Collaborative Network Security

Targeting Wide-area Routing and Edge-network Attacks

Rahul Hiran

Linköping University, Sweden Supervisors: Nahid Shahmehri, Niklas Carlsson

Background

Difficult to check true ownership of prefixes

Prefix hijack attack

Background

Prefix hijack attack

Attacker path is shorter

Background

Subprefix hijack attack

Attacker prefix is more specific

Imposture attack

Interception attack

Research questions

Research questions

- What can we learn about large scale routing anomalies using publicly available datasets?
- How can we design scalable mechanisms to raise alerts for routing attacks and malicious edge-network-based activities?
- How are the gains from routing security mechanisms affected by scale, size, and locality aspects of the collaborating ASes?

Contributions

- Characterization of the China Telecom incident
- Decentralized collaborative mechanisms to detect attacks
 - PrefiSec
 - CrowdSec
 - TRAP
- Evaluation of different routing security mechanisms from scale, size, and locality perspective
 - Routepath updates
 - Origin information
 - Traffic properties such as RTT

Contributions

- Characterization of the China Telecom incident
- Decentralized collaborative mechanisms lacksquare
 - PrefiSec
 - CrowdSec
 - TRAP
- Evaluation of different routing security mechanisms from scale, size, and locality perspective
 - Routepath updates
 - Origin information
 - Traffic properties such as RTT

Effect of scale, size, locality

Collaborative mechanisms

China Telecom incident

China Telecom incident

military figures, a report to the US Congress said.

How did interception occur?

Two routing decisions required for traffic interception:

- 1. A neighbor routes to China Telecom for hijacked prefix
- 2. Another neighbor does not do so

How did interception occur?

Two routing decisions required for traffic interception:

- 1. A neighbor routes to China Telecom for hijacked prefix
- 2. Another neighbor does not do so

Reasons for not routing to China Telecom

Reason	# of traceroutes	% of traceroutes
Had a customer path	139	39%
Had a shorter path	193	54%
Had an equally good path	18	5%
Other	7	2%

Reasons for not routing to China Telecom

Reason	# of traceroutes	% of traceroutes
Had a customer path	139	39%
Had a shorter path	193	54%
Had an equally good path	18	5%
Other	7	2%

- Decisions made by ASes resulted in interception
- Collaboration important to detect such attacks

- AS registry -Information about ASes, their relationships, and AS-to-prefix mappings
- Prefix registry

-Prefix origin information (prefix-to-AS mapping), and edge-network activities

- AS registry -Information about ASes, their relationships, and AS-to-prefix mappings
- Prefix registry

-Prefix origin information (prefix-to-AS mapping), and edge-network activities

- AS registry -Information about ASes, their relationships, and AS-to-prefix mappings
- Prefix registry
 - -Prefix origin information (prefix-to-AS mapping), and edge-network activities

IP 12.12.12.12 maps to prefix 12.12.12.0/24; not prefix 12.12.0.0/16

- AS registry

 Information about ASes, their relationships, and AS-to-prefix mappings
- Prefix registry

-Prefix origin information (prefix-to-AS mapping), and edge-network activities

- AS registry -Information about ASes, their relationships, and AS-to-prefix mappings
- Prefix registry

-Prefix origin information (prefix-to-AS mapping), and edge-network activities

Prefix hijack detection

Prefix hijack detection

Evaluation

- Performed data-driven analysis
- Used Routeviews data during the time when China Telecom incident occurred
- Simulate the proposed policy on each participating node

Example results

- Overhead small compared to centralized mechanisms
- Day before attack:
 - With all 6 routeviews servers collaborating, approximately 1,500 alerts raised
- Day of attack:
 - Would raise alerts for all 39,094 false announcement made by China Telecom
 - Same alert rate as centralized mechanism

Mechanisms to secure BGP

- Prefix origin (hijack prevention): Route filtering, RPKI, ROVER
- Route path updates (hijack detection): PHAS, PrefiSec, PG-BGP
- Passive measurements: CrowdSec
- Active measurement: Zheng et al., PrefiSec

Mechanisms to secure BGP

- Prefix origin (hijack prevention): Route filtering, RPKI, ROVER
- Route path updates (hijack detection): PHAS, PrefiSec, PG-BGP
- Passive measurements: CrowdSec
- Active measurement: Zheng et al., PrefiSec

Evaluation aspects

- Locality
 - ASes in specific geographical area: European Union (EU), North America (NA), "rest of the world" and compare with global scenario
- Size
 - Size of an AS is based on the number of neighbors of that AS (termed as degree of AS)
- Scale
 - Number of collaborating ASes

Hijack detection mechanism

- Evaluation based on PrefiSec
- Instead of collaboration among routers in Routeviews data, we consider collaboration of ASes
- Data around time of the China Telecom incident

Scale and locality

Scale and locality

- High detection rate in *rest of the world* despite fewer ASes
- Regional deployment along with ASes from other regions

Scale and locality

- High detection rate in *rest of the world* despite fewer ASes
- Regional deployment along with ASes from other regions

Summary and contributions

- China Telecom incident characterization
 - Pointers to route leakage but difficult to rule out malicious intent
- On collaboration
 - Design collaborative mechanisms with decentralized operation
 - Targeting different attacks
- On scale, size, and locality
 - Evaluate security gains for a plausible approach to drive the deployment of these mechanisms
 - Smaller networks have important role to play

Collaborative Network Security *Rahul Hiran*

- Does Scale, Size, and Locality Matter? Evaluation of Collaborative BGP Security Mechanisms, Proc. IFIP Networking, 2016
- Crowd-based Detection of Routing Anomalies on the Internet, Proc. *IEEE CNS*, 2015
- PrefiSec: A Distributed Alliance Framework for Collaborative BGP Monitoring and Prefix-based Security, Proc. ACM WISCS @CCS Scottsdale, AZ, 2014
- Characterizing Large-scale Routing Anomalies: A Case Study of the China Telecom Incident, Proc. PAM, 2013
- TRAP: Open Decentralized Distributed Spam Filtering, Proc. TrustBus, 2011

