Interactive Branched Video
Streaming and Cloud Assisted
Content Delivery

Niklas Carlsson

LinkGping University, Sweden

@ Sigmetrics TPC workshop, Feb. 2016 II
®

LINKOPINGS
UNIVERSITET



The work here was in collaboration ...

= Including with students (alphabetic order):
= Youmna Borghol (NICTA, Australia)
= Vengatanathan Krishnamoorthi (Linkoping University, Sweden)
= Siddharth Mitra (IIT Dehli, India)
= ... and non-student collaborators (alphabetic order):
Sebastian Ardon (NICTA, Australia)
Gyorgy Dan (KTH, Sweden)
Derek Eager (University of Saskatchewan, Canada)
Ajay Gopinathan (Google, USA)
Zongpeng Li (University of Calgary, Canada)
Anirban Mahanti (NICTA, Australia)
Nahid Shahmehri (Linkoping University, Sweden)

%()’45 .xo"}‘() hE
UNIVERSITY OF S 7

CALGARY

LINKOPINGS
UNIVERSITET NICTA




Background: Research overview

Design, modeling, and performance evaluation of
distributed systems and networks



Background: Research overview

Scalable content delivery

Design, modeling, and performance evaluation of
distributed systems and networks



Background: Research overview

Scalable content delivery Characterization, analytics, modeling

Design, modeling, and performance evaluation of
distributed systems and networks



Background: Research overview

Efficiency and sustainability

Design, modeling, and performance evaluation of
distributed systems and networks



Background: Research overview

Efficiency and sustainability Network security

Design, modeling, and performance evaluation of
distributed systems and networks



Background: Research overview

Efficiency and sustainability Network security

Design, modeling, and performance evaluation of
distributed systems and networks



In this talk | will talk about ...



... Innovative new streaming media ...




... cost-efficient delivery ...




... and determine who should serve who.







Quality-adaptive Prefetching for Interactive Branched Video

using HTTP-based Adaptive Streaming
Proc. ACM Multimedia 2014.

Empowering the Creative User: Personalized HT TP-based

Adaptive Streaming of Multi-path Nonlinear Video
Proc. ACM FhMN@SIGCOMM 2013. (Also in ACM CCR). Best paper award

Bandwidth-aware Prefetching for Proactive Multi-video

Preloading and Improved HAS Performance
Proc. ACM Multimedia 2015.
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We have solved ...

The problem of providing seamless playback in the
presence of multiple branch options

- HTTP-based Adaptive Streaming
- Path and quality-aware prefetching
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Interactive Branched Video Contributions

Designed and implemented branched video player that
achieve seamless streaming without playback interruptions

Designed optimized policies that maximize playback quality
while ensuring sufficient workahead to avoid stalls

Evaluation shows that solution effectively adapt quality
levels and number of parallel connections so as to provide
best possible video quality, given current conditions

Extensions, generalizations, and variations include “muilti-
file prefetching for impatient users” [Proc. ACM Multimedia
2015]






The Untold Story of the Clones: Content-agnostic Factors that
Impact YouTube Video Popularity

Proc. ACM SIGKDD 2012.

Characterizing and Modeling Popularity of User-generated Videos
Proc. IFIP PERFORMANCE 2011.



(i1 Tube

« Streaming services responsible for majority of traffic

* Video dissemination (e.g., YouTube) can have wide-
spread impacts on opinions, thoughts, and cultures
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Rich-gets-richer ...
...and churn

During next week [log

Views during week [log]

= The more views a video has, the more views it is
likely to get in the future

m The relative popularity of the individual videos
are highly non-stationary

E.qg., IFIP Performance ‘11
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Motivation

- Some popularity differences due to content differences

- But also because of other “content-agnostic” factors

* The latter factors are of considerable interest but it has
been difficult to accurately study them

In general, existing works do not take content differences
Into account .. .(e.g., large number of rich-gets-richer studies)
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Current popularity

Methodology

>

(e.g., views in week)

Some factor of interest

Focus on clone sets
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Methodology: Content-based model

A

Current popularity
(e.g., views in week)

Some factor of interest
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Dynamic Content Allocation for Cloud-assisted Service
of Periodic Workloads

Proc. IEEE INFOCOM 2014



Internet Content Delivery
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Multi-billion market ($8B to $20B, 2012-2015)
« Goal: Minimize content delivery costs
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- Migration to cloud data centers
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- Capped servers: fixed bandwidth (and storage) cap
- Elastic cloud bandwidth: flexible, but pays premium

« Dynamic content allocation: Want to utilize capped
bandwidth (and storage) as much as possible

servers
G T s



Bandwidth demand (B)

Cost minimization formulation

Iotal demand

.
*
R
.

' - ..
Aty ' -
i
RS ., ' .
K 3
' - “, H H
- v o ‘e, "
- | o . ' . .
- R <, BT
B ®© -, o e,
. ' ‘e,
> - “a,,
s %, . >
TR ¥ o -, A
. ., A % ., .
., = &% »,
“ st o % “,
I8 S & % ‘,
o 3 -,

Ky X Xt N
Fd(A o rd(A.+1 "

t; tis1 tiv2

Time of day ({)



Bandwidth demand (B)

Cost minimization formulation

Total demand

rc"(i)_

'
.
i, ' .
i,
. » '
& 4, .
' o , ' .
- ' o ‘e, '
. H K “ ' " "
-~ & <, .
- R s, RYTIELLIT
X ' o,
o = ‘e,
' Y, ' "
UL T Ry “c J “.,
+ e, S o ' “, .
& & »,
“, K . o % 1 N
y, S S 4 ‘.
. o % ! %,

X|17T . - X’t e X.+1
Fd(A no 1ﬂc|(A|+1 n

i1 t; tis1 tiv2
Time of day ({)



Bandwidth demand (B)

Cost minimization formulation

Iotal demand
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Cost minimization formulation
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Cost minimization formulation

Total demand
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Bandwidth demand (B)

Cost minimization formulation
Served using elastic
cloud resources
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Bandwidth demand (B)

Cost minimization formulation
 Traffic of files only in cloud
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Cost minimization formulation
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Cost minimization formulation
 Traffic of files only in cloud
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Utilization maximization
i oo f i

 Traffic of files only in cloud
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Bandwidth demand (B)

: _ Total expected cost
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Optimal policy
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Bandwidth demand (B)

Dynamic content allocation problem

* Formulate as a finite horizon dynamic

x T decision process problem

« Show discrete time decision process

5 cann e is good approximation

A |

t tiaq tisp

Time of day (&  Exact solution as MILP

* Provide computationally feasible
approximations (and prove properties
about approximation ratios)

- Validate model and algorithms using
traces from Spotify






Caching and Optimized Request Routing in Cloud-based
Content Delivery Systems

Proc. IFIP PERFORMANCE 2014.



Internet Content Delivery

Migration to geographically distributed cloud data centers

« Goal: Minimize content delivery costs
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*  When sufficiently expensive storage costs, not all contents
should be cached at all locations
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Minimize
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*  Minimize content delivery costs
« Cache miss cost
« Cache storage cost

« Remote routing cost
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Aggregate request
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*  Minimize content delivery costs
- Cache miss cost
« Cache storage cost |

« Remote routing cost
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Minimze
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I Remote routing cost
Cache storage cost

Cache miss cost

*  Minimize content delivery costs
- Cache miss cost
« Cache storage cost

« Remote routing cost
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Cache miss cost

*  Minimize content delivery costs
« Cache miss cost
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Minimize
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*  Minimize content delivery costs
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Minimize
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Remote routing cost

*  Minimize content delivery costs
- Cache miss cost
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T Aggregate request
Remote routing cost rate "_it Server
Cache storage cost location |

Cache miss cost

*  Minimize content delivery costs
« Cache miss cost
« Cache storage cost

« Remote routing cost
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Request routing optimization
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*  Minimize content delivery costs

Cache miss cost
Cache storage cost

Remote routing cost
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Minimize
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*  Minimize content delivery costs

- Cache miss cost ¢

« Cache storage cost
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Request rate at location

Properties of optimal request routing

A
Either all request served locally or all request served remotely
[Theorem 4]

For Theorem 5 [sets and properties], first ...
Order server location based on request rate

Rank of location



Request rate at location

Properties of optimal request routing

A

Four (4) potentially empty sets of server locations

| | | |
S, S, S, S,

Rank of location
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Request rate at location

Properties of optimal request routing

A
Serversin set S, and S, serves only local request

I Servers in set S, serve both local and remote
Servers in set S; serve the same request rates

Servers in set S, inactive

.
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Request rate at location

Properties of optimal request routing

A
Serversin set S, and S, serves only local request

T

A

Servers in set S; serve both local and remote
< Servers in set S; serve the same request rates

Servers in set S, inactive

.
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Properties of optimal request routing

A
Serversin set S, and S, serves only local request

I Servers in set S, serve both local and remote
Servers in set S; serve the same request rates

Servers in set S, inactive
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Finding the optimal request routing
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Request rate at location

Finding the optimal request routing

A

O(N?) candidate solution to consider;

I I || each at a computational cost O(N)

Note: Size of S; and S, decides the rest

I I I I
S, S, S, S,

Rank of location
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Cost Comparison

Compare optimal dynamic . Signifjcantly outperform.
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Contributions

Propose new delivery approach using distributed clouds
* Request routing periodically updated

« Cache content updated dynamically

Formulate optimization problem

* Non-convex, so standard techniques not directly applicable
ldentify and prove properties of optimal solution

* Leverage properties to find optimal solution

Comparison with optimal static placement and routing, as
well as with baseline policies

Present a lower-cost approximation solution that achieve
within 2.5% of optimum
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