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Abstract—Motivated by improved models for content workload ~ servers and upload bandwidth. This hybrid solution prowide
prediction, in this paper we consider the problem of dynamic the convenience of scalable storage for maintaining a plyssi
content allocation for a hybrid content delivery system that large content catalogue in the cloud or CDN, but it can also

combines cloud-based storage with low cost dedicated serversI the | t and t imity of dedicated
that have limited storage and unmetered upload bandwidth. We everage the low cost and customer proximity of dedicate

formulate the problem of allocating contents to the dedicated Unmetered network bandwidth.
storage as a finite horizon dynamic decision problem, and show The traditional approach to managing the storage and band-

that a discrete time decision problem is a good approximation for width resources of dedicated in-network servers is to cache
piecewise stationary workloads. We provide an exact solution to popular content. There is a wide range of cache eviction

the discrete time decision problem in the form of a mixed integer . .
linear programming problem, propose computationally feasible policies, from simple least recently (LRU) or least freqiien

approximations, and give bounds on their approximation ratios. Used (LFU) to more sophisticated policies [2]. Improved
Finally, we evaluate the algorithms using synthetic and measured workload models do, however, allow operators to predict

traces from a commercial music on-demand service and give content popularity [3], [4], [5], [6]. Popularity predicts in
insight |n.to'the|r performance as a function of the workload turn enable the use of prefetching instead of caching, which
characteristics. :
allows the operators to schedule the move of data to the in-
|. INTRODUCTION network storage. Prefetching the most popular contentiicou
The past decade witnessed the migration of content delivego reduce the amount of data downloaded to the cache
systems from dedicated servers to shared infrastructtwescompared to LRU and LFU [7], but it cannot leverage the
content distribution networks (CDNs) and to cloud-basdtuctuations of the popularity of different contents ovenei.
content delivery platforms. CDN and cloud-based contentGiven the availability of workload predictions, prefetabi
delivery offers a number of advantages to content providerscould be dynamically adapted to changing predicted popular
facilitates the fast expansion of the content catalogubowit ities. Nevertheless, it is unclear whether and when dynamic
infrastructure investments. On-demand computationalgpowcontent allocation could provide benefits compared to acstat
can be used for scaling the content indexing, user managemenerage demand based prefetching scheme or compared to
and accounting workloads. Finally, bandwidth is availableaching. Compared to static prefetching and to caching, the
on-demand and can be used to serve fast varying contehallenge lies in balancing (i) the cost of moving contents i
workloads with reduced need for an understanding of tisledicated storage, from which it can be served at a low cost,
characteristics of the system’s workload. (i) the high costs associated with the demands that carmot b
Flexibility comes, however, at extra cost. For exampleserved from the dedicated storage, and (iii) the oppomgtunit
a back-of-the-envelope calculation reveals that the cdst loss associated with not fully using the dedicated bandwidt
100Mbps dedicated upload bandwidth (sufficient to uploadIn this paper we make three important contributions to
over 30TB of data in a month) is only a fraction of theaddress this challenge. First, we formulate the problem of
equivalent CDN or cloud bandwidth cost. With current pricedynamically allocating contents to the dedicated storagie a
the difference exceeds an order of magnitude; e.g., $100U8Dinite horizon dynamic decision process, and we show that
per month vs. $300USD, at a CDN or cloud bandwidtha discrete time decision process is a good approximation for
price of $01 USD/GB. Furthermore, as the online contenpiecewise stationary workloads. Second, we provide antexac
market matures, content providers strive for higher gualisolution to the discrete time decision problem in the form
of experience (QoE) for retaining their customers, which haf a mixed integer linear programming problem. We provide
proven difficult with CDN and cloud-based delivery [1]. computationally feasible approximations to the exact tsmiu
Motivated by the traffic generated by over-the-top multimeand provide results on their approximation ratios. Thireé w
dia services and by the growing emphasis on QoE, contesafidate the model and the algorithms using measured traces
providers like Netflix and network operators have started foom a commercial on-demand music streaming system, and
deploy dedicated servers closer to the customers. By elyishow how the efficiency of content allocation depends on the
on dedicated servers, owned or rented, for serving parteof tlevel of understanding of the content workload and on the
content catalogue, the emerging hybrid content deliveag-pl amount of information available about its statistical hebia
forms combine cloud and CDN based storage with dedicat®d the best of our knowledge this is the first work that present



an analysis and optimization of the delivery costs of a aunte ‘Total demand

provider using a hybrid system that combines dedicated ande

on-demand bandwidth to serve periodic workloads. 2
The rest of the paper is organized as follows. Section Il §
describes the system model and optimization problem. Sec-= |
tion lll introduces the discrete time approximation for qae = ,
wise stationary demands. Section IV presents an exaci@olut < B X[t = Xivg "
o Fa(A) Fa(Ais1)

and computationally feasible approximations with proeabl
approximation ratios. Section V evaluates the performance . N N .
of the proposed approximation policies. Section VI reviews "1 'Time of day (31 2
related work, and Section VII concludes the paper. Fig. 1. The total demand for bandwidth is served from the dedit server
with bandwidth limitU and from the cloud. In intervdt;,ti+1), Fa(i) is the
Il. SYSTEM MODEL data served from the cloud for file§™ stored on the server due to bandwidth

. . illover, F(i) is the data served from the cloud for files not stored on the
) We consider a content provider that Ser\/es a large poDuigr'ver.l‘g(A{‘) is the data served from the cloud to store files on the server.
tion of users from a catalogug of F(=|¥|) files. We denote
the size of filef € F by L¢, and consider that the provider
aims to achieve an average file delivery timge The user
requests for filef generate bandwidth demarg} (t) at time
t. We modelBs(t) as a continuous time piecewise stationary i
stochastic process with finite mean and variance; that &s, th re(i)=Ee /'+ Bi(t)], (2)
mean and variance are a function of time. The piecewise W gxn

stationary assumption is motivated by the observed dlurnve\#1ere the expectation is taken over the future demands.

Iluctuanonf ?f cont_entt wotr.kltgadsth[S], [gt], \{Ve cqgadﬁr that The instantaneous aggregate bandwidth demand for the files
or every stafionary in ervaf;, '*1_] € confin Provider Nas giored on the dedicated servers may exceed the dedicated
prediction of the average bandwidth demasidof every file . bandwidth, in which case the excess demand has to be served
This is a reasonable assumption, as fairly accurate pregict using cloud bandwidth. We refer to this traffic apillover

can Ibe obtained basefdf_?n past contehnt pr(])puLarlt)(;, as We Wlitfic. The expected spillover traffic between two decision
see later. For a set of filet we use the shorthand notationgia i< can be expressed as

A |

The expected cloud traffic needed to satisfy the bandwidth
demand of the files not stored on the servers under paticy
between two decision instants can be expressed as

B = 3 tex By N
. ti"
A. Traffic Cost Model i) —E /,:1 Z B(t)—U | dt|. 3)
User requests can be served from the cloud using cloud b fexm

bandwidth, which is charged by volume. Alternatively, if a Finally,

requested file is available in théedicated storageit can

be served usinginmetered dedicated upload bandwidthie

denote byS the amount of dedicated storage and UWythe

amount of unmetered dedicated bandwidth. Fa(A) =3 Ly, 4
Given the amount of storage and unmetered bandwidth, the feAT

content provider has to choose the set of files to be storgfg we defing I(A]) = 0. Fig. 1 illustrates the three kinds of

in the dedicated storage. We denote bit) the set of files traffic for three consecutive intervals and the bandwidifitli
stored in the dedicated storage at titnevhich in order to be  \we consider that cloud traffic is charged by volume, which

every decision of the content provider to change th
set of allocated files generates cloud traffic. The clouditraf
induced by theét™" decision can be expressed as

feasible has to satisfy the storage constraint is the case for all major cloud providers, and denote the unit
price byy. The cloud traffic cost during an interval is then
L <S Wt @ ! .
&) modeled as a linear function of the data served from the cloud

T
inen the set qf feasible storage gllocations, a stora@ga&ll YT, Xo) = yx lzo{rg(A'F) T + T} (5)
tion policy mdefinesx™(t) as a function of the system’s history =
up to timet and the predicted future bandwidth demands. W practice, the traffic cost is often a concave non-decneasi
denote the set of all feasible allocation policiesy  higcewise linear function of the amount of uploaded data. Ou
Let us consider now the amount of cloud traffic durll?g fesults for a linear cost function can easily be generaliped

time interval T = [to,ts]. Let us denote by, i =1,....I"  concave, piecewise linear functions.
the it" time instant when the content provider changes the

allocation, to < tJ' < ... < X < tg, and letX™ be the set of B. Problem Formulation

stored files right aftet”; i.e., as a result of the decision. We While it would be natural to formulate the objective of the
use the notatiotJ = X™(to), definet%, ; =ts, and denote the content provider as the minimization af(T, Xp), a more in-
set of files fetched upon th#' decision byA™ = X™\ X™*,.  sightful formulation can be obtained by converting the jeab



max[Bal - IIl. DISCRETETIME APPROXIMATION FORPIECEWISE

max[Bg] - 2 STATIONARY DEMANDS

W limit (U) The solution of the traffic cost saving maximization (8) in
As the framework of continuous time decision processes faces
two major challenges. First, the bandwidth demands are non-

. stationary. Thus, even though a stationary policy wouldtexi

=y it would only depend on the current system state, and would

t — t not be able to leverage predictions of the future systene stat
Time of day (t) Second, as shown by equation (6), the amount of traffic served

Fig. 2. For bandwidth limitU file A should be stored instead & some from the dedicated servers depends on the distributionef th

time betweert, andt, if areaA is greater thara. Without bandwidth limit, gym of random variables. and thus an exact maximization of
the decision should be made at timae if areaAUA™ is greater thara. —=T,. . . !
Is(i) can be infeasible.

into an equivalent utility maximization problem. To see how [N the following, we show that by decomposing the band-
consider the total cost under cloud-only content delivargt a Width demand process into consecutive steady state ifgerva
subtract the actual cost for poliay The cloud traffic savings W€ can use the mean bandwidth demands for optimization

(i.e., the traffic served from the dedicated servers between at the price of minimal loss in accuracy. Motivated by this
decision instants) can be expressed as observation, in Section IV, we then show that a discrete time

decision problem can provide the optimal solution.

min(By] A

Bandwidth demand (By)

T
Ti(i)=E /t'“min U, Z Bi(t) | dt]| . (6) A. Mean-value Approximation in Steady State
v fex™ Let us consider a system in steady state. Users that want
The cost savinas over interval can then be expressed as to download filef arrive according to a Poisson process with
9 P rate At, and thus, the bandwidth demanBs(t) of the files

" are stationary stochastic processes. Since the averageeser

U™(T, Xp) =y x _ZD{FTST(U - FE(AF)}, (7) time of file f is ¢, the number of users that are downloading
1= file f can be modeled by an M/&/queue. The probability
and the objective of the content provider is to find that there aré users downloading filé at timet is the steady

state distribution of the number of users in the queue

™ = argmat) (T, Xp). (8) .
j pf) = AL ©
The policy T defines the decision instant8 and the set ' i! '
of files )q“* to be stored at the dedicated storage upon timeThe instantaneous bandwidth demddt) depends on the
instanti, which definesAT" . instantaneous number of users. Thus, even if the expected

Example: To help build an intuition for the utility maxi- aggregate bandwidth demafd. E[B¢(t)] of the files stored
mization problem, consider the example in Fig 2. There aom the server is less than the unmetered bandwidlthin
two files, A and B, with bandwidth demandBa(t) andBg(t). a system in steady state the spillover traffi(i,b) can be
The dedicated storage is enough for one file only, andAile positive; effectively depending on the tail probability tife
is originally in storage. The expected bandwidth demand sfationary bandwidth demands. Similarly, the aggregatelba
file B exceeds that of fileA between timet; andtz. Thus, width demand of the files stored on the dedicated servers can
at t; we must decide if we should replade with B. For be less than the unmetered bandwitkthWhile for a single
a bandwidth limit ofU, making this switch would at most file the bandwidth demanB;(t) can be far from its expected
save the cloud traffic associated with the area between the tvalue E[Bs(t)], in the following we show how the individual
bandwidth curves marked “B” in the figure, minus the cloudandwidth demand distributions can be used to bound the talil
traffic Lg associated with downloading filB to storage. (If and the head probability of the aggregate bandwidth demand
there was no bandwidth limit, the cloud traffic saving woulg ;. B¢ (t) for an arbitrary sefX of files under two scenarios.
be the sum of the areas marked “B” and™B minus Lg.) The bounds of the head and tail probability in turn bound
At time t;, the optimal policy would be to replac& with the potential (typically small) error using mean-valuesésh
B only if fttf(min[U7BB(t)] — Ba(t))dt — Lg > 0. Similarly, dimensioning for a time-interval during which the bandwidt
assuming that this switch is made, an optimal policy wouldemand is in steady state.

select to switch back té at some point betweers andty if 1) Server-only Data DeliveryWe first consider the sce-
f&S(min[U,BA(t)]—BB(t))dt—LA>0. nario when the users download all data from the servers

The above example helps illustrate the power of the modianaged by the content provider. In this case, the total
ified formulation for identifying an optimal policy. In the bandwidth demand is proportional to the total number ofsiser
following we address the question what policy should thie the system. If the dynamics are fast compared to the rate at
content provider use to allocate files to the dedicated géoravhich decisions are made, the number of users downloading
to maximize its cost saving defined in (7). the different files can be well modeled by independent random



variables. Under this independence assumption between agan be used when swarms become self-sustaining [12], [13],

guest rates, the total number of instantaneous users isdPoiswithout affecting our conclusions. Now, for every file, the

distributed with parametgy =AT =S ¢cx A Ts. probability that there is at least one active user download-
Given that the number of users is Poisson distributédg file f can be modeled as a Bernoulli distribution with

with parameteip = At, the probability that the instantaneousrobability p; = 1— e *fTf the expected bandwidth demand

aggregate bandwidth demand for the Zeof files stored on for a single file iSE[Bs(t)] = %(1— e M), and the total

the dedicated servers is less than the unmetered bandWidtinstantaneous bandwidth demand for the system is equatto th

can be calculated as number of files with at least one active user. The bandwidth
n* ()\T)i demand can thus be modeled as the sum of independent,
P(Y Bi(t)<U)=P(n<n’) = zoeN T (10) non-identically distributed Bernoulli random variableSor
fex i= '

the purpose of our analysis, we denote the (complementary)
where we have used that the unmetered bandwitdtillows probability that there are no downloaders in the system by
at mostn* clients to be served simultaneously by the servergs = 1 — ps = e M.

The tail behavior of this distribution can easily be bounded We can again provide a bound on the probability that the
using standard techniques. For example, Michel [10] haugstantaneous demand for the sktof files stored on the
shown that the error of approximating equation (10) witbedicated servers is less than the unmetered bandWidkor
the cumulative standard normal distributidr{p) is inversely this bound we rely on a result by Siegel [14], which states$ tha
proportional to the average number of simultaneous clignts the probability that the sur = 3 ;- ys of |X| independent

in the system; i.e., Bernoulli trials with probabilitiexj; can be expressed as
Pln<n’) - o) < = WD) Py > x|+ a) < ()@ 220 jaaa gy
VAT = ~‘g+a 1-q-a ’

where B = (n* — At)/v/AT. Tighter bounds, such as thos — E)Y] .2 _ E[YI-ENY? ~_ g2
recently pr(gposed )b/y Janssen et al. [11], do not alter ﬁq/gereq— % o? == ]\Xl *a- 1- &' anda> 0.
general shape of the tail behavior; only the accuracy of theConsider again the case wheh< 5 .y E[B¢(t)], and let
estimations that the bounds provide. us calculate the probability th&(Y ;cx Bt (t) <U). Note that

An important observation here is that the probabilitshis probability is equal to the probability thBfY > | X|—n*).
P(3 tex B (t) < U) of under-utilizing the unmetered band-By equating this expression to our previously defined proba-
width at the dedicated servers decreases exponentialty whility P(Y > |X|(q+ a)), we can express in terms of our
the amount of unmetered bandwidth (or equivalently, the original variables as
maximum number of clients©* that can be served simul-
taneously), given a fixed average fraction of the bandwidth a=1
demandm (or fraction of clients%) that potentially

could be served. To see this, note that (n* —At)/v/AT = Similarly as for the server-only case, we note that for amive
\/nj*(l_ M)\/n**. e ;Cales rsJ. for a fixed ﬁ ratio, the probability that(s ¢, Bs(t) < U) decreases
[ ST ' i , T exponentially with |[X| wheneverU < ;. E[B¢(t)], and
At ratio. With () ~ J€¥/2dB, for a fixed §; ratio, the hence (also in this case), mean-value-based dimensiosing i
probability P(3 cx Bt (t) <U) therefore decreases exponeng good (and increasingly accurate) approximation when the

tially wheneveld <3 ¢ E[Bs(t)]. (Similarly, the probability number of files is sufficiently large.

P(3 texBi(t) > U) decreases exponentially whenewgr>

S tex E[Bt(t)].) V. STORAGEALLOCATION POLICIES
To summarize, the key insight from this discussion is that

already for small number of files the instantaneous steadg st ] ] ] ] ) ]

bandwidth demand is fairly stable, and as the number of filesGIVen the piecewise stationary behavior of the bandwidth

increases, the allocation problem gets close to detertisinisdémands and the mean value approximation, we can now

Thus, if the overall request rate (or the number of files wit€fine an equivalent discrete-time decision problem for (8)

reasonable request rates) that can be served on the dedickRf following proposition shows that if the mean value

server is sufficiently large, mean-value-based dimensgpni@PProximation is accurate then there is an optimal policy

provides a good (and increasingly accurate) approximationtha? makes updates only upon transitions between stagionar
2) Peer-assisted Data DeliveryAs an alternative, we con- '€9!/mes. _ _ _ o

sider a peer-assisted system in which the content provide,Proposnmn 1. Consider the con.tmuous time decision prob-

also leverages the users’ (peers’) bandwidth for distiiigut 'em (8)- If the aggregate bandwidth demaidc ) Bi(t)

the content. In an ideal peer-assisted system, for eaclitfide, can be approximated by ¢ x; By for time § <t < ti1, then

bandwidth demand i% whenever there are> 1 users down- there is an optimal policyt™ such that ,f‘* =t;; that is, the

loading simultaneously, and 0 otherwise. More efficientaser set of stored files i®nly changed upon transitions between

bandwidth allocation policies for peer-assisted contefivdry stationary regimes of the bandwidth demands.

n*
| X]

q. (13)

Optimality of Discrete-time Decision Problem

4



Proof: Consider the continuous time decision problem The problem contain$ |l binary decision variables and
(8), and assume that there is an optimal poliéyfor which  (|#|+ 1)l continuous decision variables, which allows the
t=tf<. <t "k = tj+1 for somek > 2, and.x; ;é)q ', for MILP to be solved for hundreds of thousands of files and
i<i |+k For a setx of files denote the aggregate averagseveral tens of intervals using state-of-the-art optitiora
demand byBx_zfexBf, and IetBU( )= mln(U,BX). If fdi lowing | A . o
< ¢ . then the policyrt’ with X7’ — X s the following lemma shows, computational complexity can
ﬁgr(fi)qrnzs SS}JC% b(la)tter and thug is not optimall Sim)i?arlly be reduced by not changing the set of allocated files upon

, ot ot certain intervals without jeopardizing optimality.
if BU()q )>BY ()Q 1), then policyrt’ with X7~ _XI/ per- Lemma 1: Letx™ = (XJ',...,x™) be a solution to the

forms strictly better, and thus |slnot optimal. IfB;(XT") = optimization problem in Theorem 1. If an aIIocatl()ﬁF' for
By (XT ,), then policyrt’ with Xif_( = )(Jll_l_WOU|d perform at an interval0 <i < | -1 is such thatB';1 = Stex Bf
Ieastrras good a®'. Thus, there is an optimal policy' such then there is a solutroaf”* that differs fromx™ only in that
thatt™ =t. S B AY =0and A, =AT,UAY,, that is, T, = .
We can hence choose the decision instants suchthat;, Proof: The total cioud traffic induced by the decisions
and formulate the optimal allocation problem as a finitgyer intervalsi + 1 andi+2 under policyrt satisfies
horizon dynamic decision problem in which the decisions -
are taken at the beginning of every stationary interval. The Fa(AT 1)+ Ta(AT ) < Ta(Al ) +Ta(AT,).
Bellman equation for the decision at the beginning of itAe

. =it , .
interval, at timet;, 1<i < |, can be formulated as Furthermore, since by assumptiBg = > U, the traffic savings

B is not negatively affected, i.ef?/(i +1) < f_f(i + 1) and
U™ ([t tr+a), Xi-1) = mXaX{FS(i) —T(A)+UT ([tisa,ti4a], X) - Ff,(i +2) < F?(i +2). |
| (14) Corollary 1: If an aIIocation)q“* for an interval0 <i <1 —
The standard way to solve the Bellman equation is via backand some j> 0 is such thath >U for every i<i’ <i+ ],
ward induction, but since the predicted demands are k”OVYHen there is a solutio’™ that differs fromx™ onIy in that
we can provide an alternative solution. A — 0 and A{i = Uhki+l An* Consequentlyzq =X
. | =i+1
Theorem 1: Denote b =ti;1 —t; the length of interval A a consequence, an (optimal) on-line algorithm with a
i. Then every solution of the following Mixed Integer Lmeaberfect prediction of the future demands for some petiod
Programming (MILP) problem: would only need to update the allocation of files in the sterag
| when it reaches a time slot when the current allocation would
maxz{ (Z fol f— ) z L¢by f} (15) no Ionger be able to fully utilize the bandW|dlh._ Even
fF = with this optimization, the computational complexity make
the solution of the MILP infeasible for millions of files and
hundreds of intervals. In the following, we therefore cdesi
U, vi<i<l (16) two approximate solutions.

S.t.

IN

zforf*

fer B. No Download Cost (NDC) Policy

—X_1f—his < 0 VI<i<I,fe 17 . . .
A U LI - 7 a0 Given the current sek;_1 of stored files, theNDC policy
fGTLfXLf < § visic<l (18)  considers only the bandwidth demands during the subsequent
_ time interval to perform the maximization. That is, at every
bt >0, %1 €{0,1}, vi<islfe¥ (19 gecision instanc&lDC solves
§ >0, vi<i<l, (20)

XNPC — argmant 4 (i). (21)
is an optimal policyrt* for (14). A

Proof: The decision variables; ¢ correspond tof € X;. A solution to this maximization problem can be obtained by
The auxiliary decision variables in the bandwidth constraint Solving a 0-1 knapsack problem in which the value of every
(16) are the spillover bandwidth in intervalnd are used to file is By x (ti1—t), and the value of the knapsack is at most
subtract the spillover cloud traffic from the objective funcU x (ti+1—t). Since the weight are integers, the solution
tion (15). The auxiliary variablebi ¢ in content replication can be obtained i®(| 7 |S) time using dynamic programming.
constraint (17) is used to include in the objective functioRhe NDC policy can perform arbitrarily bad, however.
(15) the traffic due to storing filé on the dedicated server Proposition 2: The approximation ratrdJ? of the NDC
in interval i if it was not stored there in interval— 1. Thus, policy is unbounded.
maximizing (15) under constraints (16) and (17) corresgond  Proof: Consider a dedicated server with storage- 1
to maximizing the traffic cost savings (originally defined irand bandwidti) = 1, two files 7 = {1,2}, initial stateXp =
equation (7) in discrete-time domain. Constraint (18) essu {1}, and letti;1 -t =1,i=0,.... The expected bandwidth
that only feasible file allocations are considered at eadle ti demandg'f aree and z for files 1 and 2, respectively, for pair
step when solving for the optimal allocation policy. Em numbered intervals, and vice versa for odd numbered irgrva



for some O< € < 0.5. The optimal solution is to keep file 1 inthe approximation ratio ok-SLAIf the average demands are
the storage, in which case the average cost per intervabés 1 bounded.

The NDC policy is to insert the file with higher bandwidth Proposition 5: Consider a system in which the average
demand in the storage, in which case the average cost gemand of each file inserted into the dedicated storage by

interval is 1+¢. Thus, the approximation ratio F§N$ = £, an optimal policyrt* is lower bounded by a factgy > 0 such

and lim_0 5 = o a that the dema‘r)lld of each such file satis_théqi':oﬁ'f_m > Lt.
Proposition 3: The approximation ratio of NDC &— < Then, for k> = the approximation ratio of 4SLA is
1+1S/J7. Jk=SLA 1
Proof: In iteration i NDC allocates the filesx that v S 1P+ 9 (23)

maximizeB, (X) = min (UBj ) thusBl, (X o) > B, (Xie). o . .
v (X) X u(Knoe) = By (i) For | — o the approximation ratio is bounded by a geometric
In the worst case\\DC replaces every file upon every decision

unnecessarily, and thus the average per-interval cost eof %eries with ratiop/k.
) - . ; i ; ™ _
NDC policy is within S of the optimal cost. - Proof: Consider an initial allocatiorXy, and letx™ =

Tl* B . -
Thus, if the amount of data that can be served from tigé(o ,---) be the allocation under an optimal policy. The

. : . L : worst case appproximation ratio &SLA is achieved in a
dedicated servers during an interval is significantly highan S . . L .
. S scenario (i) whenrt* involves replacing all files in storage in
the amount of dedicated storage, i.By (Xypc) % Eltiy1 —

N then theNDC poli be cl i timal the first interval, after which it does not change the set of
i] > S then the policy can be close to optimal. allocated files, (ii) there is no spillover traffic, and (IK)SLA

C. k-Step Look Ahead (k-SLA) Policy glwa}ys al!ocates the set of filgs complemen?ar)m.’g, .i.e.,
o ) ) it fails to introduce the same files as the optimal policy. The

The k-SLA approximation uses a receding horizonkob st under the optimal policy* for such a scenario is

0 intervals [15]. At the beginning of intervalit solves the | |

MILP (15) to (20) for intervaldi, ...,i+k— 1] given the initial JT = BA Le> B A o4

state X;_1. The set of allocated files in interval becomes _i;f Zﬁ f '+fzﬁ f—i;f zﬁ b, (24)

feXi < x¢t =1, and the MILP is solved again at the 2 &4 i

beginning of the subsequent interval. becauseX™ N XJ' = 0. Consider now the cost und&rSLA
It is interesting to consider the caselof 1. Given the set which fails to introduce the filesg™. By the definition of

Xi—1 of stored files, the -BLApolicy considers the bandwidth k-SLAthis happens if for every & ig < | —k

demands and the cost of the allocation during the subsequent otk 1 otk 1

time intervali for the maximization. That is, at every decision Ei A — L < gi A 25

instance i1SLAsolves z z = z = Z Z = (29)

i=Ip fE)qTrk fE)qTrk i=lp fﬁxin*
X! SHA=arg n}cax{fg(i) - FE(A)}- (22)  Using the above expressions we can bound the cost-RirA
. [ .
As in the case oNDC, if 3.y , Bt >U thenx! StA=x_; JKSLA - — 21 > B A (26)
is 1-SLA optimal, and thus\l~S"*= 0. Unfortunately, the 1 I=leexm
SLApolicy is, similar toNDC, suboptimal even for very simple I _ |
problems, as the following shows. < Zl > Bidi+ {k-‘ > L (27)
Proposition 4: The approximation ratié% of thel-SLA =ligxm fex™

policy is unbounded. | i l+k 1. i

Proof: To prove the proposition, we construct an example < Z z BrAi + TPT,Z) z BrAi (28)
with unbounded approximation ratio. Consider a dedicated =g I=0fex™
server with storageS= 1 and bandwidthU = 1, two files < gv +ﬂ9 JK-SLA (29)
F ={1,2}, initial stateXo = {1}, and lettj .1 —tj=1,i=1,.... - k 1 ’
The expected bandwidth demaris are Z and 1+ ¢ for file Rearranging and solving for the ratif—S'4/J™ completes
1 and for file 2, respectively, for every intervalfor some the proof of the proposition. n

0<e<05. The optimal solution isti = {2}, i > 1, in which  consequently, ifk >> p then k-SLAis close to optimal.
case the average cost per intervalés Bhe 1SLApolicy is to  Fyrthermore, if the amount of data that can be served from
keep file 1 in the storage, in which case the average cost pgs dedicated servers during an interval is high (pes low),

. . . . . .11-SLA

interval is 1+-&. Thus, the approximation ratio &=— = 3£, thenk-SLAis close to optimal for low values d
. 1-SLA

and lim_,o Jﬁ = oo, (]

Unlike NDC, in the worst case,-SLA failsto replace every ] )
file upon every decision. It fails to replace a fifeonly if A Synthetic trace-based evaluation
the per interval cost of the file is withibs of its long term We first evaluate the proposed algorithms on synthetic $race
average cost. This observation allows us to obtain a bound motivated by the measured traces used in Section V-B. Each

V. PERFORMANCEEVALUATION
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Fig. 3. Normalized traffic savings for variousi,(;) scenarios.NDC Fig. 4. CDF of the instantaneous aggregate demand of appretima
performs well for low average file siz& { = IMB), when gains are highest. 2000 allocated files normalized by the average aggregate dkihaning
k-SLAperforms as good for high irrespective of the file size. 12 stationary intervals of 30 minutes each, R& SOand SONCscenarios.

0.5

(=]

synthetic trace is one week-long, and consists of 3 setsrahdom. Tracks are encoded at 160kbps and/or 320kbps and
1000 files each. The bandwidth demand of each file followstlae average track size is approximately 5MB.

sinusoidal with a daily period; the minimum/maximum ratio Clients obtain the data for a track, in order of preference,
over a day is normally distributed with mean and standafébm the local cache, from other clients’ caches, and from
deviation of 0075 and 075, respectively. The average timethe content server. The trace allows us to distinguish betwe
of-day peak times of the 3 file sets are offset by on average data requested by each client from the three sources, we
8 hours. Within each file set, the time-of-day peak times agan thus create three demand scenarios: the actual demands
normally distributed with a standard deviation of 2 hours. at the servers in the peer-assisted system (PA), the demands
_ The file sizes are distributed uniformly with mean on including data downloaded from other clients which resasbl
[Lt/2,3L+/2]. The peak bandwidth demand of every filey server-only system (SO), and the demands including data
was drawn from a bounded Pareto distribution with lowefownloaded from other clients and the local cache which
bound Bf3,, upper boundBa = 2. 10° KB/sec, and shape resembles a server-only system with no cache (SONC).

parameten. For givena we choseBJgl, such that the Pareto 1) Mean-value and Rank-parameter ValidatiorEig. 4
distributions have the same average & KB/sec per file.  ghows the instantaneous aggregate bandwidth demand

~ Fig. 3 shows the traffic savings &fDC andk-SLAnormal- 5 x B (t) of allocated files normalized by the average aggre-
ized by the traffic savings under the policy that allocates th i

—] . . . .
files that have the highest average bandwidth demand over%%e demand,; during 12 stationary mte_rvals of 30 mmgtes
entire period for six shape parameteand file sizeL combi- gach, fgr thEPAZ SOand theSONCscenarlos. The set of files
nations,U = 10Mbps andS= 100L¢. We used three different is obtained usmg\_IDC with 8 GB of storage and 30M_bps
shape parameter-lower bound combinations. Fast; 1.01, unmefcered bandwu_jth for each interval, and tfs~ 1.000 n
ST, 300.which eslsn & Zpke rancpopuiary plo?® S T Msanianeous i et
with tail exponenty = 1, as the tail exponeny of the Zipf . ; i .

distribution isy= 1/a. Secondg = 10, B"" — 2, 299, which all scenarios and mtervqls, put for one out.ller. This sh'ﬂvm
results in almost uniformly distributed ee%ands. Third: 2, Fhe mean value ap_proxmatlon over relatively shprt mtlsr_va
Bg‘égk: 1,278, which resembles the rank-popularity of th Surceissggr?slgfiﬁngggtreeg:;:agebéigvsi:jdtﬁr(;);r;n;r? dnsltudet)nailur
measured traces discussed in Section V-B. '

The results show that dynamic allocation can outperform theF19- 5 shows the ranked average bandwidth demands of the
static (non-causal) allocation by up to 50%. Highest ganes 4racks calculated for 12 mteryals of BQ m_mutes each, fer th
achieved for high shape paramete(nearly uniform demand PA, SO and theSONCsc_enarlos, that is, in total 36 curves.
distribution) and low average file sizeNDC performs com- 1h€ curves are normalized by the highest average demand
parable tok-SLAfor low average file sizes (i.e., when moving®Verall. We observe three important characteristics tFics
files to storage involves little penalty), but it fails othése. @ Particular scenario the rank-demand curve for each iaterv
It is noteworthy that albeik-SLAis computatationally more follows Zipf's law but with slightly different shape paratees.
intensive, for sufficiently largk it performs consistently better S€cond, the bandwidth demand of the most popular file for a
than NDC for all average file sizes. particular scenario can differ by approximately an order of

magnitude between the different intervals. Third, the band
B. Measured trace-based evaluation width demands between intervals differ most underS@NC

For the second evaluation, we use a trace collected frong@enario, while they differ least under tRé scenario.
commercial audio on-demand streaming system called SpoWe fitted a Zipf curve to the rank statistics of the average
tify [16], [17]. The system has over 24 million active (inbandwidth demand in every 30 minutes long interval to esti-
the last month) users in 28 countries, among them the U.Bate the exponert of the Zipf curve. Fig. 6 shows the Zipf
and a catalogue of over 20 million tracks, with new tracksxponenta averaged for the same 30 minutes long interval
added continuously. The trace we use was collected duringfaevery day for thePA, SO and the SONC scenarios, and
week in March 2011, and contains the bandwidth demantieir 95% confidence intervals. It is important to note that
from a single country for 1 million tracks chosen uniformly athe confidence intervals are small, which shows that the Zipf
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schemes for th®A scenario,S= 8GB, U = 30Mbps. schemes for th®A scenario S= 1GB, U = 30Mbps.

exponents are similar at the same hour of the day over differe Fig. 7 shows the traffic savings for a configuration with
days. The figure also shows that the Zipf exponent deperfsls- 8GB andU = 30Mbps normalized by the traffic savings
heavily on the hour of the day for th@O and for theSONC under the static oracle allocation. The figure shows MR2C
scenarios. While there have been several measurementsstudeforms poorly even for theracle prediction. Although the
that showed that the popularity of content workloads tewnds @ctual amount of data served from the server is highest for
follow Zipf's law [8], [18], we are not aware of any work NDC, it changes the allocation too frequently, which leads to
that shows that the popularity-rank distribution of comsenmany files being downloaded from the cloud to the servers.
evolves with time according to a periodic pattern. The Zig-SLAoutperforms the static allocation for a horizonlkof 3
exponent also depends on the scenario. UndePfwcenario, for the oracle prediction, and performs almost as well for the
which corresponds to the peer-assisted system with cauohe, IntvlAvg prediction. This shows that (i) tHatvlAvg prediction
exponent is fairly steady and low, because the most popuiarather accurate, and (ii) with a good prediction of therage
files are typically downloaded from peers rather than from tlbandwidth demand&-SLA can actually lead to higher cost
server. This means, however, that the actual server battdwidaving than the static allocation. This is in contrast togher
demand distribution is closer to uniform under ¥ scenario performance observed using tBéh prediction, which is too
than under thesO and theSONCscenarios, which based onnoisy. A comparison of the results fédeSLAwith different

the results in Section V-A makes dynamic allocation for thieorizon lengths also shows that a horizorket 3 gives little

PA scenario more beneficial. benefit over a horizon dé= 2. The result folLRU was—6.07

2) Gain of Dynamic Content AllocationdVe consider three (not shown), which shows that caching is far worse than the

predictions of the average bandwidth demands in order %nplesttfdyna_“nc altlocf?_\tlon dpq_llcy becausel Q) it dOE. Iesl not
investigate the sensitivity of the policies to the accuraty account for spillover traffic and (ii) moves rarely acce

the bandwidth demand predictions and to the average demé?l&aChe' Evert.RU-o performs poorly compared to-SLA

per file. Theoracle prediction is the actual average bandwidth Fig. 8 shows corresponding results for storége 1GB.
demand, and is thus the case of perfect prediction. Z4te Since the dedicated storage is smaller, the average battdwid
prediction usesB; = Bf , that is, the average bandwidthdemand per file is higher, and thus bd#DC and k-SLA
demand 24 hours before the actual interval. ThevlAvg perform significantly better than fo = 8GB. The relative
prediction uses the weekly average demand of the intervakvings forLRU (not shown) was below-6 due to spillover

at the same hour of the day, except for the interval to kenhd excessive evictions, and eMeRU without the bandwidth
predicted, that isB'f = %Zj%@:i%m#i E’f. As a baseline we limit performs almost as bad as the simplest allocationcyoli
use the policy that allocates the files that have the high&siis confirms that if the aggregate bandwidth demand per file
average bandwidth demand over the entire period, igtatc is high compared to the storage size, the approximate dynami
oracle allocation We also simulated an LRU cache with andllocation policies perform well. For low average aggregat
without U = ) bandwidth limit. bandwidth demand the cloud traffic due to allocating a file to



storage cancels most of the gains, and thus a static atbocati as a MILP, and provided computationally efficient approx-
close to optimal. Importantly, in both scenarios the altmra imations with provable approximation ratios. Using traces

policies by far outperform traditional caching.

from a commercial content distribution system we showed

that when upload bandwidth is abundant (high'S ratio),

V1. RELATED WORK

the simple NDC approximation works well, but a look-ahead

Frameworks for cloud-assisted P2P streaming to accomnpolicy is needed otherwise. Dynamic allocation can provide
date time varying demands have been considered for bofhto 50% gain compared to static allocation, and outperdorm
live streaming [19] and VoD [20]. In VoD and live streaming_RU caching by far.

systems chunk delivery needs to be approximately in-order,
unlike in the case of the content distribution systems we
address in this paper, where the delivery order is unréstric
Apart from this difference, the consideration of a hybridud
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costs distinguish our work from the above papers. We show
that by leveraging the benefits of both types, a content deavi (1]
can significantly lower its delivery cost, compared to only
using one or the other, and then evaluate candidate policies
for how to best use these resources. [

Niu et al. [21] makes a case for bigger content providers ngs)
gotiating reservations for bandwidth guarantees from tbecd:
to support continuous media streaming. Within this context"
they argue that it is beneficial to multiplex such bandwidth
reservations, and show that (within their framework) the-ma [5]
ket would have a unique Nash equilibrium, with the bandwidtl’iel
reservation price critically depending on the market desnan
In related work, the same authors present a social welfaiél
optimization formulation, for which they present distribd
solution methods [6]. Qui et al. [22] present an optimizatio [g]
framework for the migration process of a content provider
moving its content distribution to the cloud. In contrast tol®
these works, our focus is on how to allocate and best utilize
the available server and cloud resources. We build our modfl
based on two complementing and existing pricing and serviﬁq]
models; one on-demand and one fixed. Recent work has con-
sidered prediction methods for on-demand service worldoad
(e.g., [4], [5], [6]). Our work is orthogonal to these workss
our focus is on the performance of the allocation policies] a
the performance of all prediction methods is bounded by tfi]
cost savings of the oracle policy we consider. [14]

Finally, the MILP formulation can be considered a variant
of the 0-1 Knapsack problem [23]. In contrast to the tradiio
multiple-knapsack problem with identical capacities (MKP [15]
one knapsack for each time interval [23], we allow for thgg
same file to be present in consecutive intervals and int®ducl17]
penalty for each time something is introduced in the kndpsaﬁs
that was not present in the previous knapsack, as well as a
cap on the maximum possible profit. We are not aware of afiyl
treatment of such a coupled multiple-knapsack problem.

VII. CONCLUSION (201

We considered the problem of dynamic content aIIocatictgl]

for a hybrid content distribution system that combines dou

based storage with dedicated servers and upload bandwidRA.

We formulated the problem of allocating contents to the ded-
icated storage as a finite horizon dynamic decision problepgs)
provided the exact solution to the discrete time approxivnat
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