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Abstract

Power-laws are ubiquitous in the Internet and its applications. This tutorial presents a review of power-laws with

emphasis on observations from Internet measurements. First, we introduce power-laws and describe two commonly

observed power-law distributions, namely the Pareto and Zipf distributions. Two frequently occurring terms associated

with these distributions, specifically heavy tails and long tails, are also discussed. Second, the preferential attachment

model, which is a widely used model for generating power-law graph structures, is reviewed. Subsequently, we

present several examples of Internet workload properties that exhibit power-law behaviour. Finally, we explore several

implications of power-laws in computer networks. Using examples from past and present, we review how researchers

have studied and exploited power-law properties. We observe that despite the challenges posed, power-laws have

been effectively leveraged by researchers to improve the design and performance of Internet-based systems.

I. INTRODUCTION

Power-laws are observed in many naturally occurring phenomena (e.g., earthquakes, precipitation, topography), as

well as in many human-related behaviours (e.g., citations, urban population, wealth). Power-laws have been observed

in many aspects of information systems, including software systems and computer networks. Early examples include

memory referencing behaviour in virtual memory systems, database queries, and file usage patterns in file systems.

More recently, several characteristics of the Internet and the Web have also been claimed to exhibit power-law

characteristics such as the number of visitors to a Web site [1], the number of hyperlinks to a Web page [1], the

sizes of Web objects [2], the number of links to routers on the Internet [3], and the number of friends of users on

online social networks [4].

Power-law properties typically appear in high variance distributions wherein observations span many orders of

magnitude, particularly if there is a pronounced skew of the distribution. Compared to exponential distribution which

has been widely used in mathematically modeling telecommunication systems, power-law distributions decay more

slowly. Presence of power-laws indicate that arbitrarily large values can occur with a non-negligible probability,

and therefore, rather than ignoring these extreme values as “outliers” it is useful to study their statistical prevalence,

if sufficiently many such samples are present in a large dataset.

The apparent abundance of power-law distributions in computing (and other) literature has drawn significant

interest on understanding the origin and the implications of these power-law properties. For example, it has led

to improved Web caching policies, better traffic routing and load balancing techniques, smarter search schemes,

and sophisticated network topology generators. The ubiquity of power-laws has also evinced interest in developing

models that generate power-law distribution, often with the goal of gaining insights on the processes behind the

occurrence of power-laws. The presence of power-law and the accuracy of these models have been debated [5]. This

debate has been fuelled by the discovery of measurement artifacts and the difficulty of deploying proper sampling

techniques in large-scale systems. Due to the presence of many other highly skewed distributions, another active

discussion topic is how to best identify the presence of power-laws from measurement data [2].

In this article, we review power-law relationships reported in the Internet measurement literature. We define

power-law relationships in general, discuss approaches to identifying the presence of power-laws, and discuss

two commonly used power-laws, namely, the Pareto and Zipf distributions. We provide examples of Internet
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measurements that suggest power-law behaviour and discuss several examples from the literature highlighting how

researchers have leveraged power-laws in an effective way to improve the design and performance of Internet-based

systems and applications.

II. POWER-LAW RELATIONSHIPS

A power function is a scale-invariant function, f(x), of the form f(x) = αx−η, where α and η are positive

constants, and η is called the scaling exponent. Taking logarithms on both sides of the power function produces

log(f(x)) = −ηlog(x)+log(α). This expression exhibits a linear relationship with slope −η and y-intercept log(α).
When plotted on a log-log scale, the function appears as a straight line. This observance is often considered as the

distinctive feature of a power-law relationship.

In the computing literature a dataset is often said to follow a power-law if for large values the distribution follows

the power function. More formally, a distribution is considered power-law if [2]:

f(x) ∼ x−η (1)

where ∼ is used to indicate asymptotic proportionality; i.e.,
f(x)
x−η → c, for some constant c > 0, when x → ∞. In

other words, the power-law distribution exhibits the power function for large values of x, typically referred to as

the tail of the distribution.

A. Pareto Distribution

One commonly observed power-law distribution in Internet traffic measurements is the Pareto distribution. A

random variable X is said to follow a Pareto distribution if the complementary cumulative distribution function

(CCDF) indicating the probability of occurrence of an event being greater than x is inversely proportional to a

power of x; i.e., P [X > x] ∝ x−κ, where κ is called the shape parameter. A property of power functions is that

the integral of a power function is also a power function. Due to this property, it is easy to show that the Pareto

distribution (which itself has a power-law shape) and the power-law distribution is related by κ = η − 1.

Figure 1 illustrates the Pareto, exponential, and lognormal distributions. Figure 1(a) shows the probability

distribution function. Figure 1(b) shows the CCDF on doubly logarithmic scales. We used the following shape

parameters: 1.67 for Pareto, 0.96 for exponential, and 0.98 for lognormal. We note that the tail of the Pareto

distribution gradually tapers off when compared to the exponential distribution. Note that in Figure 1(b), the

lognormal distribution appears to exhibit linear relationship. In fact, there has been some debate of how to best

determine whether a dataset follows lognormal, power-law, or other related distributions [1], [2]. In many cases,

it is indeed difficult to ascertain whether or not a distribution is power-law, unless we observe a straight line

across several orders of magnitude on a log-log scale. These debates have also resulted in development of more

sophisticated methods for identification of power-laws [1].

B. Zipf Distribution

Another classical example of a power-law is the Zipf distribution, which was first used for modeling word

frequencies in written texts, but has since been used to model the skewed popularities for library books, movies

rentals, and Web objects. The Zipf distribution is a discrete distribution, defined in the rank-frequency domain by

Zipf’s law, which states that when items are ranked (R) in descending order of their popularities, then the frequency

(F) of the item is inversely proportional to the rank of the item:

F ∝ R
−θ (2)

The Zipf distribution exhibits a straight line with slope −θ on a log-log rank-frequency plot. The value of θ ≈ 1
for a pure Zipf distribution, but other values are possible while still exhibiting a straight-line behaviour. Degenerate

forms of the Zipf distribution, in which the behaviour is piecewise linear, or only linear for a portion of the plot,

are also often seen in Internet measurements. For example, the popularity of files in a peer-to-peer file sharing

system have been found to be Zipf-like with deviation from the expected straight line for the most popular files

arguably because of users’ “fetch-at-most-once” approach to file sharing [6].
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The Zipf distribution may be considered to be a discrete interpretation of the Pareto distribution. It can be

represented by transforming the axes of the Pareto distribution. Thus, the Zipf distribution can be written as a

Pareto distribution as follows: R ∝ F
−1

θ . To summarize, the Pareto, power-law, and Zipf parameters are related as:

κ = η − 1 =
1

θ
(3)

The Zipf distribution has a strong skew of references to a small but highly popular set of items. For example, it

is not uncommon for a small subset of the items (e.g., 10-20%) to account for most of the referencing activity (e.g.,

80-90%). The exact tradeoff depends on the shape parameter. In general, in many empirical studies similar skews

have been observed as shown for example in Figure 2 for hosts making requests to a Web server. This phenomenon

is often referred to as Pareto’s Law, the Pareto Principle, or the 80/20 rule in the literature.

C. Heavy-tailed Distributions

Typical empirical distributions from Internet measurements can be divided into two parts: the body (small to

medium-sized values that are responsible for much of the distribution) and the tail (large-sized values that are

responsible for the rest). A probability distribution is said to have a heavy tail if the tail is not exponentially

bounded. As illustrated in Figure 1(b), the Pareto distribution is a heavy-tailed probability distribution. A tail can

be Pareto distributed (and heavy-tailed) even if the body of a distribution does not follow the power-law distribution.

Such distributions are analyzed by looking at the tail of the distribution. Heavy tails are subject of interest because

they highlight the presence of large-sized values. Change in occurrence of these (less frequent) large-sized values

affects the distribution more than the change in the (abundant) small-sized values. This has an impact on modelling

of the empirical distribution.

D. The Long Tail

The long tail is a manifestation of power-law relationships. Long tail exemplifies the statistical property that

there are many more low frequency events compared to a Gaussian (Normal) distribution. For example, it has been

argued that keywords used for searches often have a long tail. This means that if we order the keywords, from most

popular to the least popular, based on how many times a keyword was used, we would find that there are only a

few keywords that are often used and that there exists a very long list of infrequently used keywords. Since the

list of keywords is very large, these infrequently occurring keywords could together account for a large fraction of

keyword searches seen by a search engine. This term came into popular parlance from an article written by Chris

Anderson in WIRED magazine (October, 2004) where he argued that online businesses such as Amazon, eBay,

and Netflix have successfully leveraged the long tail. Anderson argued that these online businesses carry a wide

variety of products, each of which may appeal to only a few customers. This is in contrast to standard retailers

that mostly offer popular items because they are restricted by the size of their store inventory. Figure 3 shows an

illustration of the long tail phenomena; the niche products sold would be in the green region or the long tail of the

sales popularity distribution. As more sales are derived from the tail region, the body of the distribution becomes

smaller. We note that the large number of items and their low individual popularity poses some technical challenges

as discussed later in this article.

E. Keeping Track of the Tails

The observant reader may have noticed that the long and heavy tails associated with the power-law distribution,

as described above, refer to two different ends of the distribution. This is often forgotten and simply discussed

as the tail. While both the Pareto and Zipf distributions are power-law, we note that the way these distributions

are plotted (and defined) often focuses on two different parts of the distributions. In particular, the tail of the

Pareto probability distribution refers to the rare (but probable) occurrences of events with high values, whereas the

tail of the Zipf distribution refers to the many occurrences of events with small values. This subtle but important

difference is illustrated in Figure 4. Here, we note that the body of one distribution makes up for the tail of the

other distribution, and vice versa. What further confuses this discussion is that a subclass of heavy-tailed probability

distributions, defined in the probability domain, sometimes is referred to as long-tailed. This is in sharp contrast to

the long tails referred to in the popular literature, which typically refers to the rank-frequency domain.
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III. POWER-LAW EXAMPLES

We review some power-law examples from Internet measurements. One widely reported example of power-laws

is Web objects access frequencies [7]. Another widely reported example is the Web-object size distribution, which

has been shown to follow the Pareto distribution [2]. There has also been some debate as to whether Web-object

sizes are power-law or follow other related distributions [2].

More recently, studies of YouTube video popularity (e.g., [8]) have found that video popularity both at an edge

network and as observed by the YouTube servers appears to follow Zipf-like distributions. There are, however,

noticeable differences at the tail of the distribution. Power-law characteristics have also been identified for other user-

generated video sharing services, with the number of short-term video views exhibiting power-law characteristics,

while long-term video views being better modelled using a power-law distribution with an exponential cutoff.

Other works have analyzed Internet TV workloads and found that the popularity of TV channels can be

approximated using a Zipf-like distribution [9]. This observation highlights user proclivity towards watching the

same channel. The channel popularity distribution followed the Pareto principle, with the top 10% of channels

accounted for nearly 80% of viewers. While the audience demographics changed, the Pareto principle was found

to be consistently true through different times of the day.

Various Internet-related power-law structures have also been identified. One such example is the number of

(online) friends per user in online social networks, which has been shown to follow power-law distributions [4].

Another interesting observation for these networks is that there typically is a highly connected (core) group of users.

This significantly reduces the number of friend-of-friends needed to connect to arbitrary people. Similar observations

have been made for real-world networks (e.g., the Web and offline social networks). For these networks, the highly

connected core allows for efficient dissemination of information and data.

IV. A GENERATIVE MODEL FOR POWER-LAWS

Despite being widely observed, the origin of power-laws is an open problem and an active discussion topic.

Generative models have been developed in order to understand the underlying processes that cause the observed

power-laws to occur. The preferential attachment (or “rich-get-richer”) model [10] is one particularly popular

generative model although other models have also been developed [2]. The preferential attachment model has

received much attention in the context of graph structures in which the vertices have a power-law degree distribution.

As an example, consider Web pages and the hyperlinks among them. The Web pages may be viewed as vertices

of a graph and the hyperlinks as directed edges between the vertices. A simple preferential attachment model is

as follows. Suppose that we begin with a single page with a hyperlink to itself. At each time step, a new page is

created, and this page is assumed to create a new hyperlink. The new link is formed to one of the existing pages,

chosen uniformly at random with probability p < 1 and chosen proportionally to the number of incoming links

with probability 1− p. Iterating this process for many vertex additions generates a power-law graph.

Figure 5 shows a comparative illustration a power-law and a random graph, each consisting of 150 vertices.

The power-law graph was created using the preferential attachment model, where each vertex creates one outbound

edge at a time. The random network is based on the Erdos-Renyi model where the probability that any two vertices

are connected have an equal probability p. The figure illustrates how the high-degree vertices in the power-law

graph can be critical for good connectivity and may make the network sensitive to attacks (e.g., targeted node

elimination). Similar to the power-law structures discussed here, and as observed in various social and physical

networks, preferential attachment and rich-get-richer behaviour have been considered as a potential explanation for

content popularity and Web server workloads, among many other things.

V. SOME IMPLICATIONS OF POWER-LAWS

A. Web Caching

Effective Web caching relies on the presence of a non-uniform popularity distribution of Web objects and their

sizes. Web accesses have been shown to follow Zipf’s law [7]. This property has proved important in the design

of Web cache architectures, since it allows designers to calculate approximate cache sizes to achieve desired hit

rates. The appropriate cache size along with the appropriate replacement policy could achieve high cache hit rates.

Zipf’s law can be useful for predicting the probability of access of an object. Researchers have found that

deploying caching hierarchies may be undesirable as they suffer from diminishing returns on hit rates. This is
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because the objects most worth caching are cached multiple times at levels closest to the users. Furthermore,

deeper caching hierarchies may increase document access latencies. Content delivery networks (CDNs) can take

advantage of more proactive delivery schemes.

B. Search Schemes

Power-law node connectivity distribution has helped improve search in the Web. As described in the previous

section, the Web can be considered a directed graph of Web pages and hyperlinks. Measurements of the structure

of the Web graph have identified the presence of key nodes. On any given topic, some Web pages may have a high

out-degree and others may have high in-degree [11]. Web pages that work as information aggregators typically have

high out-degree and are referred to as hubs, whereas Web pages with high in-degree are typically referred to as

authorities. The idea of hubs and authorities was used for ranking Web pages in one of the early search mechanisms

[11]. Similar approaches have also been exploited for searching in online social networks and peer-to-peer (P2P)

systems.

C. The Long Tail and Business Practices

Online businesses have taken advantage of the mildly popular items to increase sale volumes. Both Amazon and

Netflix have developed smarter recommendation schemes that expose users to items of personal interest based on

purchasing history of the user and other users with similar interest. This allows them to potentially recommend

niche content to its customer. This is in contrast to search engines that use popularity measures to rank Web pages,

and users formulate their decisions based on the top-ranked pages.

D. The Long Tail and System Design

The long tails observed in power-law can impact system efficiency. For example, a new object storage system

has been designed to optimize Facebook’s Photos application with the aim of serving the long tail (requests for less

popular photos) [12]. These optimizations are important, as requests from the long tail accounted for a significant

amount of their traffic and since the low individual request rates and high miss rates caused most of these requests

being served from the main photo storage server, rather than by Facebook’s CDN.

The long tail also poses challenges in the context of peer-to-peer file sharing systems such as BitTorrent. In

particular, the mildly popular files may not have sufficient popularity to have an active torrent. One approach to

improve the resulting file-availability problem is to group multiple files into bundles such that the bundles become

sustainable torrents [13]. There exist both static and dynamic bundling approaches, including adaptive bundling

policies that take the current file popularities into consideration.

E. Measurement Issues

Large-scale graphs such as the Internet topology or online social networks present many measurement challenges.

Some of these challenges have helped fuel the debate about the authenticity of power-law nature of Internet graphs.

For example, the scale of these networks often limits the fraction of the network that can be captured. It has

been suggested that the bias in the partial crawling of online social graphs, which results in only a subset of the

graph being captured, can underestimate the power-law scaling exponent [4]. To alleviate this problem, recently a

multi-dimensional random walk algorithm [14] was proposed, which captured dynamic real world networks better

and reduced scaling exponent estimation errors.

Other researchers have suggested that incomplete measurement data (using traceroute, for example) result in

missing large number of Internet topology connections causing it to exhibit power-law behaviour. The debate

regarding whether the power-law degree distribution is an integral property of the Internet topology or an artifact

of biased sampling has attracted significant attention [3], [5], [15]. Such deliberations point towards the challenges

in measurement and accentuates the need for appropriate sampling techniques.

The hazards of improper sampling have also been investigated and discussed in the contexts of access patterns

and other workloads which have been argued to possess power-law characteristics. Ideally, content popularity

measurements should be based on probability sampling methods with known biases, such that the underlying

distribution can be recreated based on the samples. Unfortunately, probability sampling is often difficult to apply
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to large-scale dynamic systems. The impact of sampling methods is embodied by the differences in the content

popularity distribution observed when applying different definitions of popularity, sampling methods, or the length

of the measurement interval.

VI. CONCLUSIONS

Power-laws are apparent in several aspects of Internet measurements. Power-laws pose some challenges, however,

they have been efficaciously leveraged by researchers in design and optimization of Internet-based systems. We

described a simple generative power-law model, although several other models exist in the literature that can lead to

power-law behaviour. We touched upon the ongoing debate regarding the authenticity of power-law nature of some

Internet attributes. Nevertheless, these deliberations point to the significance of power-laws in computer networks,

which cannot be ignored.
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Fig. 4. Tracking the tails: The illustration shows the distribution of visitors arriving at YouTube from referring Web sites. Figure 4(a)

shows that the number of visitors to YouTube is directly proportional to the ordered rank of the referring Web site. Figure 4 (b) shows that

there are a few sites that provide a bulk of the referrals to YouTube. The data was collected from Compete.com, which omitted values

for referrals that resulted in less than 3,000 visitors arriving at YouTube.



FIGURES 13

(a) Power-law graph

(b) Random graph

Fig. 5. Comparison of power-law and random graphs: Each graph consists of 150 vertices. A vertex is represented by a red dot and the edge

is shown using a solid grey line. The graphs were simulated using the NetworkX package in Python, and visualized using Graphviz.


