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Abstract—The ephemeral content popularity seen with many content delivery applications can make indiscriminate on-demand
caching in edge networks highly inefficient, since many of the content items that are added to the cache will not be requested again
from that network. In this paper, we address the problem of designing and evaluating more selective edge-network caching policies.
The need for such policies is demonstrated through an analysis of a dataset recording YouTube video requests from users on an edge
network over a 20-month period. We then develop a novel workload modelling approach for such applications and apply it to study the
performance of alternative edge caching policies, including indiscriminate caching and cache on kt" request for different k. The latter
policies are found able to greatly reduce the fraction of the requested items that are inserted into the cache, at the cost of only modest
increases in cache miss rate. Finally, we quantify and explore the potential room for improvement from use of other possible predictors
of further requests. We find that although room for substantial improvement exists when comparing performance to that of a perfect
“oracle” policy, such improvements are unlikely to be achievable in practice.

Index Terms—Ephemeral content popularity; One-timers; One-hit-wonders; Edge network; Measurements; Caching

1 INTRODUCTION

ONTENT delivery applications commonly rely on
C caching at servers distributed throughout the Internet,
so as to achieve scalability and reduce access latency. Such
an architecture can be highly efficient and effective for
highly-popular content. In many content delivery applica-
tions, however, content popularity is usually short lived
at best. There is a high rate of addition of new content,
and for most of these content items there is only a brief
period of time over which retrieval request(s) are received.
Caching of such “ephemeral” content at an edge-network
cache has little benefit relative to the associated costs of
cache pollution, increased cache access delay owing to the
load caused by content insertions, and (relevant for SSD-
based caches) high write rates.

In this paper we address the problem of designing
and evaluating edge-network caching policies for content
delivery applications with ephemeral content. We first gain
an understanding of the characteristics of such applications
by analyzing a dataset recording YouTube requests from an
edge network. We then propose a novel workload modelling
approach for content delivery applications with ephemeral
content, and apply it in evaluations of a class of simple
edge-network caching policies. Finally, we investigate the
potential for further caching policy improvements.

The paper makes the following primary contributions:

e We analyze YouTube request characteristics as ob-
served at an edge network over a 20 month period,
particularly with respect to ephemeral content. We
observe that 71% of the requested videos are “one-
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timers” that are requested only once from the edge
network during the 20 month observation period,
demonstrating the need for selective caching poli-
cies.! Motivated by the observation that such policies
should predict what not to cache, we take a closer
look at one-timers and other videos receiving few
views, and compare their characteristics with videos
that receive more views.

e We propose a workload modelling approach suitable
for content delivery applications with ephemeral
content. Unlike most previous workload models, our
model is not based on an assumption of a fixed col-
lection of content items with stationary popularities.
Instead, we assume that content items have finite
lifetimes of interest, and model the distribution of
the total number of times that a content item will
be requested. Cache performance is then analyzed
focusing on the tradeoff between the cache insertion
rate, and the cache miss rate owing to items that have
not previously been cached.

e We apply our workload model to the analysis of
edge-network caching policies, specifically cache on
K" request policies for different k. We find that such
policies can be highly effective at reducing the cache
insertion rate at modest cost in increased cache miss
rate.

o Finally, we explore the question of how much scope
there may be for further cache performance im-
provements beyond those offered by cache on k"
request policies, for example by adopting popularity
prediction methods based on content item meta data.
Perhaps surprisingly, we find that although there is

1. While the term “one-hit-wonders” recently was used to refer to
web objects and videos only accessed once [26], we chose to use the
shorter term “one-timers”. However, the two terms are interchangeable.
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substantial room for improvement when comparing
to a perfect “oracle” policy, such improvements are
unlikely to be possible in practice as they require
accurate discrimination within the class of content
items that will receive few, if any, future requests.

The reminder of the paper is organized as follows.
Section 2 presents our data collection methodology and a
high-level overview of our YouTube dataset. Section 3 takes
a closer look at the distribution of the total number of
observed requests for a video, ephemeral popularity, and
the diversity in popularity characteristics. Sections 4 and 5
present our workload model and evaluate the performance
tradeoffs seen by alternative edge caching policies. Finally,
after discussing related work (Section 6), the paper con-
cludes with a summary of our findings and directions for
future work (Section 7).

2 DATA COLLECTION
2.1 Methodology

Longitudinal edge data: Our primary dataset is based
on a trace logging all HTTP transactions at a large uni-
versity campus. The trace spans 20 months and was col-
lected between July 1, 2008, and February 28, 2010. First,
a Bro [32]* script summarizes all HTTP transactions on
port 80 on the university’s Internet link. The script cap-
tures both application-layer information (e.g., host name,
URI, file type, status codes, etc.) and transport-layer in-
formation (e.g., transfer duration, bytes transferred, etc.).
Second, through careful filtering, we extract all transactions
associated with playback of YouTube videos. Each video is
identified by parsing the YouTube URI. This step required
some engineering and care, as the format of the URI varied
over the duration of the measurement period, as well as
in some cases also from device-to-device (depending on
user agent). Third, we use a basic threshold-based filter that
groups multiple transactions associated with playback of
the same file and client into a single aggregate request. We
say that two transactions are part of the same aggregate re-
quest if the transactions are done by the same client and the
requests either overlap or are separated by less than some
threshold time A (typically 5 minutes).? The aggregate video
request is considered to have been placed at the time that
the first such transaction was initiated by the client. While
the results are relatively independent of the threshold value
used, for completeness, Table 1 includes summary statistics
for three different thresholds: 5 minutes, 30 minutes, and 2
hours. During the 20-month-long measurement campaign,
the approximately 35,000 faculty, staff, and students of the
university generated roughly 5.5 million aggregate requests
to 2.4 million unique YouTube videos.

Server-side information: To support some of the analy-
sis in this paper, a second data collection was undertaken at

2. Bro Network Security Monitor, https://www.bro.org/

3. For privacy reasons, clients are anonymized on a daily basis, and
we could therefore typically only group transactions on a per-day
basis. Long-durations clusters of transactions that spanned across the
4:00AM boundary, at which time the client counters were reset, are
therefore most often classified as two separate video requests, although
the YouTube client ID allowed us to identify and repair a few such
cases. To avoid affecting client privacy this was only done on a YouTube
transaction basis.

2
TABLE 1
Summary statistics of the longitudinal local YouTube request workload.
Metric Value
Unique videos 2,392,688
Viewing requests (5 min thresh) 5,501,398
Viewing requests (30 min thresh) 5,501,200
Viewing requests (2 hour thresh) 5,501,132
Start date July 1, 2008
End date Feb. 28, 2010
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Fig. 1. Longitudinal weekly viewing pattern.

a later point in time, to obtain information from the YouTube
site about each of the videos that were requested during
our longitudinal measurement period. Three machines were
used to scrape (at the pace allowed by the YouTube API)
the YouTube meta data for the 2,392,688 videos. These
measurement scrapes were performed between December
9,2012, and January 25, 2013. The scrapes provided us with
time-invariant information about the upload date/time, the
duration of the video, the video category, and the uploader
ID. The scrapes also provided us with the global view count
at the time of the crawl; however, it is important to note
that this view count may not reflect the view count at
the time of the individual transactions of our longitudinal
dataset. Although this second data collection took place
well after the longitudinal collection was terminated, the
crawls still provided information about 1,456,230 (60.86%) of
the observed videos. Similar numbers have been observed
by Islam et al. [23], who were able to observe 67.13%
and 55.23% of random (recently uploaded) and popular
(keyword search) videos, respectively, when revisiting the
YouTube site looking for videos from a prior data collection
that had been carried out more than two years earlier [6].

2.2 Basic Characteristics of Dataset

Figure 1 shows the weekly viewing pattern over the du-
ration of our longitudinal data collection period. We make
three observations. First, there is significant seasonal varia-
tions (e.g., there are significantly fewer views during holi-
days and there are more views during the fall terms than
spring terms). Second, there is a general overall increase
in the usage (e.g., comparing the two fall terms, or the
two spring terms). Third, and perhaps most importantly,
ignoring the first 3-4 months, the fraction of views to new
videos (that have not been observed before in the trace)
is roughly constant throughout the measurement period.
Calculating statistics over all 86 weeks, on average about
70% of the videos viewed in a week had not been viewed
by a campus user in any of the prior weeks. For the median
week, 66% of the videos had not been viewed, while the
week with the smallest fraction of new videos still has
50% new videos. These results show that neither the set
of available content items or their item popularities are
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Fig. 2. Breakdown of observed videos and viewing requests associated
with each video category and global popularity class.

stationary over the measurement interval. Instead, many
videos are viewed only one time (“one-timers”), or a small
number of times.

To understand the edge-network workload, we also
break down the videos and their viewing requests based
on their video category (Figure 2(a)), and their global video
popularity as measured by their total view count at the
time of our server-side data collection (Figure 2(b)), when
available. In total, out of the 2.4 million unique videos,
the 39% of videos for which we were not able to obtain
server-side information were responsible for 36% of the 5.5
million viewing requests. For the other videos, we found
that music videos (16%) and videos that had between 10,000
and 1 million global views in December 2013 (39%) are the
most popular, along these two classification dimensions,
respectively. We also note that there is a relatively higher
fraction of viewing requests to popular videos, compared to
the fraction of popular videos observed in the trace. This
is to be expected, as it simply implies that these globally
popular videos also obtained relatively more views on the
campus network.

3 VIDEO REQUEST CHARACTERIZATION

As observed in Section 2.2, the set of available content items
is not fixed over the measurement interval, nor are content
item popularities stationary. An important question when
designing good caching policies, is therefore: when we see
a request for a “new” video (such that there have been no
requests observed yet from the edge network), what is the
probability that it will get r additional requests from that
edge network in the future? To answer this question, we
calculate statistics for the number of requests per video.

TABLE 2
Power-law fitting summary.

Scale parameter estimation

Relationship Scale parameter (o) | Standard error (04)
Per-video basis 2.341 0.001
Per-request basis 1.4359 0.0003

3.1

Figure 3(a) shows the percentage of videos, and the percent-
age of viewing requests attributed to videos, with less than
or equal to X viewing requests as Cumulative Distribution
Functions (CDFs). We note that 71% of the total number
of videos are one-timers and that these videos are respon-
sible for 31% of the total viewing requests. In addition,
there is a significant number of videos with only 2 or 3
viewing requests. The Complementary Cumulative Distri-
bution Functions (CCDFs) shown in Figure 3(b) focus on
the tail of the distribution. We note that both CCDFs show
clear power-law characteristics, as indicated by the linear
relationship when plotted on a log-log scale. To investigate
this relationship, we performed power-law fitting on the
data [12].

More specifically, to estimate the scale parameter («) and
the standard error (o,,) of this estimation, we use the maxi-
mum likelihood estimator (MLE) for a discrete distribution
with i, = 1, and numerically solve the equation:

Cla) _ 1§~y
@—7E;hl$z,

where z; is the number of views to each video i, 1 <i < n,
and ((a) = Y ;2 i~ is the Riemann zeta function. (For
details on the standard error calculations, we refer the
interested reader to the work by Clauset et al. [12].) For
completeness, we also estimate the scale parameter, when
observations x; are on a per-request basis, rather than on
a per-video basis. Not surprisingly, with a relatively larger
fraction of the requests being to videos with many requests,
we observe a smaller scale parameter for this case. The scale
parameter on a per-request basis is found to be approxi-
mately 1.44, while that on a per-video basis is approximately
2.34. Table 2 summarizes our results.

When interpreting these scale parameters it should be
noted that there is a direct relationship between the Pareto
distribution’s shape parameter « (roughly equal to the neg-
ative slope in the CCDF figure), and the power-law scale
parameter « derived using the above MLE approach. In
particular, the Pareto shape parameter (and slope in the
CCDFs) k = a — 1 [27]. To illustrate this relationship, we
have included the lines for x = 0.436 and x = 1.34 in
Figure 3.

To understand the effect of finite trace duration, in addi-
tion to statistics for the full trace, we also calculated these
summary statistics for newly-observed videos, as measured
over shorter time durations. The distribution results are
shown in Figure 4 for percentage of videos, with scale pa-
rameter estimations and their standard errors summarized
in Table 3 for both per-video and per-request statistics.

For these traces we only counted statistics for the videos
that were requested for the first time during the last year, the

Distribution of Number of Requests

M
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TABLE 3
Trace duration dependence in power-law fitting.

Scale parameter estimation
Time period | Video basis Request basis
1 week 3.31+£0.02 2.036 &+ 0.005
1 month 2.958 £0.006 | 1.773 £0.002
2 months 2.818 £0.004 | 1.693 £ 0.001
6 months 2.625+0.002 | 1.5635 £ 0.0005
1 year 2.452+£0.001 | 1.4690 £ 0.0003
[ All [ 2.341£0.001 | 1.4359 £ 0.0003 ]

last 6 months, the last 2 months, the last month, or the last
week of the full trace, respectively. Selecting to collect only
statistics for new files corresponds to using a longer and
longer warm-up period, and helps us avoid tagging a video
request as a first time request due to the use of a finite trace
duration. For example, in the case of the 1-year statistics, we
have a warm-up period of 8 months.

While the CCDFs and scale parameters are relatively
insensitive to the trace duration once the traces become long
enough, we note that the shorter duration traces have a
somewhat higher proportion of one-timers, and correspond-
ingly larger scaling parameter values. The higher proportion
of one-timers in these traces is clearly seen in Figure 4(a). For
example, the proportion of one-timers using the 6-month
trace is 78%, compared to 71% when using the full trace.

3.2 Ephemeral Popularity

As discussed in Section 2.2 and shown by the large fraction
of new videos each week (on average about 70% in Fig-
ure 1), there is a steady addition of new videos that obtain
viewing requests. Furthermore, most videos are only either
requested just once, or only a few times with most of the
requests occurring relatively close to the first request.

Figure 5(a) shows the CDF of inter-request times, for
videos with at least 2 requests, while Figure 5(b) shows the
CDF of the time between the first and last observed requests
to a video, with videos categorized according to their total
number of requests. Note that most videos with 10 or
fewer requests, for example, experience all of their requests
within 6 months of their first request. In contrast, if video
popularities were stationary and requests not clustered, we
would expect a typical video with 10 observed requests, for
example, to have a time between its first to last request over
the 20 month period of the trace of more than 16 months.

The frequently ephemeral nature of video popularity
is also apparent when looking at the time until the week
during which a video sees the most requests (with ties
broken in favor of the earlier week), with CDF shown in
Figure 5(c). Note that the peak request rate for most videos
happens within the first few weeks of the first observed
request. Even for relatively popular videos with between
100 and 1000 requests, more than 80% of these videos have
their peak week within 6 months of their first request.
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3.3 Diversity in Popularity Characteristics

Clearly there are significant differences in popularity be-
tween individual videos. We have also observed signifi-
cant differences between different video categories. This
is illustrated by the fraction of one-timers in each video
category (Figure 6(a)) and the inter-request time distribu-
tion for videos in each category (Figure 6(b)). We note
that “Movies”, “Shows”, and “Trailers” all have a smaller
fraction of one-timers than the other categories. In contrast,
“Autos” has the largest fraction of one-timers, perhaps
suggesting that these videos have a relatively narrow niche
viewership. The “Education” category stands out as it has
the largest fraction of closely spaced requests. We speculate
that these short inter-request times (e.g., more than 40%
within a single day) may be due to videos shared by
teachers, or among classmates at specific times.

Of course, some of these differences are also seen when
looking at total view counts at the YouTube servers. Figure 7

provides some insight into the correlation between local on-
campus and global popularity. Here, we show the fraction of
one-timers (Figure 7(a)) and the inter-request times to videos
with different global popularity (Figure 7(b)). These results
confirm our intuition that there is a strong correlation. While
there only are a few videos with more than 100M global
views seen on campus (Figure 2(b)), almost all these see
at least three views on campus (Figure 7(a)) and typically
have very short inter-request times (e.g., roughly 70% of
the inter-request times are less than one day; Figure 7(b)).
Substantial correlation is also clearly evident for the videos
with between 1M and 100M global views. For less popular
videos (less than 1M global views), the majority (70-80%) of
the observed videos are one-timers.

2 years
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4 CACHE PERFORMANCE MODEL
4.1 Workload Model

Misses at an edge network cache can result from the ac-
tion of a cache replacement policy (the requested content
was earlier evicted from the cache), or can result from the
requested content having never been present in the cache
(either first-time reference at that edge network, or the
content was previously referenced but not cached). We focus
here on the important tradeoff in the considered context
between the cache insertion rate and misses of the second
type, and study cache performance neglecting misses of the
first type (“capacity misses”). Cache replacement policies
and their impact on capacity misses have been well-studied
in prior work. We note, however, that as the cache insertion
policy becomes more selective, as we advocate here, it
becomes more and more likely that content inserted into the
cache will experience additional access(es). Cache replace-
ment policies should then become more effective, since a
higher fraction of the cache content will have experienced at
least one further access since being inserted into the cache,
providing more information to the cache replacement policy
(for example, more useful reference count data for an LFU
policy, or more meaningful LRU stack positions for an LRU
policy).

We consider here content delivery applications in which
content item popularities vary over time, and large numbers
of new content items are continually being added. Our
model of edge network caching performance is not, there-
fore, based on an assumption that there is some stationary
popularity distribution for a fixed set of content items.
Instead, we consider how many times a “new” content item
that is requested, i.e. an item that has not been requested
previously from the edge network, will be requested in total
from that network. Based on our characterization results
from Section 3.1, our model makes the assumption that
this total number of requests follows a discrete power-law
distribution with parameter o > 1.

Under this assumption, and neglecting capacity misses,
a cache using a cache on first request policy would experience
a miss rate (probability) of

o0 - o0 -

ZiZl i — Zi:l i (2)
o0 . 3 o0 . *

PO D DR

The cache insertion rate (fraction of requests for which the

requested video is loaded into the cache) with this policy is
identical to the miss rate.

P(cache miss) =

4.2 Cache on k' Request

Scenarios in which there are many one-timers motivate
consideration of more cautious cache insertion policies that
require observation of multiple requests for a content item
before inserting that item into the cache. Such a policy could
be fruitful, however, only if the probability of additional re-
quests for a content item, given that k requests have already
been observed, is smaller for k = 1 than for larger k. Denot-
ing the probability P(more requests | k already observed)
by P(k™|k), given our power-law distribution assumption
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Figure 8 plots P(kT|k) x 100% for o = 2.341, the
value yielding the best fit for our trace data, as well as for
somewhat smaller (o = 1.8) and larger (o = 3.0) shape pa-
rameter values. Note that P(k™|k) is an increasing function
of k. Owing to the “decreasing failure rate” characteristic
of a power-law distribution, the more requests that have
been observed, the more likely that future requests will be
observed.

Given our assumptions, a cache using a cache on k"
request policy, for integer k > 1, would have cache miss
and insertion rates given by

© =ik
ZZ";OZ_(H) @)

i=1

P(cache miss) =1 —
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Zi:k ¢ (5)
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P(cache insertion) =

To understand the performance tradeoff using the cache
on k" request policy, we use both trace-driven simulations
and our analytic model. For the simulations, we use all
requests seen at the campus network over the 20-month
measurement period. To avoid transient effects, we use a
warm-up period of 6 months and only calculate perfor-
mance statistics over requests during the last 14 months
of the trace. Figures 9(a) and 9(b) show the miss rate and
insertion rate, respectively, as a function of k. We note that
k =1 corresponds to indiscriminate caching.

Although the model somewhat underestimates the cache
miss rate (likely due to the model only approximating
the distribution of total number of requests), as seen in
Figure 9(c), the model still captures the general performance
tradeoff between the cache miss and insertion rates.

For comparison, we also include curves for the longest
public edge-network trace of YouTube accesses that we are
aware of [37]. This trace is referred to as T5 by Zink et al. [37]
and captures all YouTube views observed on their campus
network over a two week period (Jan. 29, 2008 to Feb. 12,
2008). Due to the shorter trace duration, we did not employ
any warmup period for this dataset (as we did for our much
longer continuous trace). The trace includes 611,968 unique
requests spread over 263,970 unique YouTube videos.* The
somewhat higher miss rates observed for this dataset than
for our dataset can partially be explained by the lack of

4. In the original reference it is stated that T5 includes 303,331 unique
videos. The difference in the reported numbers is that we count requests
of the form 01FCHBDmD7s&signature and 01FCHBDmD7s&start as
being requests to the same video 01FCHBDmD7s.
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warmup period. In particular, some of the misses at the
start of this trace would have been “hits” if we could have
“warmed up” the cache. The shorter trace also causes the
hit rates of the inserted videos to reduce (and miss rates to
go up) since videos inserted into the cache towards the end
of a trace in some cases do not see additional views due to
the trace ending before additional views occur, rather than
due to the videos not being viewed again.

While the absolute values differ somewhat from the val-
ues observed for our trace, the qualitative behavior is similar
for both traces. This is perhaps not surprising, as both long-
term and short-term viewing patterns at the server side
have been shown to be similarly well-captured with various
heavy-tailed distributions [15], [29]. We also note that due to
the ephemeral nature of this content, for many videos, most
of the views happen relatively soon after the first view of the
video. In the remainder of the paper we will focus only on
our (much longer) trace, for which we also have richer and
complementing information both from the network trace
and the YouTube service.

4.3 Lower Bound Performance

To glean some insight into the potential performance advan-
tage that predictive algorithms could achieve, we consider
the performance possible with policies that have knowledge
of future requests. For this evaluation, we consider two
optimal oracle policies.

For the first oracle policy, called optimal oracle, perfect
knowledge, we assume that the oracle always knows exactly
how many future requests a video will have. Clearly, given
this knowledge, the optimal performance tradeoff between
the cache miss and insertion rates is achieved by a threshold-
based policy that always caches a video at the time of
the first request whenever the video will have at least k
requests, where k is a policy parameter chosen according to
the desired miss/insertion rate tradeoff. Such a policy will
have the same insertion rate as the cache on k'" request policy
(equation (5)), but have a reduced cache miss rate:

Dt (i 1)
Dioyimett
due to the caching taking place already at the time of the
first request.
For the second oracle policy, called optimal oracle, binary
knowledge, we assume that the oracle always knows if a
requested video will be requested again, but does not know

P(cache miss) =1 —

(6)

how many future requests the video will have, in the cases
where there are future requests. Given this knowledge, the
best performance tradeoff is achieved by caching the video
on the k'" request if there will be additional requests for
that video. Clearly, this policy will have the same insertion
rate as a cache on (k + 1) request policy, but will see one
additional cache hit per insertion, compared to that policy.
Hence, we can calculate the cache insertion rate and miss
rate as follows:

P he i . Zik-%l (e 7
(cache insertion) = % atl’ @)

) Dieppr (i — k)
P(cache miss) = 1 — S et ®)

We note that the first oracle policy provides an overall
lower bound and the knowledge used by the second oracle
policy is comparable to the knowledge used by Belady’s
algorithm [3], for example, as it only leverages information
about the next request of the video. However, different from
the goal with Belady’s algorithm, we are concerned here
with the tradeoff between the cache insertion rate and the
cache miss rate. Clearly, a policy that only looks ahead
to the next request, if any, is non-optimal here, as such a
policy may suggest insertions of two-timers when only at
least three-timers should be cached to achieve the desired
tradeoff between insertion cost and miss cost.

4.4 Oracles with Limited Prediction

To understand the impact of the limited prediction capa-
bilities facing real systems, we next consider oracles with
perfect prediction capability for some videos, but only lim-
ited capability for others. In particular, we consider the two
extremes in which the oracle is capable of predicting the
exact number of future requests either (i) for all videos that
will have at least X viewing requests, or (ii) for all videos
that will have at most X viewing requests. We call these
two oracle policies limited oracle, perfect top-hitters and limited
oracle, perfect ephemeral, respectively.

Limited oracle, perfect top-hitters: First, assume that the
oracle can predict exactly how many requests all videos that
will have at least X requests will have in the future, but
that it will not be able to make predictions for less popular
videos. In this case, the optimal policy would always cache
on the k" request, where k is a policy parameter determin-
ing the tradeoff between miss and insertion rates, except
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for popular videos (with z; > max[k, X|) which the oracle
would cache on their first request.

To analyze the performance of such a policy, we first note
that it has the same insertion rate as any other policy that
caches those videos with at least k total requests, including
the cache on k'" request policy (equation (5)). However, in
contrast to the oracle with perfect knowledge of the future
requests of all videos, this policy would see (k — 1) fewer
hits for all videos with k to X —1 total requests; the resulting
total miss rate is given by:

S i —1) = (k= )2 e
221 j—a+1 .
)

Figure 10 shows the performance gaps between the
cache on k'™ request policy, the two “perfect” oracle policies
described in Section 4.3, as well as the limited oracle, perfect
top-hitters policy with X = 2, 5, 10, and 20. Results are
shown for both the analytic model (Figure 10(a)) and trace-
driven simulations (Figure 10(b)).

The analytic and simulation results for the most part look
qualitatively similar, although the simulations (due to the
6 months warm-up period) see a smaller relative insertion
rate for the oracle policies (e.g., as the oracle policies have
already inserted many videos during the warm-up period).

Comparing the cache on k' request policy and optimal
oracle, perfect knowledge, we see that there are significant
advantages to having knowledge of future requests. Perhaps
most interesting is the observation that the gap is the biggest
for small k, thus suggesting that the biggest improvements
are due to knowing which videos should not be cached,
rather than on predicting the very popular videos that are
likely to be cached eventually anyway, using a simple cache
on k' request policy, for example.

Looking closer at the penalty of the oracle with limited
prediction, that can only predict the number of future re-
quests to popular videos, we see that X must be small
before limited oracle, top-hitters yields substantially better
performance than the basic cache on k'" request policy. For
example, if the oracle can only tell us which videos will see
more than 10-20 requests, the oracle does not help much,
compared to the simple cache on k" request policy.

Limited oracle, perfect ephemeral: At the other end of
the spectrum is an oracle that can perfectly predict the exact
number of requests for the videos with at most X requests,
but that can only predict that other videos will have more
than X requests, not how many requests beyond that. As for
the other oracle policies with knowledge about the number
of future requests, the optimal policy for such an oracle is
to always cache at first request whenever it knows there
will be more than k requests, where k is a policy parameter,
and otherwise not cache until (possibly) reaching £ requests.
As this later caching can only happen when X < £, the
cache miss rate of this policy is the same as for optimal oracle,
perfect knowledge whenever k < X and equal to that of the
cache on k'™ request policy otherwise. For a given k, the cache
insertion rate is the same for all these three policies.

Figure 11 shows results for X = 2, 5, 10, and 20. As per
the description of this oracle, we note that its performance
follows that of the overall optimal for values of k up to the
threshold X, after which point it starts tracking the cache

P(cache miss) = 1—

8

at k' request policy. Comparing with the results for limited
oracle, perfect top-hitters (Figure 10), we note that there is a
significant advantage to being able to predict the number
of requests for the least popular videos, compared to being
able to accurately predict the requests for popular videos.

Overall, these results confirm that there are greater ben-
efits to being able to accurately discriminate among videos
that will receive few requests, for example predicting a one-
timer versus a 5-timer, compared to predicting the number
of future requests for popular videos. Unfortunately, pre-
dicting exactly how many future requests unpopular videos
will have on an edge network is non-trivial.

4.5 Read/write Penalty Analysis

We next take a closer look at the tradeoff between the
read /write ratio (potentially important in flash-based SSD
systems) and the cache miss rate. Figure 12 summarizes
the performance tradeoff between cache misses and the
read /write ratio for alternative policies. Regardless of pol-
icy, we note that improved read/write ratio comes at the
cost of higher cache miss rate. Again, there are clear ad-
vantages to oracles that can predict the number of requests
to videos with few requests. For example, even limited
(Vx; < 2) or limited (Vx; < 5) can achieve a read/write
ratio of 4 or 16, respectively, while achieving the same cache
miss rate as the oracle with perfect knowledge of all future
requests.

To glean some insight into the desirable value of the
k parameter for an SSD-based caching system, we use a
back-of-the-envelope example scenario and calculate the
expected read/write ratio and the length of the time span
over which the write volume would equal the SSD capacity
for two example SSD sizes. For simplicity, we assume that
the campus load (with a total of 5.5M requests) is evenly
spread across the 20 months, resulting in an average of 275K
requests per month. Furthermore, we consider a small SSD
system with room for 10,000 videos and a larger system with
room for 50,000 videos. Using Little’s law together with the
read /write ratio and the cache insertion rates for different £,
we can now estimate the length of the time span over which
the write volume would equal the SSD capacity. Figure 13
summarizes the results. Note that for a larger network with
more users and higher rate of requests per month, the time
spans shown would correspondingly decrease.

5 BAsIc PoLICIES WITH IMPERFECT PREDICTION

Unfortunately, no edge network has access to an accurate
oracle. We next take a closer look at the performance gains
of two basic policies that leverage observed biases in request
frequencies to improve upon the cache on k' request policy.
For this purpose, we identify videos that are more (or less)
likely to see future requests than a random video that sees
at least £ requests. More specifically, in the following we
explore both policies that adapt when to cache on k" access,
based on the time between accesses, such as to avoid caching
videos that are less likely to see future requests, and policies
that more aggressively cache videos that are less likely to be
one-timers (based on their age at the time of first access).
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Fig. 10. Performance with limited oracle, perfect top-hitters, compared to the cache on kt" request policy, and the two lower-bound oracle policies

with “perfect” and “binary” (future) knowledge, respectively.
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Fig. 11. Performance with limited oracle, perfect ephemeral, compared to the cache on k" request policy, and the two lower-bound oracle policies

with “perfect” and “binary” (future) knowledge, respectively.
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kM request policy relative to oracles with different capabilities. (Model with o = 2.341)

5.1 Inter-request Threshold Cache on k' Request

We have found that most often a video’s second request
comes soon after the first request (Figure 14), and that a
video that has a short time between its first two requests on
average sees a higher number of future requests (Figure 15)
and is more likely to be requested again (Figure 16).
Motivated by these observations, we define a threshold-
based policy called inter-request threshold cache on k' request.
This policy uses the time between the (k — 1)** and k'"
requests to determine if the video should be cached at the
second of these requests or not. Using a time threshold

ity, assuming an SSD that could hold 10,000 or
50,000 videos, respectively, as a function of k.

T, the policy only caches on the second of these requests
if the preceding request took place less than 1" ago. This
policy reduces the fraction of videos that are cached, while
prioritizing videos that are likely to see relatively more
requests.

5.2 Age Threshold Cache on 1°* Request

For k = 2, the inter-request threshold cache on k'" request pol-
icy is a more conservative caching policy than the baseline
cache on 2™? request policy. A second possible way to improve
on cache on 2% request, would be to be more aggressive
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Fig. 14. Distribution of time between first and
second requests, for videos with different num-
bers of requests (legend).

Fig. 15. The expected number of requests
E[x;|t] for videos whose first inter-request time
is at least t/2 and at most 2¢, plotted as a

Fig. 16. Probability P(x; > X|t < T') of more
than X requests, conditioned on the first inter-
request time ¢ being less than 7.

function of the logarithmic mid-point ¢.

Age t at first request
Fig. 17. Video age distribution at time of first

viewing request, for videos with different num-
ber of requests (legend).

Age t at first request
Fig. 18. The expected number of requests
El[z,|t] for videos with age between t/2 and 2t
when first requested, plotted as a function of
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Fig. 19. Probability P(x; > X|t < T') of more
than X requests, conditioned on the age ¢ at
the time of the first request being less than 7.

the logarithmic mid-point ¢.

with caching of videos that are more likely to see additional
views. As indicated by the one-timer biases identified in Sec-
tion 3, one approach may be to cache videos of certain video
categories (that see more views per video, on average, for
example) on their first request. More advanced predictors
could include statistics about the past success of the video
uploader, the video’s current global popularity, and other
video specific metrics. While we have considered such poli-
cies, none have provided substantial improvements beyond
just randomly picking a subset of videos to cache on their
first request. The main reason for this is due to the relatively
small differences among the categories in the probability of
a video being a one-timer. For example, referring to Figure 6,
we note that the fraction of one-timers typically differs by
less than a factor of two between the video categories. This
only allows for small biases. Rather than trying to combine
categorizations and metrics to determine the best possible
such predictor (possibly using some meta data not available
to us), we instead define only a basic threshold policy, age
threshold cache on 15 request, which uses the video age to
determine whether to cache a video when first requested.

The use of the video age at the time of the first request
is motivated by big differences in the expected number of
future views to videos of different ages at the time of the
first request (Figure 18), and by the observation that videos
younger than some threshold age 1" at the time of their
first request would be more likely to see additional views
(Figure 19) than older videos. For example, as seen in
Figure 19, the average number of requests for videos with
age value (at the time of the first request) of ¢ less than 1
month is typically at least twice that for videos with age
value ¢ of a year or more. As the videos that are less than
1 month old at the time of the first request correspond to
a fairly small fraction of the total number of videos (e.g.,

roughly 5-25% according to Figure 17), adding such a video
to the cache at the time of its first request may provide an
attractive tradeoff.

5.3 Performance Comparison

Figures 20 and 21 show the basic performance tradeoff
between cache misses and cache insertion rate, as a function
of the thresholds used in the two threshold-based policies.
Figure 22 summarizes their performance tradeoff relative
to the cache on k' request policy, and also shows results
for a hybrid policy that uses both threshold policies si-
multaneously. While both policies are able to provide some
minor improvements, neither is even close to achieving the
performance tradeoffs seen by the oracle policies. The lack
of bigger gains is simply an effect of prediction of one-
timers being a very difficult problem. Note that both thresh-
old policies may be relatively complex to parameterize in
practice, particularly if parameterization was dependent on
other factors such as video category. This complexity is
likely not justified by the limited performance gains they
provide.

The results show that the thresholds cannot be naively
picked, and that it is better to use a separate policy for
each region of the tradeoff curve. For example, the age-
based threshold policy is good when wanting to cache on
first request, but has a much lower probability that an item
added to the cache will be requested again compared to the
cache on k' request policy when k > 2. In general, the bias
in the success probabilities of any subset of videos should
be weighted against the random success probability of a
video being requested again, as captured by equation (3),
for example.

To put the observed gains in perspective, we next con-
sider the impact of imperfect, but still good prediction,
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100 All' videos —
90 With known age

80 r
70 -
60 r

50 F

Cache miss rate (%)

40

30

1 sec 1min  1hour 1day 1mth1year
Age threshold (age at first request)

(a) Cache miss rate

4 ‘ ‘
0 All videos —
. With known age
®
o 30 1
©
c
o
£ 20 1
[0
(2]
k=
[0]
S 10 ¢ 1
©
o
0 L L L L L
1sec 1min 1hour 1day 1mtht year

Age threshold (age at first request)
(b) Cache insertion rate

Fig. 21. Performance tradeoffs using the age threshold cache on 15¢ request policy.

100 ’ ‘
1 Cache on k" request
90 ¢ = Inter-request threshold cache on 2
— Age threshold caghe on 15d
R Hybrid thresholds 1% and 2" =
(]
E 70 L
k.
E 60
V]
=
8 50r
O
40 |
30 ‘ ‘

0 10 20 30 40
Cache insertion rate (%)

Fig. 22. Summary of the cache performance tradeoffs of the two
threshold-based policies, for all videos with known age.

within our modelling framework. For simplicity, assume
that we are able to identify a subset of the videos for which
we are able to predict the fraction of videos that have a
higher than random likelihood that they will be requested
again after the k'™ request. In particular, assume that a
fraction g of the videos with at least k£ requests belong to
this subset, and that the proportion of these for which no
more requests will be observed is reduced by a factor x <1
compared to randomly selected videos. Of course, for such
prediction to be possible we must have:

1—2%

N (1 - P(k"IR) < 1,

e (10)
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Fig. 23. Performance when caching biased subset of the videos, but the
prediction is not perfect.

where P(k*|k) is given by equation (3). Otherwise, the
probability for the other videos (not in the identified subset)
to see more requests would be negative.

Consider now the performance of a policy in which all
videos in the identified subset are cached on the k' access,
and all other videos on the (k + 1)* access. The cache
insertion rate with this policy is given by the cache insertion
rate with the cache on (k+1)%" request policy, plus the rate of
inserting items from the identified subset at their k* request
that will not be requested again. Hence, the total insertion
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P(cache insertion) =

Do U et gx(1 — P(kTk))
Z?il imetd )

where P(k™|k) is given by equation (3). Furthermore, such
a policy will always see the same cache hits as a cache at
(k + 1)t request policy, plus the cache hits due to the videos
added early on the k" request. The cache miss rate can
hence be calculated as:

(11)

P(cache miss) =

1—

Zioil Z'foz+1
(12)

Figure 23 shows the performance tradeoffs seen by such
a policy for relatively optimistic prediction accuracy. In
this example, we show curves for the case in which the
identified set encompasses either 20% or 50% of the videos
and the videos in this set have a probability of not being re-
requested that is 1/5, 1/2, or 3/4 of the average. Of course,
as shown in Figure 8, these rates are relatively small when
k grows big. Therefore the biggest improvements are when
k is small and the insertion rate is relatively high.

However, despite relatively optimistic prediction accu-
racy, the improvements are moderate compared to the lower
bound policy. In fact, for the case with g = 1/2 and x = 3/4,
for which the relative probabilities (in subset versus not
in subset) of not getting additional requests differ by a
factor 5/3 (almost 2), there are only marginal improvements
compared to a policy that picks random videos to cache
(which would result in a point on the curve for the cache at
k" request policy).

These results show that high prediction accuracy is
needed for the videos with few references for there to be
substantial improvements. However, as seen here and from
our other results, basic one-dimensional categorization and
threshold policies are only able to provide very moder-
ate/limited improvements.

6 RELATED WORK

There is considerable current interest in caching-related
research. Much of this interest is motivated by the central
role caching has in both existing and emerging content
distribution systems. Even small improvements in caching
strategies can have the potential to result in significant cost
savings and improvements in perceived user experience.
Today, content delivery is responsible for the major-
ity of the Internet bandwidth usage. Carefully designed
Content Delivery Networks (CDNs) are used to effec-
tively serve large populations of geographically distributed
users [16], [24], and operators are partnering directly with
major content providers such as Google (e.g., YouTube
videos) and Netflix to help reduce their access bandwidth
usage, with the help of content provider driven caches
within the operators’ networks. Within the content deliv-
ery context, researchers have recently explored the best
approaches to reduce the delivery costs through careful
cache placement [25], networks of caches [19], cooperative
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cache management [7], and cache replica selection [9], for
example. Within the context of Information Centric Net-
works (ICNs), it has been argued that opportunistic edge-
based caching only near the end-users outperforms on-path
caching approaches as traditionally assumed in most ICN
architectures [13], further motivating scenarios such as that
considered in this paper.

During the 90’s a large number of papers studying cache
replacement policies were published [2], [34]. These include
the analysis of basic replacement policies such as Least
Recently Used (LRU) and First-in-First-out (FIFO) [14], as
well as more advanced replacement policies such as Greedy
Dual-Size with Frequency (GDSF) [1]. Recently, the Che

Yoicpr M=k =1) 4+ 3272 i g(1 — (1 — P(kT|k))) approximation [11] has been used to evaluate and relate

various cache replacement strategies under a rich set of
scenarios [4], [20], [28]. Rather than studying the cache
replacement policies, the focus in this paper is on which
contents to cache in the first place, not which contents to
remove.

Most existing cache modelling literature (both old and
new) assumes stationary content popularities and the in-
dependent reference model. Already in 1999, Wolman et
al. [36] challenged the current models, showed that capacity
misses are rare, and suggested that misses instead typically
are due to continual generation of new or modified content.
Our data supports the insights by Wolman et al. [36]. Using
our trace data, we identify a power-law relationship that
we use to model and estimate cache miss rates and cache
insertion rates under different policies.

Traditionally, cache insertion and prefetching decisions
typically leverage spatial and temporal request locality, or
hints from the servers [30], [31]. However, increasingly,
request biases are discovered using careful data mining [5],
[33]. Rather than designing new prediction algorithms, we
take a closer look at the best possible performance improve-
ments such algorithms potentially could enable.

Other researchers have characterized the YouTube popu-
larity dynamics, both globally [5], [6], [8], [10], [18], [22] and
at the edge [21], [37]. Perhaps, most closely related are the
works by Gill et al. [21] and Zink et al. [37], in which the
authors characterize the YouTube traffic on their respective
campus networks. While both studies are much shorter in
duration and neither study looks closely at the one-timers,
both studies observe that there is a substantial fraction of
one-timers, one of the observations that originally motivated
our work.

Recently, Maggs and Sitaraman [26] reported a similarly
large footprint of one-timers (called “one-hit-wonders” in
their paper) among the web objects and videos served
by one of Akamai’s server clusters, with roughly 75% of
the objects only being accessed once. Motivated by this
observation, they, similar to us, investigate the effectiveness
of a cache-on-second-hit rule, equal to the special case of
our cache on k'™ request policy with k = 2. Their produc-
tion results demonstrate that such a rule can help increase
byte hit rates, decrease disk writes, and as an effect also
reduce disk latencies. Our work complements the work of
Maggs and Sitaraman by presenting characterization and
modeling results for understanding the effect of one-timers
and other videos that receive few views (“k-timers” for
small k), and by considering alternative policy variations
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for when to cache. In addition to providing these aspects,
we also present lower bounds, allowing us to delimit the
best possible cache tradeoffs, and provide insights on the
possible room for further improvements.

Heavy-tailed popularity distributions, such as the di-
rectly related Zipf distribution (rank frequency relationship)
and the power-law distribution (frequency of videos with
different numbers of views) have been widely observed, in-
cluding in the two edge-based characterization studies men-
tioned above [21], [37]. Other researchers have distinguished
between short-term and long-term popularity, and studied
popularity dynamics [6], [29]. In this work, in contrast to
most prior work, we pay particular attention to the one-
timers and the least popular content items. We provide the
first characterization and modeling study focused on the
impact on caching of these content items, and evaluate the
value of predicting which content items are most likely to
only be requested one or only a handful of times. In contrast,
most prior work has focused on characterizing [5], [10],
[21] or predicting [17], [33], [35] the popular contents. For
contexts in which there is considerable ephemeral content,
we show that a basic cache on k*" request policy (as motivated
by equation (3), for example) provides most of the benefits
that are likely to be achievable in practice.

7 CONCLUSIONS

This paper makes three contributions. First, we collected
and analyzed a longitudinal dataset of all YouTube video
accesses from users on an edge network over a 20-month
period. Our study found that most accessed videos received
few views (e.g., 71% of the requested videos were only
requested once within the measurement period) and that
the requests per accessed video can be accurately mod-
elled using a power-law distribution with scale parameter
a = 2.34. A similar fractions of one-timers (75%) was
recently observed by Maggs and Sitaraman [26] for an
Akamai workload. Interesting future work could consider
alternative video services such as Hulu, for example, or
other types of content.

Second, we use both a novel workload model for
ephemeral content and trace-driven simulations to study the
performance of alternative edge caching policies, including
indiscriminate caching and cache on k*" request for different
k. The latter policies are found able to greatly reduce the
fraction of the accessed content items that are inserted into
the cache, at the cost of relatively modest increases in cache
miss rate.

Finally, we assess the potential room for improvement in
these policies through use of content characteristics such as
the time between requests and the content age at first access
to predict the likelihood of future requests. Although we
find that there is room for substantial improvement when
comparing cache on k'" request performance to that of a
perfect “oracle” policy, achieving such improvements would
require the prediction of the number of future requests to
the content items that are the least popular. Unfortunately,
this problem is both difficult and not well explored, as
most content popularity prediction research has focused on
predicting the most popular contents.

13

ACKNOWLEDGEMENTS

The edge-network collection was done while the first au-
thor was a research associate at the University of Calgary.
We thank Carey Williamson and Martin Arlitt for provid-
ing access to this dataset. This work was supported by
funding from Center for Industrial Information Technology
(CENIIT), and the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

REFERENCES

[1] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Eval-
uating content management techniques for web proxy caches. In
Proc. ACM SIGMETRICS, 2000.

[2] G. Barish and K. Obraczke. World wide web caching: trends and
techniques. IEEE Communications Magazine, 38(5):178-184, May
2000.

[3] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5:78-101, 1966.

[4] D.S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact analysis of
TTL cache networks. Performance Evaluation, 2014.

[5] Y. Borghol, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. The
untold story of the clones: Content-agnostic factors that impact
YouTube video popularity. In Proc. ACM SIGKDD, 2012.

[6] Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Ma-
hanti. Characterizing and modeling popularity of user-generated
videos. In Proc. IFIP PERFORMANCE, 2011.

[7] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms
for content distribution networks. In Proc. IEEE INFOCOM, 2010.

[8] A. Brodersen, S. Scellato, and M. Wattenhofer. YouTube around
the world: Geographic popularity of videos. In Proc. WWW, 2012.

[9] N. Carlsson, D. Eager, A. Gopinathan, and Z. Li. Caching and op-
timized request routing in cloud-based content delivery systems.
Performance Evaluation, 79:38-55, Sept 2014.

[10] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. 1 tube,
you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In Proc. ACM IMC, Oct. 2007.

[11] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems:
Modeling, design and experimental results. IEEE ]. Sel. Areas
Commun., 20(7):1305-1314, 2002.

[12] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661-703, Nov. 2009.

[13] A. Dabirmoghaddam, M. Mirzazad-Barijough, and ]. J. Garcia-
Luna-Aceves. Understanding optimal caching and opportunistic
caching at “the edge” of information-centric networks. In Proc.
ACM ICN, 2014.

[14] A. Dan and D. Towsley. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proc. ACM SIGMETRICS,
1990.

[15] G. Dan and N. Carlsson. Power-law revisited: A large scale
measurement study of P2P content popularity. In Proc. IPTPS,
2010.

[16] J. Dilley, B. Maggs, ]. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally distributed content delivery. IEEE Internet
Computing, 6(5), Sept/Oct. 2002.

[17] E. Figueiredo. On the prediction of popularity of trends and hits
for user generated videos. In Proc. WSDM, pages 741-746, 2013.

[18] E. Figueiredo, F. Benevenuto, and J. M. Almeida. The tube over
time: Characterizing popularity growth of YouTube videos. In
Proc. ACM WSDM, 2011.

[19] N. C. Fofack, P. Nain, G. Neglia, and D. Towsely. Analysis of
TTL-based cache networks. In Proc. VALUETOOLS, 2012.

[20] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate
approximation for LRU cache performance. In Proc. ITC, 2012.

[21] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic character-
ization: A view from the edge. In Proc. IMC, Oct. 2007.

[22] G. Gursun, M. Crovella, and I. Matta. Describing and forecasting
video access patterns. In Proc. IEEE INFOCOM, 2011.

[23] M. A. Islam, D. Eager, N. Carlsson, and A. Mahanti. Revisit-
ing popularity characterization and modeling for user-generated
videos. In Proc. IEEE MASCOTS, San Francisco, CA, Aug. 2013.

[24] W. Jiang, S. Ioannidis, L. Massoulie, and F. Picconi. Orchestrating
massively distributed CDNs. In Proc. ACM CoNEXT, 2012.

[25] P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem.
IEEE/ACM Transactions on Networking, 8(5):568-582, Oct. 2000.



Accepted to IEEE TPDS, Vol. XX, No. y, XXXX yy

[26] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content
delivery. ACM SIGCOMM Comput. Commun. Rev., 45(3):52-66, July
2015.

[27] A.Mahanti, N. Carlsson, A. Mahanti, M. Arlitt, and C. Williamson.
A tale of the tails: Power-laws in Internet measurements. IEEE
Network, 27(1):59-64, Jan/Feb. 2013.

[28] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the
performance analysis of caching systems. In Proc. IEEE INFOCOM,
2014.

[29] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and
A. Mahanti. Characterizing web-based video sharing workloads.
ACM Trans. on the Web, 5(2):8:1-8:27, May 2011.

[30] J. C. Mogul. Hinted caching in the web. In Proc. ACM SIGOPS
European Workshop: Systems Support for Worldwide Applications,
1996.

[31] V.N.Padmanabhan and J. C. Mogul. Using predictive prefetching
to improve world wide web latency. ACM SIGCOMM Computer
Communication Review, 26(3):22-36, 1996.

[32] V. Paxson. Bro: A system for detecting network intruders in real-
time. In Proc. USENIX Security Symposium, 1998.

[33] H. Pinto, J. M. Almeida, and M. Goncalves. Using early view
patterns to predict the popularity of YouTube videos. In Proc.
ACM WSDM, 2013.

[34] S. Podlipnig and L. Bészérmenyi. A survey of web cache replace-
ment strategies. ACM Comput. Surv., 35(4):374-398, Dec. 2003.

[35] G.Szabo and B. A. Huberman. Predicting the popularity of online
content. Communications of the ACM, 53(8):80-88, Aug. 2010.

[36] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy. On the scale and performance of cooperative web proxy
caching. In Proc. ACM SOSP, 1999.

[37] M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube
network traffic at a campus network - measurements, models, and
implications. Comput. Netw., 53(4):501-514, 2009.

BIOGRAPHIES

Dr. Niklas Carlsson is an Associate Professor at Linkoping
University, Sweden. He received his M.Sc. degree in En-
gineering Physics from Umed University, Sweden, and
his Ph.D. in Computer Science from the University of
Saskatchewan, Canada. He has previously worked as a Post-
doctoral Fellow at the University of Saskatchewan, Canada,
and as a Research Associate at the University of Calgary,
Canada. His research interests are in the areas of design,
modeling, characterization, and performance evaluation of
distributed systems and networks.

Dr. Derek Eager is a Professor in the Department of Com-
puter Science at the University of Saskatchewan, Canada.
He received the B.Sc. degree in Computer Science from the
University of Regina, Canada, and the M.Sc. and Ph.D. de-
grees in Computer Science from the University of Toronto,
Canada. His research interests are in the areas of perfor-
mance evaluation, content distribution, distributed systems
and networks.

14



