÈ
+
ÈkrqbÀÈ

−
Èy��È ��È6rsb�È ýÀÈcbd_Vef`{_V��hdly��_�xy�i�lye�osx~bd_po\mP��m6_�hd_�b � lng6_pm�zi��hdt6_:rqbdly�\lyg[oqx�zkosef_�bd_Vxnoqhdlyr\g��P^�_��\ly��_Io��r � `kxy_�hd_Ixnlye@h?rs��hdt6_Ibd_Vefw6xyhdlyg6� DRA77

osxy�s_Vz6b�oO$
¸\��":bdly�\lyg[oqx�bd_VxnoYhdlnrsgke��§bdr � DRA24

$
¼Ëo\½�Í��c`[osgkm6_pm�bd_Vxnoqhdlyrsgke�¼@¸YÄs½�$6bfbfbfb����Pbfbfbfb�ýÀ�Pbfbfbfbf}d�Pbfbdxyx����cbfbdxyx>���bfbdxyx~}d�kxyx~bfb����kxyx~bfb'�N�[xyx~bfbf}d�kxyxyxyx����kxyxnxyxnýÀ�kxyxnxyx~}
¼ z{½ ø g � rPm6l~jk_pm�bd_�x�oYhdlyr\gkeÀ¼ºÄsú\½�$bfbfbdx~}d�6bfbdx~b����cbdx~bfb����6bdxyx~b����6bdxyxyx{���[x~bfbfbf}d�kx~bfbdx~}d�kx~bdxyx~}d�kxyx~bdx~}��kxyxnx~b��_Vxyxye'����_�bfbde@}d��xy_�bd_�}d��bd_Vxy_�����efxne@b�����e@bdefx~}d��xyef_Vx~}d��bdef_�b�����ef_Vef_����_Vef_�edý
ÄP��ý�mkm6l~hdlyr\gkosx¿�poqef_Ve�r\g�rsgk_�xylygk_/�\�6ef_Vef_/�FosgkmS_Vef_VedýBoqbd_�osx~bd_posmc�m6_�jkgk_pm�lyg
¸\�n¼ z[½�$
¼Ëo\½ S oqefly��ý?xyxn_�gª�poqef_Ve�¼@¸pÄ\½�$û¿z6zJ�N��_��§zke
�N�Pl~��z6l{�N�cz6jkl>����e@��efl>�N�6z{_�ln_�����zkz6û%�N�iz6ef_��4�N�Pz6lnl~�A���lylyz6�A���6eflye@�4�N�[ly_Vz{_��
¼ z{½°��rsgc�_�bdef_©�posef_�e?bd_VxnoYhdln�_�hdr�ý:xyxy_Vg
¼ËÒ\½�$û{û�ý��c�§_���_VýÀ�kj6j{ý��i��zklylnýÀ�6��ef_Vlný��k_Vz6lyedýÀ�6lnl~�§z[ýÀ�6_Vl~��edý��[lyef_Vzký
Ìc��":hdtk_�b?osmkmclyhdlyrsg[osx��poqef_Ve�$
¼Ëo\½�^ül~hdt6r\w6h���r\gP��_�bdef_�¼@¸pÄ\½�$xyxyxyzW���{xyx6�k}d�[xyxyz6b����[xnx~bf��}��[xnl~bdx{���{x~�§bfbf}d�{x~bdlyx~}d�{x~bfbdl����[zkx~bfbf}d�[l~bfbdx~}����bfbfb����6bdzcbfb��
¼ z{½�´at6_©�Vr\gP��_�bdef_�¼@¸YÄ\½�$xyzkxyx~}d���[xyx{���szcbdxyxy}d�Yb��[x{���Ybdxyxyly}d�qbfbdx~�\���slnxyx~b����qbdlnx~bf}d�Ybfbdzkx{���Ybdxylyb����bfbf��bf}��cbfbfbdz6}

3 Öiãpì�ÞIìÃëdáyÞ�ßÃà~ãpå�ÞVá~äpë
0�ìÃÞ©Þ�0cã/.sßLß[P�à~í8í�.20\íAëfß�ãVï DRA69
íAëdë�� o���� ÷

Cognitive Robotics Workshop 2004 125

Çkrsb�xnoq���±rs�©ef`kos�V_�v�_�bd_���_�b�hdr
r\w6b�v�_Vz¦`kos�_����§rsb�hdtk_���ÎIÏ:}�sb�oq`ktkeFbd_Vef`{_V��hdly��_Vx~� ��Î:Ï:}Ëh�osz6xy_Ve¦��rqb
DRA24

�
DRA69

osgkm
DRA77

��Á?_Ve@hfbdly��hdlygk�±hdr±bd_VxnoYhdlnrsgke�efw6lyhd_Vm1�§rsb�bdrsz{rshdly��g[op�Ply��oY}hdlyr\g[oqx�h�oqef�Pe�v�t6_�bd_�m6ly`{rsxn_�e�bd_�`6bd_Vef_Vgih�efrsxnlnmªrszc¾A_V��hde'�Iva_©_�g[mSw6`v�l~hdt�r\gkx~��Ì\Òuz[oqef_©bd_Vxnoqhdlyr\g6eV�{hdtcw6e��\ly�Plng6��wke:ou�Vr\gkm6_Vg6ef_���ÎIÏ:}�sb�oq`kt��
r � H?E��4GÃMc­:5NMcGAKL7���58>A®�­I>@­ �
´atk_�efl~hdw[oqhdlyrsg"�poqxy�Vwkxywke�lyeªo±ef_V��r\g[m1rsb�mc_�b�xnoqgk�\wkos�s_
��rqb�bd_V`6}bd_Vef_Vgihdlygk�
osg[m*bd_posefrsgklygk�*oqz{r\wch�mc�cg[o � ln�ªm6r � oslygkeV�Lý:x~hdt6r\wk�st� osgi�°mclyû¿_�bd_Vgih��\oYbdl�oqgihde©t[op��_uz{_V_�g�m6_���_Vxyr\`{_pm��§bdr � hdtk_urqbdly�\l~}g[oqx��§b�o � _�varqbd�S�§rsb©mc_posxylygk�uv�l~hdt�_\� �c�{�Vr\g6�Vw6bfbd_�gk����· Ìs¹Ë�[�VrsgPhdlygPw6}r\w6e���tkosg6�_ª·y¸\¸\��¸pÌs¹�rsb�wkgk��_�bfh�oslygihA��·y¸Vús¹Losxyx�m6lnosxy_V��hde�oYbd_uz[oqef_pmr\gªhdtcbd_V_�efrqbfhde�$��2
�� £\�q¢`�d�1�d£�� �H�s� £\�q¢`��oqg[mn���`��¢6�4���ý?xyx���t[osg6�_Ve?lyg�hdtk_�v�rsbdxnm°oqbd_��posw6ef_pm�zi��oqg°os��hdlyrsg

ai
lyg�hdtk_ef`{_V�Vl~j[�Àefl~hdw[oYhdlnrsg

si
bd_�efwkx~hdlygk��lng�hdt6_�efw6�V�V_Vefefrqb©efl~hdw[oYhdlnrsg

si+1

�´atk_Sef`{_V�Vlnosx��Vrsgke@h�osgih
S0

m6_Vg6rshd_Ve�hdt6_�£§¢k£�� £\��=D�d£�� �H�s� £\�s¢¦v�tk_�bd_gkr�os��hdlyr\gªlne�`{_�bf�§rsb � _pm¿�[´at6_�zklygkoqbf����w6gk��hdlyr\g si+1 = do(ai, si)e@h�oqbfhdlygk�u��bdr � S0

hdrs�_�hdt6_�b:v�l~hdt�ouef_V|Pw6_Vgk��_©rs�Los��hdlyrsgke���rsb � e:otklye@hdrsbf�i�Ný4��hdlyr\gkeÀoYbd_�rsgkx~�¨oq`k`6xnly�poqzkxy_�lng�hdtk_�ef`{_V�Vl~jk�Sefl~hdw[oYhdlyr\gl~��`6bd_V�Vrsg[mclyhdlyrsgke�tkr\xnm¦v�t6ln��tüoYbd_
oY�6lyr � oqhdlyùV_pm¦zi�±hdtk_�ef`{_V��l�oqx`6bd_pmcly�poqhd_
Poss(a, s) ≡ preconditions

�[ÇNxywk_�gPhde�oYbd_©��_poYhdw6bd_Ve�rs�hdtk_�v�rsbdxnmªhdt[oYh � ly�stPh���t[oqgk�s_���bdr � efl~hdw[oYhdlnrsg�hdr�efl~hdw[oqhdlyrsg��[_s� �c�hdtk_�os�s_Vgihde
position

lye���tkosgk�s_pm�zi��o
go
}Ãos��hdlyrsg��p´�var��[w6_Vgih�hÃ�c`{_Ve�posgSz{_©m6lye@hdlygk�swklyeftk_Vm��cÁ:_�x�oYhdlyr\g[oqxu�kwk_Vgihde4mc_Vef��bdlyz{_Ihfbdw6hdt��sosxywk_Vev�tklyxy_���wkg6��hdlyr\gkosx?�kwk_Vgihde©tkrsxnm��_Vg6_�b�osxL�\oqxnw6_Ve�osg[m�z{rshdt � ly�\tih��tkosg6�_urY��_�bÀefl~hdw[oYhdlyr\gkeV��´atk_��
oYbd_�m6_Vg6rshd_pm�zi�°`6bd_pmcln�Voqhd_ubd_Vef`����w6gk��hdlyr\g�e@� � z{rsxneLtkrsx�mclygk��hdtk_Iefl~hdwkoqhdlyr\gªoseaxnose@h?oYbd�\w � _Vgihp�P´atk_os��hdlyrsg�_�û¿_V��hde�r\gR�kwk_Vgihde�oqbd_?oq�clyr � oYhdlyùV_pmulyguefr©�poqxnxy_pm�efw6�V�V_Vefefrqbe@h�oqhd_�oq�clyr � e�¼ ÑkÑ ý�½S· ÄsÊq¹º�a´atk_°�_�gk_�b�oqxI��rqb � rq��o ÑkÑ ý
��rqb�obd_Vxnoqhdlyr\gkosx%�[wk_�gPh

F
lye

Poss(a, s) ⇒ (F (.) = true ≡

amakesF (.) true

∨F (.) = true andamakesno change).

^=lyhdt1o�zkosefly��os��hdlyr\gühdt6_Vrsbf�=oseª`cbd_Vef_Vgihd_pm¦lyg²·y¸YÐY¹º�ag[o � _�xy�hdtk_Sos��hdlyrsg±`cbd_V�Vrsg[m6l~hdlyr\g±oY�6lyr � eV��hdtk_�efwk�V��_Vefefrsb�e@h�oYhd_ªoY�6lyr � eV�hdtk_�lyg6lyhdlnoqx�efl~hdw[oYhdlnrsg�osgkmªoqg�o\m6m6l~hdlyr\gkosx�w6gkln|iwk_:g[o � _�e�oq�clyr � om6r � oslyg � rPmc_Vx¿�posg�z{_:��rsb � oqxylnù�_pm��ÓIrsxyr\��·y¸VÂs¹�lye©o�`6bdrs�sb�o ��� lyg6��xnoqgk�\wkos�s_�z[oqef_pm�r\g�hdtk_Àefl~hdw[oY}hdlyr\gª�Vosxy�Vwkxyw6e��§rsb?ef`{_V�Vl~���6lyg6�u�Vr � `6xy_���h�osef�Pe4xyly��_Ihdtkrsef_IhA�c`6ln�Vosxyx~���rswkg[mülygübdr\z{rqhdln��ef�V_Vgkoqbdlyr\eV�IÓIr\xyrs�¦rsû¿_�bde�`6bdrs�sb�o ��� lyg6�±��r\g6}e@hfbdwk��hde�v�_Vxyx��Pgkrpv�g��§bdr � l � `{_�b�oYhdly��_u`6bdrs�sb�o ��� lng6�ªxnosg6�\wkos�_�exyln�_	�8�����J��¢J
'���6£ @��º�§¥`��¢`�l�8= �8�����OiN¥P£4=>��osgkm�¡��

��P¡'�d£Ag��Q�[¡l�/
'�
;q�c¡����d�iý�mc}m6l~hdlyr\gkosxyx~�i��o�¢W�q¢W;#���[��¡'��£�¢6£A�d� £\
T
�¥��s£\
'��r\`{_�b�oYhdrsbÀlye©`6bdrY�Plnm6_pm�hdr��t6rir\ef_��§bdr � hdt6_��\ly��_Vg*oqx~hd_�bdg[oYhdln�_Ve�mcw6bdlygk��bdw6gihdl � _s��ý?gkrqhdtk_�bl � `{rsbfh�osgih�mcl~û¿_�bd_Vgk��_��Vr � `koqbd_pm¨hdr � rse@h�rshdt6_�b�`6bdrs�sb�o ��� lng6�xnosgk�sw[oq�_VeÀlye�hdtk_ug6rshdlyr\g�rs��o��[���d��
'�q¢W;s£�� £4�s¢k��v�tkly��t
lyg
�s_Vgk_�b�oqx�posgªz{_©osg�oYbdzkl~hfb�oqbf��jkbde@h�rqb�m6_�b?ef_Vgihd_Vg6�V_\�ÓIrsxyr\��`cbdr\�sb�o � e©�posg�z{_u�Ply_�va_pm�ose � oq��bdr\e��§rsb��Vr � `kxy_���os��}hdlyr\gke©v�t6ln��t�oYbd_ � os`6`{_pm�rsgihdrª`6bdl � l~hdly��_�oq��hdlyr\gke�lyg�hdt6_uefl~hdw[oY}hdlyr\g°�posxy�Vw6xywkeV�{^ül~hdt�hdtk_�osz{rY��_À�\ly��_Vg��§_poqhdwcbd_Ve�ÓIr\xyrs�Sef_�bd�_Ve©oselygPhd_��sb�oqhdly��_u��b�o � _�v�rsbd�°��rqb�`cbdr\�qb�o ��� lygk�ªosg[m�`kxnosg6gklygk�Slyg¨m6_�}hd_�b � lygklye@hdly��m6r � oslygkeV�[��_Vgihfb�osx���rsb?hdtk_©ef_ � osgihdly�Ve�lne�hdtk_�hd_�bdg[oqbf�bd_Vxnoqhdlyr\g
Do(δ, s, s′)

v�tkly��t�lye©o � os`6`klygk��rsgihdrªo�efl~hdw[oqhdlyrsg��poqx~}�Vwkxyw6eI��rqb � wkxnoP�¿Á:rswk�\t6x~�°ef`{r\��_Vg Do(δ, s, s′) � _poqgkeIhdtkoqh��sly��_Vg
4 �p�p���6�
���-�O�O�`�6���H� ���2�O�2 ¡�-�W�6¢��2£2¤��2¥H¦l�-§2��£2�O¨O£2§#�H©H£
5 ª ß[P�ëdì:å�ãpåªíAãpá~à~ó�ã/0-«ºë'*fßÃíIá~à6¬pë©ó�ãqãpì\38Þ�îsí�ð�Þ�î�ÞVá~íÃãR0Pë�ìÃëdÝ�ìºëdíAëdåqßÃëdó0YîÀó�à~ÝPãpá~ë�í�÷

o�`cbdr\�qb�o � δ
hdtk_�efl~hdw[oYhdlyr\g

s′
lye�bd_Vos��t[osz6xy_:e@h�oYbfhdlng6�©lyg

s
� Ñ _V�_�b�osx_��chd_�gkeflyr\g6e?_s� �c�{mc_posxylygk��v�l~hdt���r\gk��w6bfbd_Vg6����· ÌY¹º�kef_Vgkeflyg6�ª· Òs¹Ë�k�Vrsg6}hdlygPwkrswke?��tkosg6�_�·y¸pÌs¹Ë�{`cbdr\z[oqzklyxylye@hdln��`6bdrY¾@_V��hdlnrsgke�·y¸pÄq¹Nrqb©m6_��Vlyeflnrsghdt6_Vrsbf�°· Åk�kÌ\úY¹�tkoY�_�z{_V_Vg�`cbd_Vef_Vgihd_pm¿�

­ s]t 5Q®¯�I>AEu�
^
�t[op���`cbd_Vef_Vgihd_pm¦rsg=hdtk_�r\g6_°t[osgkmFhdtk_°efl~hdw[oYhdlyr\gü�poqxn��wkxywkeoqe©�§b�o � _�varsbd�°��rqb�bd_Vosefr\g6lygk�°osz{rsw6h�os��hdlnrsg*osgkm
��tkosg6�_\��v�tkly��tef`koqhdlnosx¿bd_Vxnoqhdlyrsgke:oqbd_©zkw6lyx�mSr\g�oqg�osz6efr\xyw6hd_©�s_Vr � _�hfbdln�Vosx��Vrirsb�mcly}gkoqhd_Le@�6e@hd_ � ��"Ig�hdt6_�rqhdtk_�b8tkosg[m�v�_a`6bd_Vef_�gPhd_Vm�hdt6_�xylygk_aef_V� � _Vgihzkosef_pm�m6ly`{rsxn_��posxy�Vw6xnw6e�hdr\�s_�hdtk_�b©v�l~hdt�l~hde©�Vr\g6�V_V`6hdwkosx�g6_Vly�\tPz{rsbf}t6rirPm�¼º��ÎIÏ©½��sb�oq`kt���rqbabd_poqefr\gklyg6��oqz{r\w6hLbd_Vxnoqhdly��_:`{r\efl~hdlyr\g��c´at6_��Î:Ï:}º�sb�oq`kt�m6_Vef��bdlyz{_VeL`{r\efeflyzkxy_?|iw[oqxnl~h�oYhdln�_�hfb�oqgkefl~hdlyr\g6eLz{_�hÃva_V_�gosmq¾@os�V_Vgih�bd_Vxnoqhdly��_©��r\g6jk�\wcb�oqhdlyr\g6e?zi���VrsgPhdlygPwkrswke � rqhdlnrsg��Á?_V��oYb�m6lygk��rsgkx~�±hAvar�m6ly`{r\xy_Ve�¼ �Vr � `koqbd_ªhdr�ÇNln�c�I¸�v�l~hdt¦hdt6_m6oseft6_pmFmcly`{r\xy_�bd_V`6bd_�ef_Vgihdlng6��oqg¦oq�_VgihSosgkm*hdt6_ªefr\xylnm=mcln`{rsxy_°oe@h�oYhdly��rszc¾A_V��h�½?lyg

DRA24

hdtk_�hd_�b � behind � oV�ªz{_�m6_�jkgk_pmSzP�bd_�x�oYhdlyr\g�bdxybfbaosgkm�x~bdxyx[bd_Vef`��
front

zi��bdxyxyx¿osg[m�x~bfbfbp�i»Ãg�hdt6_4��r\xyxyrpv4}lyg6��va_�v�lyxyx�bd_�e@hfbdln��hImcly`{r\xy_Ve�hdr�bd_V`cbd_Vef_Vgihdlygk�ursgkx~��efr\xylnm�r\zP¾@_V��hdeV�

­p�@« ° E�7?E�3658>R9Y�O�c­±®��:McGÃK�7 �¨587:C ;üE%²�7IGÃMcGAKL7	�
S _VxyrYv va_�v�lyxyx¨wkef_ r\wcb²g6_�v�x~�&m6_V�_Vxyr\`{_pm&m6ly`{rsxn_ �poqxn��wkxywke
DRA77

��z{_V�posw6ef_�va_��Vr\g6efl�mc_�b
DRA69

gkrsh�z{_�lng6�Sjkgk_À�sb�oslyg6_pm_�gkr\w6�\t��L_�ef`{_V�Vlnosxyx~�¦lyg*hdtk_S�Vr\gihd_��Ph�rq��hdw6bdg6lng6��rs`{_�b�oqhdlyrsgkeV��ý:ee@h�oYhd_pm°osz{rY��_©hdtk_���Î:Ï:}º�sb�oq`kt�lyeI`cbd_Vef_Vgihd_pm�r\g�rsw6bIv�_Vz°`[oq�_
4
�^
�mc�j[g6_©hdtk_�e@� ��� _�hfbdly�©z6lngkoqbf��bd_�x�oYhdlyr\g cnh(p, q)

tkr\xnmclng6�Sl~�hÃvar�bd_Vxnoqhdlyr\g6e
p
oqg[m

q
oYbd_a�Vrsgk�V_V`chdw[oqxnx~��g6_Vly�\tPz{rsbdlygk�c�Y^�_amc_Vgkrqhd_hdt6_�ef_�h?rs��osxyxNmc_�j[g6_pmSmcly`{r\xy_Ve?lngShdtk_©mcr � oslyg�v�lyhdt D �ý efl � `kxy_�r\zP¾@_���h�lyeuo�eflygk�sxy_�m6ly`{rsxn_s�8ý��Vr � `6xy_��
rszc¾A_V��h�lye�o`{rsx~�6�sr\g��sl � _\�so�ef_p|iwk_Vg6�V_�rq�

n
m6ly`{r\xy_Ve

Ri ∈ D
v�tk_�bd_�hAv�rI�V_Vg6ef_V��}wchdly��_�m6ly`{rsxn_�eSeftkoqbd_�o
�Vr ��� r\g¦`{rslygPhp��Çkrqbªo���xnrsef_pm=�Vr � `kxy_��rszc¾A_V��h

R0

oqg[m
Rn

� w6e@hIeftkoqbd_uo��Vr ��� r\g�`{r\lygih�oqeIva_Vxyx ��ÏIrpvefw6��tSbd_V`6bd_Vef_�gPh�oYhdlyr\gke?�poqg�z{_©_87��Vly_Vgihdx~�ªosg[mSlng°o��Vr � `kos��h�v4oV�z{_I_��Phfb�os��hd_pmSlne�eft6rYv�gªlng�· ÌsÅ\¹Ë�¯ rPm6_�xnlyg6��o�bdr\z{rqh�mcr � oslygSlngShdtk_©efl~hdw[oYhdlnrsg��posxy�Vw6xywke:oqh?xy_pose@hrsgk_]�[wk_�gPh
pos(s)

��rqbSt6r\xnm6lyg6��hdtk_�bd_V�V_Vgih�`{rseflyhdlyrsg¦lye�gk_V_Vm6_pm³$
pos(s) = 〈ri, o〉

v�lyhdt
ri ∈ DRA77

osgkm
o ∈ O

��»Ag�r\wcba_��6o � `6xy_Vev�_��Vrsgkeflnm6_�b©r\g6xy�ªhdtk_�zkosefly��gkop�cly�\oqhdlyr\gkosx�os��hdlyrsg
go(ri, o)

��´at6_`cbd_V�Vrsg[m6l~hdlyr\g�hdt[oYhahdtk_©oq�_Vgih�lye4gkrqh�zkxyri����_pm�tkr\xnmce�oqh?osgi��hdl � _\�
":hdt6_�bIos��hdlyr\g6e©m6_Vosxylygk��v�l~hdt°bd_�x�oYhdly��_�`{rsefl~hdlnrsg[oqx�lygc��rsb � oYhdlyr\g°lygo©mcr � oqlnguoqbd_�_\� �6��hfb�oqgkef`{rqbfhdlng6�Àosg�r\zP¾@_���h R ��bdr � �Vw6bfbd_Vgih�`{r\efl~}hdlyrsg°hdrSm6_�e@hdlngkoqhdlyr\g

〈rdest, Odest〉
$
bring(R, rdest, Odest)

rqb�lyg6}�§rsb � oYhdlnrsg[oqx�|iwk_�e@hdlnrsgke?osz{rsw6h?ef`[oYhdlnosx���r\g6jk�\wcb�oqhdlyr\g6eV�
S _V�Voswkef_?rs��bd_Ve@hfbdly��hdlygk�Àmcln`{rsxy_Ve�hdr©bd_V`6bd_�ef_Vgihdlng6�©r\g6xy�uefr\xylnm�rsz6}¾A_V��hde�va_��poqg°m6_Vg6rshd_©efwkz6ef_�hdeÀ¼ gkrsh?g6_Vefef_V�poYbdlnx~�°mclye�¾@r\lygih�½4rs�8bd_Vxnoq}hdlyrsgke�efwkl~h�osz6xy_��§rsb�lygPhfb�oY}ºr\zP¾@_V��hp��os�_�gPhf}ºrszc¾A_V��h�osg[m�lngihd_�bf}ºrszc¾A_V��hbd_�x�oYhdlyr\gkeV�6bd_V��oYb�m6lygk�uo�m6ly`{rsxn_�oqg[mSosgªrszc¾A_V��hp�ký:e�mc_�j[g6_pmSoqz{rY��_hdt6_�efwkzkef_V|Pw6_Vgihamcly`{r\xy_Vearq��hdt6_:lygihfb�oq}ºr\zP¾@_���h�m6_�ef��bdly`6hdlyr\g�gk_�_pmuhdreftkoqbd_?oI�Vr ��� r\g�`{r\lygihp��´at6_�bd_���rqbd_:rsgkx~�Àbd_Vxnoqhdlyr\g6e��VrsgPh�oqlygklygk��oqg

e
rqb
s
oqbd_©efwkl~h�oqzkxy_���rqb:rszc¾A_V��h:m6_�ef��bdly`6hdlyr\g6eV�{Çkrqb4hdtk_�`6w6bd`{r\ef_Irs�efl � `6xnly�Vl~hÃ��va_�r � l~h�hdtk_��posef_urq�4oqg�lygihd_�bdg[oqx8�Vr\g6gk_V��hdlyrsg
rs�LhAv�rmcly`{r\xy_VeV��ý:efefw � lng6��hdtk_�os�_�gPh�g6rshIz{_Vlygk��oqxyxnrpv�_pm�hdr�hdr\w6��t�osgi�rqhdtk_�b�rszc¾A_V��hSr\g6xy�±bd_Vxnoqhdlyrsgke�v�lyhdt6r\wchSeftkoqbdlygk��o
e@h�oqbfhp�L_Vg[mFrsblygihd_�bdgkosx�`{rslygPhIoqbd_�os`6`kxyly�posz6xy_\�¿´atPwke�va_��poqg�mc_�j[g6_�ouefwkz6ef_�hIrq�bd_�x�oYhdlyr\gke
DRAobject

77

efwkl~h�oqzkxy_���rqb:lygihfb�oq}ºrszc¾A_V��hIm6_�jkgkl~hdlyr\g��
DRA77 ⊃ DRA

object
77

=
{
_Vxyxye'��� _�bfbde@}d� xy_�bd_�}�� bd_Vxy_���� efxye@b���� e@bdefx~}�� xyef_Vx~}d� bdef_Vb��

}

Cognitive Robotics Workshop 2004 126

Ç6rsb�os�s_Vgihf}ºr\zP¾@_V��h�bd_VxnoYhdlnrsgke�osxyx:rshdtk_�b�bd_Vxnoqhdlyr\g6e�_��6��_V`6h�bd_VxnoY}hdlyr\gke��Vrsgih�oslygklygk��osg¦lygihd_�bdgkosx:m6ly`{r\xy_��Vrsgkgk_���hdlyr\g=oYbd_�efwkl~h�osz6xy_\���rqb:lygihd_�bf}ºr\zP¾@_���h�bd_Vxnoqhdlyr\g6eIoqxnx
DRA77

bd_Vxnoqhdlyrsgke � op��z{_©w6ef_pm��
­ �Ëþ � 58G[�LE"Gl®¯�I>AEu® E�7�MP5NMcGAKL7µ´�KL3*M�¶�K C�G���KL>AEu�
»Ag�oSjkbde@h�e@hd_V`�v�_�eftkrpv³tkrpv�o���Î:Ï�e@hfbdw6��hdw6bd_ � ly�stPh�z{_�bd_V`6}bd_Vef_Vgihd_pm�lyg�hdtk_�efl~hdw[oqhdlyrsgS�poqxy�VwkxywkeL��rsb�hAvarÀmcln`{rsxy_Ve�bd_V`cbd_Vef_Vgihdlygk�osg±os�s_Vgih

A
osgkm*osg±oqbdz6lyhfb�oYbf�¨r\zP¾@_���h

R
�8´at6_Sefw6�V�V_Vefefrqb�e@h�oqhd_oq�clyr � ��rsb�hdtk_

go
}Ãos��hdlyrsg±xyrirs�ce�hdtk_�edo � _�oqeulyg*rshdtk_�b�m6r � oslyg� rPm6_Vxyeav�l~hdtkrsw6h:o��§rsb � osx�|iw[oqxnl~h�oYhdln�_©ef`[oqhdlnoqx�hdtk_�rsbf�³$

Poss(a, s) ⇒ [pos(do(a, s)) = 〈rj , o〉 ≡

a = go(rj, o) ∨

[pos(s) = 〈rj , o〉 ∧ a 6= go(rx, ox)]]

S w6h�hdtk_©�qb�os`kt�e@hfbdw6��hdw6bd_©rq��hdtk_�mcln`{rsxy_À�Vosxy�Vwkxyw6eItk_�xn`6e�wke4��rqbhdtk_�m6_�jkgkl~hdlyr\gÀrs�[hdt6_�`6bd_��Vr\gkm6l~hdlyr\gke�zi�©_��6`6xyr\l~hdlygk�Ihdt6_ao\mY¾foq�V_Vgk���rs�{hdt6_a�Vr\g6�V_V`chdw[osxcgk_�ln�stPz{rsbdtkrirPmue@hfbdw6��hdw6bd_s�\ý � rq�_ � _VgihNrq�{hdtk_os�s_Vgih�hdr�o:bd_Vxnoqhdly��_�`{r\efl~hdlyr\g�hdrYvaoqb�mce�hdt6_ar\zP¾@_V��h�lye8r\g6xy��`{r\efeflyz6xn_l~��tk_ulye�osx~bd_po\mP�
lyg¨o���r\gk��_V`6hdwkosxyx~�
g6_Vly�\tPz{rsbdlygk�ª�Vr\gcj[�\wcb�oqhdlyr\g��´atklye4bd_Vefwkx~hde�lygu$
Poss(go(rj, o), s) ⇔ pos(s) = 〈ri, o〉 ∧ cnh(ri, rj).ý?efefw � lygk��osg=os�_�gPh A osg[mFosg=rszc¾A_V��h

R
z{_Vlyg6��lyg¦bd_Vxnoqhdly��_`{r\efl~hdlyr\g

A(
xybfbfbf}

)B
v�l~hdtªhdtk_©�sr�osx�rs�8z{_Vlygk�

A(
û{û�ý

)B
�[´atk_©efl~hf}w[oYhdlnrsg
�poqxy�VwkxywkeÀoqg[m���Î:Ï:}º�sb�oq`kt°v�lyxnxL�\ly��_�hdt6_uedo � _�efr\xyw6hdlyr\g��g[o � _Vx~�ªhAv�r�r\`6hdlyrsgke:hdr��srSoYbdr\w6g[m R �k^
�ef���hd��tk_pmªhdt6_�oq��hdlyr\gef_p|iwk_Vg6�V_Lbd_�ef`��phdtk_�hfb�osg6eflyhdlyrsg�hdt6bdrswk�stÀg6_Vly�\tPz{rsbdlyg6�©��ÎIÏ?}º�sb�os`6te@h�oqhd_Ve�lyg�ÇNly�6�{ÐP�

R

3A

6A

0A

3A’

B^C>EHGJI8KR·`N Õsà~ð©Ý�á~ëLë c ÞVð©Ý�á~ë�3�à ß[PÀß43Nã©ãpÝ\ßAà~ãpå\í�ï�ãpìQz�äpëdåqß A äpãpà~å�äìÃã/.�å\ó�ã/0-«ºë
*fß R

­ �4r ��KD®���>AE t K^� ¸�E�®{MO�º¹ ° KLG@7 � 36K�­:7:C)McH:E
»ü5�5��:5?¼

ÎIrpv�v�_�`cbd_Vef_Vgihªosg1_��6o � `6xn_��§rsb°o¨�Vr � `kxy_��¦r\zP¾@_V��hp�p"Igk_°rs�hdtk_�h�osef�Pe�m6wcbdlng6��hdt6_ªtko\m6ef��tB¼�hdt6_ª�qbd_poqh ¯ w6efxnl � `6lyxn�qbdl � os�_p½lye?bdrswkg[mclygk��hdt6_�½�o\oszko�¼Ëou�Vwkz6ly�©zkwklyxnm6lyg6��lngShdtk_ � oslyg � rsed|iwk_lyg ¯ _V�P�so�½�ef_���_Vg*hdl � _�eV��´at6_��Pgkrpv�xy_pm6�s_�osz{rsw6huhdt6_T½�ososz[o k¼ �Vr � `koqbd_©ÇNly�c�{Â�½a�poqgªz{_�bd_V`cbd_Vef_Vgihd_pmSose4��rsxnxyrpv�e�$
R0(errs−)R1 ∧R1(errs−)R2 ∧R2(errs−)R3 ∧R3(errs−)R0

´at6_°os�s_Vgih
A
e@h�oYbfhdeSlyg=`{rsefl~hdlnrsg

A0

v�l~hdt
A0(
bfbdxyx>�

)R0

�4ýahhdtklyeIhdl � _�hdt6_�rqhdtk_�bIv4osxyxye�rs�Lhdtk_n½�ososzkoSoYbd_urs��gkr�lngihd_�bd_�e@h���rqbm6_�hd_�b � lngkoqhdlyr\gÀrs�6hdtk_�bd_Vxnoqhdly��_a`{rseflyhdlyrsg���ÓIr\lygk�?bdr\wkgkm�hdt6_��Vrqbdgk_�brs�
R0

osg[m
R1

v�_©�_�h�hdtk_�bd_�x�oYhdlyr\gke?eftkrpv�gSlng�ÇNln�c�{ÒP�
¾ rir\�Plygk�¨oYh�osxyx�bd_Vxnoqhdlyr\g6e��§rsbSo�bdr\w6g[m¨hfbdly`Fhdtklye�bd_V`{_poYhdeu��rqbosxyx¿�Vrsbdg6_�bdeav�tklyxy_Ihdt6_:rqhdtk_�b4eflnmc_Ve4`6bdrY�Plnm6_Ig6r�w6ef_���w6x{�Pgkrpv�xy_pm6�s_\�

0A 0R 2R

1R

8A
4A 12A

20A28A

16A

31A

24A

3R

B^CFE`GJI�K5¿JN ÙQP�ëpÀ/oIó�à Ácëdìºë�åYßDÂ�.iÞVá~à ßAÞ�ßÃà êYë?ÝPãpíÃà ßAà~ãpå�í�ãVï{ß[P�ë�ÞVäpëdåqß AìÃëdáyÞ�ßÃà êYë4ßAãIß[P�ëp¬VÞpÞ�0�ÞÀò R0...R3
õ

B^C>EHGJI8KnÃWN ÙQP�ë�,�ìÃíºßLå\à~å�ë4ìÃëdáyÞ�ßÃà~ãpå�í�äpãpà~å\ä�ìÃã/.\å�ó ß[P�ëÅÄ4ÞpÞ�0�Þ
3�à ß[P Ay(ry,x)Rx

´atPw6e�lyg�hdt6lyea_��6o � `6xn_?r\g6x~�uhAv�r�eflnm6_�e�oqbd_Iefw�7��Vly_Vgiha�§rsb�mc_Vef��bdlyz6}lyg6��hdtk_�bd_Vxnoqhdly��_°`{rseflyhdlyrsgürs��osgüoq�_Vgih�hdrpv4oqb�mce�hdt6_��Vr � `6xy_�hd_rszc¾A_V��hp�P^�_?_��c`{_V��hLhdtklyeaz{_Vlyg6�Àhfbdw6_?�§rsb � rsbd_?�Vr � `kxy_��¿�izkwcha�Vrsg6}�_���r\zP¾@_V��hdeV�{osx~hdt6r\wk�stªva_©tkop��_�gkr���rsb � oqx�`cbdrirs�8efr���oqbp�
­p�4­ ° K�GA7	�ÔMPK1¶�5�3kC±�Æ®³5�®¿3kK³CIE³²©7:GÃMcGAKL7	�
ý��§hd_�b�_��chfb�oq��hdlygk�
hdt6_�gk_�ln�stPz{rsbdtkrirPmce���rsb�rsgk_��Vr � `kxy_��±os��hdlnrsg`{rsefeflyzklyxylyhÃ�©xyly��_QÇºhdwcbdgIbdly�\tih�ÈNva_Loqbd_�gkrpv�tk_posm6lygk�4�§rsbNefr � _8efrsbfhNrq�� oq��bdr�m6_�j[gkl~hdlyr\g�efwk��tuhdt[oqhLoqg�os�_�gPhLlyeaoqzkxy_4hdr©`{_�bf��rqb � o	Çºhdw6bdgbdly�stPh�È?rsg�hdt6_Iz[oqeflyears��xnlyg6_�ef_V� � _�gPhde�osgkm�l � `6bd_��Vlyef_Irsbdly_Vgih�oYhdlnrsglygc��rsb � oYhdlyr\g��» � oq�\lygk_ªz{_Vlygk�¨zkxylyg[mFe@h�osg[mclygk�¨oYh�o
vaosxyx:v�l~hdt=hdtk_�h�oqef�Frq�hdwcbdgklygk��bdly�\tih:oqh4hdt6_�gk_��Ph4��rsbdgk_�b?v�l~hdtªoqbdzkl~hfb�oYbf��oqgk�\xy_�oqg[mªmc_�}ef��bdlnz6lygk�©l~h8hdr�osgu_��Phd_�bdgkosx6`{_�bdefr\g��i´atk_4rsgkx~��ef_VgkefrqbalyeLrsgk_\È e�rpv�gbdly�stPh�t[osgkm�_��Phd_Vg[mc_pm�hdr�hdt6_�bdly�\tih���bdr\gih©v�tkly��t��poqg�z{_�ef_V_Vg�oseefr � _uefrsbfhÀrq���Vr�oYbdef_5ÇÃrqbdln_�gPh�oYhdlyr\g�ef_Vg6efrsb�È�hfb�osgke@�§_�bdlygk��hdt6_�h�osef�hdrSo�bdr\z{rshp�1"Ig6_Àvaop��mc_Vef��bdlyzklygk��hdtk_�`6bdri�V_�efe©rs��hdt6_Àj6bde@h�bdly�\tihhdwcbdgªlyg�ÇNly�c�{Â � ly�\tih4z{_�$
¸\��Çkr\xyxyrpv"hdt6_Iv4oqxyx�wkgihdlyx{�ir\w���_V_�xNosgª_pm6�s_�¼

A1

½ÄP�©ÓIr�o�xnl~hfhdxy_�e@hfb�osly�stPhÀoqtk_posm�efrªhdtkoqh�hdt6_u_pmc�_ulye�hdrShdt6_�bdly�\tihrs���ir\w�¼
A2

½��cl � _\�chdtk_Ig6_��Phav4oqxyx��Vr � _VeN¾@w6e@h�lygPhdrÀbd_pos��tªrsg�hdt6_bdly�\tih�eflnm6_\�Ìc��´�w6bdg�¼ lygªoÀz{rpv:½Lbdln�stih?oqbdr\w6g[m�hdtk_���rsbdgk_�b�wkgihdlyx[�ir\wSoqbd_�`koqbf}osxyxy_Vx�hdr�hdtk_�g6_��Ph4v4osxyxL¼
A3

}
A5

½Å6�©ÓIrªo�xyl~hfhdxy_�e@hfb�osly�stPh©ostk_Vo\m�wkgihdlyx�hdtk_�jkbde@h:v4oqxnx{¾Awke@h��s_�hde�rsw6hrs�Nbd_Vos��t�¼
A6

½ÆP�©ÓIr�e@hfb�osly�\tih4oqtk_posmuwkgihdlyx6hdt6_?��rsbdgk_�balyeLbdly�\tihLz{_Vtklygkm��ir\w�¼
A7

½Êc��Çkr\xyxyrpv"hdt6_Iv4oqxyx�¼
A8

½
ý:xyxÀhdtk_*g[o � _pm²os��hdlnrsgke��posgÔz{_ � rPm6_Vxy_pmBose
xyri�poqx�z{_Vt[op�i}lyrqbde©osgkm�v�l~hdt°hdtk_Àtk_Vxy`°rs��hdtk_Àz[oqef_�bd_VxnoYhdlnrsgke©`cbd_Vef_Vgihd_pm�lyg°hdt6_

DRA77

�{»Ã�8�§rsb�_��ko � `kxy_�xyrir\eflygk�S`[oqb�oqxyxn_�xnl~hÃ�*¼ A(rrllP)R0

½4hdr�ovaosxyx4v�tklyxy_S�§r\xyxyrYv�lyg6��l~hp��va_ªtkop��_�hdr°xyrir\��v�t6_�hdtk_�buva_St[op��_So

Cognitive Robotics Workshop 2004 127

� oqhdt6_ � oqhdly�poqxnx~��`{r\efl~hdly��_�rsb�gk_���oqhdly��_�rqbdly_Vgih�oqhdlyr\g¨hdrpv4oYb�m6e�hdtk_bd_Vxnoqhdlygk��mcln`{rsxy_ªoqg[m
hdw6bdg�bd_Vef`{_V��hdly��_Vx~�i�N^
uv�lyxnxah�oq���efwk��t*m6_�}ef��bdly`6hdlyr\g6e�oqeªo�zkoseflye��§rsbªr\w6b � os��bdr¨m6_�jkgkl~hdlyr\g6eV�a»AgFhdtk_�jkbde@hefly�\tih4hdtk_Ibd_�x�oYhdlyr\gke?rs��hdtk_u¼
DRA77

½ � ly�\tih4ef_V_ � hdr�z{_Ihdrir�jkgk_�sb�oqlng6_pm�hdr�bd_�`6bd_Vef_VgihIo�efl � `6xn_�z{_Vtkop�clyrqb�xyly��_Àhdwcbdgklygk��bdly�\tih�o\mc}_p|iw[oYhd_Vx~�i� S w6h�v�lyhdt6r\wchuhdtk_So\m6m6l~hdlyr\g[oqx4bd_Vxnoqhdlyr\g6e��Vr � `koqbd_pm�hdrhdtk_À¼
DRA24

½�v�_ItkoY�_Igkrqh��§r\wkgkmSo©v4oV� � oq�clyg6��hdt6_:hfb�oqgkefl~hdlyr\g�§bdr � r\g6_�bd_���_�bd_Vgk�V_am6ly`{r\xy_�hdrIosgkrqhdtk_�ba¼��§bdr � R0

hdr
R1

½�`{rsefeflnz6xy_\�v�tkly��t�lye?g6_V�V_VedoYbfbf�Shdr � rPm6_Vx¿�\rslygk�ubdr\w6g[mSo��Vrqbdgk_�bp�
É ��K�7?®�>A­	�cGAKL7
587?CËÊ¨­?Mc>AK4K�9
^�_L`6bd_Vef_Vgihd_pm�hdtk_�m6_Vefly�\g�osgkm�l � `kxy_ � _Vgih�oYhdlnrsg�tkrpv¨hdtk_L�Vr\g6�V_V`6hrs�L�Vr\g6�V_V`chdw[osx�gk_Vly�\tPz{rqbdtkrirPm��Vr\w6xnm°z{_À_��c`kxyrslyhd_Vmª��rsbIbd_posefrsgklygk�osz{rsw6hÀbd_Vxnoqhdly��_�`{r\efl~hdlyr\gkosxalyg6�§rsb � oYhdlnrsg*lng�hdtk_�efl~hdw[oqhdlyrsg¨�posxy�Vwc}xywke4lyg�hdt6_�oqzkef_Vg6�V_�rs��`6bd_V��lnef_�|Pwkosgihdl~h�oqhdly��_:lngc��rqb � oqhdlyr\g��c^
_Ilyg6}hfbdrPm6w6�V_pm�osg�_��Phd_Vg[mc_pm�mcly`{r\xy_�bd_Vxnoqhdlyrsg�osxy�s_Vz6b�o

DRA77

z{_�hfhd_�befwkl~hd_pm���rsb8ef`koqhdlnosxcg[op�Ply��oYhdlnrsg��q^�_L_��c`{_V��h�hdt[oYh�_V��_�bf�À|Pwkosxyl~h�oqhdly��_�posxy�Vw6xywkeLv�l~hdt�o©�Vr\g6�V_V`chdw[osx6gk_Vly�stcz{rqbdtkrirPm��poqg�z{_4hfb�oqgkefxnoqhd_pm�lygo�e@hfb�osly�\tihf�§rsbfv4oYb�m � osgkg6_�b8g[oqly��_Vx~��rsgihdr�`6bd_V��r\g[mcl~hdlnrsgkeLosgkm�efwk��}�V_Vefefrqb©e@h�oqhd_�oq�clyr � eV�6^�_�t[op��_�eftkrpv�g°zi�ª_��ko � `kxy_©hdt[oYhIg6rshIosxyxm6ly`{r\xy_Ve�rq�{o��Vr � `6xy_���r\zP¾@_V��h�oqbd_�g6_V�V_VefedoYbf��hdrImc_�hd_�b � lygk_8hdtk_�bd_Vx~}oqhdly��_�`{rseflyhdlyrsg
hdrpv4oqb�mceÀhdt6_ur\zP¾@_���hp��^
u��c`{_V��h�hdtk_�bd_Vefwkx~hde©��rqb�Vr\g6gk_V��hd_pmF�Vr � `kxy_��±r\zP¾@_���hdeSz{_�lng6�¨os`6`kxyly�posz6xy_°�§rsb�ef_V��_�b�osx?gkrsh�Vr\g6gk_V��hd_pm°m6ly`{r\xy_VeV��ý�mkmclyhdlyrsg[osxyx~��v�_u_��Phfb�os��hd_Vm°ef_���_�b�osx�efw6zkef_�hders�?hdtk_�z[oqef_�bd_VxnoYhdlnrsgkeu�§rsbubd_V`cbd_Vef_Vgihdlygk��o��Vr � `6xy_��¨r\zP¾@_���h�osgkmmc�cg[o � ly��os�s_Vgih?z{_Vt[op�Plyrsbp�Ç6w6hdw6bd_Àvarqbd�°v�lyxyxLm6_poqx�v�l~hdt�hdt6_�|iwk_Ve@hdlyrsgke©tkrpvÔhdrS��_V_V`�hdtk_`{r\efl~hdlyr\g�bd_�`6bd_Vef_Vgih�oYhdlnrsgue � osxyxi��rqb � rsbd_�hdtkosgÀr\gk_am6ly`{r\xy_abd_Vef`{_V��}hdly��_Vx~��r\zP¾@_���hp�cýüg[osly��_?l � `kxy_ � _Vgih�oYhdlnrsg�varswkxnm�xn_Vo\muhdr�o©�Vr � z6ly}g[oYhdrsbdlnosx�_��c`6xnrseflyr\g��¿z{_��posw6ef_Àhdt6_�bd_�x�oYhdly��_�`{rsefl~hdlnrsg�rq�Lhdt6_Àos�_�gPht[oqe�hdr¨z{_�hfb�oq�V_pmF�§rsbª_V��_�bf�±eflygk�sxn_�mcln`{rsxy_\��^
_�v�lnxyx©oqxyefr±xyrirs�r\g�hdtk_I_�û¿_V��hde?osxyxyrpv�lng6��m6ly`{r\xy_Veahdr�bd_V`6bd_Vef_�gPhagkr\gc}ºefr\xylnmS_Vgihdl~hdly_VeV�_\� �6�Nm6rirsbfvaoV�6eV��osg[m�`{rshd_Vgihdlnosxye�hdr�m6_�jkgk_uefr � _�efrsbfh�rs���s_Vgk_�b�oqx� os��bdr�m6_�jkgkl~hdlyr\gke��§rsb turnLeft bd_Vef`�� turnRight rsb GoAroundzi�S`koqhdt6e4lngShdtk_��Vrsgk�V_�`6hdw[oqx�g6_Vly�\tPz{rsbdt6rirPmª�sb�oq`kt��

Ì 9�®k9�7:Ku¶±>AE�C	�?®³E�7�M
´atk_©oqw6hdt6rsbde4xyly��_Ihdr�hdtkosgk��ÉIln_Vmcbdly��t�^�rsx~hd_�bp�{��tcbdlye@hdl�oqg�Ç6bd_V�PedoP�
Í ri��tk_VgüÁ?_Vgkù�oqg[m ¯ oqbd��r±Á:os�sgkl?��rsbS�§bdw6lyhf�§wkx©mclyef�Vwkefeflyr\g6e�osgkml � `kwkxyef_VeV�{ý:g[mªv�_Àv�r\w6x�m°xyly��_Àhdr�hdtkosgk� ¯ oqbd��} S ¾�Îsbdg Ñ _Vlnm6_�x���rqb�Vr � `6w6hdlygk�uhdt6_�g6_Vly�\tPz{rsbdt6rirPm��sb�os`6t��§rsb�mcl~û¿_�bd_VgihI�Vosxy�Vwkxyl �1"Iw6bvarqbd��v4oqe4efwk`k`{rqbfhd_pmuzi�uhdtk_?É©Ç�Ó"´�b�oqgke@bd_V�slnrsg[oqx���rsxyx�oqz{rsb�oYhdln�_Á:_�ef_poqbd��t°��_Vgihd_�b Ñ Ç S�Ï ´aÁÔÂ�Ç Ñ `[oYhdl�oqx���r\�\g6l~hdlnrsgHÈd�
D¦E%´�E�3kE�7:®¿E%�
� (�ÐzLåqß[P�ãpåYî	Ñ:÷�â�ã/P\åkç�Ò Ó?.iÞVá~à ß@Þ�ßÃà êYë�íÃÝiÞ�ßÃàyÞVáqìºëdÝ�ìºë�íÃëdåqßAÞ�ßAà~ãpåIÞVå�ó�ìÃë�Þ8ÔíÃãpå�à~å�ä�ßAë
*lP\å�à6Â�.\ë�í'Õ~ç�à~åVÖ�×�Ø\Ù�Ú/Û^ÜDÝ/Þ�ß/àOálâ�ã+ä>àhÜ?å�æAä ç1á�ä{ß/èu×�à#æ4â'è{è ä{Øé â�àOálâ�ê�ë!ì/ãlæ?Ü�à#à#í-ß/è�îQâ�å�ï�ß/àÆð%ñ�à�ò�â�å�â'àOálâ5ñ/à�Ü?å�æAä ç1á�ä{ß/èu×�à#æAâ�è Ø

è ä é â�àOálâ�ê1ó`å[â'äAô
í-å é ê îQâ'å�ï�ß/à#õ8ê¡öHâ�÷�æAâ�ï�ô[â�å�Ù/Ø\ì/ë�ê?ì!Ù�Ù�Ú'ê¡øQå�ñ'álâlâlÝ/Ø
ä>à é ã@ç�ëdó�í�÷~ç�Ñ�ëdì[P�ÞVìÃó©×Nìºë�3^¬VÞ\çYâ¡P�ìºà~íÃßÃãpÝ2P�ëdìuù�Þ�0Pëdá�çVÞVå\óI×Nëdìºå2PiÞVìºóú ë'0Pëdá�ç{êYãpá6.�ð©ë (À/û/À�ãVï�ü`âlá�æAí�å�â}ýpñ/æ4â�ã�ä>àþð%ñ�ïD÷Oí-æ4â'å�öHá'ä�â'àOálâ�çÝ�Ý6÷ (?ÿ À/û\ç�×Në�ìºá~à~åkçJy (���� �/|@÷6ÕsÝ�ìºà~å�äpëdì�÷

� o8�ÐzLåqß[P�ãpåYî]Ñ:÷6âNã/P�å�ÞVå�ó�Õ�PYîqÞVð�ÞVåYß@Þ��ª÷OùLÞVô�ÞVìºà6¬VÞ\çJÒ Ó?.iÞVá~à ßAÞ�ßÃà êYëíÃÝiÞ�ßAàyÞVáLìÃëdÝ�ìºëdíAëdåYß@Þ�ßÃà~ãpå¨ÞVå�ó�ìÃë�ÞVíÃãpå�à~å�ä�ñ¡zLå�ã�êYëdìºêsà~ë�3 Õ~ç�ó`í-àOÝ�ß/Ø
ï±â�à#æ4ß±×�à�ò�ñ/å�ï�ß/æAä{álß�â�ç m�~ y (Ô4o�|fç (lÿ o � çJyAo/û/û (|@÷

� À8�¯Ñ�à6.�íÃëdÝ�ÝPë��Lë Ñ�àyÞ�*dãpð©ã�ç���êYëdí
	��díÃÝcëdìÃÞVå2*dëpç�ÞVå�óxù�ë'*fßÃãpì�
i÷
	[ëfêYëdí�Â!.�ëpç?Ò âNãpåOÑ�ãpá~ãpä�çQz�*dãpå2*
.�ìÃìºëdåqßuÝ�ìÃãpäpìÃÞVð©ð©à~å�ä�áyÞVå\ä/.iÞVäpë
0iÞVíÃëdó©ãpå©íAà ß[.iÞ�ßAà~ãpå±*�ÞVá6*
.�á6.\í�Õ~ç�Ü?å�æAä ç1á�ä{ß�è�×là#æ4â'è{è ä é â�àOálâ�ç L-_JL y (lÿ o�|fç
(û ��ÿO(')�� ç³y�o/û/û/û�|f÷

� k �Ðz�á~ë c ÞVå�ó�ëdìaÖiëdìÃìºëdà~åkç[â�P\ìÃà~íºßAàyÞVå�Öiìºà ßAôpç6ÞVå�ó]Ñ�ëdì�PiÞVìÃó�	{Þ�¬pëdð©ëfîYëdì�ç
Ò a%c ßAëdå�ó\à~å�ä���ÙDÑ�ãpá~ãpäD3�à ß[P ª ÝsßAà~ãpå�í'Õ~çVà~å	øQå�ñ'á�ñ[ò�æ��-âDì��/æ�� ×�à#æAâ�å�Ø
àOß/æAä�ñ/àOß/è���ñ�ä>à#æ�ð%ñ/à�ò
â'å[â'àOálâ�ñ/ànÜ?å�æAä ç1á'ä�ß/è#×�à#æ4â'è{è ä é â�àOálâ�ç`y�o/û/û/À�|f÷

� �8� â¡P�ìÃà~íºßAàyÞVå°Öiìºë
¬síAÞ\çQÒ âNãpå2*dëdÝ\ß[.iÞVá�å�ëdà~ä/P!0Pãpì[P�ãqãqó�ÞVå�ó°à ßÃí�ìÃãpá~ë�à~åßAëdð©ÝPãpìÃÞVáiÞVå�ó?íAÝiÞ�ßÃàyÞVá�ìºë�ÞVíÃãpå�à~å�ä2Õ~ç�à~å�ø�å[ñ'álâlâ�Ý�ä>à é ãDñ[ò�æ��2â�×��nÜ±ðJö� ñ�å���ã��-ñ�÷5ñ/à�� â�á�ä>ãlä�ñ/à�ö�í8÷�÷�ñ�å�æWö�õ/ãlæ4â'ï±ãQß/àOÝ ��í-ß�è ä{æAß�æ�ä{Þ8â"!Qâlß/Ø
ã�ñ/à#ä{à é ç\ëdó�í�÷~ç#��ÞVóiÞVå}Ñ:÷iÕsà~å\ä/P�ÞVå\ó$	`.�à~íAëLÙ{ìAÞdê%��Ô&��ÞVíÃí�.\î#'dí�çsÝ�Ýk÷
(Û (�ÿR(Û��sç ú ãpìºß[P-Ô\ù�ãpá~áyÞVå�ókç#zLð©íÃßÃëdìÃóiÞVðuç�y (����-(|f÷ a á~íAëfê\à~ëdìd÷

�) � â¡P�ìÃà~íºßAàyÞVå�Öiìºë
¬síAÞ\ç%Ò éLíÃà~å�ä©ãpìºà~ë�åYßAÞ�ßAà~ãpåSà~å\ï§ãpìºð�Þ�ßÃà~ãpåuï§ãpì�Â!.iÞVá~à ßAÞ8ÔßAà êYë�íÃÝiÞ�ßAàyÞVáLìÃë�ÞVíÃãpå�à~å�ä2Õ~ç8à~å)(��-âlñ/å�ä{â�ã�ß/àOÝVï�â�æ��2ñ'Ý/ã�ñ[ò5ãA÷�ß/æAä{ñ�Ø
æ4â�ïD÷-ñ/å�ß/è�å�âlß/ã�ñ/à#ä{à é ä>à é âlñ é å�ß�÷*��ä�á�ãA÷�ß�álâ�çNë�ó\í�÷~ç�z?÷�é?÷�ÖiìAÞVå-¬cç
q@÷¿â�ÞVð©ÝiÞVìºà�ç[ÞVå\óªé�÷kÖiãpìºð©ëdåqßÃà~å�à�ç (') o ÿ�(�VÛ\ç{ÕsÝ�ìºà~å�äpëdì�ç¿×Nëdìºá~à~åkç
y (���� o�|@÷

� ��� â¡P�ìÃà~íºßAàyÞVåÔÖiìºë
¬síAÞ\çRÒ ÕsÝiÞ�ßÃàyÞVá5*�ãpäpå\à ßAà~ãpå Ô°ÞVå³ÞVà�Ý�ìÃëdíÃÝcë
*fßÃà êYë�Õ~çà~å ø�å�ñ�álâ�âlÝ/ä{à é ã�ñ�ò5ì#+8æ��-,Qí-å�ñ�÷�âlß/à ð%ñ/à�ò
â'å�â�àOálâ]ñ/à Ü?×�./,pð`ÜD×
ë#0�02143VçWy�o/û/û k |f÷

� Û8� â¡P�ìÃà~íºßAàyÞVå�ÖiìÃà ßÃôpçD×�à#æAâ é å�ß/æAä>à é Ý�âlá�ä>ãlä{ñ/à#Ø4æ��-âlñ/å[â'æAä{án÷Oè ß/à#à#ä{à é ß�àOÝ
÷Oå[ñ é å�ß/ï±ï	ä{à é ò�ñ/å5å�ñ�ô[ñ�æ�álñ/à#æAå�ñ�èDä{à5��ä é ��è õ�Ý�õ/àOß/ï	ä�áMÝ!ñ/ï±ß�ä>à#ã@ç
��ÞVíÃßÃëdì'Õ í©ß[P�ëdíAà~í�çNÚ76�ÙDùÐz�Þ�*lP�ëdåYy�Äaå�ã�3�á~ëdó�äpë�Ô40iÞVíÃëdó¨ÕqîsíÃßÃëdð©í
Ñ�ìÃã/.\ÝO|fçOz�Þ�*lP�ëdåkçHÑ�ëdìºð�ÞVåqîYçOo/û/û/À\÷

� � �¯Ñ:÷*�Lë�Ñ�àyÞ�*dãpð©ãIÞVå\ó}ù�÷�	[ëfêYë�í[Â�.\ëY÷³zLå�à~å2*dìÃëdð©ëdåqßAÞVákà~åYßÃë�ìºÝ�ìºëfßAëdìï§ãpìQP�à~ä/P�Ô á~ëfêYë�ákÝ�ìÃãpäpìÃÞVð©íQ3Là ß[PÀíAëdå�íAà~å\ä�÷
� (û8�¯ùLëdå�ìºà6¬hÑ�ìºãpíAí[¬sìºë
.\ßAôpç�Ò w ìºã/0iÞ�0�à~á~à~íºßAà6*©Ý�ìºã�«ºë
*dßÃà~ãpå�ÞVå�ó�0Pëdá~à~ëfïD.\Ý-ÔóiÞ�ßÃë�à~åIß[P�ë�Ý#Ñ ª 	 ª Ñ
ï§ìÃÞVð©ë�3�ãpì[¬OÕ~çYà~å�ð%ñ é !Qñ!ô'Ø8090�ß/æ�,�ð`Ü?×lØ80�0Vç

yAo/û/û/û�|@÷
� (/(�¯ùLëdå�ìºà6¬MÑ�ìÃãpíÃí�¬qìÃë
.\ßÃô�ÞVå\óhÑ�ëdì[P�ÞVìÃó-	{Þ�¬pëdð©ëfîYëdì�ç%Ò *'*�Ô�Ñ�ãpá~ãpä�ñkÙ{ã�Ô

38ÞVìºó�í�ð©ãpìºë4ìÃë�ÞVá~à~íºßAà6*�á~ãpäpà6*�Ô40iÞVíÃë�ó�ìÃã/0PãVßD*�ãpåYßÃìÃãpá~á~ëdìºí�Õ~çcà~åRÜDÜ?ÜD×�Ø
090pç`yAo/û/û/û�|@÷

� (o8�¯ùLëdå�ìºà6¬�Ñ�ìºãpíAí�¬qìºë'.sßAô�ÞVå�óMÑ�ëdì�PiÞVìÃó:	{Þ�¬pëdð©ëfîYë�ìdçWÒ ÙW.�ìÃå\à~å�ä}P\à~ä/P-Ôá~ëfêYë�á:Ý�áyÞVå�í�à~åYßAã�ìÃã/0PãVß�Ý�ìºãpäpìAÞVð©í�à~åÆ.�å2*dëdìºßAÞVà~å¦ó�ãpð�ÞVà~å\í�Õ~ç�à~å
,pð`Ü?×lØ8090VçWyAo/û/û/û�|@÷

� (À8�¯ùLëdå�ìºà6¬}Ñ�ìÃãpíÃí�¬qìÃë
.\ßÃôIÞVå\ó5Ñ�ëdì[P�ÞVìÃó;	[Þ�¬pë�ð©ëfîYëdìdçHÒ ª å-Ô á~à~å�ëLë c ë
*
.-ÔßAà~ãpå�ãVï%*'*�Ô�Ñ�ãpá~ãpäIÝ�áyÞVå�í�Õ~ç\à~åR×<��ðJÜD×�Ø80/ìpç³yAo/û/û (|@÷
� (
k ��z�ð�ÞVì³q íAá~à�ÞVå�ó�z�åYß[P�ãpåqî�Ñ:÷qâNã/P�åkç�Ò zLå�ÞVá~äpë
0�ìÃÞaï§ãpì%*fî-*dá~à6*8ãpìÃó\ë�ì\Ôà~å�ä�ãVï%oVó�ãpìÃà~ëdåYß@Þ�ßÃà~ãpå�í�Õ~çPà~ånÜ?ÜDÜ?×>=-×[ÜDÜ?×@çiÝ�Ýk÷)�k À ÿ�)�k9� çWy (���� Û�|@÷
� (�8� ×�÷?
�÷�Ä�.�à~ÝPëdìÃí�çHÒ Ú�ëdÝ�ìºëdíAëdåYßAà~å�ä+¬qå�ã�3�á~ëdó�äpë?ãVï�áyÞVìºäpë�Ô í�*�ÞVá~ë?íAÝiÞ�*dë/Õ~çÙ{ë
lP�å�à6�ÞVá¿Ú8ë�ÝPãpìËß k2(Û\ç`y (�� �/�/|@÷
� (') � w 	[ÞVó2¬sà~å�ÞVå�ó�Ú@��ÞVó�ó2. c ç1Ò ª åT0\à~åiÞVìºîM*dãpå�íÃßÃìÃÞVà~åqßIÝ�ìÃã/0\á~ë�ð©í'Õ~ç

�-ñ/í�å�àOß�èJñ�òDæ��2â?Üpã�ã�ñ�á'ä�ß/æAä{ñ/à ò�ñ�å±ðuñ/ïD÷�í�æAä>à é �]ß�áA�-ä>àOâ�å�õpç mWL yAÀ�|@ç
k À�� ÿ!k�)�� çWy (�����k |@÷

� (���¯ù?÷�	[ëfêYëdí�Â!.�ëpçVÖ�÷ w à~ìºìÃà�ç�ÞVå�ó?Ú4÷�Ú8ëdà ßAëdìdç�Ò Öiã/.\å�óiÞ�ßÃà~ãpå�í{ï§ãpìkß[P�ë�íAà ß[.-ÔÞ�ßAà~ãpå�*�ÞVá6*
.�á6.�í'Õ~çYà~å+ü%ä>à%�9B�÷Oä{à é ,Qè âlá�æ�å[ñ/à#ä{áDÜ�å�æ�ä�á'è â�ãQä>àMð%ñ/ï?÷Oí�æ4â�å
ß/àOÝ�×là�ò
ñ/å�ï�ß/æAä{ñ/à�öHá'ä�â'àOálâ�çqêYãpá6.�ð©ë�À\ç`y (���� Û�|@÷

� (Û8�¯ùLë
*fßAãpì)
�÷�	[ëfêYëdí�Â!.�ëpç�Ú�Þ�îsð©ãpå�ó Ú�ëdà ßÃë�ìdç���êYëdíC	[ëdíAÝPëdìÃÞVå2*dëYçÖPÞVå�äpô
P�ëdå;	[à~åkç�ÞVå�ó�Ú�à6*lP�ÞVìÃó�×�÷iÕ�*�P�ëdìÃá�çHÒ Ñ ª 	 ª Ñ:ñ2z*á~ãpäpà6*aÝ�ìºã�ÔäpìAÞVð©ð©à~å\ä�áyÞVå�ä/.�ÞVäpë�ï§ãpì4ó\îsåiÞVð©à6*�ó\ãpð�ÞVà~å�í�Õ~çD��ñ�í�å�àOß/è�ñ[ò±ü`ñ é ä{á
øQå�ñ é å�ß/ï±ï±ä>à é ç jJL y (Ô4À�|fç*� ��ÿ Û/À\çWy (���� �/|@÷

� (�� �E
�÷?�R*�â8ÞVìËß[PqîYçHÒ Õsà ß[.iÞ�ßÃà~ãpå�í�çiÞ�*dßÃà~ãpå�íLÞVå�óR*�Þ�.�íAÞVá[áyÞ'3�í�Õ~çsÙ{ë
lP�å�à6�ÞVáìÃëdÝPãpìËß�çkÕqßAÞVå\ï�ãpìÃó�é�å�à êYëdìÃíÃà ß îYçJy (��/) À�|@÷
� o/û8� Ú�÷��uãpìAÞ�ßÃôpç¿Ù4÷[Ù{ëdå�0\ìÃà~å2¬PçD
�÷¿×�Þ�ßÃëdð�ÞVåkç{ÞVå�óTÄI÷[Ö¿à~í�*�P�ëdì�çuÒ ÕqÝiÞ8ÔßAàyÞVáD¬så\ã�3�á~ëdó�äpë�ìÃëdÝ�ìºëdíAëdåYß@Þ�ßÃà~ãpå�ï§ãpì±P�.�ð�ÞVå�Ô ìÃã/0PãVßÀà~åYßAëdìÃÞ�*dßÃà~ãpå`Õ~çà~åVö!÷�ß/æAä�ß/èpð%ñ é à#ä{æ�ä�ñ/àT×[×�×@ç¿ë�ó\í�÷~ç�â¡P�ìºà~íÃßÃàyÞVå�Öiìºë'¬qí@Þ\ç�6±÷�×NìÃÞ�.�ëdì�çâ�÷¡ùLÞ�0cëdá�çNÞVå�ó ÄI÷�Ö�÷F6�ëdå�ó�ëdìdçLÕsÝ�ìºà~å�äpëdì�ç�×Në�ìºá~à~åkç1ùLëdà~ó�ëdá60PëdìÃä�ç

yAo/û/û/o�|@÷
� o (� Ú�ëdà~å2P�ÞVìÃóG�uãpìÃÞ�ßAôpçÀ×Nëdìºå2PiÞVìºó ú ë
0Pë�á�ç©ÞVå�ó³â¡P�ìºà~íÃßAÞVå²ÖiìÃë
¬qí@Þ\ç

Ò Ó?.iÞVá~à ßAÞ�ßAà êYë�íÃÝiÞ�ßÃàyÞVá:ìºë�ÞVíAãpå�à~å�ä�Þ�0cã/.sß�ìÃëdáyÞ�ßÃà êYë�ÝcãpíÃà ßAà~ãpå6ñ�ÙQP�ëßAìÃÞVó�ëdã�Á]0Pëdß43Në�ëdåuíºßAìºãpå�ä�ï�ãpìÃð�ÞVácÝ�ìºãpÝPë�ìËßÃà~ë�í�ÞVå�óÀí�.2*
*dëdíAíÃï{.�á6ìÃë�Þ8ÔíAãpå�à~å\ä�Þ�0Pã/.\ßuìÃã/.\ßÃëªäpìÃÞVÝ2P�í'Õ~ç�à~åYö!÷-ß/æAä{ß/è+ð%ñ é à#ä>æAä{ñ�à ×�×[×@ç�ë�ó\í�÷~çâ¡P�ìÃà~íºßAàyÞVå¨Öiìºë
¬síAÞ\çH6
à~á ï�ìºà~ë�ó�×NìAÞ�.�ëdìdç�â�P\ìÃà~íºßAãpÝ2P\ë�ìRù�Þ�0Pëdá�ç8ÞVå�ó
Ä4ÞVìÃá�Öiìºà~ëdó�ìÃà6*�P)6�ëdå�ó�ëdìdçIêYãpá6.�ð©ëUo) Û��FãVï�ü`âlá�æAí�å�âUýpñ/æ4â'ãUä>à
Ü?å�æAä ç1á'ä�ß/èH×là#æ4â�è>è ä é â'àOálâ�ç2ÀpÛ�� ÿ!k û/û\çkÕsÝ�ìºà~å�äpëdì�ç6×NëdìÃá~à~å6çOùLëdà~ó�ëdá60PëdìÃä�ç
yAo/û/û/À�|@÷

� o/o8� Ú�ëdà~å2P�ÞVìÃóI�uãpìÃÞ�ßAôpçJ
pã!*lP�ëdå�Ú�ëdå�ôpçcÞVå�ó;��à~ëdó�ìÃà6*�P 6�ãpá ßAëdìdçWÒ Ó?.�ÞVá Ôà ß@Þ�ßÃà êYë�íAÝiÞ�ßÃàyÞVá[ìºë�ÞVíAãpå�à~å�ä�Þ�0Pã/.\ß�á~à~å�ë4íÃëdäpð©ë�åYßÃí�Õ~ç�à~ånøQå�ñ'álâlâlÝ/ä>à é ã
ñ[òK,pð`ÜD×pë#090�0VçPÝ�Ý6÷#o/À k8ÿ o/ÀpÛ\ç³yAo/û/û/û�|@÷

� o/À8� Ú�ëdà~å2P�ÞVìÃó-�uãpìÃÞ�ßÃô�ÞVå\ó-
YÞVå ª á~à êYëdì�6ªÞVá~á~äpì8L�åkç1Ò w ìÃãpÝ�ÞVäYÞ�ßAà~ãpå�ãVïó�à~íÃßAÞVå2*dë�ÞVå�ó*ãpìºà~ëdåqßAÞ�ßAà~ãpåFà~åqßÃëdìºêVÞVá~í�Õ~çLà~åÆøQå�ñ'álâlâlÝ/ä>à é ãhñ[ò]ë#090�M
×�,F,N,�=O!^öJ� ×�à#æ4â'å�àOß/æAä�ñ/àOß/ènð%ñ/à�ò�â�å�â�àOálâVñ/àÆ×là#æ4â�è>è ä é â'à#æP!Qñ!ô�ñ/æAã
ß/àOÝ�ö�õ/ãlæ4â'ï±ãQ.{×�!SR1ö�3Vç�Ý�Ýk÷#À/o k � ÿ À/o��/û\ç³y�o/û/û/À�|f÷

� o k �E�:÷³z:÷�Ú�ÞVå�ó�ëdá~á8ÞVå�óhz?÷uÑ:÷�âNã/P�åkç1Ò �uãqó�ëdá~á~à~å�äußAãpÝPãpá~ãpäpà6*�ÞVá�ÞVå�óð©ëfßAìºà6*�ÞVá�Ý\ìÃãpÝPëdìºßÃà~ëdí�ãVïaÝ2PYî\íÃà6*�ÞVá�Ý\ìÃã!*dë�íÃíAëdí�Õ~ç�à~åVø�å[ñ'álâlâ�Ý�ä>à é ãRñ�ò
æ��-âpì�ã�æ³×là#æ4â�å�àOß/æAä{ñ/àOß�èuð%ñ�à�ò�â�å�â'àOálâpñ�à�øQå�ä>àOá�ä ÷�è â�ã?ñ�òQÖ àOñ�TQè â�Ý é â
!Qâ�÷�å�â'ã�â�à#æ4ß/æAä{ñ/àÆß�àOÝU!�âlß/ã�ñ/à#ä{à é .�Ö�!�V ��Ù23�ç�ëdó�í�÷~ç�Ú�÷W
�÷�×NìÃÞ�*lP-Ôð�ÞVåkç1ù?÷H
�÷N	[ëfêYë�í[Â�.\ëYç�ÞVå\ó�Ú4÷�Ú8ë�à ßÃëdì�çNÝ�Ýk÷�À���� ÿ À) Û\÷"�uãpìºäYÞVå

Cognitive Robotics Workshop 2004 128

Ä4Þ�.\ï�ð�ÞVå�åkçHy (�� Û � |@÷
� o��8�G�aÞdê\à~ó�z?÷cÚLÞVå�ó\ë�á~á�çYXOPiÞVåSâ�.\à�çkÞVå\ó]zLåqß[P�ãpåYî�âNã/P�åkçJÒ z=íÃÝiÞ�ßAàyÞVáá~ãpäpà6*p0iÞVíÃë�ó�ãpåuìºë�äpà~ãpå\íaÞVå�ó}*�ãpå\å�ë
*dßÃà~ãpå`Õ~çcà~å�Ö�!$V Ù�ë#Z`øQå�ä>àOá�ä ÷�è â�ã

ñ[òpÖ àOñ�TQè âlÝ é âQ!�â[÷Oå�â�ã�â'à#æ4ß/æAä{ñ�àMß/àOÝ$!Qâ�ß�ãlñ�à#ä>à é Û³ø�å�ñ�álâ�âlÝ/ä{à é ã�ñ[ò
æ��-â[(Y��ä{å�ÝV×là#æ4â'å�àOß�æ�ä�ñ/àOß/è�ð%ñ�à�ò�â�å�â'àOálâ�ç�ëdó�í�÷~ç�×Nëdìºå2PiÞVìºó ú ë
0Pë�á�çâ¡PiÞVìºá~ëdí8Ú�à6*lP6ç\ÞVå\óP6
à~á~á~àyÞVð1Õ�38ÞVìºßÃã/.\ß�ç (') � ÿO(�) ç%�uãpìÃäYÞVå+Ä4Þ�.\ï>Ôð�ÞVå�å6çPÕ\ÞVå ��Þ�ßAëdã�çcâ�ÞVá~à ï�ãpìÃå�àyÞ\çHy (���� o�|@÷

� o) �³Ú4÷iÚ8ëdà ßAëdìdç`Ö àOñ9TQè âlÝ é â±ä>à}ÜDá�æ�ä�ñ/àiçO�Rq Ù w ìÃëdíÃí�çOo/û/û (÷
� o����G
pã!*lP�ëdå�Ú8ëdå�ôpç^Ò z²íÃÝiÞ�ßAàyÞVáLãsósî\íÃíAëfî°ãVïaß[P�ëuà~åYßAëdìËêpÞVáaÞVá~äpë
0�ìÃÞ\ñ (÷ó�à~ìºë
*fßAëdó�à~åYßAëdìËêpÞVá~í�Õ~ç�à~åR×<�Hð`ÜD×fçiÝ\Ýk÷?� (lÿ �) çJy�o/û/û (|f÷
� opÛ8�ÔÙQP�ãpð�ÞVí?Ú]\Vï§ëdìdç%Ò Ú8ã/.\ßAë©å�Þ�êsà~äYÞ�ßAà~ãpå�.\íAà~å�ä�ð©ãVßAà~ãpå�ÞVåiÞVá îsíAà~í'Õ~çkà~å

ð%ñ/ãlä>æpì!Ù�Ù�Ùpç¿ëdó�í�÷~ç{â�P\ìÃà~íºßAàyÞVåSÖiìÃë
¬qí@Þ�ÞVå�ó-��Þ�êsà~ó^�ª÷Y��ÞVì[¬Pç{Ý�Ýk÷
o (lÿ À) ÷6ÕsÝ\ìÃà~å�äpëdìdçc×NëdìÃá~à~åkçHy (������ |@÷

� o � � â¡P�ìºà~íÃßÃãpÝ2P¨Õ!*lP�á~à~ëdó�ëdì�ç^Ò Ú�ë�ÞVíAãpå\à~å�ä�Þ�0Pã/.\ßÀãpìºó�ëdìÃà~å�ä2Õ~çNà~å<ö!÷�ß/æAä�ß/è
×là�ò
ñ/å�ï±ß�æ�ä�ñ/à_(Y�-âlñ/å�õpç�Ý\Ýk÷OÀ k2(lÿ À k9� çWy (���� ��|f÷

� À/û8�G�uà6¬!PiÞVà~á�Õsã/.\ß[*lPiÞVå\í�¬qà�çWÒ zLåuãpå-Ô á~à~å\ë?ó\ë'*dà~íÃà~ãpå-Ô�ß[P�ëdãpìÃëfßÃà6*Iäpãpá~ãpä�à~å-ÔßÃëdìÃÝ�ìºëfßAëdì
Õ~çkà~ån×<�Hð`Ü?×@çiÝ�Ý6÷ (���ÿ o) çJy�o/û/û (|f÷
� À (�ÔÙQP�ãpìÃÞaÙ{ëdå�0�ìºà~å2¬Pç�ÄaëdìÃíºßAà~å:Ö¿à~í�*lP�ëdìdçpÞVå�óIÚ�ëdà~å2P�ÞVìÃó`�uãpìAÞ�ßÃôpç�Ò ÕsÝiÞ8ÔßÃàyÞVá�íÃßÃìAÞ�ßÃëdäpà~ëdí�à~å�á~à~å�ä/.�à~íºßAà6*�P!.�ð�ÞVå-Ô�ìÃã/0PãVß	*�ãpð©ð	.�å�à6*�Þ�ßÃà~ãpå`Õ~ç[à~å

Ö�×lØa�-ñ/í�å�àOß�è Ûpö!÷�âlá�ä{ß/èQ×lãlãlí2âMñ/à ö!÷-ß/æAä{ß/è�ð%ñ é à#ä{æ�ä�ñ/àiç�ë�ó6÷~ç8â¡P�ìºà~í[ÔßÃàyÞVå�Öiìºë
¬síAÞ\çcÞVìÃëdåO��Ù¿Þ wcb ëdìºáyÞVä�çJy�o/û/û/o�|f÷
� À/o8�³Ú4÷ Ö�÷�6ªÞVå\äIÞVå�ó a ÷ Õc÷sÕsÝPëdá6¬pëpç#Ò é�ÝPóiÞ�ßAà~å\ä?ëdäpã!*dë�åYßÃìÃà6*4ìºëdÝ�ìÃëdíÃë�åYßAÞ8ÔßÃà~ãpå�í�à~ånP!.�ð�ÞVå�å�Þ�êsà~äYÞ�ßAà~ãpå`Õ~ç1ðuñ é à#ä>æAä{ñ/àiçJyAo/û/û/û�|@÷
� À/À8�³Ú4÷ Ö�÷Y6SÞVå�ä�ÞVå�ó a ÷ Õc÷[ÕsÝPëdá6¬pëpçuÒ ùD.�ð�ÞVå�íÃÝiÞ�ßAàyÞVá�ìÃëdÝ�ìºëdíAëdåYß@Þ�ßÃà~ãpåkñ

q å�íÃà~ä/PqßÃí©ï§ìºãpð ÞVå�à~ð�ÞVá~í�Õ~çd(Oå�â'àOÝ�ã+ä>à ð%ñ é à#ä{æ�ä{Þ8âRöHá'ä�â'àOálâ�ãAç ~ y � |fç
À��)�ÿ ÀpÛ/o\ç³y�o/û/û/o�|f÷

� À k �G��à~ëdó�ìºà6*lP56�ãpá ßÃëdì�ÞVå�óe	[ãpå�äpà~å[
YÞVåe	{Þ�ßAë
*l¬qà�ç?Ò Õ�PiÞVÝPë�ð�Þ�ß[*lP�à~å�äï�ãpìLìºã/0PãVßað�ÞVÝ�Ý\à~å�ä2Õ~ç\à~åRøQå�ñ'álâlâlÝ/ä>à é ã	ñ�òS��æ��+øQß!á'ä ç1áQ!^ä>ïº×là#æ4â�å�Ø
àOß/æAä{ñ/àOß�è^ð%ñ/à�ò
â'å[â'àOálâ�ñ/à�Ü?å�æAä ç1á�ä{ß�è`×là#æ4â�è>è ä é â'àOálâ�ç�ë�ó\í�÷~ç6â¡P�ëdå�ä/Âqà
XOPiÞVå�ä�çOùLÞVå�íH6F÷#Ñ?.�ëdíAäpëdåkçcÞVå�ó�6SÞVàWÄI÷#��ë�ÞVÝkç#zD.2*l¬qáyÞVå�ókç ú ë�3
XPë�ÞVáyÞVå\ókçWy�zD.�ä/.�íºß?o/û/û k |@÷

Cognitive Robotics Workshop 2004 129

1

Cognitive Robotics Workshop 2004 130

