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In this talk ...
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... popularity dynamics and caching ...
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... third-party authentication ...
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... Innovative new streaming media ...
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So let’s start ...




Video streaming landscape




Video streaming landscape

NETELIX

You([TT)

amaz@n

" instant video

hulu

EEE iPlayer
svt &




Video streaming landscape

NETELIX

You([TT)

amazon

instant video

hulu

BRE iPlayer
Svt




Motivation

 Streaming services contribute to over 60% of the
global Internet traffic currently

» By 2020, this share is expected to be over 80%

+ Systems need to be well understood, scalable, and
efficient to match growth projections



The Untold Story of the Clones: Content-agnostic Factors that
Impact YouTube Video Popularity

Proc. ACM SIGKDD 2012.

Characterizing and Modeling Popularity of User-generated Videos
Proc. IFIP PERFORMANCE 2011.
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* Video dissemination (e.g., YouTube) can have wide-
spread impacts on opinions, thoughts, and cultures
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= The more views a video has, the more views it is
likely to get in the future

m The relative popularity of the individual videos
are highly non-stationary
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Motivation

- Some popularity differences due to content differences

- But also because of other “content-agnostic” factors

* The latter factors are of considerable interest but it has
been difficult to accurately study them

In general, existing works do not take content differences
Into account .. .(e.g., large number of rich-gets-richer studies)



Methodology

« Develop and apply a methodology that is able to
accurately assess, both qualitatively and quantitatively,
the impacts of various content-agnostic factors on

video popularity



Methodology

« Develop and apply a methodology that is able to
accurately assess, both qualitatively and quantitatively,
the impacts of various content-agnostic factors on

video popularity




Methodology

 Clones

* Videos that have “identical” content (e.g., same audio and
video track)




Methodology

 Clones

* Videos that have “identical” content (e.g., same audio and
video track)

g
@ Clone 1.a
<'




Methodology

 Clones

* Videos that have “identical” content (e.g., same audio and
video track)

: _“ll.‘-"
: Clone 1.a
£ 0]
g

Clone 1.b
£ -




Methodology

 Clones
* Videos that have “identical”’ content

* Clone set

« Set of videos that have “identical”’ content

Clone set 1




Methodology

 Clones
* Videos that have “identical”’ content

* Clone set

« Set of videos that have “identical”’ content

Py 722Ny Y

= |
= =
N n
o o




Methodology

 Clones
* Videos that have “identical”’ content

* Clone set

« Set of videos that have “identical”’ content




Methodology

 Clones
* Videos that have “identical”’ content

* Clone set

« Set of videos that have “identical”’ content




G
fof
» Clones (\’«0\
cO
* Videos that have “~ S" wonhtent

\N
© Cloneset _gs al\©

- Se Q\Oﬂqus that have “identical” content







Methodology
* Analyze how different factors impact the current
popularity while accounting for differences in content
- 1) Baseline: Aggregate video statistics (ignoring clone identity)
« 2) Individual clone set statistics

« 3) Content-based statistics
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(e.g., views in week)

Some factor of interest

Focus on clone sets



Methodology: (1) Aggregate model
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Methodology: (2) Individual model
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Methodology: (3) Content-based model
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Methodology: (3) Content-based model
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Data collection
- ldentified large set of clone sets

* 48 clone sets with 17 — 94 videos per clone set (median = 29.5)

- 1,761 clones in total
+ Collect statistics for these sets (APl + HTML scraping)

* Video statistics (2 snapshots = lifetime + weekly rate statistics)

« Historical view count (100 snapshots since upload)

« Influential events (and view counts associated with these)



Analysis approach

Example question: Which content-agnostic factors
most influence the current video popularity, as
measured by the view count over a week?

Use standard statistical tools

- E.g., PCA,; correlation and collinearity analysis; multi-linear
regression with variable selection; hypothesis testing

Linearity assumptions validated using range of tests
and techniques
- Some variables needed transformations

« Others where very weak predictors on their own (but in some
cases important when combined with others!!)
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Which factors matter?

linear regression with variable reduction (e.q.,

Total view count
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Clone lessons ... (ACM SIGKDD 2012)

- Develop and apply a clone set methodology

* Accurately assess (both qualitatively and quantitatively) the
Impacts of various content-agnostic factors on video popularity

*  When controlling for video content, we observe a strong
linear "‘rich-get-richer" behavior

« Except for very young videos, the total number of previous views
the most important factor; video age second most important

« Our findings also confirm that inaccurate conclusions
can be reached when not controlling for video content






Views (V)

Ephemeral Content Popularity at the Edge and Implications for
On-Demand Caching

IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), 2016.



Motivation and observations

Views (V)

Rank (r)

- Ephemeral content popularity seen with many content
delivery applications

« At edge this results in many “one timers” (a.k.a. “one hit wonders”)

« Makes indiscriminate on-demand caching highly inefficient, since
many items added to the cache will not be requested again



Preliminary analysis
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* YouTube request characteristics as observed at an
edge network over a 20 month period

« 2.3M videos and 5.5M views
« 71% of the requested videos are “one-timers”

« Demonstrate the need for selective caching policies
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* YouTube request characteristics as observed at an
edge network over a 20 month period

2.3M videos and 5.5M views
71% of the requested videos are “one-timers”

Demonstrate the need for selective caching policies

Popularity follow power law (and Zipf)
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Characterizing of “one timers”
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« Using meta data about these videos, we take a closer look
at one-timers and other videos receiving few views
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Cache modeling

Trace duration dependence in power-law fitting.

Scale parameter estimation
Time period Video basis Request basis
1 week 3.31 = 0.02 2.036 £+ 0.005
1 month 2.958 = 0.006 1.773 = 0.002
2 months 2.818 = 0.004 1.693 &+ 0.001
6 months 2.625 £ 0.002 | 1.5635 + 0.0005
1 year 2.452 = 0.001 | 1.4690 + 0.0003
| All | 2.341 =0.001 | 1.4359 =+ 0.0003

e
|
Responsible for % of the videos —=_
. Hesponsible for % of the requests ——
10’ 10 10° 10*
Requests per video

(b) CCDF

Motivated by our power-law characterization and fittings, we
use a Zipf model
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- Motivated by our power-law characterization and fittings, we
use a Zipf model
« Cache on k" request policy

« Lower bound “oracle” policies
Exact knowledge (exact number of views)



Cache modeling
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- Motivated by our power-law characterization and fittings, we
use a Zipf model

« Cache on k" request policy
« Lower bound “oracle” policies
« Exact knowledge (exact number of views)
* Oracle with limited knowledge
* Binary knowledge (above or below X views)

*  Knows total views, if more than X
«  Knows total views, if less than X



Cache modeling
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- Motivated by our power-law characterization and fittings, we
use a Zipf model

« Cache on k" request policy
« Lower bound “oracle” policies
« Exact knowledge (exact number of views)

* Oracle with limited knowledge

*  Binary knowledge (above or below X views)
 Knows total views, if more than X
«  Knows total views, if less than X



Cache modeling
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) ing iotd
P(cache miss) = 1 — ZEZ:E;?E;;U otherwise.
- Motivated by our power-law characterization and fittings, we
use a Zipf model

« Cache on k" request policy

P(cache miss) =1 -

« Lower bound “oracle” policies
« Exact knowledge (exact number of views)
* Oracle with limited knowledge
*  Binary knowledge (above or below X views)
* Knows total views, if more than X
« Knows total views, if less than X



Evaluation

100
th
che on k" request -+~
90 Limited oracle ?pe ect for v x; 2 2[1% —_
. Limited oracle (perfect for v x; 2 10) -
& i Limited oracle (perfect for v x =5) s
Py 80 Limited oracle (perfect for v x 22) cae ]|
© Optimal oracle, binary knowledge ®
e 70 ptimal oracle, exact knowledge ]
o
E 60 .
g ; .ﬁlﬂ;-""fﬂ-
S B0t '_"' _— T*;*fv_--..e“#h .
@] o "_h'"':"'-"'it'::'_-_--._._,:__a__
40 | —
30 I 1 1
0 10 20 30

Cache insertion rate (%)

(a) Model with a = 2.341

40

Cache miss rate (%)

100
90
80

| ache o r 'uee e
Limited oracle ?per?ecl rf]er zug
Limited oracle (perfect for v :-: 210)

Limited oracle (perfect for v x =5) -
Limited oracle (perfect for v x =2) .

Optimal oracle, binary knowledge =

—_—

70 ptimal eracle exact knowledge
ED I ...'.I . .
e S
A0 b N —
SD I 1 1
0 10 20 30

Cache insertion rate (%)

(b) Trace-driven simulation

Evaluation using both model and traces
Similar results
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(a) Model with a = 2.341
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(b) Trace-driven simulation

Evaluation using both model and traces

e Similar results
Limited knowledge

« Noticeable gap if only knows total for videos with more than X
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(b) Trace-driven simulation

Evaluation using both model and traces

Similar results

Limited knowledge

Noticeable gap if only knows total for videos with more than X
Smaller gap if can predict one-timers (and ones with few views)



Evaluation

Cache miss rate (%)

100
90
80
70

ache o F
Limited oracle C(;[;:er?ecl rf]t:n\r 20
Limited oracle (perfect for v x =10)
Limited oracle (perfect for v x =35)

Optimal oracle, binary knowledge
ptimal oracle exact knowledge

uesg e

Limited oracle (perfect for v x 22) e

—_—

.....

ED --.'I.I.:‘ -
50 F -
40 |
30 1 1 1
0 10 20 30
Cache insertion rate (%)
(a) Top-hitter predictor

40

Cache miss rate (%)

Gap suggest room for improvement

100 .
he o ues e
90 | Limited oracle? ect l?or TR 205 +
Limited oracle {perlect for v :-: <10) -~
80 Limited oracle (perfect for v :-:, £5) -a
Limited oracle (perfect for v =2} - ]
Optimal oracle, binary knowledge —=-
70 f“ ptimal oracle exact knowledge
60 |4 LA
50 | m T
40 |
30 ' - -
0 10 20 30

Cache insertion rate (%)

(b) One-timer predictor

40

Fi



Evaluation

100 . .
onk reques b
90 Limited oracle C(;[;:er?ecl rf]t:n\r 205 —_ |
_ . Limited oracle (perfect for v x =10)
2 Limited oracle (perfect for v x 25) -a g
= 80 Limited oracle (perfect for v x 23} . —
2 2
© Optimal oracle, binary knowledge = o
s 107 ptimal oracle, exact knowledge @
0 R, 0
E B0 L E
@ | @
£ r =
S 50} _ 9
© e O
40 1 e e e ]
SD 1 1 1
0 10 20 30 40

Cache insertion rate (%)

(a) Top-hitter predictor
° Gap suggest room for improvement

* One-timer prediction may close the gap
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« Leverage biases in the probabilities that a request will be a
one-timer
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one-timer

« Characterized the one-timers and their request patterns (see paper)

« Motivated simple baseline policies with imperfect knowledge
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* Inter-request Threshold Cache on kth Request
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« Leverage biases in the probabilities that a request will be a
one-timer
« Characterized the one-timers and their request patterns (see paper)

* Motivated simple baseline policies with imperfect knowledge
* Inter-request Threshold Cache on kth Request
* Age Threshold Cache on 1st Request
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« Characterized the one-timers and their request patterns (see paper)

* Motivated simple baseline policies with imperfect knowledge
* Inter-request Threshold Cache on kth Request
* Age Threshold Cache on 1st Request

« Trace-driven analysis
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« Leverage biases in the probabilities that a request will be a
one-timer
« Characterized the one-timers and their request patterns (see paper)

* Motivated simple baseline policies with imperfect knowledge
* Inter-request Threshold Cache on kth Request
* Age Threshold Cache on 1st Request

« Trace-driven analysis

« Some small improvements (but still a large gap ...)
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Leverage biases in the probabilities that a request will be a

one-timer

« Characterized the one-timers and their request patterns (see paper)

* Motivated simple baseline policies with imperfect knowledge

* Inter-request Threshold Cache on kth Request

* Age Threshold Cache on 1st Request

« Trace-driven analysis

« Model to give delimiting insights for case when accurate prediction

only possible for a subset of videos



Lessons for edge caching (TPDS paper)

Collected and analyzed a longitudinal edge dataset

* All YouTube video accesses over a 20-month period
* Most videos receive few view (e.g., 71% one-timers)
* Requests per video accurately modelled using power-law distribution

Use novel workload model and trace-driven simulations to
study the performance of alternative edge caching policies

« Cache on kth request found able to greatly reduce the cache insertion
rate, at the cost of relatively modest increases in cache miss rate

Assess the potential room for improvements through use of
content characteristics

* Oracles suggest there is room for substantial improvements

- However, would require the prediction of the number of future
requests to the content items that are the least popular

« This problem is both difficult and not well explored, as most research
has focused on predicting the most popular contents ...






A Look at the Third-Party Identity Management Landscape
IEEE Internet Computing, 2016.

Information Sharing and User Privacy in the Third-party Identity
Management Landscape

Proc. IFIP SEC 2015

Third-party Identity Management Usage on the Web, Proc
Proc. PAM 2014



Background

Third-party Web Authentication

£ Loginwi faceboo » Use an existing IDP (identity provider)
account to access an RP (relying party)
«  Fewer logins
o optons * Stronger authentication can be used
IDPs .

Information sharing between websites

IDPs ° Privacy leaks!

oy

OOOOOOOOOO

RP



Background

Third-party Authentication Scenario

Authorize access to your account on SoundCloud - Cr...@@lg

il ) @ nhttps//soundeloud.com/connecticlient id=h45b1aal0flac? *

Sign in - Google Accounts - Mozilla Firefox (=
@ hitps:/faccounts.google.com/ServiceLogin?service=Isc

B & ntps/iaccountsgoos

Jile Connect with Sou up i GO 8[6 ” l
. o oogle
Sign in to SoundCloud w|
RedlreCt Google Account
SoundCloud -
| ity o

This app would fike to:

ST |dentity
| gewwn provider

ke avaAb( Gncgi ux

Logged in | g - (IDP)

Need help?
B view your emai adare

1 your ema

ur sigl

Your username or email address

Your password

~unt ‘s View basic information about

One thil

il -(Go 8[e

SOUNDCLOUD

| )
I

Relationship between RP and
IDP




3rd-party authentication

Large-scale Crawling

 Popularity-based logarithmic sampling
* 80,000 points uniformly on a logarithmic range
* Pareto-like distribution

 Capturing data from different popularity segments

1 million Sampled
most |:> websites
popular Va

websites .
ﬁn- e ~ j"‘




3rd-party authentication

130

Large-scale Crawling

Selenium-based crawling and relationship identification

Able to process Web 2.0 sites with interactive elements

Low number of false positives

Validation with semi-manual classification and text-matching

Sampled
websites

Crawl sites to
==_  depth 2

PAM’14



3rd-party authentication

IDPs vs Content Delivery Services

Content providers: North America  China

Import images,
Relationships
between RPs
and IDPs from
same region

scripts etc. from other

sites (third-party

content providers)
Regional
content
service usage

IDPs are much more
popular sites than Content M.
content providers. services

B North America B China [O Asia (rest)
B Europe O Russia [ Other




3rd-party authentication

Service-based Analysis

Using IDPs from the
Likely to be RPs Likely to be IDPs social/portal category

!
\
\:

0
e
s

PAY

Al
\

'1&«!’7
g

Ny

News, file sharing, info Social/portal File sharing, info
Early adopters, Using IDPs from
using several IDPs their own category Not RPs or IDPs

AW 22

\\\\\3\\\\\\\\\\\\\}\‘&

PR

Video, tech Commerce, tech Ads, CDN







Privacy risks

App nghts and Information Flows

. [FSEN=
P A nps ts.google.c uth2/auth?zt=ChRQbzFIcDNLAZ: 7 |
GOUgle Alice Fedtest [&:1 - Read
T | '
SOUNDCLOUD

’ Actions:
Write

Update/remove

This app would like to:

@Kyb ic profile info and list of people i
les. (Edit list)

Make your app, listen and creative activity
(_*: avallab\e via Google‘ VISIb|E to:

_ - Data being sent
View your email adcress .
 Risks related to

SoundCloud and Google will use this information in accordance with their
respective terms of service and privacy policies. X [ ] a a yp e S

L -
» Combinations of types
App rights example




Privacy risks

Our Studies on Privacy Risks

» Categorization app-rights data
« Manual study on the top 200 most popular websites

- Targeted login tests

» Longitudinal analysis of privacy risks

. 7"\
- 200 websites over three years tﬁ



Privacy risks

Protocol Selection

* OpenlD April 2012 vs.
Sept 2014
 Authentication protocol o OAuth
- Decreasing in popularity = OpenlD
O Both

* OAuth
*  RP may write/update info on IDP
* Rich user data is shared

+ Increasingly popular



Privacy risks

IDP Selection

« Top 200 April 2012: 69 RPs and 180 relationships
« Same sites, April 2015: +15 RPs and +33 relationships
» Many pairs and triples of popular IDPs

« 75% of these RPs are selecting all their IDPs from the
to most popular IDPs
Po pop F+%Y 3%

Top DP9V 8 8 €9 8 + sa 19%
1+ 120



Privacy risks

Risk Types

2+ IDPs

* Only a few relationships in the most
privacy preserving category

« 2+ IDPs: More than half are using
actions

« Dangerous when having several IDPs 5706

- Potential multi-IDP leakage non-action

News and file sharing RPs:
most frequent users of actions



Privacy risks

Multi-account Information Risks

Private

Connecting several IDPs to an RP

Cross account leakage

Unwanted
combinations of
conflicting information

RPs handle multi-IDP
usage badly



Privacy risks

Structures in the RP-IDP Landscape

Hybrid: RP
and IDP
High-degree IDP case High-degree RP case G

IDP having many RPs - RP having many IDPs
Top IDPs - Specialized IDPs

Hybrid case
Hybrids are both RP and IDP



Privacy risks

RP-t0-RP Leakage Example
@

’ \ Facebook 150 -
Twitter 110 110 110 110
e e Google 91 0 91 O
Dataset with 44 RPs using Facebook, 14 using Twitter

RP-to-RP

and 12 using Google
- Potential RP-to-RP leaks

 Data posted to IDP from RP1

« Data read from IDP to RP2



Contributions

Contributions and Findings

« Large-scale RP-IDP study + methodology

+ Categorization of RP-IDP relationships

- Longitudinal changes in the RP-IDP landscape
* Protocol analysis

 Privacy risks and information sharing

* Simple web authentication often lack in user privacy






Quality-adaptive Prefetching for Interactive Branched Video

using HTTP-based Adaptive Streaming
Proc. ACM Multimedia 2014.

Empowering the Creative User: Personalized HT TP-based

Adaptive Streaming of Multi-path Nonlinear Video
Proc. ACM FhMN@SIGCOMM 2013. (Also in ACM CCR). Best paper award

Bandwidth-aware Prefetching for Proactive Multi-video

Preloading and Improved HAS Performance
Proc. ACM Multimedia 2015.



Motivation

» Content personalization and personalized streaming

« Regular web content is dynamic and personalized,
while videos have remained largely unchanged

* Viewer’s tastes vary significantly

 Personalized streaming is relatively unexplored
and several interesting questions remain open




We have all seen a movie that (in our taste) Is...
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We have all seen a movie that (in our taste) Is...

too sad
too violent
too scary

... or where we may have wanted our favorite character
to make a different choice...
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We have all seen a movie that (in our taste) Is...

too sad
too violent
too scary

. or where we may have wanted our favorite character
to make a different ChOlce




Interactive Branched Video
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Interactive Branched Video

Allow user to selects between multiple storylines or
alternative endings

Clickable objects allow the user to interact with the
player and influence the storyline



Interactive branched video

Video personalization through user interaction

CHOOSE

Trick A

Trick B




Interactive branched video

- Video personalization through user interaction

i

S| WHATDOYOUDO? [

Chase "Sorry, it's my
after the Ii\'{alf ¢ first week, I

p . n

notes have no idea.




We have solved ...

The problem of providing seamless playback in the
presence of multiple branch options



We have solved ...

The problem of providing seamless playback in the
presence of multiple branch options
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We have solved ...

The problem of providing seamless playback in the
presence of multiple branch options

- HTTP-based Adaptive Streaming
- Path and quality-aware prefetching




HTTP-based Adaptive Streaming (HAS)

Base video Time

« HTTP-based streaming

* Video is split into chunks



HTTP-based Adaptive Streaming (HAS)

Base video Time

— =

Chunk1 | Chunk2 | Chunk3 | Chunk4 | Chunk5

-
Base video Time

 HTTP-based streaming

* Video is split into chunks



HTTP-based Adaptive Streaming (HAS)

Base video Time

— =

Chunk1 | Chunk2 | Chunk3 | Chunk4 | Chunk5

-
Base video Time

 HTTP-based streaming

* Video is split into chunks
Easy firewall traversal and caching
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HAS-based interactive branched video
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» Branched video and branch points

* The video can include branch points, with multiple
branch choices

 User selects which segment to play back next
* Our solution: Combine branched video and HAS

» Goal: Seamless playback even if user decision at last
possible moment
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* Problem: Maximize quality, given playback deadlines
and bandwidth conditions
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 Objective function:

maximize playback quality
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v v /S
1|2|3 4|710 8 | 9 | 22
b Y

W

J

current segment

!

first chunk next



Problem Description and Constraints

91

- for seamless playback without stalls

Playback schedulg

Playback deadlines



Problem Description and Constraints

Playback schedulg /—L21° e
Download schedulg! | 2|3 [ 4] T[T

Playback deadlines

- for seamless playback without stalls



Problem Description and Constraints

Playback deadlines

- for seamless playback without stalls

« Current segment: e.g., 2 and 3



Problem Description and Constraints

Playback deadlines

- for seamless playback without stalls

« Current segment: e.g., 2 and 3

t<t—T—I—ZJ_1 if 1 <7< ne



Problem Description and Constraints

10

Playback deadlines

- for seamless playback without stalls

Current segment: e.g., 2 and 3

@<t —’T—l—ZJ_l

Download completion time

if 1 <1< nme



Problem Description and Constraints

Download completion times

- Playback deadlines

for seamless playback without stalls

Current segment: e.g., 2 and 3

)<ti=7+X00l, f1<i<ne

Download completion time



Problem Description and Constraints

Playback deadlines

- Playback deadlines

for seamless playback without stalls

Current segment: e.g., 2 and 3

@gtf T—sz_l if 1 <7< me

Time of playback deadline

Download completion time



Problem Description and Constraints

Playback deadlines

- Playback deadlines

for seamless playback without stalls

Current segment: e.g., 2 and 3

b <td =(T+ 300Gy if1<i<n

Time of playback deadline



Problem Description and Constraints

Playback deadlines

- Playback deadlines

for seamless playback without stalls

Current segment: e.g., 2 and 3

ts < C&Eij if 1<i<n,

Startup delay



Problem Description and Constraints

Playback deadlines

- Playback deadlines

for seamless playback without stalls

Current segment: e.g., 2 and 3

t;"gtfz

Startup delay

if 1 <1< nme

Playtime of earlier chunks
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Problem Description and Constraints

Playback deadline (shared)
for chunks 4, 7, and 10

- Playback deadlines

- for seamless playback without stalls

* First chunks next segment: e.g., 4, 7, and 10

§tf‘:¢—|—Z?@ if ne < i < ne+ |EY

Time at which branch point is reached

Download completion times



Interactive Branched Video Contributions

Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Extensions, generalizations, and variations include “multi-file
prefetching for impatient users” [Proc. ACM Multimedia 2015]
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