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ABSTRACT

Client-side encryption (CSE) is important to ensure that only the
intended users have access to information stored in public cloud
services. However, CSE complicates file synchronization methods
such as deduplication and delta encoding, important to reduce the
large network bandwidth overheads associated with cloud storage
services. To investigate the overhead penalty associated with CSE,
in this paper, we present a comprehensive overhead analysis that
includes empirical experiments using four popular CSE services
(CSEs) and four popular non-CSEs. Our results show that existing
CSEs are able to implement CSE together with bandwidth saving
features such as compression and deduplication with low additional
overhead compared to the non-CSEs. The most noticeable differ-
ences between CSEs and non-CSEs are instead related to whether
they implement delta encoding and how effectively such solutions
are implemented. In particular, fewer CSEs than non-CSEs imple-
ment delta encoding, and the bandwidth saving differences between
the applications that implement delta encoding can be substantial.
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1 INTRODUCTION

Since being introduced, there has been a rapid growth in the use of
cloud storage applications. Today, popular services such as Dropbox,
Google Drive, Microsoft OneDrive, and iCloud each have hundreds
of millions of active users each month. Cloud storage services have
also changed how people store and accesses important data. Today,
many users use these services to transparently back up file data,
with many services allowing users to easily access the files using
all their devices, regardless of geographical location.
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However, while these services typically provide flexible low-cost
synchronization and high accessibility of the data, most services
require users to fully trust their cloud providers with the data and
do not provide any guarantees regarding the confidentiality and
integrity of the data stored. In fact, many services are fairly blunt
regarding the lack of confidentiality they provide. For example, by
accepting the terms in Dropbox’s end-user agreements, the user
agrees to give them, including their affiliates and trusted third par-
ties, the right to access, store and scan the data [11]. Similarly,
agreeing to Google’s terms of service [16] gives Google ła world-
wide license to use, host, store, reproduce, modify, [...], publicly
display and distribute such content.ž where łsuch contentž refers to
the user’s stored content. Clearly, granting such rights might not
be acceptable for some users and content. Moreover, with software
bugs such as the ones that allowed hackers to log in to Dropbox
accounts without the correct password [1] or implementation of
government surveillance backdoors such as the NSA Prism pro-
gram [19], the need for stronger data and privacy protection is
expected to increase.

A solution to provide confidential cloud storage is to use client-
side encryption (CSE). With CSE, the user’s data is encrypted before
being transferred to the cloud provider. This makes sure that the
content is transferred and stored in an encrypted format and helps
ensure that only the clients with the appropriate decryption keys
have access to the non-encrypted information. However, CSE com-
plicates file synchronization techniques, such as deduplication and
delta encoding, commonly used to reduce the traffic overheads
associated with personal cloud storage systems.

To investigate the potential overhead penalty associated with
CSE, this paper presents empirical experiments and analysis of CSE-
related overheads. Experiments are used to compare and contrast
the security and bandwidth saving features implemented by both
CSE services (CSEs) and non-CSEs, to compare non-traffic related
client-side overheads (e.g., CPU, disk, memory), and to demonstrate
some weaknesses in existing delta encoding solutions. To the best
of our knowledge, this is the first research paper that focuses on
the difference between CSE and non-CSE supporting services. We
next break down our contributions into three parts.

First, we present controlled experiments comparing what secu-
rity and bandwidth saving features that four popular CSEs (Mega,
Sync.com, SpiderOak, Tresorit) and four popular non-CSEs (Drop-
box, iCloud, Google Drive, Microsoft OneDrive) have implemented.
Interestingly, beyond differences in the underlying server infras-
tructure and whether services provide CSE, there is no clear dif-
ferences in the features implemented. Instead, we observe large
variations within both categories. In fact, only Dropbox (non-CSE)
and SpiderOak (CSE) implement all three bandwidth saving fea-
tures considered here (i.e., compression, deduplication, and delta
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encoding). Furthermore, despite effective delta encoding perhaps
being most important for bandwidth savings, only three services
(the two above and iCloud) implement some form of delta encoding.

Second, to glean some insights whether there are other resource
overheads associated with CSEs, we present performance measure-
ments, focusing primarily on CPU, disk, and memory usage. Again,
we observed no obvious penalty associated with the CSEs. Instead,
overheads appear to depend more on what other features are im-
plemented. For example, the services implementing the most traffic
reducing features in each category (Dropbox and SpiderOak) sees
the highest non-traffic related client-side resource overheads.

Finally, we use targeted experiments to illustrate the delta en-
coding problem associated with CSEs, placing particular focus on
synchronization between multiple devices. The experiments show
that much of the bandwidth and storage overheads associated with
CSEs are due to CSE cloud providers not being able to decode delta
encoding messages, and highlights that there are significant differ-
ences in the effectiveness of how delta encoding is implemented
and that there is much room for improvements.

Outline: Section 2 describes the services analyzed. Section 3
presents a head-to-head comparison of the different state-of-the-art
CSEs and non-CSEs, including an analysis of their security features,
bandwidth saving features, and client-side performance. Section 4
presents targeted empirical experiments to look closer at the delta-
encoding problem associated with CSEs. Finally, related work and
conclusions are presented in Sections 5 and 6, respectively.

2 SERVICES EVALUATED

To allow a broad comparison, we evaluated four CSEs (Mega,
Sync.com, SpiderOak, Tresorit) against four popular non-CSEs
(Dropbox, iCloud, Google Drive, Microsoft OneDrive).1 The
four non-CSEs provide a nice baseline as they are among the most
popular cloud services, each with hundreds of millions of users,
and often are considered in the related literature (Section 5). All
four non-CSEs have globally distributed servers, providing good
access from our EU-based location. In contrast, for two of the CSEs
(Sync.com, SpiderOak), the closest servers were located in North
America (Toronto, Canada and mid-western USA, respectively).
The four CSEs were selected based on recommendations in online
reviews (e.g., [4]), claimed CSE properties, and high prevalence in
past measurements on a university campus network (with 32,000
students) [20].2 In general, however, the popularity as measured
by the 2018 Alexa ranks of the CSEs (201; 42,412; 123,448; 140,711;
respectively) are lower than the corresponding ranks of the non-
CSEs (109; 370; 83,106; 45,006). We next describe the four CSEs and
the client-side encryption they provide.

Mega is the only of the services that makes their source code
public [39] and the only that uses HTTP rather than HTTPS. While

1While some non-CSEs (e.g., Dropbox) encrypt the data both during transit (using
TLS) and when in storage, with these services, the stored file data is encrypted on their
servers (rather than at the clients) and these services therefore have access to both the
original (unencrypted) file data and the keys used for the encryption.
2 For example, during the week Oct. 11-17, 2015, we observed tens of thousands of
HTTPS connection to each of the three CSEs with a web interface (Mega, Sync.com,
Tresorit). These services were all among the 2,000 domains with the most connections
during that week. Since SpiderOak did not have a web interface to its cloud service,
the dataset did not capture any traffic to/from its cloud service. Yet, we did observe 17
HTTPS connections to its website, suggesting (at least) local interest in the service.

HTTPS is an option, Mega argues (in their settings) that since the
payload is encrypted, unauthorized access to the user’s data is pre-
vented anyway. For encryption, Mega uses symmetric cryptography
based on AES-128 [38].

Sync.com implements a zero-knowledge policy [47] using asym-
metric encryption. For each user, a 2048 bit RSA private encryption
key is used to encrypt the user’s AES encryption keys, used to en-
crypt file data. The private key is itself encrypted with 256 bit AES
Galois counter mode, locked using the user’s password, stretched
with Password-Based Key Derivation Function 2 (PBKDF2).

SpiderOak uses AES-256-CFB to encrypt user data [45]. Further-
more, every file and folder is encrypted with a unique key, and
through the use of different keys for different versions of a single
file, SpiderOak implements support for versioned file retrieval. The
collection of encryption keys are secured by the user’s password,
hashed and salted using PBKDF2. During file backup, SpiderOak
makes an encrypted file copy that it temporarily writes to the local
hard drive [48].

Finally, Tresorit uses AES-256 in cipher feedbackmode to encrypt
user data. Other popular CSEs include pCloud and Sugarsync. There
also exist hybrid CSE-based solutions, including cloud encryption
gateways (e.g., BoxCryptor) that encrypts all data before placing
the encrypted data in the cloud storage folder (e.g., Dropbox). Al-
though BoxCryptor integrates nicely with Dropbox, BoxCryptor
and similar services renders some of the cloud providers perfor-
mance features (e.g., compression and delta encoding) useless. In
this paper, we focus on pure CSEs.

3 CSE vs NON-CSE: FEATURES AND
PERFORMANCE

This section provides a high-level comparison of the features im-
plemented and the performance observed.

3.1 Methodology and test environment

Our experiments were performed using a Macbook Air, running
macOS High Sierra version 10.13.3 on a 1.3 GHz Intel Core i5 CPU
with two physical cores, 8 GB RAM, and 128 GB SSD. The laptop
was connected to a high-speed university network through a 10
Gb/s Thunderbolt to Ethernet adapter.

Client configurations:To the greatest extent possible, all clients
were run with default settings. This included always using the latest
client version, and is consistent with what a typical user would
have seen during spring 2018, when we conducted our experiments,
as only Mega and Sync.com at that time allowed clients to dis-
able automatic updates. The main exceptions that required some
(re)configurations were some basic configurations needed for the
automated test cases and the disabling of SpiderOak’s LAN-Sync
feature (which otherwise interfered with the laptop’s firewall).

Baseline methodology: Most experiments were conducted by
adding files to the cloud services’ sync folders and performing tar-
geted system and network measurements during the sync process.
The methodology was based on that by Bocchi et al. [3]. We first
extended and modified the benchmarking scripts provided by the
authors to suit our test environment. For example, since we run the
scripts on the same machine as the clients, the files could simply be



copied using the function shutil.copy2(), rather than involving
an FTP server to move files between folders on different VMs.

Testing one application at a time, the network trafficwas recorded
throughout the entire sync process using the Python modules
netifaces and pcapy, among others. The packet capture was exe-
cuted as a separate thread to allow concurrency between the packet
capture process and the main test procedure. To measure CPU,
memory and network utilization, the Python module psutil was
used. These measurements were executed in a dedicated thread and
provided per-process measurements at a 40 ms granularity. Some
services ran multiple processes; e.g., Dropbox ran three processes
and Tresorit two. In these cases, our scripts aggregated the final
results over the corresponding processes. To minimize the back-
ground traffic and number of competing processes, we closed all
programs except the sync client under test.

Finally, on our macBook, iCloud is more tightly integrated with
the OS than the other applications. For this reason, rather than
starting/closing the application between each test, for iCloud, we
kept the application running throughout a series of tests, while
monitoring the three processes that we determined were associated
with the iCloud application.

3.2 Basic security properties

Our classification of cloud providers is based on their official claims.
However, since only Mega’s source code is public, it is difficult to
fully validate if and how CSE is actually implemented. Validation is
further complicated by all services (except Mega) using Transport
Layer Security (TLS) to encrypt the end-to-end communication.

MITM-based CSE sanity checks: To check whether the self-
claimed CSEs indeed provide further data protection, we used a
man-in-the-middle (MITM) methodology. In particular, we setup
the client’s traffic to go through a trusted proxy (mitmproxy [41]),
running on a Ubuntu 17.10 machine, and then added the mitmproxy
certificate as a trusted root certificate authority (CA) to the macOS
keychain. While all applications had native support for HTTP proxy
configuration, all applications except Mega prevented the TLS con-
nection negotiation from succeeding when a foreign TLS certificate
is used. (Mega did display two warning messages regarding the
security risks of trusting the mitmproxy certificate before we could
connect via the proxy.) Dropbox, Google Drive, and Tresorit all
sent a TLS alert message with code 48 (Unknown CA). OneDrive
sent an alert message with code 86 (Inappropriate Fallback). Finally,
SpiderOak and Sync.com did not send any TLS alert messages, but
(similar to the others) did not allow the TLS negotiation to be com-
pleted. The above MITM prevention behavior appears to be due to
the use of certificate pinning and/or similar techniques, as claimed
to be implemented by Dropbox and SpiderOak (e.g., [10, 45]).

Clearly, the use of certificate pinning prevents us from easily
sanity check services’ CSE claims. However, in addition to their
native applications, all services except SpiderOak also provide a
web interface. For these services the trusted proxy approach was
therefore successful. Here, we set up a Firefox browser to trust
the mitmproxy and extracted all HTTP messages delivered over
TLS (using HTTPS). For our experiments, we then upload text files
through the web interface of each service, identify the correspond-
ing POST requests, and inspect the payload.

While encryption still complicates validation, we did not find any
signs that the CSEs did not properly encrypt the data. In contrast,
within the TLS connection, Dropbox, iCloud and OneDrive sent
the data in plain text, and Google Drive encoded it in base64. Based
on these tests we were sufficiently convinced that the CSEs indeed
provide some further encryption (or obfuscation) to help protect
client data. We did not try to validate the use of claimed encryption
algorithms and/or where different keys are stored. While bugs or
implementation artifacts that give cloud providers access to the
decryption keys would render these services useless for users not
okay giving the provider data access, we leave such investigation
for future work. Instead, in the remainder, we compare and contrast
how other features differ between CSEs and non-CSEs.

Connection security: Not all entities along the internet path
between a client and the cloud storage may be trusted. Combined
with increasing use of HTTPS, it is therefore perhaps not surpris-
ing that all clients considered here support TLS. One standout,
however, is Mega, who does not have TLS enabled by default. Fur-
thermore, with exception of Mega and SpiderOak (both run TLS
v1.0), all clients run TLS v1.2, preventing known exploits against
TLS v1.0 [12, 42].

While the focus in this paper is on the native applications, a
service is only as strong as its weakest interface. When briefly
summarizing the keys and certificates used, we therefore consider
both applications and web interfaces. First, all services use state-of-
the-art signature algorithms (SHA256 with RSA or SHA256+ECC)
and typically use RSA 2048 (or corresponding EC) together with
AES 128/256 for transfer. Second, while three out of four non-CSEs
(Dropbox, iCloud, Google Drive) delivered signed certificate times-
tamps with their certificates, none of the CSEs implemented such
certificate transparency functionality [28, 43] yet (Nov. 2017). Third,
Google Drive and SpiderOak use self-signed certificates for the ap-
plication, while Google Drive and iCloud use it for the web interface.
While self-signed certificates come with risks [51], Google’s and
Apple’s use is perhaps not surprising since they operate their own
CAs (chaining back to GlobalSign and GeoTrust, respectively). Spi-
derOak’s use of such certificates raises some concerns. (SpiderOak
does not have a web interface but uses RapidSSL as CA, signed
by DigiCert, for its website. The iCloud application uses Amazon
certificates issued by Digicert.) Among the other services, only
Sync.com (Comodo+RapidSSL) and Tresorit (GoDaddy+Microsoft)
use a mix of CAs. Mega uses Comodo (chaining back to AddTrust).
The remaining services use the same chain for both application and
website, always chaining back to Digicert (Dropbox directly and
OneDrive via Microsoft and Baltimore CyberTrust Root).

3.3 Bandwidth saving features

We next present test results determining whether each application
implements three bandwidth saving features: compression, dedu-
plication, and delta encoding. Table 1 summarizes these results.

Compression: Half of the non-CSEs (Dropbox, Google Drive)
and half of the CSEs (SpiderOak, Tresorit) used compression. For
these tests, plain text files were added to the sync folders, while
measuring the bytes uploaded to the cloud. If the number of up-
loaded bytes was less than the file size, we attributed the difference



Table 1: Summary of bandwidth saving features

Feature/capability

Services Compression Deduplication Delta Sync

n
o
n
-C
SE

Dropbox Yes Yes Yes

iCloud No Yes Yes

Google Drive Conditional No No

OneDrive No Sometimes No

C
SE

Mega No Yes No

Sync.com No Yes No

SpiderOak Yes Yes Yes

Tresorit Yes No No
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Figure 1: Bytes transferred during example uploads.

to compression. The use of plain text allows efficient compression
and provides easy validation whether compression was used.

Figure 1 shows example results where we vary the file size of the
original files from 10 MB to 28 MB. For each data point, we report
average values over 15 tests. Three distinct behaviors can be identi-
fied. First, four services (iCloud, OneDrive, Mega, Sync.com) did not
use compression at all. Second, three services (Dropbox, SpiderOak,
Tresorit) applied compression with a compression ratio close to two,
regardless of file size. Finally, Google Drive used compression (with
similar compression ratio as the other services using compression)
for file sizes up to 224 bytes (or 16 MB), but no compression for
file sizes beyond this threshold. The exact threshold was identified
using binary search. In summary, we observed no significant dif-
ferences in the usage or effectiveness of the compression used by
CSEs and non-CSEs.

Deduplication: Despite seemingly easier to implement in non-
CSEs, deduplication is implemented in equally many CSEs (Mega,
SpiderOak, Sync.com) and non-CSEs (Dropbox, iCloud, OneDrive).
To test for use of deduplication, we performed four scenario-based
tests. In each scenario, a 20 MB file made up of random bytes,
referred to as the łoriginalž file, was first placed in the sync folder
of the application under test. Then, a second file with identical
content was uploaded. In the first three scenarios, the second file
was identical with the exception that it (i) had a different name, (ii)
was uploaded to a different folder, or (iii) both had a different name
andwas uploaded to a different folder. Finally, in the fourth scenario,
the original file was instead deleted and then re-uploaded. For all
tests, if the second upload required as much data to be transferred
as the original upload, this indicated that deduplication was not
used. However, if the second upload resulted in much fewer bytes
being transferred, but was still accessible in the desired format,
deduplication was used.

Table 2: Deduplication test results.

Deduplication Scenarios

Service Name Folder Name+Folder Delete+upload

Dropbox Yes Yes Yes Yes

Google Drive No No No No

OneDrive No No No Sometimes

iCloud Yes Yes Yes Yes

Mega Yes Yes Yes Yes

SpiderOak Yes Yes Yes Yes

Sync.com Yes Yes Yes Yes

Treosorit No No No No

The deduplication results were consistent for all services except
OneDrive. For this reason, we ran our tests 15 times per service
for all services except OneDrive, for which we ran 40 tests per
scenario. Table 2 summarizes our deduplication results.We note that
Dropbox, iCloud, Mega, SpiderOak, and Sync.com all performed
client-side deduplication. None of these services upload an identical
file that is already stored in the cloud, albeit in another folder
and/or with another name. In contrast, Google Drive, OneDrive and
Tresorit all re-upload identical files. However, OneDrive stands out
for the fourth scenario (łdeletion and re-uploadž). For this scenario,
OneDrive did not re-upload the file in 12 out of 40 (30%) of the test
runs, but instead must have łundeletedž the file in the cloud storage.
This was, however, the only inconsistency found during the tests.
For all other clients and scenarios, deduplication either occurred
for all tests or not at all.

Basic delta encoding: One CSE service (SpiderOak) and two
non-CSEs (Dropbox, iCloud) implement delta encoding. To deter-
mine whether or not each service used (at least) some form of delta
encoding, all clients underwent three basic tests. In all tests, we
started with a 5 MB file, that we incrementally increased the size
of in steps of 5 MB until the size reached 25 MB. In each step, we
inserted 5 MB random bytes (i) at the end (append), (ii) at the begin-
ning (prepend), or (iii) into a random position (random insert) of the
file. For each test, we again measured the number of uploaded bytes.
For these scenarios, in the ideal case, the number of uploaded bytes
(in each step) by a client using delta encoding would be similar to
the size of the change; i.e., 5 MB. On the other hand, for clients that
did not take advantage of delta encoding the number of uploaded
bytes is expected to be close to the file size after each modification;
i.e., 5, 10, 15, 20, 25 MB. While the results of these tests show that
CSEs (exemplified by SpiderOak) can implement delta encoding,
they say nothing about the relative effectiveness of the delta en-
codings implemented by the three services. Section 4 presents a
more detailed analysis of the clients that perform delta encoding
and demonstrates the additional delta encoding overheads inherent
to CSEs.

3.4 Performance evaluation

To shed some initial light on whether or not there is a significant
performance penalty of CSE, we next present basic client-side per-
formance results.

CPU utilization: The CPU utilization differ significantly be-
tween the eight services, but also varies a lot over time. This is
illustrated in Figure 2, where we show the CPU utilization (blue
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Figure 2: CPU utilizations during example runs. Top-row are non-CSEs and bottom row are CSEs. Also, note the different

time-scales for Mega (shorter) and SpiderOak (longer) than the rest.
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Figure 3: CPU utilizations for different services.

curves) and uploaded bytes (red curves) as a function of time, dur-
ing example uploads for each service. For comparison, we therefore
identify and report statistics for four phases: idle, pre-processing,
transfer, and cooldown. A client is classified as idle when it is up-
to-date with the cloud storage and not yet actively syncing. The
pre-processing phase begins when a file is copied into the sync
folder and continues until the upload starts. The transfer phase
lasts from this time until all data is fully uploaded, after which we
include a 5 second cooldown phase, before considering the client
back in idle.

For each application, we uploaded a 30 MB file containing ran-
dom data, with each experiment repeated 25 times, and report 95%
confidence intervals. Figures 3(a) and 3(b) show the average uti-
lizations observed during the idle/cooldown phases and the more
CPU intensive phases (pre-processing, transfer), respectively, and
Figure 3(c) shows the aggregate non-idle CPU volumes during these
CPU intensive phases. Here, the non-idle CPU volume is defined as
the time-integral over the additional CPU utilizations during the
respective phases, and can easily be calculated by multiplying the
duration of the phase with the difference between the average CPU
utilization during the phase minus when idle. Ignoring the (small)
idle values, 50% utilization over 2 seconds results in the same CPU
volume as 100% over 1 second.

In general, we do not observe any significant penalty to CSE.
Instead, the CPU usage is highest for the feature-rich services (i.e.,
Dropbox, SpiderOak) that support all three of the tested capabilities

(Table 1). Dropbox has the highest CPU volume across all services,
and with the exception of SpiderOak, the CSEs typically have CPU
volumes in-between Dropbox and the less feature-rich non-CSEs
(Google Drive, OneDrive), but more similar to iCloud (who imple-
ments a subset of the bandwidth saving features in Table 1).

A few additional things stand out. First, comparing Dropbox and
SpiderOak (only applications implementing all three bandwidth sav-
ing features), we note that Dropbox had a significantly higher CPU
utilization during the pre-processing phase, but that SpiderOak had
by far the highest CPU volume. The reason for this is that Dropbox
was much faster at detecting the file change, and could start the pro-
cessing and file transfer almost immediately. Second, the average
CPU utilization during transfer for Dropbox and Tresorit were sig-
nificantly higher than for the other clients. The values above 100%
indicates that the clients are multithreaded and that at least two
threads of the application were heavily utilizing separate CPU cores
simultaneously. Finally, SpiderOak was the only client with a lower
CPU volume during transfer compared to during pre-processing.
This is likely due to SpiderOak creating a temporary copy of the file,
compress the file, check for duplication, and encrypt the file before
uploading can begin. In sharp contrast, the transfer utilization for
Mega was significantly higher than its pre-processing utilization.
A closer look at the transfer phase suggests that Mega alternate
between applying encryption and uploading data to the cloud.

CPU volume under matching network conditions: All ser-
vices except SpiderOak and Sync.com had data centers in Europe
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Table 3: HTTPS vs HTTP comparison of CPU utilization for

Mega. (Idle CPU utilization with/without HTTPS is 0.10 ±

0.02%.)
CPU utilization (%) CPU volume

Pre-proc. Transfer Pre-proc. Transfer

HTTPS 2.48±0.08 63.41±1.72 5.71±0.20 107.98±1.21

HTTP 1.72±0.06 42.91±2.55 3.61±0.12 58.70±3.96

(where the experiments were performed). To reduce the impact
of location differences, we used the network link simulator tool
Network Link Conditioner [37] to set bandwidth and latencies
of the network interface so that the bandwidth bottleneck (10 Mbps)
was on the client interface and the RTTs matched the RTT (145ms)
of the service with the largest RTTs (SpiderOak).

Figure 4 shows the CPU volume results for these experiments.
Compared with the original results (Figure 3(c)), the CPU volumes
during the transfer phase have increased for all services. This is due
to increased RTTs and introduced bandwidth limitations. Still, the
relative performance between the different clients have not changed.
Dropbox still has the highest CPU volume during transfer and
Google Drive, OneDrive and Mega have the lowest. One exception
to this was SpiderOak which surpassed Sync.com (who also has its
servers in North America) in CPU volume for the transfer phase.
Although SpiderOak was used as the original baseline, we found
that the introduced client-side bottleneck hurt SpiderOak’s transfer
times more than Sync.com.

HTTP vs HTTPS comparison: To set the above CPU com-
parisons of CSE vs non-CSE services in perspective, we looked
closer at the penalty of using HTTPS (encrypted) rather than HTTP
(non-encrypted). We therefore turned to Mega, which was the only
service allowing us to switch between using HTTPS (optional)
and HTTP (default). Table 3 shows comparison results based on
50 experiments. We note a statistically significant penalty of us-
ing HTTPS (as indicated by non-overlapping confidence intervals);
however, the differences are small compared to the differences ob-
served across cloud services (Figures 3(b) and 3(c)). This shows that
the CPU overheads associated with the bandwidth saving features
(that Mega do not implement) may be substantially larger than the
CPU overheads associated with using HTTPS. Unless much more
complex algorithms are used for CSE, this also helps explain why
no noticeable CPU penalty is observed with the CSEs.

Disk usage:We have only observed per-file disk usage for Spi-
derOak. Figure 5 shows the average number of bytes written to
disk (with 95% confidence intervals) by any active process during
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Figure 5: Bytes written to disk during a 300 MB upload.

the syncing of a 300 MB file, as calculated over 40 experiments per
application. For these measurements, we used the psutil module,
and since macOS did not have support for per-process I/O counters,
the measurements were performed on OS level (rather than per pro-
cess). In contrast to the other services (that do not appear to write
to disk, and if they do only write a small amount), the writes during
a SpiderOak transfer exceed the file size (300 MB) plus an excess
amount typically exceeding the writes of the other applications
(capturing SpiderOak’s longer transfer times).

Memory usage: Although significant individual differences, we
have not observed any systematic differences in the memory usage
between CSEs and non-CSEs. Instead, differences in the memory
profiles (e.g., see example traces in Figure 6) seem to appear mostly
due to implementation differences and the memory footprints are
relatively stable (e.g., comparing footprints during idle and active
states).

Of the services we tested, Dropbox (2.89%) and Google Drive
(2.72%) had the largest memory usage, and none of the services
appears to keep a full copy of the files in memory. For example,
when uploading five large files, each with 300 MB random data (to
minimize the risk of deduplication), with each upload separated by
roughly 50 seconds, the maximum memory usage of any service
had a memory usage of roughly 240MB (or 3% on our 8GB system).
Dropbox (2.89%) and SpiderOak (1.99%) again stand out, as they
again are among the three applications with the largest memory
footprints. While Google Drive (2.72%) does not implement the
bandwidth saving features we tested for, we expect that the larger
memory footprint is due to other services that it offers. Furthermore,
compared to their respective idle levels, the largest increase in
memory utilization was small. For example, taking the average over
12 runs per service, only four services had an increase larger than
0.25% (or 20 MB). These were Dropbox (0.68%), Tresorit (0.60%),
Sync.com (0.58%), and Google Drive (0.55%). Finally, while most
services see a slight drift in memory footprint over time, this drift
was only substantial for Sync.com, for which the average footprint
(per upload) increased from 0.98% to 1.27%, and Google Drive (2.44%
to 2.72%). For the other services the average differences between
the uploads remained within 0.04%.

4 DELTA ENCODING ANALYSIS

While the CSEs that we have studied have been equally successful
as the top-four non-CSEs to achieve bandwidth savings using com-
pression and deduplication, it is much harder for CSEs to implement
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(c) OneDrive
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(e) Mega
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(f) SpiderOak
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(h) Tresorit

Figure 6: Memory usage during example runs: Non-CSEs (top) and CSEs (bottom). Note the different time scales.

effective delta encoding. This is perhaps why only SpiderOak of the
tested CSEs implement delta encoding, and why, as we will show
here, both Dropbox and iCloud (the two non-CSEs performing delta
encoding) significantly outperform SpiderOak.

The delta encoding problem with CSEs: Delta encoding is
made difficult for CSEs mainly by the cloud provider not having
access to the non-encrypted data and delta encoding being ex-
tremely inefficient on encrypted file versions. Therefore, to allow
the provider to seamlessly share the file with other devices of the
client there are two main alternatives: (i) the client always up-
load the full file whenever they make a change, ensuring that the
provider always has the latest copy to deliver, or (ii) the client sub-
mit encrypted versions of delta encodings that the provider can
store and deliver together with the original encrypted file.3 The
first option comes at significant upload overhead, since even a very
small change result in the full file (or block) being uploaded. In con-
trast, the second option has low upload overhead, but much larger
storage and download bandwidth overhead, since the provider must
store and deliver the full change-log sequence needed by the down-
loading device to recreate the most recent file copy.

Referring back to Table 1, three out of the four CSEs (Mega,
Sync.com, Tresorit) do not use delta encoding, but instead replace
the full file when changes are made. We again note that this ap-
proach can be extremely inefficient when changes are small. In
fact, it is possible to show that the solution can be arbitrarily bad.
For example, consider a small file change to a file of size N that
requires a delta encoding of size ∆. In this case, a CSE replacing
the full file would require an upload bandwidth proportional to N ,
whereas one that uses delta encoding would only need to upload ∆,

resulting in a relative penalty of cN−∆
∆

. This penalty is unbounded
when N→∞ and also becomes very large when ∆ is small.

SpiderOak’s bandwidth and server-side storage overhead:

Among the CSEs, only SpiderOak performs delta encoding. How-
ever, their implementation is proprietary, making it non-trivial to

3While focus here is on files, it is possible to apply both the above approaches also on
a per-block basis. This case typically increases complexity significantly, may reduce
confidentiality, and requires the block structure to be passed along with block changes.

analyze all details of their solution. Here, we use targeted experi-
ments to provide initial insights into their delta encoding and the
associate overheads.

First, and most importantly, it is easy to see that SpiderOak
indeed stores a sequence of delta encoding on the server side, and
that a second device downloads both the original file and the change-
log of delta encodings. For example, consider a basic experiment in
which we start with a file of size 10MB, consisting of random bytes,
and thenmodify bytes 0-0.5MB, bytes 1-1.5MB, and so forth over 10
file changes. In this scenario, the original upload was of size 10.049
MB, and the 10 delta encoding updates were (measured in MB):
0.531, 1.058, 1.058, 1.058, 1.058, 0.531, 0.794, 0.794, 0.794, 0.794.4 In
total, this resulted in 18.521 MB uploaded data; 3 MB more than the
theoretic bound of 15 MB (if uploading only the size of the original
file plus the changed data). When syncing with a second client, we
could also confirm that the SpiderOak client indeed downloaded the
full (18.5 MB) change log, and then recreated the file as seen on the
first client. Again, this download size is expected since a provider
should not be able to take advantage of the delta encodings to save
server storage or download bandwidth for the second device.

The corresponding tests with Dropbox (non-CSE) looked quite
different. While the original upload was somewhat larger (10.578
MB), the following 10 updates were smaller (measured inMB): 0.662,
0.540, 0.535, 0.535, 0.537, 0.535, 0.535, 0.540, 0.537, 0.535. In total, this
resulted in 16.070 MB uploaded data. This shows that Dropbox uses
more efficient delta encoding, only requiring 1 MB extra overhead.
Furthermore, when syncing with a second device, we could also
confirm that the second device only had to download 10.353 MB,
confirming that Dropbox efficiently applies delta encodings on the
servers. The above examples clearly demonstrate some of the added
delta encoding overheads required for CSEs.

Random changes comparison with Dropbox+iCloud: Sec-
ond, SpiderOak’s block-based implementation can perform very
poorly. To illustrate this we use a simple head-to-head comparison
with Dropbox and iCloud in which we randomly picked n bytes to

4A more detailed analysis, not included in this paper due to lack of space, reveals that
SpiderOak uses block-based delta encoding, with a block size of 256 kB (plus a small
overhead). Here, we simply note that the updates listed here correspond to changes of
2 blocks (0.531 MB), 3 blocks (0.791 MB), or 4 blocks (10.058 MB), respectively.
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Figure 7: Bytes uploaded during delta-encoding tests with

random changes.

change and then measured the number of bytes uploaded by the
application. Figure 7 shows the results of these tests, when applied
on a 10 MB file. (The insert zooms in on the low parameter range.)

These results (i) confirm that the delta encodings work poorly
on random file changes (and these techniques would hence not
be useful on encrypted file data) and (ii) show that both Dropbox
and iCloud significantly outperform SpiderOak. For example, con-
sider the number of random bytes that can be changed before each
service have uploaded the equivalent of another 10 MB file. For
SpiderOak, on the order of 100 bytes are needed. In contrast, with
iCloud and Dropbox approximately 2,000 and 6,000 bytes need to
change, respectively. While the large differences partially may be
due to implementation differences for sparse use cases, the results
show that the room for improvements in SpiderOak’s solution is
significant. For example, as long as the changes are small, an ap-
plication could simply encrypt the delta changes that a non-CSE
would make, store those changes in the cloud (in encrypted format),
and rely on the clients to later download the full sequence of such
changes to their other devices, where they themselves can apply the
delta changes. Motivated by our findings, additional analysis and
investigation of optimized variations of such policies are presented
in [22].

5 RELATED WORK

Prior work has not empirically evaluated the impact that CSE has
on the performance of existing applications.

Most performance studies of personal cloud storage have focused
on Dropbox [9, 33] and other popular services [8, 17, 23]. Similar
to Section 3.3, this include works that determine whether different
services (Dropbox, Google Drive, OneDrive and Box) implement
different performance features [5, 8]. Some variation in features
have been observed over time and across devices [6, 35]. However,
none of these works consider the impact of CSE on the features
implemented, the performance obtained, or even evaluated the per-
formance of CSEs. In contrast, we focus on CSEs and their relative
performance penalty. Having said that, the above studies provide
a nice baseline for three of the most popular non-CSEs (Dropbox,
Google Drive, OneDrive) and allows us to contrast our results (we
are also first to determine features for these three services using
macOS).

Many different types of algorithms have been proposed to re-
duce cloud storage and bandwidth costs.With early works primarily
targeting storage savings, most such works have focused on dedu-
plication [21, 40, 50]. In the context of CSE, the most related works
have demonstrated how effective and secure deduplication can be
achieved by combining convergent encryption and clever key man-
agement [24, 30, 44, 46]. This may at least partially explain why
three of the four considered CSEs implement effective deduplication.
Other common techniques include delta encoding [29, 33], device-
to-device synchronization [15], compression [31], and caching [14].
Yet others have implemented middleware solutions (e.g., that can be
used in conjunction with Dropbox) to improve the synchronization
process [33, 34].

Wilson and Ateniese [51] provide an overview of CSEs and un-
covered some weaknesses when enabling data sharing. Their work
focuses on the issuing of certificates, and highlights the problem
when the provider acts as a CA for itself. The founders of Tresorit,
Lam and Szebeni, have proposed and patented solutions (based on
the TGDH protocol) for sharing data in dynamic groups over an
untrusted cloud storage service [25ś27]. Others, like SpiderOak,
revokes their łNo Knowledgež policy for files shared through a
so called łShareRoomž [49]. Mager et al. [36] studied the now dis-
continued CSE service Wuala, and found that, similar to what we
find for SpiderOak, Wuala encrypted and stored files locally before
syncing the encrypted contents to the cloud.

On the topic of delta encoding, we note that aggregating multiple
delta encoding updates before propagating changes can be an effi-
cient way to further save bandwidth [29, 33]. Others have studied
the most beneficial user behaviors to exploit when optimizing file
sync operations [18] or the client behavior itself [9, 13, 31]. For
example, Drago et al. [9] showed that Dropbox primarily is used
for small files that are changed frequently, while Li et al. [31] have
confirmed that also on other services most files (84%) are changed at
least once. These characteristics confirm the importance of effective
delta encoding. Finally, we note that aggregating sync events can
be particularly valuable for capped mobile users [2, 7, 32], but also
that monitoring and access control may be more complicated in
such environments [2]. To the best of our knowledge, we are the
first to empirically evaluate the overhead costs observed by popular
CSEs.

6 CONCLUSIONS

Client-side encryption (CSE) is important to ensure that only the
intended users have access to information stored in public cloud
services, but complicates the implementation of bandwidth saving
file synchronization features. This paper is the first to focus on
the performance overhead of existing CSE services (CSEs). Using
empirical experiments with four popular CSEs (Mega, Sync.com,
SpiderOak, Tresorit) and the four most popular non-CSEs (Drop-
box, iCloud, Google Drive, OneDrive), we characterize the current
state-of-the-art and their relative overheads. First, by comparing
the security and bandwidth saving features implemented, as well as
the performance, of the eight services, we highlight both positives
and negatives. On the positive side, bandwidth saving features such
as compression and deduplication appears to come with low addi-
tional overhead (e.g., comparing the CSE and non-CSE services that



only implement one or two of these features) and achieve similar
efficiency. Instead, the performance overheads (as measured using
CPU utilization, CPU volume, disk writes, and memory footprint)
appears to depend on the set of bandwidth saving features imple-
mented, and themain penalty associatedwith CSE appears to be due
to bandwidth, storage, and processing overheads associated with
implementing (or not implementing) different forms of delta encod-
ing together with CSE. While helping reduce bandwidth between
the client and the servers, services implementing delta encoding
typically have significantly higher resource usage on the client.
We also observe differences between the CSE (SpiderOak) and the
two non-CSEs (Dropbox, iCloud) implementing delta encoding. For
example, SpiderOak comes with a higher storage footprint both
on the client and on the servers, has higher bandwidth overhead
for both uploaders and downloaders, and implements less effective
delta encoding than Dropbox and iCloud. Future work include the
development of optimized delta encoding policies for CSEs [22],
which minimize the bandwidth and storage overhead associated
with CSE, and that close the gap seen compared to non-CSEs (e.g.,
gaps between SpiderOak and Dropbox+iCloud in Figure 7).

ACKNOWLEDGMENTS

This work was funded in part by the Swedish Research Council
(VR).

REFERENCES
[1] Arash Ferdowsi - Dropbox Inc. 2011. Yesterday’s Authentication Bug. (2011).

https://blogs.dropbox.com/dropbox/2011/06/yesterdays-authentication-bug/
[2] Y. Bai and Y. Zhang. 2017. StoArranger: Enabling Efficient Usage of Cloud Storage

Services on Mobile Devices. In Proc. IEEE ICDCS.
[3] E. Bocchi, I. Drago, and M. Mellia. 2017. Personal Cloud Storage Benchmarks

and Comparison. IEEE Trans. on Cloud Computing 5, 4 (2017).
[4] Cloudwards. 2018. Best Cloud Storage Providers of 2018. (2018). https://www.

cloudwards.net/comparison/
[5] Y. Cui, Z. Lai, and N. Dai. 2016. A First Look At Mobile Cloud Storage Services:

Architecture, Experimentation, and Challenges. IEEE Network 30, 4 (2016).
[6] Y. Cui, Z. Lai, X. Wang, and N. Dai. 2017. QuickSync: Improving Synchronization

Efficiency for Mobile Cloud Storage Services. IEEE Trans. on Mobile Computing
16, 12 (2017).

[7] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao. 2015. QuickSync: Improving
Synchronization Efficiency for Mobile Cloud Storage Services. In Proc. ACM
MobiCom.

[8] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. 2013. Benchmarking
Personal Cloud Storage. In Proc. IMC.

[9] I. Drago, M. Mellia, M. M. Munafò, A. Sperotto, R. Sadre, and A. Pras. 2012. Inside
Dropbox: Understanding Personal Cloud Storage Services. In Proc. IMC.

[10] Dropbox. 2018. Under the hood: Architecture overview. (2018). https://www.
dropbox.com/business/trust/security/architecture

[11] Dropbox Inc. 2019. Dropbox Terms of Service. (2019). https://www.dropbox.
com/terms

[12] Z. Durumeric et al. 2014. The Matter of Heartbleed. In Proc. IMC.
[13] G. Goncalves, I. Drago, A. da Silva, A. B. Vieira, and J. M. Almeida. 2014. Modeling

the Dropbox Client Behavior. In Proc. IEEE ICC.
[14] G. Gonçalves, I. Drago, A. P. C. Da Silva, A. B. Vieira, and J. M. Almeida. 2016.

The impact of content sharing on cloud storage bandwidth consumption. IEEE
Internet Computing 20, 4 (2016), 26ś35.

[15] G. Gonçalves, A. B. Vieira, I. Drago, A. P. C. Da Silva, and J. M. Almeida. 2017.
Cost-Benefit Tradeoffs of Content Sharing in Personal Cloud Storage. In Proc.
IEEE MASCOTS.

[16] Google LLC. 2018. Google Terms of Service. (2018). https://www.google.com/
intl/en/policies/terms/

[17] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and P. G. Lopez.
2013. Actively Measuring Personal Cloud Storage. In Proc. IEEE CLOUD.

[18] R. Gracia-Tinedo, Y. Tian, J. Sampe, H. Harkous, J. Lenton, P. G. Lopez, M. Sanchez-
Artigas, and M. Vukolic. 2015. Dissecting UbuntuOne: Autopsy of a Global-scale
Personal Cloud Back-end. In Proc. IMC.

[19] G. Greenwald, E.MacAskill, L. Poitras, S. Ackerman, andD. Rushe. 2013. Microsoft
handed the NSA access to encrypted messages. The Guardian (2013). https://www.

theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
[20] J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson. 2017. A First Look at the CT

Landscape: Certificate Transparency Logs in Practice. In Proc. PAM.
[21] D. Harnik, B. Pinkas, and A. Shulman-Peleg. 2010. Side Channels in Cloud

Services: Deduplication in Cloud Storage. IEEE Security & Privacy 8, 6 (2010).
[22] E. Henziger and N. Carlsson. 2019. Delta Encoding Overhead Analysis of Cloud

Storage Systems using Client-side Encryption. In Proc. IEEE CloudCom.
[23] W. Hu, T. Yang, and J. N. Matthews. 2010. The Good, the Bad and the Ugly of

Consumer Cloud Storage. ACM SIGOPS Operating Systems Review 44, 3 (2010).
[24] J. Hur, D. Koo, Y. Shin, and K. Kang. 2016. Secure data deduplication with dynamic

ownership management in cloud storage. IEEE Trans. on Knowledge and Data
Engineering 28 (2016), 3113ś3125.

[25] I. Lam, S. Szebeni, and L. Buttyan. 2012. Invitation-oriented TGDH: Key man-
agement for dynamic groups in an asynchronous communication model. In Proc.
IEEE ICPP Workshops.

[26] I. Lam, S. Szebeni, and L. Buttyan. 2012. Tresorium: Cryptographic file system
for dynamic groups over untrusted cloud storage. In Proc. IEEE ICPP Workshops.

[27] I. Lam, S. Szebeni, and T. Koczka. 2015. Client-side encryption with DRM. (2015).
US Patent 9,129,095.

[28] B. Laurie, A. Langley, and E. Käsper. 2013. RFC6962: Certificate Transparency.
IETF.

[29] G. Lee, H. Ko, and S. Pack. 2017. An Efficient Delta Synchronization Algorithm
for Mobile Cloud Storage Applications. IEEE Trans. on Services Computing 10, 3
(2017).

[30] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou. 2013. Secure deduplication with
efficient and reliable convergent key management. IEEE Trans. on Parallel and
Distributed Systems 25, 6 (2013), 1615ś1625.

[31] Z. Li, Y. Dai, G. Chen, and Y. Liu. 2014. Towards Network-level Efficiency for
Cloud Storage Services. In Proc. IMC.

[32] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie, and P. Steenkiste.
2016. An Empirical Analysis of a Large-scale Mobile Cloud Storage Service. In
Proc. IMC.

[33] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang, and Y. Dai. 2013.
Efficient Batched Synchronization in Dropbox-like Cloud Storage Services. In
Proc. ACM/IFIP/USENIX Middleware.

[34] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and J. Lenton. 2014. StackSync:
Bringing Elasticity to Dropbox-like File Synchronization. In Proc. ACM Middle-
ware.

[35] X. Luo, H. Zhou, L. Yu, L. Xue, and Y. Xie. 2016. Characterizing mobile*-box
applications. Computer Networks 103 (2016).

[36] T. Mager, E. Biersack, and P. Michiardi. 2012. A Measurement Study of the Wuala
On-line Storage Service. In Proc. IEEE P2P.

[37] Mattt. 2018. Network Link Conditioner. (2018). http://nshipster.com/network-
link-conditioner/

[38] MEGA. 2018. MEGA - Developers Documentation. (2018). https://mega.nz/doc
[39] MEGA. 2018. Mega Limited. (2018). https://github.com/meganz
[40] D. T. Meyer and W. J. Bolosky. 2012. A Study of Practical Deduplication. ACM

Trans. on Storage 7, 4 (2012).
[41] Mitmproxy. 2018. (2018). https://mitmproxy.org/
[42] B. Möller, T. Duong, and K. Kotowicz. 2014. This POODLE Bites: Exploiting the

SSL 3.0 Fallback. Security Advisory (2014).
[43] C. Nykvist, L. Sjostrom, J. Gustafsson, and N. Carlsson. 2018. Server-side Adoption

of Certificate Transparency. In Proc. PAM.
[44] P. Puzio, R. Molva, M. Önen, and S. Loureiro. 2013. ClouDedup: Secure dedupli-

cation with encrypted data for cloud storage. In Proc. IEEE CloudCom.
[45] SpiderOak Inc. 2018. No Knowledge, Secure-by-Default Products. (2018). https:

//spideroak.com/no-knowledge/
[46] M. Storer, K. Greenan, D. Long, and E. Miller. 2008. Secure data deduplication. In

Proc. ACM Storage Security and Survivability workshop.
[47] Sync.com Inc. 2015. Privacy White Paper. Technical Report. https://www.sync.

com/pdf/sync-privacy.pdf
[48] A. Tervort. 2017. Disk Space Use During File Backup - SpiderOak Support.

(2017). https://support.spideroak.com/hc/en-us/articles/115001891163-Disk-
Space-Use-During-File-Backup

[49] A. Tervort. 2018. ShareRooms and No Knowledge - SpiderOak Sup-
port. (2018). https://support.spideroak.com/hc/en-us/articles/115001854223-
ShareRooms-and-No-Knowledge

[50] R. N. Widodo, H. Lim, and M. Atiquzzaman. 2017. A new content-defined chunk-
ing algorithm for data deduplication in cloud storage. Future Generation Computer
Systems 71 (2017).

[51] D. C. Wilson and G. Ateniese. 2014. "To Share or not to Share" in Client-Side
Encrypted Clouds. In Proc. ISC.


	Abstract
	1 Introduction
	2 Services evaluated
	3 CSE vs non-CSE: Features and Performance
	3.1 Methodology and test environment
	3.2 Basic security properties
	3.3 Bandwidth saving features
	3.4 Performance evaluation

	4 Delta Encoding Analysis
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

