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ABSTRACT

With 360° video streaming, the user’s field of view (a.k.a. view-
port) is at all times determined by the user’s current viewing di-
rection. Since any two users are unlikely to look in the exact same
direction as each other throughout the viewing of a video, the
frame-by-frame video sequence displayed during a playback ses-
sion is typically unique. This complicates the direct comparison of
the perceived Quality of Experience (QoE) using popular metrics
such as the Multiscale-Structural Similarity (MS-SSIM). Further-
more, there is an absence of light-weight emulation frameworks
for tiled-based 360° video streaming that allow easy testing of dif-
ferent algorithm designs and tile sizes. To address these challenges,
we present REEFT-360, which consists of (1) a real-time emulation
framework that captures tile-quality adaptation under time-varying
bandwidth conditions and (2) a multi-step evaluation process that
allows the calculation of MS-SSIM scores and other frame-based
metrics, while accounting for the user’s head movements. Impor-
tantly, the framework allows speedy implementation and testing of
alternative head-movement prediction and tile-based prefetching
solutions, allows testing under a wide range of network condi-
tions, and can be used either with a human user or head-movement
traces. The developed software tool is shared with the paper. We
also present proof-of-concept evaluation results that highlight the
importance of including a human subject in the evaluation.
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1 INTRODUCTION

The emergence of 360° streaming comes with both great opportuni-
ties and new challenges. Compared with traditional video streaming,
most new challenges come from the observations that (i) not all
directions are equally important and (ii) the difficulty to reliably
predict users’ head movements [4, 9, 19]. For example, with 360°
video only a limited fraction of the full view (called the viewport) is
displayed at each moment in time. To reduce the bandwidth usage
and/or to improve the expected playback quality given the available
bandwidth, much research has therefore focused on the design of
techniques that predict head movements and deliver different video
quality for each potential viewing direction [4, 9, 12, 16, 24]. This
includes the development of tile-based solutions, in which (i) the
full 360° view is split into several tiles, (ii) each tile is encoded at
different qualities, and (iii) the clients can prefetch and display tiles
of different qualities for each direction.

By adapting the quality selection of each tile based on both the
current network conditions and the expected viewing direction,
the users can then try to maximize their expected Quality of Ex-
perience (QoE). However, the users’ added freedom to select their
own viewing direction at each moment in time presents unique
evaluation challenges compared to the context of traditional linear
Dynamic Adaptive Streaming over HTTP (DASH) [25], where all
users watch the same frame-by-frame sequence. For example, with
360° streaming, the viewport always depend on the user’s current
viewing direction. Two arbitrary users watching the same video
are therefore highly unlikely to observe exactly the same frame-by-
frame video sequences and playback sessions are typically unique.
This complicates the direct comparisons of users’ QoE using ob-
jective, visual, frame-based metrics such as Multiscale-Structural
Similarity (MS-SSIM) [27] and Peak Signal-to-Noise Ratio (PSNR).
Motivated by the value that such metrics have provided in the con-
text of regular linear video [7], we argue that it is important to
provide evaluation frameworks that allow these metrics to be easily
calculated for 360° streaming too. Today, no such framework exist.

In this paper, we address the above evaluation challenges and
void through the development of REEFT-360 (first-five capped let-
ters in paper title + 360): a novel real-time emulation framework and
a multi-step evaluation process that allow us to calculate MS-SSIM
and other frame-based QoE metrics while accounting for the user’s
head-movements when watching the tiled video over emulated net-
works with time-varying bandwidth conditions. REEFT-360 is the
first of its kind in that it allows such traditional frame-based QoE
metrics to be calculated for 360° streaming. Our light-weight emu-
lation framework fills an important gap, and enables easy testing
of different algorithm designs, conditions, and tile sizes.

The emulation framework incorporates a modular design that
easily can emulate trace-based bandwidth profiles capturing a broad
range of network conditions, bandwidth manipulations by network
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operators, the use of alternative tile sizes, chunk durations, and
alternative head-movement prediction algorithms and prefetching
solutions. For speedy implementation and testing, we have imple-
mented a GPU-based solution that emulate the viewport shown
to the users in real-time on a frame-by-frame basis using only the
original high-quality 360° frames available locally on the machine,
meta file information (e.g., tile sizes, chunk duration, encoding lev-
els, etc.) that the user can change very quickly, and information
about what file data have been obtained in time of playback. The
multi-step evaluation process can be used both with a human user
(suggested for good evaluation) and head-movement traces (for
speedy volume testing) collected with this or other frameworks. In
both cases, it allows easy calculation of MS-SSIM scores, PSNR, and
other frame-based QoE metrics.

To demonstrate how the tool can be used, we present a simple
proof-of-concept evaluation that highlights the importance of in-
cluding a human subject in the evaluation of tile-based prefetching
algorithms. Drawing comparisons to control theory, we note that
putting a human in the loop can impact the best adaption approaches.
For example, in addition to head movements impacting the QoE, the
example results also suggest that the tile qualities being presented
themselves impacts the head movements. In fact, in some scenarios
we observe that the head movements can be greatly restrained by
the degraded tile qualities that a user sees (e.g., in the periphery
of the viewport) when too aggressive prefetching algorithms are
used or the network conditions are poor. This further highlights the
value of the tool presented and shared with this paper, which should
help others to easily implement and evaluate their own tile-based
360° solutions with a human in the loop. As of today, most prior
evaluation of such prefetching solutions ignores this aspect.

Code, software, and example datasets can be found on Github
(https://github.com/EricLindskog/REEFT-360) with doi (https://www.
doi.org/10.5281/zen0do.5155943).

Outline: The remainder of this paper is organized as follows.
Section 2 presents the design and implementation of REEFT-360.
Section 3 presents an example evaluation. Finally, we discuss related
work (Section 4) and present conclusions (Section 5).

2 DESIGN AND IMPLEMENTATION

REEFT-360 consists of a real-time emulation framework (Section 2.1)
and a multi-step evaluation process (Section 2.2).

2.1 Design of emulation framework

Figure 1 shows a high-level overview of the emulation framework.

Player logic: At the center of the design is the Player compo-
nent. It implements all playback logic and emulates what happens
to each chunk when inside the player, including what happens to
the buffer when new data is obtained over the network and what
happens with file data when the user pauses/resumes playback. It
also ensures that the video stalls whenever the buffer goes empty.

Bandwidth estimation and quality selection: To simplify
the comparison of different bandwidth estimation and quality-
selection techniques, the player delegates the logic for these aspects
to a Bandwidth Estimator and chunk Requester component, re-
spectively. Requester decides when and what chunk tiles to re-
quest. Here, we use the term chunk tile to refer to the individual tile
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Figure 1: High-level design of emulation framework

of a chunk. For these decisions the Requester component has ac-
cess to bandwidth estimation by Bandwidth Estimator and global
variables regarding the player state. A custom class called Utils is
responsible for keeping track of global states. This class does not
perform any actions but instead provides a central access point to
variables (e.g., chunk sizes, buffer states, the current player mode,
etc.) and functions used by several other components. The use of
a single shared interface simplifies adding shared variables and
makes sure that all functions access the variables/functionalities
the same way.

Download processes and network aspects: After a chunk
quality selection has been made, the Player calls a class called
the Download Manager. This class (i) uses bandwidth traces and
network logic (e.g., apply bandwidth caps) to simulate the actual
network conditions that the client would observe, (ii) determines
when the file download of each chunk tile completes, and (iii) in-
forms the player of chunk-tile download completions.

Logging and viewport visualization: We use independently
run processes for several purposes, including a Metric Logger
that continuously logs the current player state and a PreProcess
component that emulates how lower-quality tiles are displayed. To
allow easy replaying of a session, the Metric Logger records head
movements (e.g., pitch, yaw, roll), the chunk-tile qualities requested,
and a video of the session as viewed through the viewport. In
addition, we record a wide range of performance metrics, including
the stalls (e.g., start time + duration), the tile in focus, and the quality
levels of the tiles shown within the viewport at each moment.

For increased flexibility and faster comparison of alternative
candidate solutions, the PreProcess component emulates the re-
sults from pre-processing steps such a chunking, tiling, and general
video encoding at run time. (Section 2.3 presents our GPU-based
implementation.) As input, it takes a meta file specifying the video
segments and tiles, and then, at run time, it renders an estimation
of the viewport shown to a client that obtain that specific set of
chunks. In this step, we downscale the quality of the region of the
viewport (from a locally stored high-quality copy) based on the
quality that the client was emulated to have obtained for each tile.

Player modes: Our system can be run in four different modes:
Testing, Evaluation, Recording, and Baseline. The first two modes
differ only based on whether traces are recorded (Evaluation) or not
(Testing). Both these modes leverage the full power of the emulation
framework and can either be ran by (1) a human wearing a Head
Mounted Display (HMD), or (2) using pre-recorded head-movement
traces. When using head-movement traces, an independent compo-
nent (HeadmovementSimulator) is responsible for emulating the
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1. Example evaluation (evaluation mode):
Captures experience based on desired conditions, traces, and using human subject, ...
Note: From this step we extract stall metrics, quality selecti metrics, head movements, etc.

2. Non-stalled recording (recording mode):

Re-record step 1 experience with stalls removed. 4. Calculate per-frame metrics (e.g., using VOMT):

Use recordings from steps 2 and 3 as input.

2. High-quality baseline recording (baseline mode):

Example output metrics: MS-SSIM, PSNR, SSIM, ...

Re-record step 2 at highest quality possible.

Figure 2: Multi-step evaluation methodology overview

head movements. In the Recording mode, a prior Evaluation experi-
ment is re-recorded using the same head movements and quality
selections but with all stalls removed. Finally, in Baseline mode, a
prior Recording experiment (without stalls) is re-recorded with all
tiles at the highest quality but exactly the same head movements.

2.2 Multi-step evaluation methodology

To calculate MS-SSIM, PSNR, and other frame-based quality metrics,
we implement a four-step evaluation methodology. See Figure 2.

1. Example evaluation: In the first step, we use the Evalua-
tion mode to capture the experience of (i) a test subject wearing
an HMD while interacting with the video or (ii) a client who’s
head movements follow a particular trace file. Here, the network
is emulated based on one or more network traces and information
specifying a potential bandwidth cap. For each test, a specific chunk-
tile selection technique and bandwidth estimation technique must
be specified. During the test, we then record information about
playback quality, stalls, tile selection, and head movements.

2. Non-stalled recording: For the second step, we use the
Recording mode to record the exact viewport seen by the client
from the first step, but with any stalls removed. This playback ses-
sion emulation is produced using the playback quality and head
movement traces from the first step.

3. High-quality baseline recording: For the third step, we use
the Baseline mode to record the viewport of a client with identical
head movement as used for step 2 but when each tile is obtained
and watched at the highest possible quality.

4. MS-SSIM calculations: Since the recordings from steps 2 and
3 (due to stall removals) always capture the same video direction
and playpoint at each moment in time, the two recordings can
be compared frame-by-frame. This allows MS-SSIM, PSNR, and
other per-frame-based video quality metrics to be easily calculated.
Here, we use the Unity Recorder! for video recordings and the video
quality measurement tool (VQMT)? by Wang et al. [27] to extract
the MS-SSIM, PSNR, and other per-frame scores for every frame.

2.3 Emulation framework implementation

Our framework is implemented in Unity using CH3. For much
of the implementation, we extend the MonoBehaviour class* and
utilize some of its functions, including Start(), Update() and
FixedUpdate(). When applied to a game component, a script ex-
tending MonoBehaviour uses the Start() function to create an
instance of the game component and the Update() function is
called once every frame. In contrast, the FixedUpdate() function

!https://docs.unity3d.com/Packages/com.unity.recorder@2.0/manual/index.html
Zhttps://www.epfl.ch/labs/mmspg/downloads/vqmt/
3https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
“4https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
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is called every ¢ time units (fixed time interval), independent of the
applications frame rate, making it ideal for logging.

Light-weight simulation of lower quality tiles: To allow em-
ulation at run-time and eliminate pre-processing (e.g., to encode
multiple video versions and tile sizes), the PreProcess component
implements two methods: (i) lowering resolution and (ii) compression
emulation. Both methods are implemented on a per-frame basis and
are called upon using the Update() function.

The lowering resolution function modifies the displayed video
frame-by-frame in real-time. Since this calculation would not be
feasible on a CPU, this function was implemented using the com-
pute shader framework available in unity, which runs the code on
the GPU. To lower the resolution we simply group pixels and use
their Red Green Blue Alpha (RGBA) values; effectively lowering
the resolution. For example, if the source is a 4K video, then averag-
ing over two-by-two blocks will result in output at approximately
1080p, depending on the exact dimensions of the video. The number
of pixels grouped are specified using the block size.

We also implement compression emulation at run-time using a
compute shader. The compression effect is created at run-time by
calculating the difference between the RGBA value of each pixel
of the previous frame and the pixels of the upcoming one, only
updating it if the difference is above a certain threshold. These
comparisons are only made in a set interval of frames after which
the full image is updated. The compression allows for more granular
control of playback quality than simply altering the resolution; e.g.,
by supplying the two threshold parameters for when to update a
pixel and the interval at which the entire image is updated.

While more advanced compression and encoding algorithms
than those emulated here often are used in practice, such solutions
are typically system dependent. Here, we instead aim for a basic
and easily extendable framework that provides easy and fair head-
to-head comparisons of different chunk-tile selection and head-
movement prediction algorithms.

Network components: The download progress of each chunk
tile is emulated by the Download Manager. This component uses
one or more trace files and other information (e.g., bandwidth caps)
to determine the download speed at each time instance. This is
achieved by considering one trace file entry at a time and maintain-
ing state information about each ongoing download. In the case
that a bandwidth cap C is used, the minimum value of the cap and
the trace value is used as the bandwidth obtained by the client.

2.4 Chunk-tile selection algorithms

Chunk-tile selection and bandwidth estimation techniques can eas-
ily be incorporated via the Requester and Bandwidth Estimator
component, respectively. For our proof-of-concept evaluation, band-
width estimates are calculated using an exponentially weighted
moving average (EWMA) with weight «=0.3 given to the most re-
cent sample. We next describe two chunk-tile selection algorithms.

DASH baseline: The first algorithm serves as a baseline. It im-
plements a traditional DASH-like algorithm that ignores the view-
ing direction. With this algorithm, all tiles of a chunk are requested
at the same quality. Given this constraint, it greedily selects the high-
est quality allowed by the current bandwidth estimate. In particular,
we pick quality j* such that j* = arg max; [Zi gij | Xigij < B],



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Algorithm 1 Waterfill (Definitions of A?j () and A’i‘j () in text.)

1: j(i) « 0,Vi

2: while (%; g; j(;) + min; Azj(l.)zl <Cdo ,

3 i’ — argmaxi[wi(AZj(i)/Ai) | 2iqij) +Ai,j(i) < (]
4 Jj) « j)+1

s: end while

Table 1: Quality validation using reference video

Resolution | Block size | MS-SSIM (real) | MS-SSIM (emulate) | Bitrate (kbps)
4k 1 1.0000 1.0000 35000

1080p 2 0.9765 0.9854 8000

720p 4 0.9483 0.9498 5000

480p 6 0.9186 0.9157 2500

None - - 0 0

where g; j is the bandwidth cost of downloading tile i of the chunk
at quality level j, and B is the estimated available bandwidth.
Waterfill algorithm: The second example algorithm is used to
illustrate the tradeoffs associated with prioritizing tiles towards the
center of the expected viewport. To understand its rationale, we
first note that the quality selection problem can be formulated as
a packing problem that optimizes the weighted sum of the down-
loaded tile qualities 3’; wiq; j(;), where j(i) is the level choice made
for tile i, given the total bandwidth constraint }}; g; j(;) < B. Sec-
ond, we note that finding the optimal solution is of exponential
complexity. Instead, we design a light-weight heuristic.
Algorithm 1 presents our waterfill algorithm, which is an adap-
tion of a similar heuristic from the stream bundle context [5].
Starting with the null-assignment (line 1), in each step, we greed-
ily (lines 3+4) identify the tile that maximizes the weighted gain
in utility WiAZj(i) (if upgrading tile i one quality level) relative

to the additional bandwidth this would consume (i.e., A?}. i =
(9i,j(i)+1 — 4i,j(i)))» conditioned on not exceeding the estimated
available bandwidth C. Here, we assume that the change in utility
: u _ A1 e u  _ . _
is Al.,j(l.) = Ai,j(i) whenever j(i) > 0 and Alg =qi1+A other
wise. The parameter A gives weight to the importance of avoiding
missing tiles. For our experiments, weights w; are assigned using a
simple heuristic w; = Aﬁat /180, where Af‘” is the latitude distance

between the user’s viewing direction and the center of tile i.

2.5 Validation of block-size approach

To get a reference point for how well our block-sized emulation
approach for adapting the resolution in real-time captures the qual-
ity reduction of each frame, we acquired the Big Buck Bunny video
in 4k, re-encoded it to 1080p, 720p and 480p, and used the VQMT
framework to calculate the average MS-SSIM values for the differ-
ent encodings. (The bitrates values were selected based on YouTube
recommendations.’) These MS-SSIM values were then compared to
when using the basic block-sized approach used here. The results
are shown in Table 1, and shows that our basic approach nicely
captures the general bitrate-QoE tradeoffs.

Shttps://support.google.com/youtube/answer/1722171
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3 EXAMPLE EVALUATION

To illustrate how REEFT-360 can help better understand system
tradeoffs, we next present a performance evaluation. Here, we show
results when using example videos, prefetching algorithms, and
buffer sizes under different network conditions and both with and
without bandwidth caps. All experiments were done by a single
example user and we use MS-SSIM to illustrate the use of a frame-
based metric enabled by our framework.

3.1 System setup

Hardware: The experiments were performed on a computer run-
ning Windows 10 equipped with an AMD Ryzen 2700 CPU, NVIDIA
GTX 1070 GPU and 16 gigabytes of RAM. Oculus Rift CV1 was used
as HMD. This setup ensured that we were not resource constrained.
For example, during our experiments, the utilization typically was
around 25% (CPU), 30% (GPU) and 10-15% (RAM).

Bandwidth traces: We used public bandwidth traces [20] to
drive our network emulation framework. For the results presented
here, we used 400+ seconds of the trace static/A_2017.11.30_16.15.00
to capture the download bandwidth variations and multiplied each
such data point with a factor §§ to emulate networks with different
average bandwidth conditions. To emulate scenarios with poor, fair,
and good network conditions we used f values of 1.25, 2.5, and 5.
This resulted in average bandwidths of 2,500 kbps, 5,000 kbps, and
10,000 kbps, respectively. For the capped emulations we used f =5
but capped the bandwidth at 6,000 kbps.

Videos: We used the two videos that Almqvist et al. [2] previ-
ously selected as representative of a typical rides and exploration
video, respectively. Both videos use an equirectangular projection.
For the experiments, both videos run for 150 seconds (the duration
of the shorter video), and we used eight horizontally distributed
tiles with a chunk duration of one second. The choice to not use
vertical tiling speeds up the implementation of the more advanced
fetching algorithm and assures they can run in real-time.

Experiments: All experiments followed our multi-step method-
ology (Section 2.2) and sufficient breaks were taken to ensure that
simulator sickness was not an issue [23]. At the start of each exper-
iment, we set all emulation parameters and scaled the bandwidth
traces. All Evaluation mode experiments were conducted with the
test subject wearing the HMD, before Recording and Baseline mode
recordings were generated and used for the MS-SSIM calculations.

3.2 Example MS-SSIM results

Consider first a fair bandwidth scenario when watching the explo-
ration video using the waterfall algorithm with A=200.

Figure 3(a) shows frame-by-frame MS-SSIM values for such a
session. Here, the three colored lines corresponds to the reference
values for low (red), medium (orange) and high (green) that we
determined for the reference video (Table 1). We note several cases
when the frame quality degrades substantially. These instances
typically correspond to frames where some tile is missing from the
user’s viewport. This observation is reflected in the high correlation
between these frames and the frames marked in red in Figure 3(b).
Here, we show the average quality of each frame as (naively) ap-
proximated by the average quality level calculated over the tiles
visible in each frame (with quality levels labeled 1-through-4 and
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exploration video and fair bandwidth scenario.

level 0 corresponding to a missing tile) and mark frames with one
or more tiles missing from the viewport using red color. However,
while the average metric (Figure 3(b)) provides a simple proxy to
the MS-SSIM (Figure 3(a)), it misses several instances. This high-
lights the need for more advanced evaluation frameworks, such as
REEFT-360.

Figure 3(c) shows the head movements as a heat map of the yaw
and pitch angle. Note that the head movement in this exploration
scenario can be substantial. A more aggressive prefetching policy
that down-prioritize tiles in currently non-viewed directions is
therefore likely to see some missing tiles. Figure 3(d) shows box-
whisker plot of the tile qualities displayed to the user. Here, tile
0 represents the tile straight ahead and the tiles are numbered
clockwise. As per design, the highest quality chunks are obtained
in the center direction, but the algorithm typically also obtains at
least quality level 1 in most other directions. With a more aggressive
prefetch algorithm (waterfill with A = 0) we observed much higher
degradation for this scenario (e.g., MS-SSIM values in Figure 4(a)
and average quality in Figure 5(a)). In contrast, the basic DASH
policy (that selects the same quality in all directions) observed more
stable frame-by-frame qualities (Figures 4(b) and 5(b)).

3.3 Performance comparisons

We next illustrate how the tool can be used to study effects that are
not possible to study without including a human subject in the eval-
uation. Here, we present a scenario-based evaluation that includes
results for the four bandwidth scenarios defined in Section 3.1 (poor,
fair, good, and capped) when using prefetching algorithms that are
more or less aggressive: aggressive (waterfill with A = 0), interme-
diate (waterfill with A = 200), and non-biased (basic DASH with
same quality in all directions). Figure 6 shows example results us-
ing three summary metrics: (1) the 25th percentile of the MS-SSIM
scores, (2) the fraction of frames with MS-SSIM scores of at least the
low-quality reference, and (3) the total head movement per session.

for exploration video and fair bandwidth scenario.

In the discussion, we also provide statistics for the number of stalls,
mean stall duration, and other example metrics.

Video-type comparison: These results confirm that too ag-
gressive prefetching is undesirable for both video types considered.
For example, the aggressive prefetching policy (blue bars) consis-
tently is outperformed by the intermediate policy (gray bars) and
the non-biased policy (black). In addition to the lower MS-SSIM
values (example metrics in first two columns in Figure 6) we also
note that too aggressive prefetching significantly reduces the user’s
head movements (third column). We expect that this behavior is
due to a combination of psychological effects (e.g., the user is less
likely to move their head to an area that is blurry than one that
is relatively sharper or in some cases not even visible) and that
the user is less likely to spot interesting objects in its periphery
(which otherwise could motivate the user to move its head towards
such an object). For these reasons, at least for the exploration video,
increased head movements can be a positive indication that the
user is more engaged. Of course, for the rides video, this may not be
the case as the expected focus typically is forward. Due to the dif-
ference in head movements, the scales of the y-axes of Figures 6(c)
and 6(f) differ by a factor 20. While our observation that the inter-
mediate policy always outperforms the aggressive policy holds in all
scenarios (and across all metrics), the biggest absolute differences
in head movements are observed with the exploration video (top
row). Given the reduced head movements, it is perhaps not surpris-
ing that the intermediate policy performs relatively better than the
non-biased policy for the rides video than for the exploration video.

Network conditions: Both MS-SSIM metrics considered (Fig-
ures 6(a), (b), (d), (¢)) and the head movement metric for the explo-
ration video (Figure 6(c)) improves with improved bandwidth con-
ditions (poor-to-good), regardless of prefetching policy (3x cases).

Use of bandwidth caps: Using our framework, we also pro-
vide the first initial confirmation that claims made for linear DASH
video [13] suggesting that the use of bandwidth caps can reduce the
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Figure 6: Scenario-based performance comparisons. (Note different y-scales in (c) and (f).)

number of stalls and quality switches also holds for 360° streaming.
For example, we did not observe any stalls for any of the six capped
scenarios, but observed at least one stall in 15 out of 18 other sce-
narios. On average the poor, fair, and good bandwidth scenarios
were stalled for 3.0%, 3.0%, and 3.7% of their respective playback
durations. We have also found that the smoother playback achieved
by applying caps also can have positive effects on the overall video
quality (e.g., MS-SSIM values for the capped scenario are more sim-
ilar to those of the good scenario than the fair scenarios, despite
having much more similar average bandwidth to the fair scenario)
and the head movements are by far the largest for the capped sce-
nario when watching the exploration video. The last of these new
observations is interesting as it suggests that both quality switches
and stalls can have negative effect on the freedom that a user feels
moving their head. This again highlight the value of having a user
in the loop when evaluating 360° solutions.

Use of larger buffers: We have also run experiments for the fair
bandwidth scenario using a four-second buffer target instead of a
two-second target. While a bigger buffer helped reduce the number
of stalls somewhat, we still observed noticeable stalls (e.g., only
reduced from 3.0% to 1.8% of the playtime) and the MS-SSIM-based
QoE metrics were (slightly) worse. With exception for when using
the aggressive policy with the exploration video, the two QoE metrics
reported on above differed by less than 2%. However, for this case,
the use of a larger buffer resulted in 15% worse 25-percentile value
(for MS-SSIM) and 6% less frames with an MS-SSIM above the low-
quality threshold. The reduced video quality (after removing stalls)
is likely due to the example algorithms used here not accounting for
the added uncertainty associated with having to make prefetching
decisions earlier (which result in less accurate predictions) [2].

4 RELATED WORK

Head-movement-based analysis: Several recent works have col-
lected head-movement datasets or characterized the 360° viewer
behavior [2, 4, 8, 10, 11, 16, 19]. However, none of these works
provide an emulation framework that captures the quality changes
that would be experienced by a viewer of tiled video playback. As
we show here, this is important to capture the true user behavior.

Bandwidth saving techniques: Much of the work on address-
ing limited bandwidth conditions have focused on solutions that

adapt the tile quality or deliver chunks with different quality for the
potential future viewing directions [1, 2, 9, 12, 14, 18, 19, 28]. Addi-
tional bandwidth savings have been achieved through improved
head-movement prediction [21] using machine learning [4, 17]. Sas-
satelli et al. [22] propose two alternate impairments that (i) reduce
the playback speed of the video and/or (ii) limits the horizontal
viewing field possible.

Tile-based implementation examples: Some researchers have
developed and evaluated proof-of-concept implementations of tile-
based streaming [14, 18, 19, 29], including recent solutions for live
streaming [6, 26] that have tighter real-time requirements. In related
research, Li et al. [15] have evaluated different stitching methods
used to create omnidirectional images from separate images. Bal-
lard et al. [3] leverage hardware encoders present in modern GPUs
to address the processing overhead introduced by tiling. Here, we
present an evaluation framework that incorporates efficient GPU-
based viewport emulation.

5 CONCLUSION

This paper presents REEFT360, which consists of (1) a real-time em-
ulation framework for 360° video that captures tile quality adapta-
tion under time-varying bandwidth conditions and (2) a multi-step
evaluation process that allows the calculation of per-frame-based
quality metrics (e.g., MS-SSIM) while accounting for the user’s head-
movements during playback. The modular design allows speedy im-
plementation and testing of alternative prediction and prefetching
solutions, allows testing under a wide range of network conditions,
and can be used both with a human user and with head-movement
traces. Our proof-of-concept evaluation results highlight the impor-
tance of including a human subject in the evaluation. For example,
as we demonstrate here, the head-movements in exploration sce-
narios can be greatly restrained by the quality degradation of some
of the tiles being presented to the user. This further highlights the
value of the tool presented and shared with this paper, which should
help others to easily implement and evaluate their own tile-based
360° solutions with a human in the loop.
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