PET-Exchange: A Privacy Enhanced Trading Exchange using Homomorphic Encryption

David Hasselquist^{1,2}, Jacob Wahlman^{1,3}, Niklas Carlsson¹

¹ Linköping University, Sweden
² Sectra Communications, Sweden
³ Nasdaq, Inc.

Proc. International Conference on Privacy, Security, and Trust (PST), Copenhagen, Denmark, August 2023

- » Trading platforms
- » Electronic shift
 - » High-frequency trading
- » Unfair, unethical, or illegal trading
 - » Front running
 - » Penny jumping
 - » Insider trading

FINANCIAL TIMES

ETF Hub Exchange traded funds (

(+ Add to myFT

Insider traders use ETFs to front-run M&A deals, academics say

Research identifies \$2.75bn worth of potential 'shadow trades' in US between 2009 and 2021

FINANCIAL TIMES

ETF Hub Exchange traded funds

Insider traders use ETI M&A deals, academics

+ Add to myFT

Research identifies \$2.75bn worth of potent between 2009 and 2021

|--|

World ~

Business ~ Markets ~ Sustainability ~ More v

U.S. Markets

Securities trader charged in New York with front-running employer's trades

Reuters

December 14, 2022 11:56 PM GMT+1 · Updated 8 months ago

Securities trading

- » Transparency in public exchanges
- » Dark pools
 - » Less transparent, lack of regulation
- » Cryptography
 - » May prevent unfair practices
- » Homomorphic encryption
 - » Not trivial due to large overheads

Contributions

- » We present PET-Exchange, a privacy-preserving trading framework using homomorphic encryption for trading securities, partially matching limit orders between multiple buyers and sellers
- » Using various conditions and configurations, we provide insights into the most attractive tradeoffs applicable to a wide range of exchanges and use cases
- We provide insights into current performance bottlenecks and validate that we can achieve high accuracy with many decimals of precision

PET-Exchange

- » Order entry
 - » Sorted order book
 - » Binary search on encrypted orders
- » Values cannot be compared directly
 - » Local comparison
 - » Remote comparison

- » Local comparison
 - » Approximation

$$k = f(\theta^A, \ \theta^B) \approx \begin{cases} 0, & \text{if } \theta^A < \theta^B \\ 0.5, & \text{if } \theta^A = \theta^B \\ 1, & \text{if } \theta^A > \theta^B \end{cases}$$

» Challenge creation + validation

- » Local comparison
 - » Approximation

$$k = f(\theta^{A}, \ \theta^{B}) \approx \begin{cases} 0, & \text{if } \theta^{A} < \theta^{B} \\ 0.5, & \text{if } \theta^{A} = \theta^{B} \\ 1, & \text{if } \theta^{A} > \theta^{B} \end{cases}$$

- » Challenge creation + validation
- » Remote comparison
 - » Padded order values instead of approximation value

- » Order matching and execution
 - » Local or remote comparison method
 - » Homomorphic subtraction to continuously match partially filled orders

Name	Level	Poly. mod- ulus degree	Security level	E[Order size]	E[Remote challenge size]	E[Local challenge size]
CKKS-11	1	2,048	128	66 KB	66 KB	N/A
CKKS-12	1	4,096	256	130 KB	131 KB	N/A
CKKS-14	6	16,384	128	3.15 MB	3.15 MB	2.10 MB
CKKS-15	6	32,768	256	6.29 MB	6.29 MB	4.19 MB
Plain	N/A	N/A	N/A	0.33 KB	0.18 KB	0.31 KB

Name	Level	Poly. mod- ulus degree	Security level	E[Order size]	E[Remote challenge size]	E[Local challenge size]
CKKS-11	1	2,048	128	66 KB	66 KB	N/A
CKKS-12	1	4,096	256	130 KB	131 KB	N/A
CKKS-14	6	16,384	128	3.15 MB	3.15 MB	2.10 MB
CKKS-15	6	32,768	256	6.29 MB	6.29 MB	4.19 MB
Plain	N/A	N/A	N/A	0.33 KB	0.18 KB	0.31 KB

Name	Level	Poly. mod- ulus degree	Security level	E[Order size]	E[Remote challenge size]	E[Local challenge size]
CKKS-11	1	2,048	128	66 KB	66 KB	N/A
CKKS-12	1	4,096	256	130 KB	131 KB	N/A
CKKS-14	6	16,384	128	3.15 MB	3.15 MB	2.10 MB
CKKS-15	6	32,768	256	6.29 MB	6.29 MB	4.19 MB
Plain	N/A	N/A	N/A	0.33 KB	0.18 KB	0.31 KB

Name	Level	Poly. mod- ulus degree	Security level	E[Order size]	E[Remote challenge size]	E[Local challenge size]
CKKS-11	1	2,048	128	66 KB	66 KB	N/A
CKKS-12	1	4,096	256	130 KB	131 KB	N/A
CKKS-14	6	16,384	128	3.15 MB	3.15 MB	2.10 MB
CKKS-15	6	32,768	256	6.29 MB	6.29 MB	4.19 MB
Plain	N/A	N/A	N/A	0.33 KB	0.18 KB	0.31 KB

Performance metrics

- » Time-to-Finish (TTF)
 - » Total runtime for trading session
- » Time-to-Match (TTM)
 - » Time spent on matching encrypted orders
- » Time-to-Insert (TTI)
 - » Time spent on inserting encrypted order into order book
- » Time-to-Solve-Challenges (TTSC)
 - » Time spent on evaluator solving challenges

Evaluation

Increase in time to finish (TTF) relative just doing the nonencrypted (i.e., plain) comparisons locally.

Evaluation

Increase in time to finish (TTF) relative just doing the nonencrypted (i.e., plain) comparisons locally.

Increase in time to finish (TTF) when adding N additional challenges to every challenge.

Bottlenecks

» Relative time consumed on different tasks (executed in parallel) relative to the overall time to finish (TTF).

Five extra challenges per challenge

Batched-based workload

» Relative time to finish (TTF) for batched workload use case compared to the default use case.

- » Operations must be performed with sufficient precision and accuracy
- » Average deviation from expected value per configuration and decimal precision

Dec.	Plain	CKKS-11	CKKS-12	CKKS-14	CKKS-15
≤ 8	0	0	0	0	0
9	0	10^{-7}	10^{-5}	10^{-7}	0
10	0	$1.08 \cdot 10^{-6}$	$2.11 \cdot 10^{-8}$	$1.14 \cdot 10^{-8}$	0
11	0	$4.81 \cdot 10^{-8}$	$3.14 \cdot 10^{-8}$	$1.11 \cdot 10^{-8}$	0
12	0	$1.59 \cdot 10^{-6}$	$3.12 \cdot 10^{-8}$	$2.19 \cdot 10^{-9}$	0
13	0	$1.61 \cdot 10^{-8}$	$2.30 \cdot 10^{-8}$	$1.52 \cdot 10^{-9}$	0
14	10^{-11}	$1.11 \cdot 10^{-8}$	$2.83 \cdot 10^{-8}$	$4.44 \cdot 10^{-9}$	10^{-11}
15	10^{-11}	$1.46 \cdot 10^{-8}$	$1.97 \cdot 10^{-8}$	$6.51 \cdot 10^{-9}$	10^{-11}

- » Operations must be performed with sufficient precision and accuracy
- » Average deviation from expected value per configuration and decimal precision

Dec.	Plain	CKKS-11	CKKS-12	CKKS-14	CKKS-15
≤ 8	0	0	0	0	0
9	0	10^{-7}	10^{-5}	10^{-7}	0
10	0	$1.08 \cdot 10^{-6}$	$2.11 \cdot 10^{-8}$	$1.14 \cdot 10^{-8}$	0
11	0	$4.81 \cdot 10^{-8}$	$3.14 \cdot 10^{-8}$	$1.11 \cdot 10^{-8}$	0
12	0	$1.59 \cdot 10^{-6}$	$3.12 \cdot 10^{-8}$	$2.19 \cdot 10^{-9}$	0
13	0	$1.61 \cdot 10^{-8}$	$2.30 \cdot 10^{-8}$	$1.52 \cdot 10^{-9}$	0
14	10^{-11}	$1.11 \cdot 10^{-8}$	$2.83 \cdot 10^{-8}$	$4.44 \cdot 10^{-9}$	10^{-11}
15	10^{-11}	$1.46 \cdot 10^{-8}$	$1.97 \cdot 10^{-8}$	$6.51 \cdot 10^{-9}$	10^{-11}

- » Operations must be performed with sufficient precision and accuracy
- » Average deviation from expected value per configuration and decimal precision

Dec.	Plain	CKKS-11	CKKS-12	CKKS-14	CKKS-15
≤ 8	0	0	0	0	0
9	0	10^{-7}	10^{-5}	10^{-7}	0
10	0	$1.08 \cdot 10^{-6}$	$2.11 \cdot 10^{-8}$	$1.14 \cdot 10^{-8}$	0
11	0	$4.81 \cdot 10^{-8}$	$3.14 \cdot 10^{-8}$	$1.11 \cdot 10^{-8}$	0
12	0	$1.59 \cdot 10^{-6}$	$3.12 \cdot 10^{-8}$	$2.19 \cdot 10^{-9}$	0
13	0	$1.61 \cdot 10^{-8}$	$2.30 \cdot 10^{-8}$	$1.52 \cdot 10^{-9}$	0
14	10^{-11}	$1.11 \cdot 10^{-8}$	$2.83 \cdot 10^{-8}$	$4.44 \cdot 10^{-9}$	10^{-11}
15	10^{-11}	$1.46 \cdot 10^{-8}$	$1.97 \cdot 10^{-8}$	$6.51 \cdot 10^{-9}$	10^{-11}

- » Operations must be performed with sufficient precision and accuracy
- » Average deviation from expected value per configuration and decimal precision

Dec.	Plain	CKKS-11	CKKS-12	CKKS-14	CKKS-15
≤ 8	0	0	0	0	0
9	0	10^{-7}	10^{-5}	10^{-7}	0
10	0	$1.08 \cdot 10^{-6}$	$2.11 \cdot 10^{-8}$	$1.14 \cdot 10^{-8}$	0
11	0	$4.81 \cdot 10^{-8}$	$3.14 \cdot 10^{-8}$	$1.11 \cdot 10^{-8}$	0
12	0	$1.59 \cdot 10^{-6}$	$3.12 \cdot 10^{-8}$	$2.19 \cdot 10^{-9}$	0
13	0	$1.61 \cdot 10^{-8}$	$2.30 \cdot 10^{-8}$	$1.52 \cdot 10^{-9}$	0
14	10^{-11}	$1.11 \cdot 10^{-8}$	$2.83 \cdot 10^{-8}$	$4.44 \cdot 10^{-9}$	10^{-11}
15	10^{-11}	$1.46 \cdot 10^{-8}$	$1.97 \cdot 10^{-8}$	$6.51 \cdot 10^{-9}$	10^{-11}

Conclusions

- » We present PET-Exchange, a privacy-preserving trading framework using homomorphic encryption for trading securities, partially matching limit orders between multiple buyers and sellers
- » Using various conditions and configurations, we provide insights into the most attractive tradeoffs applicable to a wide range of exchanges and use cases
- We provide insights into current performance bottlenecks and validate that we can achieve high accuracy with many decimals of precision

PET-Exchange: A Privacy Enhanced Trading Exchange using Homomorphic Encryption

David Hasselquist Jacob Wahlman Niklas Carlsson

Paper is online!

David Hasselquist (david.hasselquist@liu.se)

Extra slides Local vs. remote comparison method

Local comparison

Remote comparison

