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ABSTRACT

Improving the performance and scalability of Web servers
enhances user experiences and reduces the costs of provid-
ing Web-based services. The advent of Multi-core technol-
ogy motivates new studies to understand how efficiently Web
servers utilize such hardware. This paper presents a detailed
performance study of a Web server application deployed on
a modern 2 socket, 4-cores per socket server. Our study
show that default, “out-of-the-box” Web server configura-
tions can cause the system to scale poorly with increasing
core counts. We study two different types of workloads,
namely a workload that imposes intense TCP/IP related OS
activity and the SPECweb2009 Support workload, which in-
curs more application-level processing. We observe that the
scaling behaviour is markedly different for these two types of
workloads, mainly due to the difference in the performance
characteristics of static and dynamic requests. The results
of our experiments reveal that with workload-specific Web
server configuration strategies a modern Multi-core server
can be utilized up to 80% while still serving requests with-
out significant queuing delays; utilizations beyond 90% are
also possible, while still serving requests with acceptable re-
sponse times.

Keywords

Performance characterization, Web server scalability, Multi-
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1. INTRODUCTION

As organizations increasingly use Web-based services to
support their customers and employees, Quality of Service
(QoS), typically measured by the response times that the
users experience, becomes an important design considera-
tion. At the same time, service providers such as Google
are interested in improving the effective utilization of their
infrastructure, as this improves the economic sustainabil-
ity of their business. Therefore, systematic techniques are
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required to help organizations meet the QoS objectives of
their Web customers while effectively utilizing underlying
resources. One such technique is performance evaluation.
While this technique was frequently used in the 1990s and
2000s [19] [3] [5] [18], such studies predate the emergence of
Multi-core server architectures. Thus, revisiting Web server
performance and scalability is crucial to see whether previ-
ously investigated behaviours exist on modern hardware.

In this paper, we present a detailed measurement-based
study of the performance behaviour of the Lighttpd [16]
Web server deployed on a 2 socket, 4-cores per socket sys-
tem based on the Intel Nehalem [2] microarchitecture. We
observe system behaviour under two synthetic yet realis-
tic workloads, namely a TCP/IP intensive workload and
the SPECweb2009 Support workload. The TCP/IP inten-
sive workload emulates a server that handles a large vol-
ume of user requests to cached static content. Conversely,
the SPECweb2009 Support workload contains a significant
fraction of dynamic requests, which trigger application-level
CPU activity. In contrast to previous work [24] [10] that con-
sider only mean response time measures, we focus on charac-
terizing the response time distributions for these workloads
while enabling progressively more cores on the system.

Our experiments with these workloads show that the task
of leveraging the performance benefits of Multi-core sys-
tems to be non-trivial. After deploying the Web server on
this system and with the default configurations, the servers
scaled poorly under both workloads. To eliminate bottle-
necks other than the CPU and allow the Web server to scale,
we first perform three initial configuration tunings related to
the Web server software, network interrupt processing, and
OS scheduling. Together, we find that these tunings allow
the system to scale up to 69% relative to the default settings.

Tests on the tuned system reveal that the two workloads
we consider scale very differently. Specifically, the TCP /IP
intensive workload scales sub-linearly with increasing core
count. For example, considering a 99.9°" percentile response
time target of 4 ms, request throughput increases by a factor
of 7.2 from 1 to 8 cores. For a mean response time target of
0.5 ms, throughput only increases by a factor of 6.3 from 1
to 8 cores. In contrast, throughput increases nearly linearly
with core count for the SPECweb2009 Support workload for
various mean and 99.9"" response time percentile targets.

Deeper analysis of response time distributions shows that
differences in performance behaviour across the two work-
loads stem from the way static and dynamic requests exploit
Multi-core systems. Response times of static requests are af-



fected adversely by overheads related to migration of data
belonging to the Web application’s processes across cores. In
particular, response time degradations are significant when
data migrate across the two sockets in the system. For the
more memory intensive dynamic requests, the adverse im-
pact of process data migration is offset by an overall reduc-
tion in the amount of accesses to main memory.

Due to this workload-dependent behaviour, our results
show that a Web server configuration strategy previously
proposed by Gaud et al. [10] and Hashemian [13] to im-
prove scalability is not likely to be effective in systems where
the mix of static to dynamic requests fluctuates over time.
Specifically, this strategy relies on deploying multiple Web
server replicas on a host. Web server process and Network
Interface Card (NIC) affinity settings are configured to dis-
tribute requests to replicas such that application-level pro-
cessing of a request is carried out on the same socket that
handles the network interrupt processing of that request.
Our experiments show that the multiple replica approach
significantly reduces inter-socket data migrations and im-
proves scalability for the TCP/IP intensive workload. How-
ever, the new configuration decreases scalability relative to
the single replica configuration for the SPECWeb Support
workload. These results suggest that significant scalability
improvements can be achieved by dynamically adapting Web
server configuration policies at runtime based on the type of
workload experienced by the system.

In summary, our paper provides insights on configuring
Web servers to efficiently leverage the capacity of Multi-core
hardware. With a carefully selected, workload-specific con-
figuration strategy, our results show that a modern Multi-
core server can be kept 80% busy while still serving requests
without significant queuing delays. Furthermore, utiliza-
tions beyond 90% are also possible, while still serving re-
quests with acceptable response times. A recent analysis of
traces collected from an enterprise environment and a Uni-
versity environment suggests that the top 10 domains in the
traces account for a vast majority of observed traffic [11].
Yet, evidence suggests that production servers in these large-
scale service provider domains are intentionally very lightly
utilized [6] in an attempt to ensure good response time per-
formance. We believe such a strategy is inefficient and may
need to be revisited in light of evidence presented in this
paper.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews previous work. Section 3 describes the exper-
imental setup, methodology, workloads and the initial Web
server configuration tunings done to better exploit the par-
allelism of Multi-core servers. Section 4 studies the perfor-
mance and scalability of the tuned server under both work-
loads. Section 5 explains the multiple Web replica solution
and experimentally evaluates the performance gains from
employing it for each of the workloads. Section 6 summa-
rizes our work and offers directions for future research.

2. RELATED WORK

Several researchers have in recent years proposed novel
OS-level enhancements to improve the performance of Multi-
core systems [7] [15]. For example, Boyd et al. [7] modified
the Linux kernel to remove resource bottlenecks that pre-
vent applications from fully exploiting Multi-core hardware.
Their study shows how the Apache Web server benefits from
these kernel modifications. Kumar et al. [14] characterized

the performance of a TCP/IP intensive workload generated
on an Intel Core 2, 2-socket, 4 cores per socket system whose
network stack is modified to support Direct Cache Access
(DCA), which aims to improve response times by allowing
a NIC to directly place data into processor caches. The au-
thors show that a DCA-enhanced Linux kernel can perform
32% faster than a stock kernel. In contrast to these studies,
we focus on simple performance improvement strategies that
do not require application and kernel modifications.

Veal and Foong [24] conducted a performance evaluation
of the Apache Web server deployed on a centralized memory
Intel Clovertown system. Their work reports that the scala-
bility of the Web server for a SPEC Web workload increases
by only a factor of 4.8 from 1 to 8 cores. The authors estab-
lish the system’s address bus as the main scalability bottle-
neck. We did not encounter such a bottleneck in this work
as we used newer hardware that employs on-chip memory
controllers, a NUMA architecture, and faster inter-socket
communication mediums.

Harji et al. [12] compare the performance of various Web
server software deployed on a quad-core socket. Using two
different static workloads, the authors show that their userver
and WatPipe implementations specifically optimized for Multi-
core systems outperform well-known software such as Apache
and Lighttpd. They show that with careful tuning the new
implementations can sustain up to 6,000 Mbps using 4 cores.
In contrast to this work, our paper considers both static
and dynamic workloads and investigates deployments span-
ning multiple sockets. Furthermore, we focus on response
time measures in addition to throughput and provide a de-
tailed characterization of low-level hardware usage triggered
by Web request processing.

Gaud et al. [10] evaluated the performance of the Apache
Web server on a 4-socket, quad core AMD Shanghai system
using the SPECweb2005 benchmark. As mentioned in Sec-
tion 1, the authors propose a multiple Web replica solution
that minimizes migration of Web server data across sockets
and show that the solution improves scalability. Our work
differs from this study in many aspects. Firstly, our study is
more detailed in that we compare scalability for two work-
loads with very different characteristics and we consider the
entire response time distribution. Secondly, we present a
fine-grained analysis of the response time distributions ob-
served at various load levels for these two workloads to iden-
tify trends specific to static and dynamic requests. Thirdly,
we conduct controlled experiments and report more com-
prehensive hardware monitoring data to identify low-level
processor interactions that impact scalability. Finally, we
show that for our system the multiple Web replica solution
is not effective for workloads containing a significant frac-
tion of dynamic requests and hence cannot be prescribed as
a general scalability remedy to Web site administrators.

3. EXPERIMENTAL METHODOLOGY

3.1 System Under Study

The Multi-core server under study is a Dell PowerEdge
R510 equipped with two quad-core Intel Xeon 5620 proces-
sors with the Intel Nehalem architecture. The processors
operate at a frequency of 2.4 GHz. They have a three-level
cache hierarchy as shown in Figure 1. Each core in a socket
has private 64 KB L1 and 256 KB L2 caches. Cores in a
socket share a common 12 MB L3 cache. The machine is



equipped with two 8 GB memory banks, each connected to
one socket through three DDR3-1333MHz channels. The
server uses Intel’s QuickPath Inter-connect (QPI) with a
capacity of 5.6 Giga Transfers per second (GT/s) between
sockets. The server has a dual-port 10 Gbps Broadcom
57711 NIC and a dual-port 1 Gbps Intel 82576 NIC. The
NICs support Message Signal Interrupts-eXtended (MSI-X)
and multiple Receive Side Scaling (RSS) queues that enable
the distribution of network interrupts between the cores.
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Figure 1: Server Architecture

In this study, we focus on CPU bottlenecks and their im-
pact on scalability. Consequently, we intentionally prevent
other resources (e.g., disks, network) from becoming the bot-
tleneck. This influences our choice of the Web server and
workloads used in our study. The Web server software used
in our experiments is Lighttpd 1.4.28 [16]. Lighttpd was cho-
sen as initial tests showed it scaled better than other open
source Web servers such as Apache [4]. The event-driven,
asynchronous architecture of Lighttpd avoids the need to
manage a large number of Web server processes and de-
creases the size of its memory footprint. This enables the
server to experience a CPU bottleneck and allowing for sys-
tem performance under such a condition to be examined.
Lighttpd can exploit Multi-core hardware by spawning mul-
tiple worker processes. The fork() mechanism is used to cre-
ate these worker processes; therefore, they share the same
address space and share some data structures in this space.
As discussed in Section 3.4, our experiments used 1 worker
process per core.

For the multi-tier SPECweb workload, we use the PHP
language runtime as the application tier and the FastCGI [§]
message exchange protocol as the means of communication
between the Web and application server. In this configu-
ration, a PHP-FastCGI process with a set of children are
spawned by the Lighttpd Web server at startup. This cre-
ates a constant size pool of PHP-FastCGI processes that
serve requests for dynamically generated content. We had
to use 128 PHP-FastCGI processes per core in our experi-
ments to avoid a software bottleneck.

The SPECweb benchmark emulates the behaviour of a
database tier using another Web server referred to as the
Backend Simulator (BeSim). We use two machines with
Intel Core2 processors and 2 GB of memory for this purpose,
as shown in Figure 2. Each BeSim machine executes an
instance of Apache Web server with the FastCGI module.
The BeSim systems were carefully monitored to confirm that
they are not the bottleneck in our experiments.
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Nehalem Server
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Figure 2: Testbed for Support workload

3.2 Workloads

As mentioned previously, the TCP/IP intensive workload
is selected to expose CPU bottlenecks when a server is sub-
jected to very high traffic volumes that induce significant OS
activity related to processing of incoming and outgoing net-
work packets. In each experiment, HT'TP requests are sent
to the server at a rate of A requests per second. The value of
A is varied to study the behaviour of the server under a wide
range of traffic intensities. To isolate the impact of TCP/IP
activity, we limit the amount of application-level process-
ing required by each request. Accordingly, all user requests
are for a single static 1 KB file, which is highly likely to
be served from the processors’ caches. With this workload,
we were able to carry out experiments up to a maximum
rate of 155,000 requests per second, which resulted in a 90%
average utilization of the server’s cores. To generate such
high request rates, we selected the hitperf [20] Web work-
load generator. We used 4 instances of httperf, each running
on a separate dual core client machine to submit this work-
load to the server. The client machines and the server are
connected to each other through a non-blocking 10 Gbps
Ethernet switch.

We also consider the SPECweb2009 Support workload.
We use this workload to observe system behaviour when
there is more application-level activity relative to OS level
activity. The increased application-level activity is caused
by a more diverse working set of static files, which may trig-
ger processor cache misses. Furthermore, around 5% of re-
quests are dynamically generated and rely on the services
of the application tier and the BeSim tier. To prevent the
server’s disk from becoming a bottleneck, we change the
"DIRSCALING” parameter of the Support workload from
0.25 to 0.00625. This reduces the size of the file-set to fit
in the server’s main memory, however, the probability dis-
tributions of file sizes and file popularity remain the same.
To ensure that all files are accessed in memory and prevent
disk activity, before each experiment the memory cache (in-
cluding the OS file cache) is cleared and then warmed by
accessing all files in a “cache filling” run.

To submit the Support workload, we use httperf instead of
the Java-based SPECweb load generator client bundled with
the benchmark suite. We previously enhanced [13] httperf
to submit a workload into multiple server addresses simul-
taneously. This enhancement is used in the experiments to
evaluate multiple replica configuration, that is described in
Section 5.4. Eight instances of hitperf are deployed across
two dual core and one eight-core machines, as shown in Fig-



ure 2. We first instrumented the SPECweb client to record
all request URLs sent to the server along with the send time
stamp in an output file. A set of tests were run using mul-
tiple Java-based SPECweb clients and the lists of request
URLSs were recorded. In each experiment, depending on the
number of concurrent users for that experiment, a subset of
the recorded sessions is submitted to the server using httperf.
We verified that the characteristics of the load generated
by httperf is very close to that generated by the SPECweb
client.

3.3 Performance Metrics

The primary scalability metric that we use in this study
is the Maximum Achievable Throughput (MAT). We define
this parameter as the maximum throughput at which a se-
lected statistical property of the response time distribution
is less than a “threshold”. MAT is measured for two typical
statistical metrics used in practice by performance analysts,
namely the mean and the 99.9°" percentile of the response
time distribution. The mean (average) response time is of-
ten used by queuing theorists, whereas practitioners and In-
ternet service providers often are interested in percentiles;
particularly the upper percentiles that capture the tail ef-
fects [9]. The response time thresholds differ depending on
the Service Level Agreement (SLA) for a particular Web ser-
vice. For instance, Amazon Dynamo Services uses an SLA
where the 99.9'" percentile threshold is 300 msec [9]. In our
experiments, the mean response time thresholds are set to
about four to five times the mean response time under low
load. This represents a scenario where there is contention
among users for server resources yet users experience an ac-
ceptable interactive response. The threshold values are con-
stant for all the experiments, however, the effect of selecting
other thresholds is also discussed.

To quantify the server’s behaviour, a variety of metrics
are collected. To monitor the CPU, disk, and network uti-
lizations of the server, the collectl [22] tool is used, which
we confirmed incurred a negligible CPU overhead of around
1%. Low-level hardware monitoring data was collected us-
ing Performance Counter Monitor (PCM) [1] tool (specific
to Intel architectures). To eliminate the effect of the hard-
ware monitoring overhead on the scalability measurements,
all the experiments were run twice, first without PCM to
collect the scalability metrics, and then with PCM to col-
lect the hardware event statistics. The experiments without
PCM were repeated multiple times to achieve tight 95% con-
fidence intervals for the reported mean response times. In
all our experiments, 95% confidence intervals were less than
1% of their corresponding mean values.

3.4 Initial Configuration Tuning

In this section, we describe our initial configuration tun-
ing exercise aimed at preventing software or OS bottlenecks
from limiting the scalability of the server. Table 1 shows the
quantitative values of performance improvements achieved
through three configuration tunings for both TCP/IP in-
tensive and Support workloads. The first column describes
the configuration tuning while the other two columns show
the improvement in the MAT for mean response time thresh-
olds of 0.5 msec and 5.0 msec, respectively for the TCP/IP
and SPECweb2009 Support workloads. We confirmed that
the tuning strategy’s effect on the higher percentiles is also
positive. The three tuning steps are as follows:

Number of Web server processes: The Lighttpd doc-
umentation suggests a setting of two HTTP worker processes
per core for CPU bound workloads. As the first configura-
tion tuning step, we set this parameter to one. From Ta-
ble 1, the MAT value was 14% and 1.5% higher with this
setting for the TCP/IP intensive and the Support work-
loads, respectively, when compared to the default setting.
This result indicates that for our workloads, the overhead of
context switching between two worker processes is greater
than the gains achieved through duplicating workers. Fur-
thermore, the performance gain from this tuning is greater
for the TCP/IP workload than for the Support workload.
Careful workload-specific tuning of this parameter is there-
fore critical for obtaining good performance.

OS scheduling: As the next tuning strategy, we exam-
ined the Linux process affinity mechanism [17] as an alter-
native to the default Linux scheduler. The default sched-
uler dynamically migrates Web application processes among
cores. We used the affinity mechanism to statically assign
each of the 8 Lighttpd worker processes to its own distinct
core. From Table 1, core affinity significantly outperforms
the default Linux scheduler. The MAT increased 10% and
4.0% for the TCP/IP Intensive and Support workloads, re-
spectively, compared to the MAT obtained after the previous
tuning step. This result shows that for a TCP/IP intensive
workload, migrating cached data pertaining to a worker pro-
cess across cores can adversely impact performance. For the
Support workload, we ran an additional experiment where
the affinity setting was also applied to the application tier in
a way that the PHP-FastCGI processes were equally divided
between the cores and statically assigned to them. This fur-
ther improves the MAT value by around 5% with respect to
the mean response time. Therefore, the two affinity settings
can improve the server’s scalability up to 9% for the Support
workload.

Network interrupt handling: The default NIC config-
uration uses a single core on the system to process interrupts
from the NIC. As a result, the interrupt handling core be-
came saturated under high loads, even though the utilization
of the other cores was low. Therefore, the network interrupt
handling load was distributed between the cores by creating
8 RSS queues on the NIC and affining each of the queues to a
distinct core through the Linux IRQ Affinity Setting mech-
anism. From Table 1, distributing the interrupts improved
the MAT value up to 45% and 20.5% for the TCP/IP In-
tensive and Support workloads, respectively relative to the
MAT obtained after the previous tuning step.

Overall, these changes improved the MAT by 69% and
31% for the TCP/IP Intensive and Support workloads, re-
spectively, relative to the default OS settings. The experi-
ments presented in the next section use these tuned settings.

4. SCALABILITY EVALUATION

In this section, we describe the results of scalability evalu-
ation experiments for the TCP/IP intensive and the SPECweb
Support workloads. For each workload we change the load
intensity to utilize the server to its capacity. We study the
performance of the 8 core server when it has 1, 2, 4, or 8
active cores.



Table 1: Effect of configuration tunings on the server’s scalability

Tuning Method

Scalability Improvement

TCP/IP intensive workload | Support workload
Decreasing number of Lighttpd processes from 2 to 1 14.0% 1.5%
Employing core affinity 10.0% 9.0%
Balancing network interrupt handling load 45.0% 20.5%
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Figure 3: Normalized Maximum Achievable

Throughput (MAT) with 1, 2, 4 and 8 active cores
for the TCP/IP intensive workload

4.1 TCP/IP Intensive Workload

Figure 3 shows the normalized MAT values with respect
to mean and 99.9'" percentile response times for 1, 2, 4 and
8 active cores. Different threshold values are used for the
two different statistical properties of response time. While
the acceptable mean response time is set to 0.5 msec, a 4
msec threshold is considered for 99.9t" percentile of response
time for this workload. In the experiments with 2 and 4 ac-
tive cores, all cores are selected from the same socket. We
normalize MAT values with respect to the value observed
with lcore. From the figures, the server scales close to pro-
portionally from 1 to 2 cores with respect to both mean and
99.9'" percentile of response times. However, for more than
2 cores, the scalability factors starts to degrade. The degra-
dation is more severe for the mean response times. The
overall scalability from 1 to 8 core is 6.3 for mean and 7.2
for 99.9'" percentile. Selecting larger response time thresh-
olds results in similar numbers. However, lower thresholds
slightly decrease the scalability factors. These numbers sug-
gest that there is a scalability problem in the system from
4 to 8 cores. Moreover, the problem is not confined to the
tail, but observed throughout the body of distribution.

Analysis of the server’s response time at different load
levels reveals that scalability problems become severe when
moving from 4 cores, i.e., using 1 socket in the system, to 8
cores, i.e., using both sockets on the system. The measured
response time values as a function of CPU utilization are de-
picted in Figures 4(a) and 4(b) for the mean and 99.9" per-
centile, respectively. Figure 4(a) show that mean response
times only increase gradually till a mean per-core utiliza-
tion of 80% for experiments with 1, 2 and 4 active cores.
However, in the experiment with 8 active cores, the mean
response times increase with a larger slope from 60% utiliza-
tion. A similar trend is observable for the 99.9'" percentile
of response times in the experiments with 2, 4 and 8 active

cores. Interestingly, the 99.9'® percentiles are significantly
higher with 1 active core. This demonstrates that when only
1 core is active in the system, a subset of requests have sig-
nificantly high response rimes. We have not yet been able to
determine the reason for this behaviour inspite of the large
amount of hardware event data that we collected.

In summary, Figure 4(a) confirms the presence of a scal-
ability problem in the system when all 8 cores are active
while Figure 4(b) demonstrates that the problem manifests
itself throughout the response time distribution. This prob-
lem prevents the Web server from fully utilizing available
processor resources. In Section 5, we evaluate a Web server
configuration strategy which can reduce the impact of this
problem.

4.2 Support Workload

For this workload, the load on the server is changed by
varying the number of concurrent users in the system. Sim-
ilar to the TCP/IP intensive workload, in the experiments
with 2 and 4 active cores all cores are selected from the same
socket.

Figure 5 shows the MAT values with respect to mean and
99.9'" percentile response times for 1, 2, 4 and 8 active cores.
We consider thresholds of 5 msec and 500 msec for mean
and 99.9" percentile of response time, respectively. From
the figure, the server shows a different scalability behaviour
under the Support workload. While the server scales sub-
linearly from 1 to 2 cores with respect to the mean response
time, the scalability factors improve as we activate more
cores. The overall scalability from 1 to 8 core is 7.8 and 7.9
for the mean and 99.9'" percentile of response time, respec-
tively. The numbers suggest that the server scales well for
the Support workload. Increasing the threshold did not have
considerable effect on the scalability factors. However, se-
lecting a lower threshold (e.g. 4 msec and 400 msec) results
in a slightly better scalability from 4 to 8 cores.

Figures 6(a) and 6(b) further emphasize the differences
between the TCP/IP workload and the Support workload.
The figures show the mean and 99.9" percentile of response
times as a function of server CPU utilizations for 1, 2, 4 and
8 active cores. They demonstrate four main observations
related to the server’s scalability. First, from Figure 6(a),
with all 8 cores enabled it is possible to utilize the cores to
up to 80% without encountering significant response time
increases. Second, at high loads and for a given utiliza-
tion level, the experiments with 2 and 4 active cores have
higher mean response times compared to the experiments
with 1 and 8 active cores. A similar trend is observable for
the 99.9*" percentile of response time as depicted in Fig-
ure 6(b). Third, the performance degradations of the 2 and
4 core curves relative to the 8 core curve are less for the
99.9*" percentile of response times compared to the mean.
Finally, while the experiments with 1 active core have the
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best performance considering the mean response time, the
best 99.9'" percentile response times is measured with 8 ac-
tive cores, especially at high load. These observations reveal
that activating more cores in a single socket has a negative
effect on the server’s scalability for the Support workload.
This effect is more in the lower percentiles and less on the
tail of the response time distribution. Moreover, activating
another socket considerably improved the scalability.

We next analyze the reasons for the differences in scala-
bility behaviour of the body and tail of the response time
distribution. We plot the Cumulative Distribution Func-
tion (CDF) of response times in Figure 7 to study how the
response time of different types of requests differ when we
activate more cores in the server. A single test was selected
from the experiments with 1, 2, 4 and 8 cores. In each ex-
periment the selected test is the one which causes a CPU
utilization of 80% per core. This way we could ensure that
the comparison is done at a constant load level relative to
the available resources (number of cores). From Figure 7,
the response time distributions are almost identical for 1,
2, and 4 cores cases for the first 95 percentiles. Response
times are significantly higher when 8 cores are active. The
conditions are reversed for the last 5 percentiles. For this
portion of requests, the response times in the tests with 2

and 4 core are considerably higher than the response times
in the test with 1 and 8 cores. The CDF plots demonstrate
that activating 8 cores causes a performance degradation
for requests with smaller response times while requests with
larger response time benefited from having 8 active cores.

We now focus on the identity of the requests with large
response times, which benefit from having 8 active cores,
i.e., both the sockets. We use the detailed response time log
file output by httperf to plot response times as a function of
the size of responses to request as shown in Figure 8. The
plot was generated from the output of a test with 8 active
cores at 80% per-core utilization. Plots for other numbers
of cores and load levels have similar trends. Each point
in the graph represents a single request submitted to the
server during the test. The plot reveals that requests with
medium response sizes have the highest response times. Us-
ing the hitperf log files, these response sizes correspond to
content that is dynamically generated by the application
tier. Therefore, dynamic requests scale well with activating
both sockets.

Considering the observations from Figures 7 and 8, we can
conclude that the server has a different scalability behaviour
when handling the static and dynamic requests. While the
server scales well for the dynamic requests, there are some
scalability problems when handling static requests, espe-
cially when moving from 4 to 8 cores, i.e., from 1 socket to
2 sockets. The fraction of dynamic requests in the Support
workload is significant enough that this workload sees an
overall scalability improvement with increased core count.
However, the TCP/IP intensive workload contains a soli-
tary static file and hence scales comparatively poorer with
core count, especially while moving from 1 socket to both
sockets.

Towards understanding the response time behaviour, we
now discuss important low-level differences in system usage
across the 1 socket and 2 sockets scenarios. When only one
socket in the system is active, there is unlikely to be sig-
nificant migration of data over the inter-socket QPI links
since the Linux memory manager tries to allocate memory
locally. In contrast, as discussed shortly, in the 2 socket
scenario there can be significant data flow across the two
sockets through QPI links. Contention for the QPI links can
potentially hurt the performance of the 2 sockets case. How-
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ever, the 2 socket case exposes twice the L3 cache capacity
to the Web application processes. This can afford perfor-
mance gains for the PHP-FastCGI processes, which others
have shown to be memory-intensive [23]'. In the next sec-
tion, we study the relative effects of such interactions in the
context of a previously proposed scalability enhancement
technique that aims to reduce inter-socket communications.

S. SCALABILITY ENHANCEMENT

In this section, we evaluate the multiple Web site replicas
approach suggested recently [10] [13] to enhance the scalabil-

!To confirm the memory-intensiveness of PHP-FastCGI pro-
cesses, we compared the memory access traffic for the Sup-
port workload with 8,000 concurrent users to a statistically
similar workload where the dynamic requests were replaced
by static requests of the same response size. We noticed that
the workload with dynamic requests caused 3.6 times more
traffic to the main memory than the workload with static
requests.
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Figure 8: Response time vs. response size for a test
with 8 active cores and 80% CPU utilization for the
Support workload

ity of Multi-core Web servers. To facilitate subsequent dis-
cussions, we first provide some background on how network
packet processing and application data shared among Web
application processes can increase the traffic in the socket
inter-connect. We then describe the multiple replicas solu-
tion and present experiments to characterize its effectiveness
under various circumstances.

5.1 Effect of Network Packet Processing

When the TCP packets carrying an HT'TP request arrive
at the server, the NIC sends an interrupt to one of the pro-
cessor cores. The packet is then copied to the private cache
of the core that is going to handle the interrupt. After the
packet is processed by the core (e.g., TCP/IP protocol pro-
cessing such as checksum calculation), a Web server process
is chosen to serve the HTTP request. The data within the
packet is then copied to the process’s buffer space. There
are three possibilities in this stage. First, the core on which
the Web server process resides is the same core that has pro-
cessed the packet interrupt. In this case, the data already



exists in the private cache of that core. Second, the core on
which the Web server process resides and the packet process-
ing core are not the same, but are from the same socket. In
this case, the data may exist in the shared L3 cache of that
socket. Third, the Web server process residing core and the
packet processing cores are from different sockets. In this
case, the data should be fetched from the cache hierarchy
of the other socket [21]. This causes an increase in the QPI
links’ traffic which can result in contention in the QPI links
at high request rates.

As discussed previously, the server’s MSI-X enabled NICs
can divide interrupts among a set of hardware RSS queues
with packet distribution among the queues performed using
a hashing technique. Furthermore, interrupts assigned to
each queue can then be bound to a specific core through the
IR@Q Affinity Setting supported by Linux. We show how this
feature can be exploited to reduce inter-socket communica-
tions in Section 5.3.2.

5.2 Effect of Shared Application Data

Both Lighttpd and PHP-FastCGI processes can share data,
e.g., kernel libraries and associated data structures, between
themselves. A process residing on a given socket may request
a given piece of data cached at the L3 cache of the other
socket due to a previous access by another process residing
on that socket. This can have a positive impact on perfor-
mance since it eliminates costly accesses to main memory.
However, it triggers migration of shared data across sock-
ets that may cause heightened contention for the QPT links.
Hence, the overall performance impact of shared application
data depends on which of these two effects dominates.

5.3 Multiple Web site Replicas

The multiple Web site replicas solution takes advantage
of the Linux taskset and TRQ Affinity mechanisms, multi-
ple network interfaces available on modern servers, and their
support for MSI-X and RSS to reduce inter-socket communi-
cations stemming from the migration of network packets and
data shared among Web application processes residing on
different sockets. In the following subsections, we describe
how we setup the non-replica approach and two variants of
the multiple replica approach on our server.

5.3.1 Original Configuration

Figure 9(a) shows the schematic of the network and Web
server configuration for the server used in our setup. The
server has a dual-port NIC that can operate as two individ-
ual NICs. Each NIC has its own IP address and is configured
to use four queues. Queues 0 to 3 of NIC 0 are assigned to
cores 0 to 3 of socket 0, and queues 0 to 3 of NIC 1 are
assigned to cores 0 to 3 of socket 12.

The original Web server configuration used in the exper-
iments with 8 active cores involves running a single Web
server software instance with 8 Lighttpd processes. Each
of these processes is bound to one of the 8 active cores as
shown in Figure 9(a). When a request arrives at the server,
it will first be processed by one of the queues of the NIC and
next the HTTP request is handled by one of the Web server

2There are other options for configuring the two NICs, such
as assigning the same IP address through NIC teaming and
enabling eight RSS queues for each NIC. We experimentally
evaluated these configurations and did not observe a consid-
erable performance difference for our workloads.

processes. The NIC and the Web server process to handle
the request are each chosen with equal probabilities. There-
fore, when the TCP packets of a request are processed by the
cores of one socket, there is a 50% chance that the HTTP re-
quest is processed by a process residing in the other socket?.
As mentioned previously, there are 128 PHP-FastCGI pro-
cesses per core. These are not shown in the figure for the
sake of clarity.

5.3.2  2-replica Direct Mapping

An alternative configuration is to run two instances of
the Web server software, each having 4 Lighttpd processes
and 4 x 128 FastCGI processes bound to the cores of one
socket. Each instance is denoted as a Web site “replica”.
The processes of replica 0 are bound to the IP address of
NIC 0. Consequently, the requests coming through NIC 0
are processed by the processes of replica 0. The same setting
is performed on replica 1 and NIC 1. Figure 9(b) shows the
schematic of the alternative configuration with two instances
of the Web server. From the figure, the processes of replica 0
reside in socket 0. The queues of NIC 0 are also assigned to
the cores of socket 0. This ensures that for all the requests
sent through NIC 0, both the TCP packets and the HTTP
requests are processed by cores of socket 0. This means
the TCP packets and HTTP request will be processed on
the same socket with 100% probability. We refer to this
mapping of NIC queues and replica processes as 2-replica
Direct mapping.

Employing the 2-replica Direct mapping eliminates costly
inter-socket communications involving migration of network
packets. Furthermore, since both replicas are independent,
a significant sharing of data among Web application pro-
cesses will not trigger QPI traffic. However, as mentioned
previously, the absence of sharing among sockets can rep-
resent a lost caching opportunity that might result in more
main memory accesses. It follows from these discussions that
the multiple replicas approach tries to leverage properties of
the single socket scenarios discussed in the previous sections
while still using both sockets in the system.

5.3.3  2-replica Indirect Mapping

To better understand the selective importance of elimi-
nating network packet related QPI traffic and shared ap-
plication data related QPI traffic, a third configuration is
considered. This is done by configuring replica 1 (on socket
1) to process the requests sent through NIC 0 (on socket 0).
Thus, when the TCP packets of a request are processed by
the cores of one socket, the HTTP request is processed by
a Web server process residing in the opposite socket. This
mapping of NIC and replica shown in Figure 9(c) is referred
to as 2-replica Indirect mapping. Employing the 2-replica
Indirect mapping forces the occurrence of costly inter-socket
data migrations due to the network processing. However, as
Web application processes within a replica still share the
same socket, this mapping is similar to the 2-replica Direct
mapping in terms of avoiding shared application data related
QPI traffic.

5.4 Evaluation

This section presents experiments performed to evaluate
the effectiveness of the multiple replica approach. First, the

30ur workload generator sends requests to the IP addresses
of both NICs of the server with equal probabilities.
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results of experiments conducted using the new configura-
tions under the TCP/IP intensive workload are presented.
We then examine the server under the Support workload.
Finally, the hardware event data collected during the ex-
periments with both workloads is presented to identify the
causes for the observed performance behaviour.

5.4.1 TCP/IP Intensive Workload

Results from the original configuration with 8 active cores
are considered as the baseline. Figure 10 shows the mean
response times as a function of request rates for the baseline
(1 replica), 2-replica Direct mapping and 2-replica Indirect
mappings. From the figure, the MAT (considering a mean
response time threshold of 0.5 msec) is the highest for the
2-replica Direct mapping. Furthermore, the MAT for the
2-replica Indirect mapping, while less than that of 2-replica
Direct, is higher than the baseline. Specifically, the MAT
values improve around 12.3% and 6.5% with the 2-replica
Direct and 2-replica Indirect mappings, respectively. The
improvements in the MAT with respect to a 99.9'® percentile
threshold of 500 ms (not shown due to space constraints) are
5.2% and 3.1% for the 2-replica Direct and 2-replica Indirect
mappings, respectively. While selecting a lower threshold
reduces the scalability improvements, choosing a thresholds
larger than our selected thresholds does not affect the re-
sults.

The improved scalability of the Web servers with the 2-
replica Indirect mapping compared to the baseline despite
the 50% additional inter-socket migration of data due to net-
work processing suggests that reducing QPI traffic triggered
by processes accessing shared data is most responsible for
observed scalability improvements. Since the TCP /IP work-
load has no dynamic requests and does not use the PHP-
FastCGI processes, this result suggests that there is signif-
icant sharing of data among Lighttpd processes. Further-

more, since Lighttpd processes are not memory-intensive [23],

this workload does not seem to be impacted by the inabil-
ity of a replica to benefit from the L3 cache of the socket
hosting the other replica.

5.4.2  Support Workload

Figure 11 compares the mean response times for the ex-
periments for the baseline, 2-replica Direct and 2-replica In-
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Figure 10: Web server response time vs. request
rate for 8 cores with baseline and 2 replica configu-
rations under TCP/IP intensive workload

direct mappings. The figure demonstrates that the server’s
scalability degrades significantly with the new configurations
under the Support workload. From the figure, the MAT for
2-replica Direct and 2-replica Indirect mappings are statis-
tically similar (considering the 95% confidence interval) and
around 9.9% lower than the baseline. The graph for the
99.9'" percentile of the response times (not shown) showed
a similar performance degradation for the multiple replica
cases. The MAT value with respect to the 99.9" percentile
of the response time was 9.9% and 14.8% lower than the
baseline for the 2-replica Direct and 2-replica Indirect map-
pings, respectively. This result contradicts previous stud-
ies [10] by indicating that the multiple replica configuration
does not always improve a server’s scalability.

We now investigate the effects of the multiple replica solu-
tion on the response time of the static and dynamic requests
in the Support workload. The CDF plot of response times
for the baseline, 2-replica Direct and 2-replica Indirect map-
pings for the tests with 80% CPU utilization is depicted in
Figure 12. The plot was generated from the output of the
tests with 7,000 concurrent users. Plots for other high load
tests have similar trends. From the graph, the first 95 per-
centiles of response times, mainly static requests, improved




significantly with 2-replica configurations compared to the
baseline. This is analogous to the results obtained from
the experiments under TCP/IP intensive workload. On the
other hand, the last 5 percentiles of the responses times,
mainly dynamic requests, are lower for tests with 2 replicas.
The results reveal that the multiple replica configuration de-
graded performance for the dynamic requests. Since these
requests consume most of the processing resources and their
response times are an order of magnitude higher than the
static requests, their performance decides the overall scala-
bility of the server under the Support workload.

The results of experiments with Support workload suggest
that dynamic requests do not benefit from reducing QPI
traffic. Due to the memory-intensive nature of such requests,
the inability of PHP-FastCGI processes of one replica to use
the cache hierarchy of the socket containing the other replica
seems to hurt overall performance. In the next section, we
provide more evidence for these claims, using hardware event
data collected during the experiments.

251
0 ool 2-replica Indirect
2 2-replica Direct
g ] 1-replica
é’ 15
2 10}
=}
Q
o
E o5
g
§ 0 - s s
= 0 8.000 16.000 24.000

Request rate (req/sec)

Figure 11: Web server response time vs. request
rate for 8 cores with baseline and 2 replica configu-
rations under Support workload
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line and 2 replica configurations under the Support
workload

5.4.3 Hardware Events Data

The results presented in Sections 5.4.1 and 5.4.2 revealed
that the multiple replica approach improves performance
for the TCP/IP intensive workload while degrades it for
the Support workload. In this section, we identify possi-
ble causes of this performance behaviour. As mentioned is
Section 3.3, we collected hardware event data to analyze the
root causes of the observed performance characteristics in
different stages of this study. To evaluate the effect of using
multiple replicas, the socket-inter-connect traffic, L3 cache
hit rates, and memory access statistics were collected.

Figure 13(a) shows the average QPI traffic at various load
levels for the TCP/IP intensive workload. From the figure,
a considerable decrease in QPI traffic is observable from the
baseline to 2-replica Direct mapping. Moreover, the QPI
traffic is higher than the baseline for 2-replica Indirect map-
ping (because for 50% of requests HTTP request and TCP
packet are processed on the same socket). These measure-
ments confirm that applying the multiple replica approach
can decrease inter-socket migration under a TCP/IP inten-
sive workload. From Figure 13(b), the average QPI traffic
decreased from the baseline to 2-replica Direct mapping for
the Support workload. Moreover the QPI traffic for the 2-
replica Indirect mapping is higher than the baseline. This
confirms that the multiple replica solutions were able to de-
crease the inter-socket migration for the Support workload
as well. However, the amount of reduction is much less than
the TCP/IP intensive workload. This is likely due to the
fewer TCP/IP activities (lower request rate) for the Support
workload which results in fewer inter-socket data migration
of network processing data.

We now present measurements to discuss the reasons for
the different effects of the multiple replica approach on the
response times of static and dynamic requests. From Fig-
ure 14, the L3 hit ratio decreases at higher loads for the
multiple replica configurations. Figure 15 shows that ac-
cesses to the main memory increase in the 2-replica Direct
and 2-replica Indirect mappings due to a reduction the num-
ber of L3 cache hits. This confirms our previous observation
that workloads with dynamic requests benefit from a PHP-
FastCGI process having access to the cache hierarchies of
both sockets in the single replica scenario. The results pre-
sented in this Section, confirmed that using multiple Web
site replicas does not always improve the servers scalability.
However, it is still effective for certain types of workloads.

6. CONCLUSIONS

In this paper, we characterized the behaviour of a Web
server deployed on a Multi-core architecture under two dif-
ferent workloads. The non-intrusive configuration changes
we explored resulted in significant scalability improvements.
Investing time in server tuning allowed us to utilize all of
the server’s cores up to 80% without causing significant
queuing delays for users; even at 90%, delays may be tol-
erable for peak usage. We believe that such increased uti-
lization would enable popular service providers to deploy
fewer servers, thereby reducing both their capital and op-
erating expenses [11]. For example, service providers such
as Google and Facebook operate hundreds of thousands of
servers; even a 10% reduction in the number of servers re-
quired could save these companies non-negligible amounts of
money, as well as reducing their environmental footprints.
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Reducing the number of servers required to support a work-
load could also enable other savings, such as reduced cooling
demand in data centers.

Our work studied in detail the relationship between work-
load characteristics, low level processor usage, and perfor-

mance. Specifically, detailed experimentation involving two
different workloads showed that the server exhibits different
scaling characteristics for static and dynamic requests. The
performance of static requests handled degrades as the core
count increases and is especially poor when both sockets
are fully utilized. In contrast, the performance of dynamic
requests increases from 1 socket to 2 sockets. We showed
that static requests suffer from inter-socket communication
triggered while using both sockets in the system. In con-
trast, dynamic requests handled by the significantly more
memory-intensive application tier benefit from the ability
to use the cache hierarchy of both sockets.

Due to these findings, our paper establishes that a previ-
ously proposed approach to enhance Web server scalability
by reducing inter-socket communications [10] [13] may not
be effective for workloads with dynamic requests. Our work
suggests that scalability enhancement strategies need to be
arrived at after careful consideration of workload charac-
teristics. In particular, a Web server configuration can be

adapted at runtime to fluctuations in the mix of static to
dynamic requests. As an example, consider a popular news

Web site. Most news Web sites include dynamic content.
However, in the event of an important alert or breaking
news that triggers a significant increase in the user traffic,
the Web site administrators may disable dynamic content to
reduce the load on the server. From our results, the system
can in this situation benefit from having multiple Web repli-
cas. The Web site can resume normal operation by disabling
those replicas when the user traffic returns to normal.

Our study focused on a widely used processor microar-
chitecture (Nehalem) and a well-known combination of Web
and application servers (Lighttpd, FastCGI-PHP). However,
we believe that the scalability behaviour can be different for
other systems with different hardware architectures or soft-
ware configurations. For instance, the performance degra-
dation of dynamic requests due to the use of multiple repli-
cas may not appear in a system with a very large last level
cache. On the other hand, a Web server with larger mem-
ory footprint, such as Apache, may even suffer performance
degradation for static requests. This motivates the need for
systematic experimentation to ascertain the best scalability
enhancement strategy for a given system. While this time
and budget investment may not be of large profit for a small
organization, the achieved gain for enterprise Web service



providers accumulates over their hundreds of thousands of
servers. As a results, they will be willing to study the scala-
bility behaviour of their workloads on various architectures
and adapt servers’ configurations accordingly.

We collected detailed hardware level statistics and used
this large amount of data to analyze the performance be-
haviours observed in various experiments. However, in some
cases, we were not able to correlate the hardware events with
the measured response times. For instance, the hardware
event statistics could not explain the reason for the high
99.9'" percentile response time in the experiments with 1
active cores and under the TCP/IP intensive workload. We
believe that due to the complexity of hardware architecture
of the Multi-core server, the hardware event data are not
sufficient for the scalability analysis of these architectures.

Our future work will focus on other Web server software
and hardware platforms and statistical analyses to iden-
tify the impact of hardware architectural differences such
as cache size and socket inter-connect bandwidth on the be-
havior of servers. This can be of interest for researchers
working on resource sharing problems, such as hosting mul-
tiple virtual machines per host. Moreover, we will work
on developing an approach to dynamically enable or disable
replicas based on the user traffic and the mix of requests
experienced by a Web server.
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