
© Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The paper is
accepted for publication in IEEE/ACM Transactions on Networking, doi: 10.1109/TNET.2012.2198491.

1

Centralized and Distributed Protocols for

Tracker-based Dynamic Swarm Management
György Dán and Niklas Carlsson

Abstract—With BitTorrent, efficient peer upload utilization
is achieved by splitting contents into many small pieces, each
of which may be downloaded from different peers within the
same swarm. Unfortunately, piece and bandwidth availability
may cause the file sharing efficiency to degrade in small swarms
with few participating peers. Using extensive measurements, we
identified hundreds of thousands of torrents with several small
swarms for which re-allocating peers among swarms and/or
modifying the peer behavior could significantly improve the
system performance. Motivated by this observation, we propose a
centralized and a distributed protocol for dynamic swarm man-
agement. The centralized protocol (CSM) manages the swarms
of peers at minimal tracker overhead. The distributed protocol
(DSM) manages the swarms of peers while ensuring load fairness
among the trackers. Both protocols achieve their performance
improvements by identifying and merging small swarms, and
allow load sharing for large torrents. Our evaluations are based
on measurement data collected during eight days from over 700
trackers worldwide, which collectively maintain state information
about 2.8 million unique torrents. We find that CSM and DSM

can achieve most of the performance gains of dynamic swarm
management. These gains are estimated to be up to 40% on
average for small torrents.

Index Terms—Peer-to-peer overlay management, Tracker-
based protocol, BitTorrent performance, Content popularity

I. INTRODUCTION

While there has been some controversy around the use of

file sharing applications for distributing copyrighted content,

peer-to-peer file sharing remains highly popular and is re-

sponsible for a large fraction of the overall network traffic.

Today, BitTorrent is the dominant peer-to-peer file sharing

protocol. BitTorrent has proven to be highly scalable due

to its distributed peer-to-peer architecture and its splitting

of content (files) into many small pieces that each may be

downloaded from different peers. The content and the set of

peers distributing it is usually called a torrent. To facilitate

efficient file sharing, BitTorrent relies on a set of trackers to

voluntarily maintain state information about all peers currently

having pieces of a particular file. A client that wants to

download a file can learn about other peers that share the

same content by contacting a tracker.

In order to increase system availability [1], BitTorrent

allows multiple trackers to be associated with each file

(Multitracker Metadata Extension, BEP-0012 [2]). To avoid

G. Dán is with the School of Electrical Engineering, KTH Royal Institute
of Technology, Stockholm, Sweden. E-mail: gyuri@ee.kth.se

N. Carlsson is with Linköping University, Linköping, Sweden. E-mail:
niklas.carlsson@liu.se

0The work was supported by the ACCESS Linnaeus Centre at KTH and
by CENIIT at Linköping University.

overloading trackers, the protocol only allows a peer to be

associated with one tracker per file that it is downloading.

Consequently, every peer that participates in sharing a file

is member of a swarm, which is tracked by a tracker, and

multiple swarms associated to a single file can coexist in

parallel. The set of all swarms and thus all peers sharing the

same file is referred to as a torrent.

While BitTorrent allows peers to effectively share pieces of

popular content with many peers in a swarm, the performance

of small torrents and swarms is sensitive to fluctuations in

peer participation. Measurements and analysis have shown that

peers in small (less popular) swarms achieve lower throughput

on average (e.g., Figure 6, Figure 7 and [3], [4]). Most

swarms are unfortunately small; several sources indicate that

the popularity distribution of peer-to-peer content follows a

power-law form, with a “long tail” of moderately popular files

(see Figure 1(b) and, e.g., [5], [6], [7], [8]). At the same

time, the measurement data we present in this paper shows

that many torrents consist of several swarms (see Figure 2).

Potentially, if one could dynamically re-allocate peers among

the trackers such that multiple small swarms of a torrent are

merged into a single swarm, then one could improve the file

sharing performance of the peers belonging to these torrents.

Motivated by these observations, the goal of our work is

to evaluate the feasibility and the potential gains of dynamic

swarm management for BitTorrent trackers. We propose a

dynamic swarm management method that is based on merging

small swarms periodically. We formulate two versions of the

problem of merging small swarms as optimization problems,

and propose a centralized and a distributed swarm management

protocol, called CSM and DSM, respectively, to solve the

problems. We use the two protocols to evaluate the feasibil-

ity and the potential gains of dynamic swarm management

based on eight days of measurements of 721 trackers, which

collectively maintain state information of a combined total of

2.8 million unique torrents and approximately 20−60 million

concurrent peers. Collectively, these torrents have supported

approximately 4.52 billion downloads. Based on the protocol

evaluation we argue that dynamic swarm management could

lead to a significant performance improvement in terms of peer

throughput at a very low cost in terms of overhead.

Throughout the paper we use BitTorrent terminology to

refer to the components of the content distribution system,

and use BitTorrent to quantify the achievable gain of our

protocols. Nevertheless, the proposed protocols are in general

applicable to tracker-based content delivery systems that aim

to (i) maintain high content availability by using redundant,

highly autonomous trackers, (ii) minimize the performance

penalty due to partitioned swarms of peers, and (iii) avoid

high traffic overhead.

The remainder of the paper is organized as follows. Sec-

tion II describes the basics of tracker-based overlay man-

agement and our system model. Section III presents results

from a large scale measurement of BitTorrent that motivate

our work. Section IV formulates our design objectives based

on the measurement dataset. In Section V we describe the

proposed protocols to perform dynamic swarm management.

Sections VI and VII present analytical, simulation based and

trace-based performance results. Related work is discussed in

Section VIII, and Section IX concludes the paper.

II. SYSTEM DESCRIPTION

A. Peers, Swarms and Torrents

BitTorrent is a popular peer-to-peer file-sharing protocol that

has been shown to scale well to very large peer populations.

With BitTorrent, files are split into many small pieces, each

of which may be downloaded from different peers. Peers that

have the entire file (or content) and only upload content are

called seeds, while peers that only have parts of the file and are

downloading are called leechers. The set of peers that share a

particular file is usually called a torrent.

Trackers are used to maintain state information about the

peers currently having pieces of a particular file. A client that

wants to download a file can learn about other peers that share

the same file by contacting a tracker node at its announce URL.

Upon request, the tracker provides the peer with a subset of the

known peers. In exchange, the peer has to provide the tracker

with information about its download progress. Additionally,

the peers must inform the tracker about changes in their status

(i.e., when they join, leave, or finish downloading). Trackers

also have a scrape URL at which they answer scrape requests

to provide information about a swarm: the number of seeds, the

number of leechers, and the number of download completions.

The set of peers that share a particular file and are tracked

by the same tracker are called a swarm. In order to increase the

availability of files BitTorrent allows several trackers to track

peers sharing the same file; i.e., several swarms can coexist

within the same torrent. The set of trackers is determined by

the creator of the torrent, who includes the list of trackers in

the torrent metadata file. Such redundancy allows trackers to

be run on relatively cheap, commodity hardware and network

equipment. Upon joining, a peer knows about the list of

trackers from the torrent metadata file and it has to contact

one tracker at random (if the tracker is no longer available

then a new tracker must be contacted). This way the load is

balanced between the available trackers, and the tracker load

is kept low. As a consequence of these design choices, peers

in different swarms are typically not aware of each other, even

though they share the same content.

Besides the trackers, peers may learn about other peers in

the same swarm using Peer Exchange (PEX), and can use a

distributed hash table (DHT) to learn about peers in the same

torrent. In the case of private torrents, which are torrents meant

for sharing content by registered users only, PEX and DHT are

disabled in order to avoid unauthorized peers from joining the

torrent, and thus trackers are the only means of peer discovery.

Parameter Definition

R Set of trackers

T Set of torrents

R (t) Set of trackers that track torrent t

T (r) Set of torrents that are tracked by tracker r

T (r,r′) Set of torrents tracked both by tracker r and r′

Nr Number of peers tracked by tracker r

xt Number of peers associated with torrent t

xt,r Number of peers of torrent t that are tracked
by tracker r

x̃ Threshold parameter

TABLE I: Frequently used notation

B. System Model

We model the system with a set of trackers R , with a

combined set of torrents T . We will denote by R (t) the set of

trackers that track torrent t ∈ T , and by T (r) the set of torrents

that are tracked by tracker r ∈R . Every torrent is tracked by at

least one tracker (i.e., T =
⋃

r∈R T (r)), but the subsets T (r)
are not necessarily pairwise disjoint. For two trackers r and

r′ we denote the set of torrents that both trackers track by

T (r,r′) = T (r)
⋂
T (r′). The trackers form a graph G = (R ,E)

in which there is an edge between two vertices (trackers) r and

r′ if T (r,r′) 6= /0. We will refer to this graph as the tracker

graph. Finally, let us denote the number of peers tracked by

tracker r for torrent t by xt,r, the total number of peers tracked

by tracker r by Nr, and the total number of peers associated

with torrent t by xt . Table I summarizes the notation used in

the paper.

III. A MEASUREMENT STUDY OF SWARMS AND

TORRENTS

In this section we present the measurement data motivating

our work. We first describe the measurement methodology

used to collect the data, then present swarm and torrent level

statistics based on the observed popularity of approximately

three million BitTorrent torrents.

A. Measurement Methodology

We used two kinds of measurements to obtain our dataset.

First, we performed a screen-scrape of the torrent search

engine www.mininova.org. In addition to claiming to be the

largest torrent search engine, mininova was the most popular

torrent search engine according to www.alexa.com during our

measurement period (Alexa-rank of 75, August 1, 2008). From

the screen-scrapes we obtained the sizes of about 330,000 files

shared using BitTorrent, and the addresses of 1,690 trackers.

Second, we scraped all the 1,690 trackers for peer and

download information of all the torrents they maintain. For the

tracker-scrapes we developed a Java application that scrapes

the scrape URL of each tracker. By not specifying any info-

hash, the tracker returns the scrape information for all torrents

that it tracks. This allowed us to efficiently obtain the number

of leechers, seeds, and completed downloads as seen by all

trackers that we determined via the screen-scrape of mininova.

Scrapes were performed in parallel, the longest scrape took

about 20 minutes, so our dataset is in fact a sequence of

snapshots of BitTorrent content popularity.

We performed the tracker-scrapes weekly from September

15, 2008 to August 17, 2009, and daily between October

2

Item Value

Total trackers 1,690
Unique trackers 721
Unique torrents 2,864,073
Unique swarms 3,309,874

Number of leechers 21,088,533
Number of seeds 16,985,796

Total downloads 4.52 ·109

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Torrent rank (r)

N
u
m

b
er

 o
f

p
ee

rs

15.Sep.2008

22.Sep.2008

10.Oct.2008

17.Aug.2009

526054.24*k
−0.77

RMSE=59.30

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Number of peers (x
t,r

) at 7PM GMT

N
u

m
b

er
 o

f
p

ee
rs

 1
2

 h
o

u
rs

 l
at

er

Measured mean

0.75x
t,r

+1.49

(a) Summary of a complete snapshot on

Oct. 10, 2008.

(b) Torrent popularity vs. rank at 4

different dates

(c) Change of popularity between 7pm

GMT on Oct. 10, 2008 and 12 hours

later.

Fig. 1: Basic properties of the multi-torrent, multi-swarm system: (a) summary of a snapshot, (b) content popularity on four

dates, and (c) its change.

2 4 6 8 10 12 14
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of swarms in torrent (ρ)

N
u
m

b
er

o
f
to

rr
en

ts
t

fo
r

w
h
ic

h
|R

(t
)|

=
ρ

Fig. 2: Number of torrents vs. number of

swarms per torrent on Oct. 10, 2008.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Number of peers in torrent (x
t
)

C
oV

(x
t,

r
)/

√

|R
(t

)|
−

1

Fig. 3: Normalized coefficient of varia-

tion of swarms sizes on Oct. 10, 2008.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Rank k of tracker r

N
u
m

b
er

o
f
tr

a
ck

er
s

r’
fo

r
w

h
ic

h
T

(r
)
⋂

T
(r

′
)
6=

∅

Number of overlaps

528*k
−0.78

, RMSE=6.11

Fig. 4: Number of trackers that have

overlapping torrents vs. rank on Oct. 10,

2008.

10, 2008 and October 17, 2008. All scrapes were performed

at 7pm GMT. Additionally, we performed hourly scrapes

between September 24 and October 15, 2008. To identify

redundant tracker-scrapes (stemming from trackers with mul-

tiple hostnames, for example) in our traces, we performed

a correlation test between every pair of scrapes, and tagged

scrapes that had an overlap of at least 90% in terms of the

observed torrents, and a correlation coefficient above 0.9 in

terms of the number of leechers and seeds as redundant.

This way we removed redundant information about the same

swarms of peers, and identified 721 independent trackers. The

table in Fig 1(a) summarizes the dataset obtained on October

10, 2008.

B. Swarms and Torrents

Figures 1 to 5 summarize some of the main characteristics

of the world of trackers and torrents captured by our measure-

ments. Figure 1(b) shows the rank plot of the number of peers

per swarm at four different dates during our measurement

period. The number of swarms observed did not change

significantly in 11 month, neither did the shape of the rank

popularity curves. The figure also shows the least-squares best-

fit Zipf distribution and the respective root mean squared error

for October 10, 2008. We refer to [9] for a detailed study of

the swarm size distribution and for a discussion of whether

the distribution has a power-law tail. Nevertheless, similar to

previous content popularity studies (e.g., [5], [6], [7], [8]), it

stands out that there is a substantial number of torrents with

moderate popularity: about 2.84 million of the 2.86 million

torrents observed at 7pm GMT on October 10, 2008 have

less than 200 peers, and about 50% of the peers are in these

torrents. The ratio of peers in torrents with less than 200 peers

changes over time; it is significantly higher (up to 75%) in the

morning hours when torrent popularities are lower. Figure 1(c)

illustrates the change of content popularity over 12 hours.

Swarms were put into 50 logarithmically spaced bins based

on the number of peers at 7pm GMT on October 10, 2008,

and the solid curve shows the average number of peers per

swarm 12 hours later. The minimum and maximum number

of peers are shown by the error bars for each category. The

least-squares best linear fit shows that the number of peers

in the swarms is 25 percent lower on average at 7am GMT

than 12 hours earlier, and interestingly, the decrease is close

to uniform independent of the original swarm size. Similar

diurnal fluctuations were reported recently in [10].

Figure 2 shows the number of torrents with a given number

of unique swarms (after removing duplicates). Clearly, there

are a substantial number of torrents that are served indepen-

dently by multiple trackers. In order to get an impression of

how the peers are dispersed over the swarms of the same

torrent, we calculated the normalized coefficient of variation

of the swarm sizes of each multi-tracked torrent as

CoV ∗
t =

CoV (xt,r)
√

|R (t)−1|
, (1)

where CoV (xt,r) is the coefficient of variation of the swarm

sizes of torrent t, i.e., the standard deviation of the swarm sizes

divided by their mean. Due to the normalization CoV ∗
t = 0

if all swarms of a torrent have the same size, and CoV ∗
t =

1 if all peers are in one of the many swarms of a torrent.

3

10
0

10
1

10
2

10
3

10
4

10
0

10
2

10
4

10
6

Rank k of overlap between trackers r and r′

N
u
m

b
er

o
f
ov

er
la

p
p
in

g
to

rr
en

ts
(|
T

(r
)
⋂

T
(r

′
)|
)

Overlap size vs. rank

202785*k
−1.84

, RMSE=256.09

Fig. 5: Number of overlapping torrents

between pairs of trackers vs. rank on Oct.

10, 2008.

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Average number of peers in swarm (s + l)

E
st

im
a
te

d
sw

a
rm

th
ro

u
g
h
p
u
t/

le
ec

h
er

[K
B

/
s]

s/l ≥ 4

1≤ s/l <4

s/l <1

Fig. 6: Throughput estimates for three

classes of swarms starting at 7pm GMT,

Oct. 10, 2008.

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

Average number of peers in swarm (s + l)

E
st

im
a
te

d
sw

a
rm

th
ro

u
g
h
p
u
t/

le
ec

h
er

[K
B

/
s]

s/l ≥ 4

1≤ s/l <4

s/l <1

Fig. 7: Throughput estimates for three

classes of swarms starting at 7am GMT,

Oct. 11, 2008.

Figure 3 shows the normalized coefficient of variation of the

swarm sizes versus the torrent size, of each observed torrent.

While the normalized CoV only can take a finite number of

values (hence the distinguishable patterns), this figure shows

that there are many small torrents in which the peers are almost

equally spread among the swarms.

Finally, we look at the characteristics of the tracker graph

measured on October 10, 2008. There are 550 trackers that

have an overlap with at least one tracker, and thus, the

tracker graph has 550 vertices, 3,535 edges and an average

node degree of 12.8. The average of the local clustering

coefficient [11] of the nodes is 0.66, which indicates that

there are many cliques of size three. The diameter of the

graph is 5, its radius is 3, and its characteristic path length

is 2.11. These low values could be a sign of the scale-free

nature of the graph [12]. Figure 4 shows the number of

trackers |{r′|T (r)∩ T (r′) 6= /0}| with which a tracker r has

overlapping torrents ranked in decreasing order, that is, it

shows the rank degree statistic of the tracker graph. There are

a few trackers that have overlapping torrents with many other

trackers, but there are many trackers with a few overlapping

trackers. The number of overlapping trackers decreases slower

than exponentially with the rank, but it does not clearly

follow a power-law distribution. As a comparison we plotted

the least-squares best-fit Zipf distribution and its root mean

squared error (RMSE). These characteristics of the tracker

graph topology may influence the effectiveness of swarm

management protocols. For example, in a distributed protocol,

the communication overhead of a tracker might be proportional

to its degree. We will discuss the importance of the trackers

that have an overlap with many trackers, and of the tracker

graph topology in general, in Section VII-A.

Figure 5 shows the number of torrents that are in common

between any pair of trackers that have overlapping torrents

(i.e., |T (r,r′)|) as a function of their ranks. The rank statistics

approximately follows a power-law distribution, the least-

squares estimates of the parameters of the least-squares best-fit

Zipf distribution and the corresponding root mean squared er-

ror are shown in the figure. We note that there are many small

overlaps, that is, there are many pairs of trackers that have only

a few torrents in common. The power-law characteristics also

have the desirable property that a few of the trackers (and their

overlaps) are responsible for the majority of the overlaps. In

Section VII-A we will leverage these observations in order to

decrease the total amount of tracker-to-tracker communication

and to speed up our protocols.

C. Throughput Estimation

To estimate the throughput of any particular swarm we

used the number of seeds, leechers, and cumulative number

of downloads measured at two time instants. Using the two

snapshots we estimated the download throughput per leecher,

as the file size L divided by the estimated download (ser-

vice) time S. Using Little’s law the download time can be

expressed as S = l/l, where l is the average number of

leechers being served in the system and l the average peer

arrival rate. Due to flow conservation, the peer arrival rate

can be estimated as the overall download completion rate,

equal to the number of download completions D between two

consecutive measurements, divided by the time T between the

two consecutive measurements. To summarize, we have an

estimated throughput of LD

lT
. Finally, throughput estimates for

any particular swarm size were obtained by taking the average

over all swarms of that particular size.

Figures 6 and 7 show throughput estimation results based

on two T = 2 hours long intervals starting at 7pm GMT

on October 10, 2008 and at 7am GMT on October 11,

2008, respectively. Swarms are classified based on the average

number of peers in the swarm s+ l and the seed-to-leecher

ratio s

l
; 60 bins are used for the swarm sizes and three curves

are used for the different seed-to-leecher ratios. Note that the

possible ranges of s+ l values are different for different seed-

to-leecher ratios, and hence result in different start values for

the curves. We note that the results for swarms up to just over

1,000 peers are similar in both figures and are consistent with

intuition and previous studies [3], [4]. Both figures show that

the estimated throughput increases with the swarm size. The

measurement data over these two intervals are also consistent

in that the average number of downloads per leecher in

swarms with at least 200 peers is almost twice the average

number of downloads per leecher in swarms with less than 200

peers. Assuming that the size of a file does not influence its

popularity, this can be translated to an approximately two times

higher average throughput in swarms with at least 200 peers.

While our focus in this paper is not to investigate the reason of

this phenomenon, we attribute it to two reasons. First, as the

number of peers in a swarm increases, peers can find more

nearby peers to exchange data with. As a consequence, the

4

round trip times between the peers are lower on average, which

allows higher TCP throughput to be achieved. Second, when

peer upload rates are heterogeneous, the probability that peers

with similar upload rates exist increases with the swarm size.

For small swarms, piece availability can also become an issue.

For larger swarm sizes, however, the results are rather

noisy. The reason is that the estimation for large swarms is

less accurate due to fewer samples. For example, while the

number of swarms smaller than 1,000 peers for which we

could obtain content size information from mininova.org is

around 350,000 for both intervals, there are only about 500

and 1500 swarms that are larger than 1,000 peers on the two

intervals, respectively. The lack of statistical significance for

swarm sizes above 1,000 peers is thus the reason for the large

fluctuations of the curves in both figures for big swarm sizes.

In the rest of the paper our focus is on swarms smaller

than 1000 peers for which the throughput estimates are similar

in the two figures: both figures show that bigger swarms

achieve higher throughput on average, irrespective of the seed-

to-leecher ratio and the time of the day.

IV. DYNAMIC SWARM MANAGEMENT

In the following we describe the rationale for dynamic

swarm management and a high level overview of its operation.

We then define the key performance metrics and formulate

two versions of dynamic swarm management as optimization

problems.

A. The Rationale for Dynamic Swarm Management

We can make three important observations based on the

measurement dataset presented in Section III. First, the major-

ity of swarms and torrents are rather small and a large fraction

of the peers belong to such small swarms: in our dataset 99

percent of torrents have less than 200 peers and about 50 to 75

percent of the peers are in these torrents, depending on the time

of the day. Second, many torrents consist of several swarms

tracked by different trackers: in our dataset there are about

300 thousand multi-tracked torrents. Third, irrespective of the

seed-to-leecher ratio, small swarms achieve lower throughput

on average than larger swarms as shown in Figures 6 and 7.

At the same time, in order to increase system availability it

may be advantageous to split the responsibility of maintaining

per-peer state information across multiple trackers; i.e., to

allow several swarms to coexist. If peers follow the BitTorrent

protocol and only associate with one tracker upon arrival

then peers in different swarms will not be aware of each

other. Alternatively, if peers do not conform to the protocol

but associate with all trackers then they will know about

each other, but the trackers’ load increases proportional to

å t∈T xt(|R (t)|−1), i.e. the number of swarms per torrent

weighted by the torrent sizes.

Based on the above observations, we formulate the goal of

dynamic swarm management as being able to merge swarms

belonging to a torrent if they become too “small”. In general,

it is hard to define when a swarm should be considered

“small”, but for simplicity, we assume that a swarm can be

considered “small” if it has less than x̃ participating peers,

for some threshold x̃. Non-“small” swarms are likely to have

high piece diversity and are more resilient to fluctuations in

peer participation. Intuitively, one would like to minimize the

number of swarms (t,r) for which xt,r < x̃.

A straightforward solution to avoid “small” swarms is to

merge all swarms of every torrent. This solution has two

potential drawbacks. First, it can lead to many peers being re-

assigned unnecessarily between trackers and to large amounts

of control traffic. Second, it can lead to an increase of the

number of peers assigned to certain trackers, which can be a

problem if trackers are managed by autonomous entities.

A better solution is to periodically merge small swarms and

to split big swarms on-demand. The splitting of individual

swarms is motivated by the potential issue that a single tracker

might see an increase of its load because of a single torrent

becoming very popular. An easy way to handle such instances

is that a tracker stops being the sole responsible for its biggest

torrent(s) when its load reaches a threshold (x̂). New peers

that arrive to the torrent can be redirected to other trackers.

The problem of merging swarms is, however, more complex

and the impact of merging on the system performance can

be noticeable as it involves the reallocation of peers between

trackers. In the rest of the paper we focus on the problem of

merging small swarms and leave the problem of splitting big

swarms to be a subject of future work. In the following we

give a mathematical formulation of the problem of merging

small swarms.

B. Performance Metrics

We start the problem formulation with the definition of

three metrics that we use to capture the efficiency of swarm

management: the number of “small” swarms, the overhead of

swarm management and the tracker load.

Number of “Small” Swarms: The primary goal of dynamic

swarm management is to minimize the number of “small”

swarms. Let us denote by yt,r the number of peers tracked

by tracker r for torrent t after dynamic swarm management.

Then the number of small swarms belonging to torrent t ∈ T
can be expressed as

|{r|yt,r < x̃,yt,r 6= 0}|. (2)

Management Overhead: Dynamic swarm management re-

assigns peers between trackers. Reassigning peers between

trackers leads to increased control traffic. We quantify the

management overhead as the number of peers reassigned

between trackers. For a torrent t ∈T the management overhead

can be expressed as

å
r∈R (t)

[(xt,r− yt,r)]
+. (3)

Tracker Load: As dynamic swarm management reassigns

peers between trackers it may change the number of peers

assigned to the individual trackers, and hence the traffic load

of the trackers. We quantify the traffic load of a tracker r ∈R
with the number of peers it tracks

Nr = å
t∈T (r)

xt,r. (4)

5

C. Swarm Management as an Optimization Problem

We consider two versions of the problem of merging swarms

motivated by two application scenarios. The first scenario is a

system managed by a single entity. The goal is to merge the

swarms at minimal overhead, and merging can be done in a

centralized or in a decentralized fashion. The second scenario

is a system of autonomous trackers. In this scenario merging

should maintain the tracker loads unchanged, and due to the

trackers’ autonomy, a distributed solution is more likely to

be of practical interest. In the following we use the above

three metrics to formulate the two versions of dynamic swarm

management as optimization problems.

Minimum Management Overhead (MMO): The first

form of the problem assumes that the primary concern is to

minimize the number of “small” swarms with the least amount

of management overhead possible. The optimization problem

can be formulated as

min å
t∈T

å
r∈R (t)

[(xt,r− yt,r)]
+, (5)

s.t.

|{r|yt,r < x̃,yt,r 6= 0}| ≤ min(1,max(0, x̃− å
r∈R (t)

xt,r)) ∀t ∈ T

å
r∈R (t)

yt,r = xt , ∀t ∈ T .

Note that for a particular torrent t if å r∈R (t) xt,r < x̃ then the

minimum number of “small” swarms is 1, otherwise it is 0.

Minimum Management Overhead with Load Mainte-

nance (MMO-LM): The second form of the problem also

considers the tracker load, but also ensures that the load of the

individual trackers remains unchanged after performing swarm

management. The optimization problem can be formulated as

min å
t∈T

å
r∈R (t)

[(xt,r− yt,r)]
+, (6)

s.t.

|{r|yt,r < x̃,yt,r 6= 0}| ≤ min(1,max(0, x̃− å
r∈R (t)

xt,r)) ∀t ∈ T

å
r∈R (t)

yt,r = xt , ∀t ∈ T ,

å
t∈T (r)

yt,r = å
t∈T (r)

xt,r, ∀r ∈ R .

While in the case of MMO the optimization can be per-

formed independently for different torrents, in the case of

MMO-LM the optimization has to be performed jointly over

all torrents, which makes the optimization problem more

complex.

V. SWARM MERGING PROTOCOLS

We describe two protocols to solve the two optimization

problems formulated in the previous section. The first protocol,

called Centralized Swarm Management (CSM) protocol, is

centralized and requires global knowledge to solve the MMO

problem. CSM relies on the Minimum Excess Deficit (MED)

algorithm to calculate the solution to the MMO problem for

each torrent. We then devise a distributed protocol that suits a

system without centralized control of the trackers and without

global state information. This decentralized swarm manage-

ment protocol, called the Distributed Swarm Management

(DSM) protocol, moves peers that belong to the same torrent

between pairs of trackers. The algorithm can be used to obtain

an approximate solution to the MMO and to the MMO-LM

optimization problems.

A. Centralized Swarm Management Protocol (CSM)

The CSM protocol works by first performing a scrape of

all trackers to obtain the number xt,r of peers per swarm. The

central server then solves the MMO problem for every torrent

to calculate the number of peers per swarm yt,r. Finally, the

server informs all trackers r ∈ R about the target number of

peers yt,r for every torrent t ∈ T (r).
In order to solve the MMO problem for a torrent, CSM uses

the Minimum Excess-Deficit (MED) algorithm described in

the following. The MED algorithm considers that swarms can

be split arbitrarily, that is, peers in a torrent can be redirected

between swarms on an individual basis, and can solve the

MMO problem in O(nlogn) time, as we show in Section VI.

We note that if swarms could not be split arbitrarily then MMO

would require solving the bin covering problem, which is NP-

hard [13]: given a set of positive integers (the swarm sizes

xt,r) and bins of equal sizes (the threshold x̃) pack the integers

into the maximum number of bins such that the sum of the

integers in any bin is at least x̃.

Given a set of swarms, in decreasing order of size, the

MED algorithm calculates the number of non-empty swarms of

the MMO solution. The algorithm first calculates the excess

number of peers that can potentially be moved from ’non-

small’ swarms to ’small’ swarms. Starting from the initial

number of non-small swarms it then evaluates whether it

is feasible to increase the number of non-small swarms by

either moving some excess peers from non-small swarms to

small swarms or by merging the small swarms into non-small

swarms. The algorithm terminates when it becomes infeasible

to increment the number of non-small swarms. The pseudo-

code of the MED algorithm is shown in Fig. 8.

The MED algorithm returns the optimal number of swarms

m that should be non-empty after peer re-allocation. These

m ≤ n swarms are then filled up, one-by-one, by moving

peers from the other swarms. The reallocation of peers among

swarms starts with the n−m smallest swarms, which should be

empty according to the algorithm, and continues with moving

the excess peers from the biggest swarms (with xt,r > x̃), if

necessary. Fig 9 illustrates the operation of the MED algorithm

on a simple example.

Proposition 1: The MED algorithm solves the MMO opti-

mization problem.

Proof: We have to show that the MED algorithm (i) finds

a solution with the minimum number of small swarms and

that the solution found (ii) requires the fewest possible peers

to be reallocated between swarms.

First, consider the number of small swarms. Let us call a

peer allocation valid if the number of small swarms is minimal.

6

INPUT: Swarm sizes x1 ≥ x2 ≥ . . .≥ xn
OUTPUT: Optimal number m of non-empty swarms

1a. if mini(xi)≥ x̃ return n
1b. if ån

i=1 xi ≤ x̃ return 1
2. Let s= inf{i|xi < x̃}

3. Let E = å
s−1
i=1 (xi− x̃) //excess number of peers

4. for i= s to n

5. D(i) = å
i
j=s(x̃− x j) //deficit of peers in swarms

6. M(i) = å
n
j=i+1 x j //peers to move from rest of swarms

7. if M(i)+E <D(i) return i−1 //infeasible to have i swarms
8. if M(i)+xi <D(i) return i−1 //better to have i−1 swarms
9. end for
10. return n

Fig. 8: Pseudo-code of the MED algorithm used by CSM to

solve the MMO optimization problem. For a set of swarms the

algorithm returns the optimal number of non-empty swarms.

124679111620

i=4 D(4)=1

D(5)=4

D(6)=8

i=5

i=6

i=7 D(7)=14 M(7)=3

M(6)=7

M(5)=13

M(4)=20
M(4)+E=37

000101010111619

M(5)+E=30

M(6)+E=24

M(7)+E=20

M(4)+x =29
4

M(5)+x =20
5

M(6)+x =136

M(7)+x =77

Fig. 9: Example with n = 9 swarms. s = 4 and E = 17. The

rows show the iterations and the values of D(i) and M(i) as

calculated by MED. The algorithm terminates for i= 7 because

M(i)+xi <D, the optimal number of swarms is i−1 = 6, and

a possible reallocation of the peers is shown in the last row.

By definition, if there are less than x̃ peers in the torrent then

the solution to MMO is to have 1 small swarm. Otherwise, by

allocating all peers to the first i′ = max(1,s−1) swarms one

can eliminate all small swarms at overhead M(i′) = å
n
j=i′+1 x j.

This is possible, because either swarm i′ is not small or there

are only small swarms but å
n
i=1 xi ≥ x̃. Hence, MED starts

from a valid allocation. In general, for an allocation with i≥ i′

swarms to be valid it must hold that M(i) +E ≥ D(i), that

is, the number of excess peers plus the peers to be moved

from swarms j > i must be sufficient to make all swarms

s ≤ j ≤ i non-small, which requires D(i) = å
i
j=s x j peers

to be moved. Observe that M(i) is a strictly monotonically

decreasing function of i and D(i) is a strictly monotonically

increasing function of i. The two functions are illustrated in

Figure 10. Hence if an allocation with î ≥ i′ swarms is valid

then all allocations with i′ ≤ i ≤ î swarms are valid. MED

starts from a valid allocation and by condition (7) it terminates

when it encounters a non-valid allocation, hence the solution

obtained by MED is valid.

Second, consider the minimum overhead to achieve a valid

peer allocation. Any valid allocation with i non-empty swarms

requires that either M(i) or D(i) peers are moved, whichever

is larger. M(i) peers must be moved away from swarms

j > i to ensure that there are no small swarms, and D(i)
peers must be moved to swarms i′ ≤ j ≤ i to ensure that

these have at least x̃ peers. The minimal overhead is hence

achieved by having m = argmini max{D(i),M(i)} non-empty

swarms. Because of the strict monotonicity of D(i) and M(i)

i=5

2

0

1

6

1

1 9 7 46
2 1

s=4

E=17

D(5)=4

M(5)=13

4 5 6 7 8 9
0

5

10

15

20

25

30

35

Iteration (i)

P
ee

r
co

u
n
t

M(i)

M(i) + xi

D(i)

Fig. 10: Example with n = 9 swarms. s = 4 and E = 17. On

the left, D and M as calculated by MED for i = 5. On the

right, the evolution of D, M and M+ xi as a function of i.

the overhead max{D(i),M(i)} has a global minimum. Let us

define i∗ = min{i|D(i) > M(i)}. Then the minimal overhead

is achieved for m = i∗ if D(i∗) < M(i∗)+ xi∗ and m = i∗− 1

otherwise, because M(i − 1) = M(i) + xi as illustrated in

Figure 10. MED will hence terminate as soon as the minimal

overhead has been identified.

B. Distributed Swarm Management Protocol (DSM)

The DSM protocol is composed of two components. It relies

on a distributed protocol to determine the order in which

trackers should perform pairwise balancing. On a pairwise

basis, trackers then exchange information about the number of

active peers associated with each torrent they have in common

(e.g., by performing a scrape), and determine the number of

peers per swarm that the trackers should be responsible for.

In the following, we provide a description of these two

components.

1) Distributed Negotiation: The distributed negotiation pro-

tocol assumes that each tracker r knows the set of torrents

T (r,r′) = T (r) ∩ T (r′) that it has in common with other

trackers r′ ∈R for which the trackers’ torrents are not disjoint

(i.e., for which |T (r,r′)| 6= 0). Note that this information

is available through the torrent metadata files, which are

uploaded to the tracker when the torrents are registered with

the tracker. In the following, we describe two alternatives that

can be used to establish the order of pairwise balancings.

• DSM-Max: Tracker r invites for pairwise balancing the

trackers r′ for which the overlap in tracked torrents,

T (r,r′) is maximal among the trackers with which it

has not yet performed the pairwise balancing. A tracker

r′ accepts the invitation if its overlap with tracker r is

maximal. Otherwise, tracker r′ asks tracker r to wait until

their overlap becomes maximal for r′ as well. DSM-Max

was originally considered in [14].

• DSM-Rand: The second protocol is randomized. Tracker

r invites for pairwise balancing any tracker r′ with which

it has not yet performed a pairwise balancing. A tracker

r′ accepts the invitation if it is not currently performing

a pairwise balancing with another tracker.

Both protocols guarantee that all pairs of trackers with an

overlap in torrents will perform a pairwise balancing once and

only once during the execution of the protocol. However, as

discussed in Section VII, the number of balancing rounds can

be substantially lower using DSM-Rand.

7

INPUT: Swarm sizes xt,r,∀t ∈ T (r) and xt,r′ ,∀t ∈ T (r′)
OUTPUT: Updated swarm sizes xt,r and xt,r′

1. for ∀t ∈ {T (r,r′)|xt,r+ xt,r′ < 2x̃}
1.1. a← argmaxr xt,r; b←{r,r′}\{a}
1.2. xt,a ← xt,r+ xt,r′ ; xt,b ← 0
1. end for // merged small swarm into the less “small” swarm

2. for ∀t ∈ {T (r,r′)|xt,r+ xt,r′ ≥ 2x̃,min[xt,r,xt,r′]< x̃}
2.1. a← argmaxrxt,r; b←{r,r′}\{a}
2.2. d← x̃−min[xt,r,xt,r′]
2.3. xt,a ← xt,a−d; xt,b ← xt,b+d

2. end for // re-balanced small swarms when possible

3. a← argmaxr(Nr−å t xt,r); b←{r,r′}\{a}
4. while Na > å t xt,a, ∃t|(xt,a = 0,xt,b ≤ (Na−å t xt,a))
4.1. D← Na−å t xt,a
4.2. t ← argmaxt(xt,b|xt,a = 0,xt,b < 2x̃,xt,b ≤ D)
4.3. xt,a ← xt,b; xt,a ← 0
4. end while // load adjusted using merged swarms

5. while Na > å t xt,a, ∃t|(xt,a+ xt,b ≥ 2x̃,xt,b− xt,a ≥ 2)
5.1. D← Na−å t xt,a
5.2. t ← argmaxt(xt,b− xt,a|xt,a+ xt,b ≥ 2x̃,xt,b− xt,a ≥ 2)

5.3. d← min[
xt,b−xt,a

2 ,D]
5.4. xt,a ← xt,a+d; xt,b ← xt,b−d

5. end while // load adjusted using split swarms

6. D← Na−å t xt,a // adjust any remaining imbalance
7. find{t, t ′} s.t. min{t,t ′|xt,a=xt′ ,b=0} |D− xt,b+ xt ′,a|

7.1. xt,a ← xt,b; xt,b ← 0; xt ′,b ← xt ′,a; xt ′,a ← 0

Fig. 11: The pairwise balancing algorithm for MMO-LM.

2) Pairwise Balancing: DSM can be used to obtain an

approximate solution to the MMO and to the MMO-LM prob-

lems by using different pairwise balancing algorithms. In the

case when DSM is used to solve the MMO problem, swarms

associated with the two trackers can be merged according to

the MED algorithm described in Section V-A.

For the case of the MMO-LM problem, we propose a three-

step greedy algorithm to determine the peer allocation between

the two trackers. Figure 11 shows the pseudo-code of the

algorithm. First, torrents are treated independently and peers

are tentatively shifted based only on information about each

individual torrent. For all torrents t that require merging (i.e.,

for which xt,r+xt,r′ < 2x̃), all peers are tentatively shifted to the

tracker that already maintains information about more peers.

(Lines 1-1.2.) For all torrents that should be re-balanced (i.e.,

for which min[xt,r,xt,r′]< x̃ and xt,r+xt,r′ ≥ 2x̃), the minimum

number of peers d= (x̃−min[xt,r,xt,r′]) needed to ensure that

both trackers have at least x̃ peers are tentatively shifted to the

tracker with fewer peers for that torrent. (Lines 2-2.3.)

Second, in order to achieve load conservation of the total

number of peers Nr tracked by each tracker r, the peer

responsibility of some torrents may have to be adjusted. Using

a greedy approach, the tentative allocations are shifted towards

the tracker that saw a decrease in peer responsibility (if any).

(This tracker is identified in line 3.) To avoid increasing the

number of peers associated with partial shifts, priority is given

to allocations of the torrents that are being merged. (Hence,

lines 4-4.3 are executed before lines 5-5.4.) Among the merged

torrents, the algorithm selects the torrent that results in the

largest load adjustment and that does not cause the imbalance

in overall load to shift to the other tracker. (Lines 4-4.3.)

Among the balanced torrents, the algorithm selects the torrent

that results in the largest load adjustment and that does not

cause the imbalance in overall load to shift to the other tracker.

(Lines 5-5.4.) By sorting torrents based on their relative shift,

this step can be completed in O(|T (r,r′)|log|T (r,r′)|) steps.1

Finally, if overall load conservation is not yet fully achieved,

additional load adjustments can be achieved by swapping

the peer responsibilities of the pair of torrents that (if the

responsibilities of those torrents were swapped) would result in

the load split closest to achieving perfect load conservation of

Nr, with ties broken in favor of choices that minimize the total

shift of peers. (Lines 6-7.1.) Of course, considering all possible

combinations can scale as O(|T (r,r′)|2). However, by noticing

that only the torrents with the smallest shift of peers for each

load shift are candidate solutions, many combinations can

be pruned. By sorting the torrents appropriately, our current

implementation achieves O(|T (r,r′)|log|T (r,r′)|) whenever x̃

is finite.

C. Protocol Implementation

The proposed CSM and DSM protocols could be imple-

mented with minor extensions to the BitTorrent protocol.

The only new protocol message required is a tracker redirect

message that can be used by a tracker to signal to a peer that

it should contact an alternative tracker for the torrent. The

message is used by a tracker r for a torrent t for which xt,r
decreases due to the execution of CSM or DSM. Peers that

receive the tracker redirect message should contact another

tracker they know about from the tracker file. Once two

swarms are merged, one of the trackers becomes responsible

for the merged swarms and all arriving peers will register with

the responsible tracker. For this reason neither CSM nor DSM

are equivalent to trackers merging their peer lists periodically:

merging peer lists would lead to trackers announcing already

departed peers unless merging is done very frequently. CSM

and DSM avoid this problem by delegating swarms between

trackers dynamically.

VI. PROTOCOL ANALYSIS AND PERFORMANCE

A. Protocol Overhead

The communication overhead of CSM is dominated by the

collection of swarm popularity information from the trackers

(4 bytes per swarm independent of the actual number of peers

xt,r in the swarm), by the notifications sent to the trackers (4

bytes per swarm) and by the redirection messages sent by the

trackers to the peers. The amount of redirection messages sent

by tracker r is bounded by å t∈T (r) xt,r
The communication overhead of DSM is dominated by

the exchange of torrent popularity information between the

trackers and by the redirection messages sent to the peers.

Distributed negotiation involves one tracker scrape before

every pairwise balancing, and the corresponding exchange of

the results of the balancing. The amount of data exchanged

1This sorting can be done just before lines 4 and 5 of the algorithm,
respectively. With a sorted list the sequence of argmax operations can easily
be translated into a single “linear” for (or while) loop.

8

1

35

4

210

9

87

6
5

4

3

21

Fig. 12: Complete graph with |R |= 5 vertices on which DSM-

Max requires |R |(|R |−1)/2 = 10 balancing rounds to finish.

The arrows show the execution order of DSM-Max starting

from vertex 1. DSM-Rand requires 2⌊(|R |+ 1)/2)⌋− 1 = 5

balancing rounds only.

between trackers r and r′ is hence O(|T (r,r′)|). 2 The amount

of redirection messages sent by tracker r is proportional to the

number of peers shifted between swarms tracked by r and r′,

and is bounded by å t∈T (r,r′) xt,r. Once two swarms are merged,

one of the trackers becomes responsible for the merged swarms

and all arriving peers will register with the responsible tracker,

hence there will be no overhead related to these swarms

when the next pairwise balancing is executed between the two

trackers (unless the swarm increases significantly, and has to

be split into two).

B. Protocol Complexity

We now turn to the complexity of the MED algorithm, and

that of the distributed negotiation used in DSM. We first show

that MED solves MMO in linearithmic (O(nlogn)) time.

Proposition 2: The computational complexity of the MED

algorithm is O(nlogn).
Proof: The algorithm first sorts the swarms in decreasing

order of size, which has complexity O(nlogn). Once sorted,

the algorithm terminates after at most n iterations. The sum-

mations used in each iteration can be obtained using a single

operation from the value of the corresponding sum as used in

the previous iteration. Hence, the algorithm has computational

complexity O(nlogn).
We already provided a complexity analysis of pairwise

balancing in Section V-B2, so here we focus on distributed

negotiation. We analyze the complexity of distributed nego-

tiation using the assumption that pairwise balancing can be

performed between distinct pairs of trackers simultaneously,

and show that the complexity of DSM-Max is in the worst

case almost a factor |R |/2 higher than that of DSM-Rand.

Proposition 3: The worst case performance of DSM-Max

on a graph with |E| edges is O(|E|) balancing rounds. Hence

on a complete graph it is O(|R |2) balancing rounds.

Proof: We first show that the worst case performance is

O(|E|) balancing rounds. Consider a tracker graph (as defined

in Section II-B), in which the maximum overlaps between

neighboring trackers, when ordered, form an Eulerian path. By

2Note that the two trackers exchange the number of seeds and leechers
(e.g., 4 bytes per torrent), so that the actual number of peers xt,r and xt,r′

does not influence the amount of data exchanged.

definition, the length of the Eulerian path is |E|, and there will

be only one pairwise balancing executed at once. Because the

number of edges in an undirected complete graph is |R |(|R |−
1)/2, the number of balancing rounds in the worst case is

O(|R |2).
For example, in the complete graph with 5 vertices shown in

Fig. 12 the maximum overlaps form an Eulerian path starting

at vertex 1 and following the overlaps indicated on the edges in

decreasing order. DSM-Max will start by performing a pairwise

balancing between vertices 1 and 2, followed by 2 and 3,

etc. All remaining nodes wait until the nodes with the highest

overlaps perform their pairwise balancings.

DSM-Rand requires significantly less balancing rounds, as

shown by the following result.

Proposition 4: The worst case performance of DSM-Rand

on a graph with |R | vertices is 2⌊(|R |+1)/2)⌋−1 balancing

rounds, that is, O(|R |).
Proof: Let us consider first a complete graph with an even

number of vertices |R |. The number of vertices that can be

involved in a pairwise balancing at any moment is exactly |R |.
Each vertex has to perform (|R | − 1) pairwaise balancings,

hence the number of balancing rounds needed is |R |−1.

Consider now a complete graph with an odd number of

vertices |R |. The number of vertices that can be involved in a

pairwise balancing at any moment is |R |−1. The total number

of pairwise balancings is |R |(|R |−1)/2, but in any balancing

round only (|R |−1)/2 pairwise balancings can be performed,

hence the number of balancing rounds is |R |.
For a non-complete graph with |R | vertices the number of

balancing rounds cannot be more than that for a complete

graph, hence the result.

Consequently, on a complete graph the number of balancing

rounds needed using DSM-Max can be up to |R |/2 times

higher than using DSM-Rand.

C. Simulation-based Performance Evaluation

In the following we show simulation results that compare

the number of balancing rounds and the effectiveness of DSM

to that of the solution of the centralized CSM protocol.

Figures 13(a) and 13(c) show the percentage of small

swarms after applying the centralized and the distributed

protocols as a function of the number of swarms K and as a

function of the average swarm size x, respectively. Both figures

show results for the case when swarm sizes are uniformly

distributed, and the threshold for a small swarm is set at x̃= 50.

The distributed protocol used is DSM-Rand with the MMO-

based pairwise balancing algorithm. Figures 13(b) and 13(d)

show the average number of peers that had to be moved per

swarm to merge the swarms for the same scenarios. Figure 14

shows the corresponding results for the case when the original

swarm sizes are Zipf distributed with exponent 0.9 instead of

uniformly distributed.

When varying the number of swarms K, we show results

for x̄ = 25 and x̄ = 75. These values correspond to average

swarm sizes that are smaller and bigger than the small swarm

threshold x̃= 50, respectively. When varying the swarm size,

we show results for K= 2, K= 8, and K= 32. We note that the

9

100

10

1

0.1

0.01
643216842

P
er

ce
n

ta
g

e
o

f
sw

ar
m

s
(%

)

Number of swarms

DSM, x
-
 =25

CSM, x
-
 =25

DSM, x
-
 =75

CSM, x
-
 =75

(a) Small swarms

 0

 5

 10

 15

 20

643216842

M
o

v
es

 p
er

 s
w

ar
m

Number of swarms

DSM, x
-
 =25

CSM, x
-
 =25

DSM, x
-
 =75

CSM, x
-
 =75

(b) Moves

100

10

1

0.1

0.01
100806040200

P
er

ce
n

ta
g

e
sm

al
l

sw
ar

m
s

(%
)

Average swarm size

K=2
DSM, K=8
CSM, K=8

DSM, K=32
CSM, K=32

(c) Small swarms

 0

 5

 10

 15

 20

100806040200

M
o

v
es

 p
er

 s
w

ar
m

Average swarm size

K=2
DSM, K=8
CSM, K=8

DSM, K=32
CSM, K=32

(d) Moves

Fig. 13: Percentage of small swarms after applying DSM and CSM, as well as the average number of moves per swarm needed

by these protocols. Swarm sizes are uniformly distributed.

100

10

1

0.1

0.01
643216842

P
er

ce
n

ta
g

e
o

f
sw

ar
m

s
(%

)

Number of swarms

DSM, x
-
 =25

CSM, x
-
 =25

DSM, x
-
 =75

CSM, x
-
 =75

(a) Small swarms

 0

 5

 10

 15

 20

643216842

M
o

v
es

 p
er

 s
w

ar
m

Number of swarms

DSM, x
-
 =25

CSM, x
-
 =25

DSM, x
-
 =75

CSM, x
-
 =75

(b) Moves

100

10

1

0.1

0.01
100806040200

P
er

ce
n

ta
g

e
sm

al
l

sw
ar

m
s

(%
)

Average swarm size

K=2
DSM, K=8
CSM, K=8

DSM, K=32
CSM, K=32

(c) Small swarms

 0

 5

 10

 15

 20

100806040200

M
o

v
es

 p
er

 s
w

ar
m

Average swarm size

K=2
DSM, K=8
CSM, K=8

DSM, K=32
CSM, K=32

(d) Moves

Fig. 14: Percentage of small swarms after applying DSM and CSM, as well as the average number of moves per swarm needed

by these protocols. Swarm sizes are Zipf distributed.

operation decisions of the two protocols are identical for the

case when K = 2, and the curves for DSM and CSM therefore

overlap. The cases K = 8 and K = 32 are used to illustrate the

relative difference when there are more swarms in the system.

We note that CSM provides a bound on the best that

the DSM protocol can perform. While the distributed DSM-

Rand protocol consistently achieves the same number of

small swarms as the centralized CSM protocol (i.e., the MED

algorithm), it typically requires slightly more peers to be

moved between swarms. At the same time, the final swarm

sizes, including the total number of non-empty swarms, often

differ for the two protocols.

Comparing Figures 13 and 14 we note that the protocols

are able to achieve a smaller number of small swarms for the

case of uniformly distributed original swarm sizes. However,

for average swarm size around 30 the efficiency in reducing

the number of small swarms comes at the cost of more peers

being moved between trackers, as shown by the peak in terms

of the number of moves in Figure 13(d). Overall, we find that

DSM can achieve much of the benefits of CSM.

VII. TRACE-BASED PERFORMANCE EVALUATION

In order to illustrate the potential benefits of swarm man-

agement we used the CSM and the DSM protocols on the mea-

surement dataset described in Section III. In the following we

present results on the swarm merging efficiency and provide

an estimate of the achievable throughput improvements.

A. CSM and DSM protocol performance

To analyze the performance benefits of dynamic swarm

management, we used CSM and DSM to re-allocate the peers

between swarms belonging to the same torrent in the dataset

obtained on October 10, 2008. In this snapshot there are 550

trackers that have to participate in swarm management (the rest

do not have overlap in torrents). The average overlap between

these 550 trackers is 1,800 torrents.

In total, the dataset contains 765,795 small multi-tracked

swarms (and some non-small ones) if using a threshold of

x̃= 50. Using the centralized CSM protocol 2,875,363 peers

were moved between trackers, and 398,751 of the multi-

tracked swarms became empty (resulting in a total of 367,044

small swarms). On average less than 3.8 peers per swarm had

to be moved.

Using DSM with the MMO-based pairwise algorithm, we

could achieve the same reduction in terms of the number

of small swarms, but requiring slightly more peers to be

moved, a total of 2,891,392 peers. Using DSM with the MMO-

LM-based pairwise algorithm, which provides load balancing,

reduced the number of small swarms by 393,002 only, while

requiring 4,080,624 peers to be moved. This may seem like

a high price to pay for load balancing, but for independently

run trackers MMO-LM is the easiest way to ensure that some

trackers do not end up with an unfair portion of the load

after merges. The best solution may hence depend on the

relationship between the trackers (and who operates them).

Since BitTorrent trackers are mostly operated by independent

entities, in the following we focus on DSM with the MMO-

LM-based pairwise balancing algorithm.

Figure 15 shows the normalized CoV for all torrents using

DSM-Rand. Comparing Figure 15 with Figure 3 we note that

DSM significantly reduces the number of torrents operating

in the lower left corner, i.e., the number of small torrents in

which peers are spread roughly uniformly among the swarms.

It is interesting to note that there are almost no small torrents

left with a normalized CoV below 0.5. To understand why,

10

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Number of peers in torrent (x
t
)

C
oV

(x
t,

r
)/

√

|R
(t

)|
−

1

Fig. 15: The normalized coefficient of

variation after applying DSM-Rand with

x̃= 200.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of peers in torrent (x
t
)

E
[C

oV
(x

t,
r
)/

√

|R
(t

)|
−

1
]

x̃ = 200

x̃ = 100

x̃ = 50

Original

Fig. 16: Average coefficient of variation

as a function of the number of peers for

DSM-Max.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of peers in torrent (x
t
)

E
[C

oV
(x

t,
r
)/

√

|R
(t

)|
−

1
]

x̃ = 200

x̃ = 100

x̃ = 50

Original

Fig. 17: Average coefficient of variation

as a function of the number of peers for

DSM-Rand.

consider a small torrent that has R (t) equal sized swarms

initially, thus its normalized CoV is 0. After one execution of

DSM the number of small swarms is at most R (t)/2, and the

sizes of the non-empty swarms double. Thus the normalized

CoV is 1/
√

R (t)−1, which is at least 0.5 for R (t)≤ 5, and

from Figure 2 we know that not many torrents have more than

5 swarms. It is also conspicouos that DSM merges quite some

torrents that have significantly more than x̃ = 200 peers and

an original normalized CoV above 0.5. While there still are

some torrents that do operate in the lower left corner, Figure 15

suggests that their number is very small.

Figures 16 and 17 show the average normalized CoV as

a function of the number of peers for October 10, 2008 for

DSM-Max and DSM-Rand, respectively. Both figures show

results for both the original peer allocation, as well as for DSM

using three different threshold values (i.e., x̃ = 50,100,200)

for pairwise balancing. We note that DSM pushes the CoV

for torrents smaller than the threshold values (and even a

bit beyond) to roughly one. As previously discussed, this is

exactly what we want.

In total, both DSM-Max and DSM-Rand have to perform

3,535 pairwise balancings; i.e., slightly more than six per

tracker on average. Because a few trackers have to perform

pairwise balancing with a large number of trackers, both

DSM-Max and DSM-Rand require 505 balancing rounds to

perform all pairwise balancings if one considers all pairs of

overlapping trackers. Nevertheless, in order to perform 50%

of the pairwise balancings DSM-Max requires 327 rounds,

while DSM-Rand requires 30 rounds only. Given the higher

level of parallelism allowed by DSM-Rand, the question is

of course whether the random execution order of pairwise

balancings affects the balancing performance. Referring back

to Figures 16 and 17, we note that the difference between the

performance of DSM-Max and DSM-Rand is negligible. Since

DSM-Rand is computationally less intensive, we will in the

following primarily present results for DSM-Rand.

The large number of trackers with small overlaps, as ob-

served in Figure 5, suggests that the number of rounds can

be significantly reduced if the DSM protocol did only do

pairwise load balancing between trackers with at least some

threshold number of torrents in common. The question is

then how such thresholding would affect the efficiency of

DSM. To understand this trade-off, we considered a threshold

policy for DSM. Figure 18 shows results for the case when

pairwise balancing is only performed if |T (r,r′)| > 50, 100

or 200. We observe a very small performance penalty using

these thresholds, while the savings in terms of the number of

pairwise balancings are significant. If one considers overlaps

of more than 50 torrents only (i.e., tracker pairs r,r′ such that

|T (r,r′)|> 50), then the number of pairwise balancings is 353,

of which DSM-Max performs 50% in 68 rounds, and DSM-

Rand in 27 rounds. The respective numbers for |T (r,r′)|> 100

are 233, 36 and 22, and for |T (r,r′)| > 200 they are 142,

27 and 16. These results show that both DSM-Rand and the

threshold-based modifications to the DSM-Max protocol can

reduce the execution time and the overhead of DSM, without

significant impact on the performance gain.

When discussing the protocol convergence, it is also impor-

tant to note that DSM requires fewer re-allocations of peers

among trackers when the protocol is re-applied on the same

set of torrents day after day than when first applied on the

original non-balanced dataset. To capture this effect we used

daily measurements of the swarm sizes for eight consecutive

days. For simplicity, the total torrent size (of a set of swarms)

is estimated as the sum across all “measured” swarms for

that torrent, and the peers associated with this torrent are split

across the swarms such that the estimated individual swarm

sizes are proportional to the individual swarm sizes on the

preceding day (as determined by DSM that day).

Figure 19 shows the average number of swarm changes per

peer that is in the system at the time the protocol is applied,

as a function of the time for both DSM-Max and DSM-Rand.

While DSM-Rand appears to take a bit longer to converge than

DSM-Max, it is interesting to note that both versions appear

to converge relatively quickly to roughly the same value.

Furthermore, as expected, the later iterations require fewer

changes per peer and the average number of swarm changes

per peer is relatively low suggesting that the overhead is low.

Finally, and interestingly, we found that DSM-Rand performs

very similar to DSM-Max. Due to its simpler implementation

and the fact (as noted in Section V-C) that it typically requires

much less balancing rounds, DSM-Rand appears to be the

preferred tracker based protocol.

B. Estimated throughput improvements

Finally, we use the throughput estimates of different sized

swarms presented in Section III to estimate the potential

performance gains that small torrents can obtain using our

protocols. We rely on the throughput estimates from 7pm GMT

shown in Figure 6 to estimate the speedup achieved by the

11

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Number of peers in torrent (x
t
)

E
[C

oV
(x

t,
r
)/

√

|R
(t

)|
−

1]

|T (r, r′)| > 50

|T (r, r′)| > 100

|T (r, r′)| > 200

Original

Fig. 18: Average coefficient of variation

vs. number of peers for DSM-Rand for

various lower limits of tracker overlap.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

Days since 2008.10.10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f

s
w

a
rm

 c
h

a
n

g
e

s
 p

e
r

p
e

e
r

DSM−Max

DSM−Rand

Fig. 19: Time-line simulations using

measurement data for each day.

10
0

10
1

10
2

10
3

10
4

10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of peers in torrent (x
t
)

R
e
la

ti
v
e
 i
n
c
re

a
s
e

o
f
m

e
a
n
 t
h
ro

u
g
h
p
u
t

Upper bound

x̃ = 200

x̃ = 100

x̃ = 50

Fig. 20: Estimated speedup vs. torrent

size after applying DSM-Rand.

10
0

10
1

10
2

10
3

10
4

10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of peers in torrent (x
t
)

R
e
la

ti
v
e
 i
n
c
re

a
s
e

o
f
m

e
a
n
 t
h
ro

u
g
h
p
u
t

Upper bound

|T (r, r′)| > 50

|T (r, r′) > 100

|T (r, r′)| > 200

Fig. 21: Estimated speedup using DSM-

Rand with various thresholds of tracker

overlap, x̃= 200.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

R
e
la

ti
v
e
 m

e
a
n
 t
h
ro

u
g
h
p
u
t
g
a
in

”Small” swarm threshold (x̃)

Upper bound

CSM

DSM − RandTorrent throughput gain

Throughput gain weighted by torrent size

Fig. 22: Estimated speedup for torrents

smaller than 300 peers vs. small swarm

threshold x̃.

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

Days since 2008.10.10

R
e
la

ti
v
e
 m

e
a
n
 t
h
ro

u
g
h
p
u
t
g
a
in

Upper bound

DSM-Max

DSM-Rand

Torrent throughput gain

Throughput gain weighted by torrent size

Fig. 23: Estimated speedup for torrents

smaller than 300 peers vs. time.

DSM protocol (for swarms below 1,000 peers the estimated

throughputs in Figures 6 and 7 coincide). As a benchmark for

our protocols we show in the figures an upper bound, which

was obtained by assuming that all peers of a torrent are in

the same swarm. This would be the case, for example, if all

peers, upon arrival, registered with all trackers. Such a solution

requires trackers to maintain much more state information and

have much higher communication overhead than DSM, but

it enables us to assess the throughput improvement obtained

by DSM. Alternatively, peers could register with the biggest

swarm. This solution could, however, lead to the overload of

a tracker if some form of load balancing is not implemented.

Figure 20 shows the relative throughput improvement for

leechers as a function of the torrent size for DSM-Rand for

various values of the threshold x̃. The results show a good

match with our objectives: the smallest torrents experience

throughput gains up to 50% on average, while torrents above

approximately 1000 peers are not affected by our protocol.

Figure 21 shows the relative throughput improvement for

leechers for DSM-Rand for various threshold values on the

minimum overlap between trackers and x̃ = 200. The results

support our previous observation about the minor impact of the

threshold policy; most of the benefits of DSM can be achieved

by having only the trackers with the biggest overlaps use DSM.

The throughput improvements achieved using DSM are

close to the upper bound. With DSM the throughput is

typically increased by 40% or more on average when torrents

have less than ten peers, and by 10% or more on average

when torrents have less than 200 peers. In general, these results

show a good match with our objectives: the smallest torrents

experience throughput gains up to 60% on average, while

torrents above approximately 200 peers are not affected by

our protocols.

Figure 22 shows the relative estimated throughput improve-

ment for leechers in torrents smaller than 300 peers as a

function of the small swarm threshold x̃. The throughput gain

is only sensitive to the threshold below x̃ ≈ 75, above that

the gain is very close the upper bound, both the average

gain per torrent and the gain weighted by the torrent size.

Figure 23 shows the relative estimated throughput improve-

ment for leechers in torrents smaller than 300 peers over a

week. The throughput gains are rather steady, and show that

dynamic swarm management could improve peer throughput

significantly. For example, the average torrent with less than

300 peers sees an increase in throughput by 30% on average

(and the average peer in such a torrent sees a throughput

increase by 15%).

VIII. RELATED WORK

Much research has been done to understand BitTorrent and

BitTorrent-like systems. The effectiveness of BitTorrent’s tit-

for-tat and rarest-first mechanisms was considered in [15],

[16], the potential of network coding for content distribution

was investigated in [17], and BitTorrent-like systems have also

been considered for streaming [18]. Most of these efforts have

focused on understanding the performance of single-torrent

systems. Other works have analyzed the general characteristics

of BitTorrent traffic, and the impact of BitTorrent usage on the

amount of inter-ISP traffic (e.g., [9], [10]).

There are a few recent works that consider multi-torrent

environments [1], [19], [20], [21], [22]. Neglia et al. [1]

evaluated the benefits of multiple trackers in terms of improved

tracker availability based on measurements. They found that

multiple trackers significantly improve the availability, and

observed that multiple trackers can reduce the connectivity

of the overlay. Guo et al. [19] provided measurement results

showing that more than 85% of torrent users simultaneously

12

participate in multiple torrents (of different files). The authors

also used measurements and analytical models to illustrate that

the “life-time” of torrents can be extended if a node that acts

as a downloader in one torrent also acts as a seed in another

torrent. Yang et al. [20] proposed rate-based incentives that

motivate users to act as seeds for other torrents than they

currently are downloading. Menasche et al. [4] showed that

“bundling” multiple files into a larger file may increase the

aggregate number of parallel downloaders, extend the lifetime

of torrents, and reduce the download times (even for clients

that only are interested in downloading part of the larger

bundle). Peterson et al. [21] proposed a central coordinator

that would allocate peers’ upload capacities between different

torrents in order to optimize download performance.

Our work is complimentary to the above works in sev-

eral aspects. In contrast to [4], [20], [21], [22] we do not

require peers to download more than they are interested in.

Furthermore, our focus is on achieving good performance

while maintaining the high availability of a replicated tracker

based infrastructure pointed out in [1]. Rather than increasing

seed capacity through cooperation among peers downloading

different contents, our work focuses on how multiple swarms

of the same content can be merged to improve the performance

of small swarms. To the best of our knowledge, no other

work (except our own [14]) has considered the performance

benefits from adaptively merging peers for the same torrent

using a tracker-based protocol. In this paper, we provide a

more general and detailed description of the DSM protocol first

described in [14], we describe modifications that significantly

reduce the communication overhead between trackers, and

provide a more detailed performance evaluation than was

presented in our original paper [14].

IX. CONCLUSION

Based on an extensive measurement study we observed

that there exist many moderately popular torrents with sev-

eral small swarms that could significantly benefit from re-

allocating peers among trackers and/or modifying the peer

behavior. We proposed an approach for reallocating peers

among trackers based on splitting swarms on-demand and

merging small swarms periodically. We formulated two ver-

sions of the problem of merging small swarms as optimization

problems, and proposed a centralized and a decentralized

protocol to solve the optimization problems. Both protocols

have low overhead and computational complexity, furthermore

the decentralized protocol can be introduced incrementally in

existing BitTorrent systems.

Our measurement-based protocol evaluation suggests that

dynamic swarm management could lead to a significant perfor-

mance improvement in terms of peer throughput at a very low

overhead; up to 40% for small torrents. While the proposed

protocols may not be the only way to improve the throughput

of small swarms, the potential benefits of other solutions would

be similar to those identified in this paper.

Apart from improving peer throughput, swarm management

could also facilitate locality-aware peer selection as it aug-

ments the set of peers to exchange data with. Tracker-based

swarm management protocols could potentially also be used to

dynamically bundle torrents, with the aim of increasing content

availability. We leave these applications of swarm management

to be subject of future work. We presented the protocols in

the context of BitTorrent, and our work was motivated by the

potential performance benefits in these systems. Nevertheless,

the protocols are in general applicable to content delivery

systems based on redundant trackers, and can be used to

achieve high availability and good system performance with

very little overhead.

REFERENCES

[1] G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and
J. Danaher, “Availability in BitTorrent Systems,” in Proc. IEEE INFO-

COM, May 2007.
[2] BitTorrent Extension Protocols (BEP-0011 and BEP-0012), Nov. 2010.

[Online]. Available: http://www.bittorrent.org
[3] X. Yang and G. de Veciana, “Service Capacity of Peer-to-Peer Net-

works,” in Proc. IEEE INFOCOM, Mar. 2004.
[4] D. Menasche, A. Rocha, B. Li, D. Towsley, and A. Venkataramani,

“Content Availability and Bundling in Swarming Systems,” in Proc.

ACM CoNEXT, Dec. 2009.
[5] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Char-

acterization and Performance Implications,” IEEE/ACM Trans. on Net-

working, vol. 5, no. 5, pp. 631–645, Oct. 1997.
[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching

and Zipf-like Distributions: Evidence and Implications,” in Proc. IEEE

INFOCOM, March 1999.
[7] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon, “I Tube, You

Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System,” in Proc. ACM IMC, Oct. 2007.

[8] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic Characteri-
zation: A View from the Edge,” in Proc. ACM IMC, Oct. 2007.

[9] G. Dán and N. Carlsson, “Power-law revisited: A large scale measure-
ment study of P2P content popularity,” in Proc. International Workshop

on Peer-to-peer Systems (IPTPS), Apr. 2010.
[10] J. S. Otto, M. A. Sanchez, D. R. Choffnes, F. E. Bustamante, and

G. Siganos, “On blind mice and the elephant: Understanding the network
impact of a large distributed system,” in Proc. of ACM SIGCOMM 2011,
Aug. 2011.

[11] A. Barabási and Z. Oltvai, “Network biology: understanding the cell’s
functional organization,” Nat. Rev. Genet., vol. 5, pp. 101–113, 2004.

[12] B. Bollobás and O. Riordan, “The diameter of a scale-free random
graph,” Combinatorica, vol. 24, no. 1, pp. 5–34, 2004.

[13] S. Assmann, D. Johnson, D. Kleitman, and J. Leung, “On a dual version
of the one-dimensional bin packing problem,” J. of Algorithms, vol. 5,
pp. 502–525, 1984.

[14] G. Dán and N. Carlsson, “Dynamic Swarm Management for Improved
BitTorrent Performance,” in Proc. International Workshop on Peer-to-

peer Systems (IPTPS), Apr. 2009.
[15] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and

Improving a BitTorrent Network’s Performance Mechanisms,” in Proc.

IEEE INFOCOM, Apr. 2006.
[16] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke

Algorithms Are Enough,” in Proc. ACM IMC, Oct. 2006.
[17] C. Gkantsidis and P. R. Rodriguez, “Network Coding for Large Scale

Content Distribution,” in Proc. IEEE INFOCOM, Mar. 2005.
[18] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A

Datadriven Overlay Network for Peer-to-Peer Live Media Streaming,”
in Proc. IEEE INFOCOM, Mar. 2005.

[19] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ment, Analysis, and Modeling of BitTorrent-like Systems,” in Proc. ACM

IMC, Oct. 2005.
[20] Y. Yang, A. L. H. Chow, and L. Golubchik, “Multi-Torrent: A Perfor-

mance Study,” in Proc. IEEE MASCOTS, Sept. 2008.
[21] R. S. Peterson and E. G. Sirer, “AntFarm: Efficient Content Distribution

with Managed Swarms,” in Proc. NSDI, May 2009.
[22] N. Carlsson, D. L. Eager, and A. Mahanti, “Using Torrent Inflation

to Efficiently Serve the Long Tail in Peer-assisted Content Delivery
Systems,” in Proc. IFIP/TC6 Networking, May 2010.

13

György Dán received the M.Sc. degree in computer
engineering from the Budapest University of Tech-
nology and Economics, Hungary in 1999 and the
M.Sc. degree in business administration from the
Corvinus University of Budapest, Hungary in 2003.
He worked as a consultant in the field of access
networks, streaming media and videoconferencing
1999-2001. He received his Ph.D. in Telecommu-
nications in 2006 from KTH, Royal Institute of
Technology, Stockholm, Sweden, where he currently
works as an assistant professor. He was a visiting

researcher at the Swedish Institute of Computer Science in 2008. His research
interests include the design and analysis of distributed and peer-to-peer
systems.

Niklas Carlsson is an Assistant Professor at
Linköping University, Sweden. He received his
M.Sc. degree in engineering physics from Umeå
University, Sweden, and his Ph.D. in computer sci-
ence from the University of Saskatchewan, Canada.
He has also worked as a Postdoctoral Fellow at
the University of Saskatchewan, Canada, and as a
Research Associate at the University of Calgary,
Canada. His research interests are in the areas of
design, modeling, characterization, and performance
evaluation of distributed systems and networks.

14

