
PET-Exchange: A Privacy Enhanced Trading
Exchange using Homomorphic Encryption

David Hasselquist∗†, Jacob Wahlman∗‡, Niklas Carlsson∗
∗Linköping University, Sweden
†Sectra Communications, Sweden

‡Nasdaq, Inc.

Abstract—The underlying trading mechanisms of electronic
securities exchanges have mostly stayed the same over the years
with some additions and improvements. However, over the recent
decade, high-frequency traders using algorithmic trading have
shifted the field using practices that many consider unfair or
unethical. In addition, insider trading continues to cause trust
issues on certain trading platforms. In this paper, we present
PET-Exchange, a privacy-preserving framework for trading se-
curities on an electronic stock exchange. By using homomorphic
encryption, PET-Exchange prevents information disclosures and
unfair advantages in the trading processes. By matching and
trading encrypted orders, we study the performance under
various volumes and timing constraints, and compare this to
the unencrypted counterparts. Our analysis of PET-Exchange
using market trade data shows the privacy and cryptographic
tradeoffs, demonstrating it to be suitable for small-scale trading
and privacy-preserving auctions. Finally, we discuss the potential
impact on transparency, fairness, and opportunities for financial
crime in an electronic securities exchange. The insights we
provide take us one step closer to a privacy-aware and fair public
securities exchange.

I. INTRODUCTION

Since the introduction of electronic securities exchanges,
the trading process has been made more easily available for
users. Today, electronic securities exchanges handle millions
of trades every market day with billions of shares changing
owners. On these exchanges a user can place either buy orders
(bid) or sell orders (ask) for a given price and volume of
a financial asset. Trading securities on a public securities
exchange such as the New York Stock Exchange or Nasdaq im-
plies a certain transparency of the exchange’s processes, where
the transparency aims to ensure that no participant is offered an
unfair advantage. However, the transparent process also entails
risks contributing to unfair practices where malicious traders
or high-frequency traders can gain an unfair advantage using
tactics such as front running [1], penny jumping [2], or variants
of insider trading [3].

By placing orders, users must trust that the exchange
preserves the transaction privacy. When matching ask and bid
orders, the exchange must first decrypt each order, creating a
potential breach of the privacy chain. Somebody may therefore
ask why a trader should trust that a broker or an exchange
cannot and will not use the decrypted order information to
gain an unfair advantage?

A method that larger broker firms use to avoid issues
stemming from transparency is to perform trades in an off-

exchange market. These alternative trading systems are com-
monly referred to as dark pools [4]. Here, users or brokers can
submit pre-trade bids and wait to disclose the trades publicly
until they have been executed. However, in recent years, the
United States Securities and Exchange Commission (SEC)
and its commissioners have voiced concerns about the lack
of regulation surrounding dark pools and the unfair advantage
it might provide its participants [4]. This has raised significant
interest in alternative solutions to dark pools that enable both
transparency and privacy.

Various efforts have been made to prevent unfair practices
by utilizing cryptography. Today, encryption is used on public
securities exchanges to encrypt orders and order books at rest
and in transit. However, no practical solution has been imple-
mented in public securities exchanges that handle encrypted
orders, causing possible information leaks.

Homomorphic encryption is one potential solution to the
above trust dilemma associated with public exchanges, allow-
ing operations to be performed directly on ciphertexts without
first decrypting the data [5]. The result of these operations is
a new ciphertext encrypted under the original secret. When
decrypted, the results correspond to the same value as if the
operation would have been applied to the plaintext. Since
homomorphic encryption allows operations to be performed
directly on ciphertexts, a broker or exchange (in our context)
do not need to access the plaintext to perform matching of ask
and bid orders. If such functionality were implemented in a
way that the exchange could still offer the same service, the
use of homomorphic encryption could potentially help address
the above trust dilemma. However, implementing the desirable
functionalities is not trivial, and the solutions often come with
additional performance overheads. For example, homomor-
phic operations can be highly resource intensive, and these
solutions typically increase storage allocation requirements
significantly compared to traditional cryptographic methods.

Fortunately, recent innovations have enabled new, improved
homomorphic encryption schemes, making them applicable for
increasingly more performance-intensive tasks. Based on our
experience implementing a securities exchange using homo-
morphic encryption, we argue that this is the right time to
apply it to financial applications such as securities exchanges.

In this paper, we present PET-Exchange, a privacy-
preserving trading framework for trading securities where limit
orders can be partially matched between multiple buyers and

© IEEE, (2023). This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution.
The definitive version was published in Proc. International Conference on Privacy, Security, and Trust (PST), Aug. 2023, IEEE Xplore [to be added: DOI]

sellers. By carefully applying homomorphic encryption, our
exchange model is capable of inserting into order books,
matching, and executing limit orders despite them being
encrypted. First, we present a theoretical model that outlines
the design of each functionality. This includes the design of
methods for using homomorphic encryption to preserve the
privacy of the orders and for non-revealing continuous double
auction matching of prices and volumes. We assume an honest-
but-curious threat model where actors can observe all internal
operations and attempt to extract sensitive information. By
limiting the information that each entity can extract, giving
them access only to the information needed to complete their
task, we prevent information disclosure and limit the trust
placed on each component of the system. Second, we validate
our proof-of-concept implementation of PET-Exchange by
simulating trades under various conditions. Third, we present
a performance evaluation that provides insights into the most
attractive tradeoffs associated with using two fundamentally
different ways of comparing orders, different configurations
(with different overhead-accuracy tradeoffs), and overheads
associated with specific aspects of our implementation (e.g.,
additional “dummy” orders for validating the third-party eval-
uator). Our evaluation also provides insights into current
performance bottlenecks and validates that we can achieve
high accuracy with many decimals of precision (important as
exchanges require floating point operations).

Overall, our results demonstrate that PET-Exchange can
achieve the benefits of homomorphic encryption, effectively
addressing the targeted trust dilemma without sacrificing accu-
racy. Our proof-of-concept implementation highlights that the
framework design and variations thereof are possible today,
opening the door to better prevent unfair trading practices
in electronic securities exchanges. Finally, studying the most
attractive configuration tradeoffs, performance insights are
made applicable to a wide range of exchanges and use cases.

To put the work in the context of related work (Section VII),
we first acknowledge that homomorphic encryption has been
studied to improve user privacy in the securities market
context. However, unique to this work is that no previous
study addresses the challenge of matching limit orders, where
orders are continuously private throughout the trading process
until execution. Furthermore, no study has presented a privacy-
preserving solution allowing partially-filled limit orders. While
previous works have studied privacy-preserving auctions, these
often fail to consider cases with multiple winners and fail to
show a method for delaying the disclosure of auction winners.

Outline: Section II presents an overview of securities
exchanges. Section III presents our PET-Exchange model, its
components, and the role of each party. Section IV explains the
design of our order handling. Our performance evaluation is
presented in Section V. Here, we focus on relative differences
and provide system insights into the performance, overheads,
security, and accuracy associated with different implementa-
tion options. Section VI discusses various confidentiality, se-
curity, and ethical considerations. Finally, Section VII presents
related works and Section VIII our conclusions.

II. SECURITIES EXCHANGE

Securities exchanges are trading platforms where securi-
ties are traded. Since the 1971 introduction of the Nasdaq
electronic trading platform, the classical physical trading has
shifted to electronic securities exchanges [6]. With this shift,
several new trading methods have evolved. One such method
is algorithmic trading with the goal of lowering latency. The
reduced latency allowed brokers to react even quicker to
movements in securities prices than any human could [2].

Securities are one type of instrument, a contract for a
financial asset that can be transferred or held [7]. A public
securities exchange allows users to trade outstanding securities
and various instruments in publicly traded companies listed on
the exchange. Exchanges also provide clearing functionality
that acts as a neutral intermediate between the buyer and the
seller to handle the payment.

Traders can typically use different order types on securities
exchanges. Common order types include market orders, stop
orders, limit orders, and many variations that usually introduce
further constraints or conditions for execution [6]. Market
orders are executed at the best available price, determined at
the time of execution [6]. Stop orders are categorized into buy
and sell stop orders, defining a limit where the orders turn
into market orders [6]. Limit orders are executed at a specific
limit price or better, where a bid order is executed at a limit
price or below, while ask orders are executed at the limit price
or above [6]. In this paper, we focus on privacy-preservation
of limit order entry, matching, and trading, but note that our
approach can also be generalized for other order types.

A. Unfair Practices in Trading

Unfair practices in securities exchange trading can lead to
advantages for a group of traders at the cost of other traders.
These practices influence the market and price of securities,
often using non-public information. For example, some mali-
cious traders can gain an unfair advantage by analyzing active
and incoming orders before they are published or executed.
This includes high-frequency traders using algorithmic trading
with powerful computers to place orders on the securities
exchange and consume information at a pace that is not
possible for smaller traders [2]. Penny jumping [2] is a trading
strategy not considered illegal but, in many cases, unfair. Here,
traders place orders slightly above or below existing ones to
ensure their bid or ask orders get executed first, with minimal
price difference [2].

An example of illegal trading is front running, which is
an action of capitalizing on a trade with knowledge about an
upcoming trade that has not been publicly disclosed [1]. These
trades are illegal as the trader uses non-public information to
manipulate the price before the trade has been disclosed.

B. Dark pools

A reaction to the imposed transparency by public securities
markets is the alternative trading systems, commonly referred
to as dark pools [4]. A dark pool is a more privacy preserving
off-exchange market and an alternative to the public exchange

markets. Here, traders can hide their trading intents from other
malicious traders and algotraders [4]. Dark pools allow partic-
ipants to trade securities with a limited number of participants.
In some cases, dark pool operators hide other active orders,
so a client might not be aware that a counterpart order exists
until they have submitted their order [4]. Compared to the
public securities exchanges, where quotes are published on
securities before the trade to enable transparency for order
information pre-trade and post-trade, dark pools only publish
post-trade data after the trade has been executed. Therefore,
the dark pool trade is considered to be executed outside the
exchange [4].

The need for an enhanced privacy trading market exchange
has increased over the years, making dark pool trading more
popular. The dark pools generally see fewer orders as there
are fewer applicable traders, but the volume in each order is
often larger. Recently, shares for popular securities have seen
increased trading in dark pools. For example, the AMC stock
has seen 64% of its trading volume being on dark pools [8],
clearly showing the desire for privacy enhanced trading.

However, dark pool operators have been investigated for
numerous violations of unfair practices in trading, including
penny jumping [2] and front-running traders in the pool [4].
These unfair practices have raised concerns of dark pool
trading among the regulators of financial markets [4]. Dark
pools are also often criticized for their privacy and unavailable
marketplace for smaller traders [4]. Therefore, alternatives
for privacy-preservation exchange such as those presented
in this paper are of interest. In PET-Exchange, order books
are instead public and encrypted, enabling more transparency
while keeping traders’ privacy.

III. PET-EXCHANGE MODEL

The trading system of an electronic securities exchange
consists primarily of an exchange interacting with brokers,
matching engines, and order books. Similarly, we implement
these in PET-Exchange. In addition, our PET-Exchange model
consists of an evaluator responsible for handling decryption
keys and solving challenges. All homomorphic encryption
operations use the CKKS [9] scheme as the exchange model
must operate on floating point values. Figure 1 shows an
architectural overview of PET-Exchange. At a high level, we
have three component groups (colored parts), one for the
broker, one containing the exchange, and one containing the
evaluator. We next describe each component.

Brokers: Brokers send orders for a given instrument to the
electronic securities exchange where instruments are traded.
Brokers can either place orders for listed instruments directly
or act as intermediaries for their clients. Examples of brokers
include E*TRADE and Charles Schwab.

Exchange: An electronic exchange allows brokers to place
orders on securities for the listed instruments, allowing order
entry and forwarding, with the central function being matching
and executing two orders [6], [7]. The two largest public secu-
rities exchanges are New York Stock Exchange and Nasdaq.

Matching engine

Exchange

Broker

Evaluator

Key handlerKey
storage

Order
book

Challenge
solver

...

Broker

Matching engine

Exchange Order
book

Fig. 1. Overview of PET-Exchange.

Order book: The electronic securities exchanges receive
orders from brokers, which are inserted into order books
connected to the order type and the instrument. Order books
are a sorted list of buy and sell orders for a specific financial
instrument. Typically, the order book is sorted based on the
price point for the given instrument. However, additional
requirements depending on the order type might alter the
sorting of the order book [6]. In the electronic exchange,
multiple order books can be used to keep track of performed
orders and for active orders for traded instruments [6]. In a
simple representation, an order book for active orders can be
described as two columns Bi and Ai representing the active
bid and ask orders. The exchange can then use the order book
to determine the price at which a security is traded [6].

In PET-Exchange, an encrypted variant of the order book
is used as the order price and volume are encrypted when
inserted into the order book. The difference between a regular
order book and the encrypted order book is that the properties
identifying the order are no longer available to the exchange.
Therefore, the trading price cannot be directly obtained from
the order book. Instead, the matching engine uses the en-
crypted order book as a state holding the ordered queues of
active bid and ask orders.

Matching engine: For each electronic securities exchange,
there is at least one matching engine. The matching engines
use different algorithms to match buy and sell orders in a
securities exchange [6]. Orders are typically picked from the
order book referring to a specific instrument. The engine
matches orders that meet specific requirements. These require-
ments include limits on the price, volume, and any additional
constraints that depend on the order type. The matching engine
performs the matching logic between orders to clear or execute
them. The orders are matched between an order to buy (bid)
and an order to sell (ask), and the matching depends on
the price and volume [6]. The exact fields included in order
matching depend on the order types. Some types may exclude
the price limit and instead define an order with a volume that
should be cleared at the given market value of the instrument.
In PET-Exchange, the matching engine supports the matching
of encrypted orders, executing them entirely or partially, and
does this without learning the order price or volume.

Evaluator: A shared evaluator is connected directly to the
matching engines and also indirectly to the exchanges. The
evaluator is a neutral party in the system and handles the key

TABLE I
SUMMARY OF NOTATION AND SUPPORTED OPERATIONS.

Notation/Operation Description
I Exchange instrument
Pk and Sk Public and secret keys
θ Encrypted order
θA and θB Encrypted ask and bid order
θP and θV Order price and volume
γ(θ) Padded order with padding γ

C(α, β)i Challenge index i where α and β are two encrypted values
P I
k , SI

k ← KeyGen(I) Generate public key P I
k and secret key SI

k for instrument I
c← EncField(p) Encryption of plaintext p
p← DecField(c) Decryption of ciphertext c
c← EncAdd(c1, c2) Addition of two ciphertexts c1 and c2
c← EncSub(c1, c2) Subtraction of two ciphertexts c1 and c2
λ← RandV alue(i, j) Random value between i and j if specified

z ← Compare(α, β)
Comparison of encrypted values α and β using local or
remote comparison. λ = True if plaintext α < β, else False

γ(θ)← PadOrder(θ, γ) Padding γ applied to an encrypted order θ
([C(α, β)i; n],
[Boolean; n])
← GenCha(C(α, β), n)

Generation of n challenges

pair of the public key Pk and secret key Sk. The evaluator
(and its subcomponents) is the only component with access
to the secret key. The evaluator is responsible for distributing
the public keys for any instrument traded on the exchanges
and can also determine the homomorphic operation results
used when matching orders. While the evaluator has access
to the secret keys, the component does not have to be fully
trusted as the exchange only shares comparison values (and not
order information) with the evaluator. In PET-Exchange, the
evaluator interacts with two sub-components, the key handler,
and the challenge solver.

Key handler & Key storage: The key handler component
handles key generation and interacts with the key storage. For
each traded instrument I , a key-pair with a public key P I

k
and a secret key SI

k is stored and mapped on the key storage.
Clients or brokers interacting with the exchange use the public
key P I

k for the instrument I to encrypt their orders before
sending them to the exchange. Before encrypting, clients or
brokers must first obtain P I

k by querying the exchange. The
exchange obtains the public key through the evaluator.

Challenger solver: A challenge solver is a logic unit part
of the evaluator component and determines the result of a
comparison operation repeated on a given set of challenges.
An exchange creates challenges for two purposes: hiding the
comparison of interest among a set of challenges and verifying
the evaluator’s behavior and execution. A challenge C(α, β)
contains two encrypted values.

IV. ENCRYPTED ORDER HANDLING

We next describe the flow of order handling, starting with a
client placing a trade order up to the order being matched and
executed. At a high level, after an order is placed, the order
entry (Section IV-A) is inserted into a (sorted) order book,
leveraging a local or remote comparison function (Section
IV-B), before orders are matched and executed (Section IV-
C). For completeness and reproducibility, detailed algorithms
are provided in Appendices A-D, and their implementations
are part of the shared code.1 A summary of notations and

1https://github.com/wahl-sec/pet-exchange

operations supported by PET-Exchange and used throughout
this paper is given in Table I. Prior to the trading, we assume
an evaluator to have generated the public key P I

k for each
instrument I , and that the exchange has distributed these to
all clients and brokers encrypting and placing orders.

A. Order Entry

A client initiates the trading process by placing an order
at the broker using the public key Pk. As the order is
encrypted, the order details are hidden from the broker and
the exchange, and can only be decrypted by the evaluator. At
the exchange, orders must be inserted such that the order book
is sorted in terms of the bid or ask price. Here, we use binary
search on encrypted order entries to find the correct position.
Appendix A details the order entry algorithm (Algorithm 1).

B. Order Comparison

The comparison function in the order entry (Algorithm 1)
uses either a local or a remote comparison method (seen from
the exchange point of view). For the local comparison, the
exchange compares two ciphertexts and queries the evaluator
to decrypt and verify the solution. For the remote comparison,
the exchange creates challenges to be solved by the evaluator
and its subcomponents.

Local Comparison: In securities exchanges, comparing two
values is vital for the double auction matching algorithm.
However, if encrypted, they cannot be directly compared. Mul-
tiple methods for evaluating comparisons have been proposed
for different schemes. In this work, we use the comparison
process for the CKKS scheme as presented by Cheon et
al. [10], [11], where we compare and identify the minimum
and maximum of two encrypted values by approximating:

lim
m→∞

max(a, b)m

am + bm
= 1 and lim

m→∞

min(a, b)m

am + bm
= 1.

Because of the representation of CKKS encrypted values,
the approximation is in the interval of [0, 1] where a value near
0 implies that a < b, 0.5 implies that a = b, and 1 implies
that a > b. Therefore, for the local comparison method, we
compare two encrypted orders θA and θB by approximating:

k = f(θA, θB) ≈

0, if θA < θB

0.5, if θA = θB

1, if θA > θB ,

where the function is approximative and loosely follows the
sigmoid function within the interval [0, 1].

Since the process results in an encrypted approximation,
the exchange must rely on the evaluator to decrypt the result
using its secret key Sk. Therefore, the local comparison also
includes an interactivity part between the exchange and the
evaluator, querying the evaluator for the decrypted value.

However, to avoid revealing the comparison of inter-
est to the evaluator, an exchange creates a challenge
C(k, 0.5) together with n − 1 additional random challenges
C(RandValue(0, 1), 0.5) encrypted using the same public key
Pk. In addition to hiding the comparison of interest, these

3. [C(0.41, 0.5)1, ...,C(0.92, 0.5)j, ..., C(0.11, 0.5)n]

4. [True1, ...,Falsej, ..., Truen] 1. f(θA,θB) → k ∈ Enc([0, 1])

 2. [C(α1, β)1, ...,C(k, β)j, ..., C(αn, β)n]
 where αi = RandValue(0, 1) and β = EncField(0.5)

Exchange/
Matching engine Evaluator

Challenge solver

Decryption Operator <

(a) Local comparison

3. [C(43, 40)1, ...,C(51, 62)j, ..., C(35, 36)n]

4. [False1, ...,Truej, ..., Truen]
 1. γ(θA) ← θA + γ , γ(θA) ← θB + γ

C(γ(θB), γ(θB))

 2. [C(α1, β1)1, ...,C(γ(θA), γ(θB))j, ..., C(αn, βn)n]
 where αi = RandValue() and βi = RandValue()

Exchange/
Matching engine Evaluator

Challenge solver

Decryption Operator <

(b) Remote comparison

Fig. 2. Overview of the challenge solving process.

additional challenges are later used for validation by the
exchange. The challenge of interest is inserted at a ran-
dom index j, where 0 ≤ j ≤ n. The list of challenges
[C(α, β)1, ..., C(k, β)j , ..., C(α, β)n], where α and β are en-
crypted values, is then sent to the evaluator, who is unable to
learn the original order values θA and θB . As the challenges
are sent without context, the information exposure is also
limited, and the evaluator will only decrypt and compare
approximation values between 0 and 1. Therefore, the approx-
imation process effectively anonymizes the order information
sent to the evaluator. This significantly limits the information
available to the evaluator, who therefore does not have to be
considered fully trusted. The challenge generation for the local
comparison method is detailed in Appendix B (Algorithm 2a).

At the evaluator, the challenge solver decrypts each value,
compares, and returns a list of comparison results (true and
false values). Figure 2(a) summarizes the challenge solving
process for the local comparison method. The challenge solver
is detailed in Appendix C (Algorithm 3).

Using the comparison results, the exchange verifies the
behavior of the evaluator by validating the response for the
n−1 challenges. The validation uses the expected results from
the challenge generation process and verifies that the results
match. This is possible as the exchange has generated and
has access to the unencrypted values. The challenge validation
process is detailed in Appendix C (Algorithm 4). If all n− 1
challenges are correctly validated, the returned response for the
unknown challenge is also considered valid. If the response for
any challenge does not match, the execution is halted as the
evaluator cannot be trusted. In practice, different actions can
be taken if the response is invalid. We note that the verifiability
of the evaluator is based on the number of challenges. Since
the evaluator does not know the challenge of interest, the same
comparison logic must be applied to all challenges.

Remote Comparison: The remote comparison is similar to
the local comparison, except that the approximate comparison

is not utilized. Instead of sending comparison values (between
0 and 1) to the evaluator, the exchange sends encrypted order
values to be compared remotely. There, the evaluator decrypts
the values and returns which value is smallest. However, to
avoid revealing the comparison of interest, the exchange uses
additive homomorphic operations to apply a randomly gener-
ated padding γ on the encrypted ask order θA and bid order
θB . The padded values γ(θA) and γ(θB) are then packed into
a challenge C(γ(θA), γ(θB)). Similar to the local comparison
method, the exchange generates n−1 other random challenges
and inserts the challenge of interest at a random index. The
list of n challenges is then sent to the evaluator.

For remote comparison, the challenge solving and validation
follows the same process as the local comparison (Algo-
rithms 3 and 4). Figure 2(b) summarizes the challenge solving
process for the remote comparison method, and the challenge
generation process is detailed in Appendix B (Algorithm 2b).

C. Order Matching and Execution

After inserting orders into order books, we are now ready
to match and execute the orders. PET-Exchange matches and
executes limit orders using the double auction algorithm,
a general auction algorithm used extensively in electronic
exchanges and other similar auctions where there are multiple
buyers and multiple sellers.

We apply certain modifications to the original algorithm to
enhance the privacy-preserving properties, including padding
of order prices and volumes, challenge generation, and not
disclosing the winning bid at the end of each iteration. The
process of matching and executing orders in PET-Exchange is
detailed in Appendix D (Algorithm 5). As the exchange and
matching engine cannot access the price and volume of orders
in cleartext, it uses the local or remote comparison functions
to compare two values. By padding order prices and volumes
using additive homomorphic operations EncAdd(θ, γ) for a
randomly generated value γ, the matching engine can pass the
encrypted value to the evaluator without revealing the actual
order θ. The requirement on γ is that it should be large enough
to hide a price of varying sizes inside the padding.

The matching algorithm uses the local or remote order
comparison to determine the minimum volume θVmin

of two
matched order volumes θAV and θBV . The minimum volume is
then fully matched with either order θAV or θBV . For the order
not being filled, the volume is deducted using homomorphic
operation EncSub(θV , θVmin), allowing the orders to be par-
tially filled and continuously matched while preserving the
privacy requirement on the volume.

V. PROOF-OF-CONCEPT EVALUATION

For our evaluation, we run the exchange, evaluator, and
clients on different processes simultaneously on a single
workstation using Ubuntu 20.04 with an Intel Core i7 9750H
2.6GHz CPU and 16GB RAM. For communication, we use
the gRPC protocol implemented using the official gRPC
framework [12]. Our implementation uses the Pyfhel [13] and
SEAL library [14] for homomorphic encryption.

TABLE II
CKKS CONFIGURATION PARAMETERS AND THEIR OVERHEADS.

Name Level Poly. mod-
ulus degree

Security
level

E[Order
size]

E[Remote
challenge size]

E[Local
challenge size]

CKKS-11 1 2,048 128 66 KB 66 KB N/A
CKKS-12 1 4,096 256 130 KB 131 KB N/A
CKKS-14 6 16,384 128 3.15 MB 3.15 MB 2.10 MB
CKKS-15 6 32,768 256 6.29 MB 6.29 MB 4.19 MB

Plain N/A N/A N/A 0.33 KB 0.18 KB 0.31 KB

A. Example Workload

To evaluate the proposed encrypted exchange and identify
bottlenecks, we perform simulations of a trading session based
on generated trading data. Here, we simulate short trading
sessions that include the minimum needed to validate the order
representation and glean insights into the system performance
of an exchange that meets the minimum necessary functional-
ity requirements for such exchange. We expect that most real
exchanges would also include more conditions on orders, in-
cluding fill-or-kill orders and other order types and conditions
not currently supported by our example implementation.

As our default scenario, we evaluate the system, including
order entries, using a trace of 200 randomly generated orders
with a 50/50 split of buy and sell orders. For the tests, the order
price is randomly generated between 10 and 90. This ensures
that not all orders can be matched in the dataset and helps us
validate the correctness of the matching. When padding, we
use a similar distribution, effectively hiding the original order
values and avoiding value overflow. Furthermore, the volume
is randomly generated to better validate the ability to partially
fill an order and to fit multiple buy orders in a larger sell order.

For the default performance tests, the orders are sent as
quickly as possible; i.e., the client/broker sends the order
and waits for an identifier for the order, and then the next
order is sent from the list. Simultaneously as the clients send
orders, the exchange accepts and matches orders, and the
evaluator works on solving challenges. This scenario allows
the entire system architecture to be evaluated simultaneously
and provides a head-to-head comparison of the time spent by
the different algorithms in a run-time scenario. We also run
tests using a batch-based use case where all entries are inserted
before being matched (Section V-F).

B. Ciphers and their Overheads

In our tests, we compare the performance of our implemen-
tations (with remote and local computation) when using both
non-encrypted (plain) counterparts and challenges encrypted
using homomorphic encryption. CKKS with different con-
figurations (and multiplicative depth) are used for encrypted
order handling. For the remote implementation, we are able
to use CKKS-11, CKKS-12, CKKS-14, and CKKS-15, where
the number represents the polynomial modulus degree of the
ciphertext. For example, CKKS-11 is the CKKS configuration
with a degree of 211. However, for the local comparison
methods, we require a multiplicative depth (level) of 6 (due
to the approximation algorithm described in Section IV-B),
limiting us to CKKS-14 and CKKS-15. (We therefore do not

100

101

102

103

104

Plain
CKKS-11

CKKS-12

CKKS-14

CKKS-15

1 sec

1 min

1 hr

N
o
rm

.
T

im
e
 t
o
 F

in
is

h
(r

e
la

tiv
e
 b

a
se

lin
e
)

x x

B
a
se

lin
e

x230 x430

x8 x10 x10

x60
x110

Local compute Remote compute

Fig. 3. Increase in time to finish (TTF) relative just doing the non-encrypted
(i.e., plain) comparisons locally.

report any results for CKKS-11 and CKKS-12 with the local
computation implementation.) In our experiments, we use a
CKKS scaling factor of 245, a first modulus prime of size 52
bits, and subsequent primes in the modulus chain of 45 bits.

Table II summarizes the parameters used, their bit security,
and the encrypted order (and challenge) sizes needed in
different settings. With the order sizes being proportional in
size to the degree, and challenges typically of a similar order
of magnitude, using the larger degrees can therefore result
in substantial overheads (proportional to their relative degree
differences). While not shown explicitly in this table, it is
also important to note that the use of additional challenges
is multiplicative. For example, with one extra challenge (on
average) per regular challenge, the communication overhead
(measured in bytes) roughly doubles.

C. Performance Metrics

For our performance evaluation, we measure the time the
trading system and the responsible components spend on
different tasks. Here, we simulate a trading session with
various configurations and report the following timing metrics.

Time-to-Finish (TTF): The TTF metric measures the total
runtime for the trading session, from the time when all
components are started until the end of the final matching
round. This includes clients encrypting and sending orders,
and the exchange receiving, inserting, and matching orders.

Time-to-Match (TTM): The TTM metric measures the
time spent matching orders in the double auction matching
algorithm (Algorithm 5). The metric captures the time for two
orders to be compared by volume and price, and to execute
the order if the two complementing orders can be matched.

Time-to-Insert (TTI): The TTI metric measures the time
spent inserting an incoming order into the order book relevant
to the instrument traded. This metric captures the performance
of our binary search inserting algorithm (Algorithm 1), and the
time to insert orders into the order book.

Time-to-Solve-Challenges (TTSC): The TTSC metric
measures the time spent solving the challenges on the evaluator
(Algorithm 3). The metric captures how long it takes to solve
the challenges created by the exchange.

D. Local vs. Remote Computations

Figure 3 shows a performance comparison of the relative
increase in time-to-finish (TTF) when using different CKKS
configurations (with increasing degree, size, and multiplicative

depth) for both the local and the remote computing approach.
Here, all times are normalized (first y-axis) relative to using
a non-encrypted (plain) implementation that does everything
locally (which we give a normalized TTF of 1). In the figure,
we include confidence intervals (very tight on log scale) and
explicitly write out the relative increase in TTF for each case.

We note that the remote computation scheme is both faster
and allows the use of smaller encryption configurations. For
example, with CKKS-11 and CKKS-12, the increase in TTF
(10 times) is very similar to using remote plain-text challenges
(8-time increase). In contrast, the local-computing scheme
requires the use of the larger CKKS configurations with
bigger multiplicative depth (i.e., CKKS-14 and CKKS-15) and
is therefore not able to achieve as fast TTFs. Using more
homomorphic operations, the local computations are also more
time consuming for these larger ciphers. For example, with
CKKS-14, the TTF increases by 230 vs. 60 times, and with
CKKS-15, the TTF increases by 430 vs. 110 times when using
the local- vs. the remote-computation scheme.

The small increase in the TTF when comparing the smaller
remote comparisons (with CKKS-11 and CKKS-12) with the
plain remote comparison is encouraging as it shows that the
added bandwidth (bigger challenges) and added cost due to
their homomorphic operations are relatively small compared
to other network delays and other order insertion costs.

The potential downside with the remote-computing scheme
is that the client needs to rely on the evaluator to decrypt
the challenges. While these challenges are padded (here using
additions, but it is also possible to use multiplication and
other operations that preserve which of the bids is greater),
this gives the evaluator a bigger role and may leak somewhat
more information (e.g., the absolute differences in the bids in
the case that only addition is used). A broker may therefore
be further encouraged to submit more additional “dummy”
challenges when using the remote-computing scheme. Yet, the
relatively small increases observed when using CKKS-11 and
CKKS-12 (e.g., 10 times bigger than if just making the plain
comparisons locally) suggest that this scheme may be feasible
for small exchange scenarios with smaller order books.

When moving to the bigger configurations, additional com-
pute power than used in our proof-of-concept experiments
would be needed as the completion rates instead increase
by a factor of 230 (430) or 60 (110) when using the local
and remote computing scheme, respectively, with CKKS-14
(and CKKS-15). While the bigger ciphers also add network
bandwidth overhead (e.g., by a factor of 16 going from CKKS-
11 to CKKS-15), we expect the bandwidth to be more easily
scaled than the processing hardware, and that the size of a
CKKS-15 challenge (Table II) is of a similar size as a modern
website (i.e., a few MB). As long as an exchange is willing
to invest in compute power for local-computing, we therefore
do not count out the use of the local-computing scheme.

E. Impact of Number of Challenges

As argued earlier, brokers may want to submit additional
dummy challenges for the purposes of (1) hiding the compar-

 5

 10

 15

 20

 25

1 510 1 510 1 510 1 510 1 510 1 510 1 510

In
c
re

a
s
e

 T
T

F

(r
e
la

tiv
e

 n
o

 e
x
tr

a
 c

h
a

lle
n

g
e

)

CKKS-14

CKKS-15

Plain
CKKS-11

CKKS-12

CKKS-14

CKKS-15

x1
.4

x1
.4

x1
.4

x
1
.5

x
1
.5

x
1
.5

x1
.1

x
1
.2

x
1
.3

x
1
.2 x
2
.5 x
4
.4

x1
.4 x

4
.2

x
7
.5

x2
.5

x
1
0

x
2
1

x
2
.8

x
1
0

x
2
1Local compute

Remote compute

Fig. 4. Increase in time to finish (TTF) when adding N additional challenges
to every challenge. Here, it should be noted that we expect that very few
additional challenges would be needed to keep the third party honest.

ison of interest, and (2) verifying the behavior and execution
of the evaluator. Here, we expect that very few additional
challenges would be needed to keep the third party honest. To
better understand how much the use of additional challenges
adds to the total completion times, Figure 4 shows the relative
increase (as a factor) of the time to finish (TTF) when using
1, 5, or 10 additional challenges per “real” challenge. Here,
all ratios are normalized compared to the base case when not
submitting any additional challenges using the same scheme.
We note that the increase for the local computations is very
limited, whereas the TTFs using the remote computation
scheme increases substantially, and in the cases of CKKS-14
and CKKS-15 even increase by a bigger factor than the number
of additional challenges. This is due to the queue buildups
contributing to a non-linear increase in the processing times.

F. Bottleneck Analysis and Batching

We next look closer at the different configuration bottle-
necks. For each configuration, Figure 5 shows example results
for the cases when the broker (a) submits no additional chal-
lenges and (b) five additional challenges per “real” challenge.

The main observation here is that the time to insert (TTI)
(processing time of Algorithm 1) appears to be the main
bottleneck. Regardless of the number of extra challenges
submitted, the insertion process is consistently active for
more than 74% of the time when using one of the CKKS
configurations. Interesting future work therefore include the
design of improved insertion algorithms that either pushes
the time complexity below O(log n), i.e., the complexity of
our simple insertion algorithm, or the design of exchanges
that incorporates the insertion delays into the design itself
(e.g., through use of batching, periodic deadlines, or other
mechanisms that help effectively maintain sorted order books).

Also, the time to match (TTM) (processing time of Al-
gorithm 5) is substantial, especially for the larger ciphers.
In our tests, both these components consistently (for all
configurations) consumed more time than the challenge solver
(Algorithm 3). Even in the case where the challenge solver
consumed its biggest fraction (remote computing with CKKS-
15), it consumed less than 38% when no additional challenges
were submitted (Figure 5(a)) and less than 54% with five
additional challenges (Figure 5(b)). As expected, we observed

 0

 20

 40

 60

 80

 100

T
im

e
 R

e
la

tiv
e

 T
T

F
 (

%
)

Plain
CKKS-14

CKKS-15

Plain
CKKS-11

CKKS-12

CKKS-14

CKKS-15

L
o

c
a

l c
o

m
p

u
te

R
e

m
o
te

 c
o

m
p

u
te

Match Insert Solve

(a) No extra challenges

 0

 20

 40

 60

 80

 100

T
im

e
 R

e
la

tiv
e

 T
T

F
 (

%
)

Plain
CKKS-14

CKKS-15

Plain
CKKS-11

CKKS-12

CKKS-14

CKKS-15

L
o

c
a

l c
o

m
p

u
te

R
e

m
o
te

 c
o

m
p

u
te

x

Match Insert Solve

(b) Five extra challenges per challenge

Fig. 5. Relative time consumed on different tasks (executed in parallel) relative to the overall
time to finish (TTF).

 0

 5

 10

 15

 20

 25

 30

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

B
a
tc

h
e

d
 T

T
F

 (
%

)

Plain
CKKS-14

CKKS-15

Plain
CKKS-11

CKKS-12

CKKS-14

CKKS-15

Local compute Remote compute

x

No extra 5 extra

Fig. 6. Relative time to finish (TTF) for batched
workload use case compared to the default use case.

TABLE III
AVERAGE DEVIATION FROM EXPECTED VALUE PER CONFIGURATION

AND DECIMAL PRECISION.
Dec. Plain CKKS-11 CKKS-12 CKKS-14 CKKS-15
≤ 8 0 0 0 0 0

9 0 10−7 10−5 10−7 0
10 0 1.08 · 10−6 2.11 · 10−8 1.14 · 10−8 0
11 0 4.81 · 10−8 3.14 · 10−8 1.11 · 10−8 0
12 0 1.59 · 10−6 3.12 · 10−8 2.19 · 10−9 0
13 0 1.61 · 10−8 2.30 · 10−8 1.52 · 10−9 0
14 10−11 1.11 · 10−8 2.83 · 10−8 4.44 · 10−9 10−11

15 10−11 1.46 · 10−8 1.97 · 10−8 6.51 · 10−9 10−11

a noticeable increase in the percentages when adding five addi-
tional “dummy” challenges per “real” challenge. We also note
that the challenge solver overheads (as expected) consistently
are smaller for the local vs. the remote-computation scheme.

Batch-based workload: To glean some insights into the
benefits of removing the insertion bottleneck, we also run
tests where we first insert all orders and the exchange only
requires one iteration to match orders. This can be seen as
an example where an exchange collects orders (e.g., over the
night) and then process all orders at once. While this use
case scenario removes the insertion bottleneck, it results in
more orders needing to be handled simultaneously by the
matching algorithm. Our results confirm a significant reduction
in the time to finish (TTF) metric for these experiments. This
is illustrated in Figure 6, which shows the relative TTF for
these batched processing as the percentage of the TTF for the
corresponding default scenario (i.e., same orders but clients
submit them as fast as possible when the exchange opens).
Substantial savings are observed, with all cases resulting in
reductions of more than 74%. We also note that the biggest
savings (i.e., smallest values shown here) are for the lighter
ciphers (e.g., CKKS-11 with the remote computing), seeing a
reduction of 91%.

G. Precision and Accuracy

To ensure correctness, operations must be performed with
sufficient precision and accuracy. Through experiments, we
find that the different configurations achieve full accuracy up
to different precisions and that the accuracy may differ when
operating with too many decimals precision. Table III presents
example results from running the exchange with different dec-
imals precision in the order price and volume. Here, we varied
the maximum decimal precision allowed for the exchange from
0 to 15 and report the average deviation from the expected

values. The results show that all CKKS configurations achieve
perfect accuracy up to a precision of 8 decimal places.
Furthermore, we observe increasing accuracy for increasing
ciphertext sizes, with CKKS-15 achieving perfect accuracy
when executing floating point values up-to-and-including 13
decimal places. In fact, with CKKS-15, we achieved the same
accuracy as with the plain (non-encrypted).

These results show that the solution supports sufficient pre-
cision for the needs of modern markets. While certain markets
might require additional precision, we deem the precision
sufficient for the market type we have considered. These
results also further highlight that there is a tradeoff between
execution accuracy (with high precision) and the processing
times (as the larger ciphers require more processing) and byte
overhead (as the order and challenge sizes become bigger).

For the case that an exchange would select to operate in
an approximate region (e.g., use CKKS-11 with 9 decimals of
precision), we note that there may be some loss in the accuracy
(e.g., by 10−7). In this case, some (minor) incorrectness
in prices and volumes may impact the index of a given
security and the volumes being traded. While these smaller
inaccuracies could likely be easily corrected with some delay
(after executed orders are public), we expect that any exchange
that would like to operate with more decimals of precision to
also be willing to invest in the extra computing power that
may be required when using, for example, CKKS-15.

VI. DISCUSSION

We note that the privacy-preserving properties of the pro-
posed solution depend on the amount of encrypted order
information. Our implementation and evaluation show the pos-
sibility of an exchange revealing only the instrument and order
type, preserving the trader’s privacy. However, the privacy-
preserving properties rely heavily on the decryption on the
evaluator. We next discuss further steps that can be taken to
strengthen the system, and outline ethical considerations.

A. Confidentiality and Evaluator Behavior

The system design relies on the confidentiality of the
encrypted exchange. Here, the evaluator plays a central role,
being the only party with secret key access. Furthermore,
both the local-computing scheme and the remote-computing
scheme require the external evaluator to use these secret keys
when comparing bids.

To avoid revealing the actual values to the evaluator, the
remote-computation scheme relies on padding. Here, we use
additive padding with the CKKS scheme (which still may
allow the evaluator to learn something about the absolute dif-
ference between bids), and the values are sent to the evaluator
without context (e.g., order identifiers, instrument, and order
type), limiting the exposure of information to the evaluator
decrypting the values. For further protection, it is possible to
combine additive padding with multiplicative padding (which
also preserves which bid is bigger), for example. This moti-
vates the use of the CKKS scheme (capable of both addition
and multiplication), rather than other additively homomorphic
encryption schemes such as those proposed by Benaloh [15],
Paillier [16], or Boneh et al. [17]. For the local-computing
scheme, the exchange only shares the output of a comparison
algorithm (a value between 0 and 1). Without knowledge about
which bidders are compared (not shared), the evaluator cannot
learn any valuable information from the decrypted ciphertext.

As noted earlier, additional “dummy” challenges can be
used both to keep the evaluator honest (by continually evaluat-
ing the correct behavior) and to hide the true bid comparisons
in the set of all challenges sent to the evaluator. Here, the
exchange can use historic data, for example, as a way to better
obscure the “true” challenges from the extra “dummy” chal-
lenges. In this paper, we do not consider such optimizations.

We also do not consider how to best protect against an
adversary evaluator. In practice, we expect an evaluator to be
a trusted authority (at least of similar trust level as certificate
authorities in the certificate landscape or the major exchanges
in today’s financial landscape) and that their behavior would be
closely monitored. We foresee a simple monitoring and trust
system to be sufficient in most scenarios. However, if even
greater transparency is desired, the system design could easily
be extended to incorporate transparent order logs (similar to
certificate transparency logs) and use signed challenges and
responses. By logging signed challenges and responses, the
exchanges would have proof of any wrongful answers.

B. Improved Trust in the Evaluator

Another potential way to improve the confidentiality would
be to use homomorphic comparisons that do not require
decryption at the evaluator. However, at the time of the
writing, no efficient method for such operations currently
exists. Yet, our exchange design provides an interesting use
case for efficient homomorphic value comparisons. Assuming
the eventual introduction of such solutions, the confidentiality
could be improved by moving the evaluation comparison to
the exchange level. The integrity of the evaluations can also
be improved through the use of trusted execution environment
(TEE). Combining homomorphic encryption with TEE was
proposed by Drucker et al. [18] as a solution to localize
the execution of homomorphically encrypted data and, as
such, protect against unauthorized operations on the encrypted
data. By only performing operations such as decryption and
evaluation of the challenges in a TEE, the risk of malicious
actors manipulating the evaluation mechanism is reduced.

Using TEEs allows for new design possibilities where the
evaluator functionality can be moved to the exchanges while
limiting secret key exposure to within the TEE. Such a design
could help reduce communication latency and bandwidth
usage between the exchange and evaluator. Further design im-
provements include hiding the trading instrument, or whether
orders are buy or sell orders (e.g., as proposed by Gama et
al. [19]). Such improvements can, for example, encrypt the
order direction or allow traders to submit a pair of buy and
sell orders, where one of the orders has zero volume. This
further improves privacy at the cost of additional overheads.

C. Control of Evaluator

The encrypted exchange proposed here requires an evaluator
component. While designed not to require any context about
the data, the evaluator still requires some information to be
disclosed (via decryption on the evaluator). While we do not
provide any answer to who should control the evaluator due to
the high regulatory environment of the securities market, we
expect that regulatory institutions would be the most likely
candidate. Another option is to form collaborations between
multiple market operators. Furthermore, to reduce the risk of
a single point of failure, we also foresee a solution where
multiple evaluators work together and distribute the workload.

D. Reduced Trust in the Exchange

In our analysis, we have assumed a semi-trusted honest-but-
curious exchange. However, we note that the exchange’s trust
can also be reduced. One potential solution is that brokers
sign encrypted orders to provide data integrity. The evaluator
can then verify the signatures prior to comparing decrypted
order values. This can be implemented using homomorphic
signatures [20] where the untrusted exchange can perform
computations on encrypted and signed data, deriving a short
signature certifying the correct computation output. The eval-
uator can then verify the correctness without retrieving the
underlying data. To avoid revealing the signed comparison of
interest, the exchange would be restricted to using past order
challenges instead of self-generated orders. By systematically
rotating “dummy” challenges, the exchange would be unable
to learn the comparison of interest.

More concretely, θA and θB would be encrypted orders
signed by brokers A and B. In the local comparison process,
we calculate the encrypted value k ∈ {0, 1}, where k is short-
signed by brokers A and B. This is packed into a challenge
C(k,Enc(0.5)) and sent to the evaluator for comparison,
who can check the request validity. Similarly, with remote
comparison, adding padding γ to an encrypted and signed
order θ results in a padded order that is short-signed.

While collusion would be possible between exchanges,
brokers, or the evaluator, we do not expect this to be a major
concern due to the signatures’ non-repudiation property. As the
entities are considered semi-trusted with authority to handle
securities, any manipulation attempts can easily be tracked,
keeping entities legally accountable. Further accountability
could be achieved by introducing transparency logs or similar.

Here, we consider collusion to be out of scope, but note that
the framework can easily be extended to include signatures.

E. Financial Crime and Ethical Considerations

The encrypted exchange proposed here limits the ability to
view and act on information from non-published limit orders,
reducing the risks of insider trading in financial institutes. Our
solution allows an exchange to execute entire trading sessions
without publishing order matchings until after the session,
further limiting the information available to malicious actors to
only incoming order counts for each instrument. In general,
the use of encryption slows down the trading and prevents
advanced knowledge of bids. This prevents insider trading
attacks based on large-volume bids or penny jumping [2].

On the other hand, many existing solutions for preventing
financial crime, including anti-money laundering and trade
surveillance solutions like Nasdaq SMARTS [21], rely on real-
time monitoring and pattern recognition. Such solutions are
hampered or slowed down by the use of encryption. Further-
more, even without knowledge about the secret key, an attacker
can still derive some knowledge from the available plaintext
information. Overall, careful consideration must be given to
potential regulatory requirements for trading surveillance. The
desirable exchange choice and encryption level may therefore
differ between exchanges and markets. Here, we present an
example solution, evaluate a proof-of-concept implementation,
and do not run the exchange with live data.

VII. RELATED WORK

Cryptographic Exchange Models: Cryptographic solu-
tions have previously been considered in exchanges and trad-
ing. Early work by Thorpe and Parkes [7] presents a protocol
implementing cryptographic primitives to limit the information
exposure in trading using homomorphic encryption and a
partially transparent order book. In a follow-up study, Thorpe
and Willis [22] present rule-based cryptographic trading, an
alternative to dark pool trading, showing that malicious trading
can be prevented by executing trades only if some conditions
are fulfilled. Both works apply early versions of homomorphic
encryption on an exchange and suffer from the performance
and usability aspects. For the last decade, many improvements
have been achieved in the homomorphic encryption field. In
our work, we expand on the idea of an encrypted exchange and
present an updated view. In contrast to prior work, we focus on
limit orders and are able to partially match encrypted orders.

Privacy Enhanced Auctions: Prior works have focused on
executing orders on auctions while limiting or not revealing the
information about bids until a trade is executed. Cachin [23]
includes a third party oblivious to the auction state and use ho-
momorphic encryption to design a secure bid auction. Baudron
et al. [24] study the use of a semi-trusted third party where
clients encrypt their bids using all participants’ public keys and
send the resulting ciphertext to the auctioneer to determine
the winning bid using a homomorphic encryption scheme.
Balch et al. [25] use homomorphic encryption to perform
inventory matching of buyers and sellers, skipping the steps

of the continuous double auction in a public exchange where
both prices and volumes are matched. Ngo et al. [26] present
a new cryptographic scheme, focusing on key agreement and
privacy aspects in blockchain-based dark pools.

In this paper, the proposed privacy enhanced trading frame-
work is similar in terms of using a third party (evaluator)
with secret key access. However, the exchange does not
assume a fully trusted evaluator but instead shares only the
numeric comparison of interest, padded using homomorphic
encryption, and use additional challenges to verify the evalu-
ator’s behavior. By ensuring that the evaluator cannot access
the original order information, it does not have to be fully
trusted. We focus on non-revealing continuous double auction
matching, addressing privacy issues on public exchanges.

Another approach for improving confidentiality and privacy
in trading is to use secure multiparty computation (MPC) [27]–
[30]. For example, Bogetoft et al. [29] present the first large-
scale practical application of MPC and apply it in double
auction. Asharov et al. [27] combine MPC with homomorphic
encryption to improve the privacy of trading in dark pools.

Value Padding: Padding is the process of adding a value
(often randomized), allowing a requester to pass on the padded
value to an untrusted environment without revealing the initial
value. In PET-Exchange, we use padding to hide the orig-
inal value when comparing at the evaluator. Similar ideas
of padding have been applied in previous works, covering
a broad range of topics like the privacy of consumer IoT
devices [31] and video streaming [32]. These example works
highlight the tradeoff between the attack accuracy and the
performance [31], and between the attack accuracy and the
bandwidth overheads [32], respectively.

Performance Evaluation of Trading Networks: The Nas-
daq electronic securities exchange handles tens of millions
of trades every market day, totaling billions of shares in
trading volume [33]. To keep up with the increasing volume,
exchanges must operate and match trades quickly. Gama et
al. [19] present and evaluate a new efficient volume match-
ing protocol for the dark pools, demonstrating significant
improvements in throughput. Homomorphic encryption has
shown significance in multiple areas. However, using such
cryptographic methods to enable confidentiality often results
in performance overhead. Gao et al. [34] use the Paillier ho-
momorphic scheme [16] to determine winners in auctions and
present a performance analysis by simulating auctions with
varying amounts of order entries, highlighting improvement
possibilities using enhanced hardware.

VIII. CONCLUSIONS

We present PET-Exchange, the first privacy-preserving
framework for trading securities that uses homomorphic en-
cryption to effectively protect limit orders. Using CKKS to
preserve order privacy, we implement a non-revealing contin-
uous double auction matching of prices and volumes. In addi-
tion to standard components in electronic securities exchanges,
we include an evaluator responsible for handling decryption
keys and solving challenges. By splitting responsibilities and

limiting the information visible to the evaluator and exchanges,
we place limited trust on any one component.

Our proof-of-concept implementation is validated using
simulations of generated order data, with performance results
providing insights into the tradeoffs of approximate encrypted
comparisons on the exchange or exact plaintext comparisons
on the evaluator, as well as into which CKKS configurations
provide the most attractive overhead-accuracy tradeoffs.

We also show that some proposed methods only result
in a small increase in the total time to finish (TTF) when
processing an example workload, compared to using local
order matching on plaintext orders. For example, if willing to
share padded orders with the evaluator (as with our remote-
computing scheme), we can use smaller cipher configurations
(e.g., CKKS-11, CKKS-12) that only increase the TTF by 10
times compared to a plaintext solution doing local comparisons
at the exchange. If wanting to avoid sharing padded bid-pairs
with the evaluator, but instead using the local-compute scheme,
we must use the CKKS-14 and CKKS-15 ciphers (with
greater multiplicative depth). For these, we observe another
order-of-magnitude increase in the TTF (230 and 430 times,
respectively, compared to the local plaintext baseline). Here,
we expect much of this increase to be possible to offset by
simply allocating a greater pool of computing resources.

Our experiments also show that the additional challenges
used for (1) hiding the comparison of interest, and (2) verifying
the evaluator’s behavior come with significant overhead. This
suggests that such “dummy” challenges should not be used
more than needed. In practice, we do not expect that such
“dummy” challenges would need to consume a significant
portion of the challenges. In Section 6, we also discussed
additional mechanisms to improve the trust in the evaluators,
increase confidentiality, and otherwise improve the system.

Our evaluation indicates that the insertion algorithm is the
current bottleneck, opening up for further research on how
to best implement an insertion algorithm for encrypted bids
or how to incorporate these delays into the exchange design.
The results also confirm that our implementation using CKKS
achieves high accuracy and precision.

Overall, PET-Exchange achieves the desired objectives
without sacrificing accuracy, highlighting the potential of
preventing unfair trading practices in electronic securities
exchanges. Based on the results, we expect the most benefits
to be seen by smaller markets with fewer orders (e.g., private
auctions and smaller dark pools) and for which the local-
computation scheme could be effectively used to ensure that
the evaluator would have a very difficult time deriving insights
about the originally compared values. Finally, by sharing
the open-source tool, we hope to encourage further research
applying homomorphic encryption to improve the privacy in
auctions and other related financial settings.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] U.S. Securities and Exchange Commission, “Detecting personal trading
abuses,” https://www.sec.gov/rules/other/f4-433/mccann1.htm, 2000.

[2] S. Mahmoodzadeh and R. Gencay, “Human vs. high-frequency traders,
penny jumping, and tick size,” Journal of Banking & Finance, 2017.

[3] U.S. Securities and Exchange Commission, “Insider trading
policy,” https://www.sec.gov/Archives/edgar/data/1164964/
000101968715004168/globalfuture 8k-ex9904.htm, 2015.

[4] ——, “Shedding light on dark pools,” https://www.sec.gov/news/
statement/shedding-light-dark-pools, 2015.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
ACM Symposium on Theory of Computing (STOC), 2009.

[6] L. Harris, Trading and exchanges: Market microstructure for practition-
ers. Oxford University Press, USA, 2003.

[7] C. Thorpe and D. C. Parkes, “Cryptographic securities exchanges,” in
Proc. Financial Cryptography and Data Security (FC), 2007.

[8] B. Zambonin and D. Martins, “What dark pool trading volume says
about AMC stock,” https://www.thestreet.com/memestocks/amc/what-
dark-pool-trading-volume-says-about-amc-stock, 2021.

[9] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. ASIACRYPT, 2017.

[10] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic comparison
methods with optimal complexity,” in Proc. ASIACRYPT, 2020.

[11] J. H. Cheon, D. Kim, D. Kim et al., “Numerical method for comparison
on homomorphically encrypted numbers,” in Proc. ASIACRYPT, 2019.

[12] Google, “gRPC,” https://grpc.io/docs/what-is-grpc/introduction/, 2023.
[13] A. Ibarrondo and A. Viand, “Pyfhel: Python for homomorphic encryp-

tion libraries,” in Proc. ACM CCS WAHC, 2021.
[14] Microsoft, “SEAL,” https://github.com/Microsoft/SEAL, 2023.
[15] J. Benaloh, “Dense probabilistic encryption,” in Proc. SAC, 1994.
[16] P. Paillier, “Public-key cryptosystems based on composite degree resid-

uosity classes,” in Proc. EUROCRYPT, 1999.
[17] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on

ciphertexts,” in Proc. Theory of Cryptography (TCC), 2005.
[18] N. Drucker and S. Gueron, “Combining homomorphic encryption with

trusted execution environment: A demonstration with Paillier encryption
and SGX,” in Proc. ACM CCS MIST, 2017.

[19] M. B. da Gama, J. Cartlidge, A. Polychroniadou, N. P. Smart, and
Y. T. Alaoui, “Kicking-the-bucket: Fast privacy-preserving trading using
buckets,” in Proc. FC, 2022.

[20] S. Gorbunov, V. Vaikuntanathan, and D. Wichs, “Leveled fully homo-
morphic signatures from standard lattices,” in Proc. ACM STOC, 2015.

[21] Nasdaq, “Nasdaq trade surveillance (SMARTS),” https:
//www.nasdaq.com/solutions/nasdaq-trade-surveillance, 2023.

[22] C. Thorpe and S. R. Willis, “Cryptographic rule-based trading,” in Proc.
Financial Cryptography and Data Security (FC), 2012.

[23] C. Cachin, “Efficient private bidding and auctions with an oblivious third
party,” in Proc. ACM CCS, 1999.

[24] O. Baudron and J. Stern, “Non-interactive private auctions,” in Proc.
Financial Cryptography (FC), 2001.

[25] T. Balch, B. E. Diamond, and A. Polychroniadou, “SecretMatch: In-
ventory matching from fully homomorphic encryption,” in Proc. AI in
Finance (ICAIF), 2020.

[26] C. N. Ngo, F. Massacci, F. Kerschbaum, and J. Williams, “Practical
witness-key-agreement for blockchain-based dark pools financial trad-
ing,” in Proc. Financial Cryptography and Data Security (FC), 2021.

[27] G. Asharov, T. Hybinette Balch, A. Polychroniadou, and M. Veloso,
“Privacy-preserving dark pools,” in Proc. AAMAS, 2020.

[28] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-
party computation for financial data analysis,” in Proc. FC, 2012.

[29] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler et al., “Secure
multiparty computation goes live,” in Proc. FC, 2009.

[30] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, “Rabbit: Efficient
comparison for secure multi-party computation,” in Proc. FC, 2021.

[31] A. J. Pinheiro, J. M. Bezerra, and D. R. Campelo, “Packet padding for
improving privacy in consumer IoT,” in Proc. IEEE ISCC, 2018.

[32] D. Hasselquist, C. Vestlund, N. Johansson, and N. Carlsson, “Twitch
chat fingerprinting,” in Proc. IFIP TMA, 2022.

[33] Nasdaq, “Daily market summary,” https://www.nasdaqtrader.com/
Trader.aspx?id=DailyMarketSummary, 2023.

[34] W. Gao, W. Yu, F. Liang, W. G. Hatcher, and C. Lu, “Privacy-preserving
auction for big data trading using homomorphic encryption,” IEEE
Trans. Network Science and Engineering (TNSE), 2018.

APPENDIX

A. Order Entry with Binary Search
Algorithm 1 shows the binary search for encrypted order

entry. We note that the algorithm describes the process of
sorting the orders in an ascending order applied to the queue
of ask orders. For bid orders, we instead sort in descending
order by reversing the comparison parameters. The Length
and Floor functions are part of the standard library, returning
the array length and rounding down a number, respectively.

B. Challenge Generation
Algorithms 2a and 2b show the challenge generation for the

local and remote comparison process, respectively.

C. Challenge Solver & Validation
Algorithms 3 and 4 show the challenge solver and challenge

validation process in PET-Exchange, respectively.

D. Matching Algorithm
Algorithm 5 shows the double auction matching algorithm

used to continuously match and execute encrypted limit orders.

Algorithm 1 Order Entry with Binary Search
Require: θ, book ▷ Where θ is the encrypted order to insert
1: and book is the sorted order book
2: lo← 0
3: hi← Length(book)
4: while lo < hi do
5: mid← Floor((lo+ hi)/2)
6: if Compare(book[mid], θ) then
7: lo← mid+ 1
8: else
9: hi← mid

10: end if
11: end while
12: return lo ▷ Return index to insert encrypted order

Algorithm 3 Challenge Solver
Require: n ≥ 0, challenges = [C(α1, β1)1, ..., C(αn, βn)n]
1: results← [false;n] ▷ Result array of size n
2: i← 1
3: while i ≤ n do
4: a← DecF ield(αi)
5: b← DecF ield(βi)
6: results[i]← (a < b)
7: i← i+ 1
8: end while
9: return results ▷ Result array for each comparison

Algorithm 4 Challenge Validation
Require: results = [Boolean;n], expected = [Boolean;n], n ≥ 0
1: ▷ Challenge results and expected results of size n
2: result← NULL
3: i← 0
4: while i < n do ▷ Verify all known challenges
5: if expected[i] ̸= NULL then
6: if expected[i] ̸= results[i] then
7: ... ▷ Handling of wrong result
8: end if
9: else

10: result← results[i]
11: end if
12: i← i+ 1
13: end while
14: return result

Algorithm 2a Challenge Generation (local comparison)
Require: k, n ≥ 0 ▷ Where k is result from approximation
1: function, n is number of challenges
2: challenges← [0;n] ▷ Challenge array of size n
3: expected← [false;n] ▷ Expected challenge results array
4: j ← RandV alue(0, n) ▷ Random index for unknown challenge
5: β ← EncField(0.5)
6: challenges[j]← C(EncField(k), β)
7: expected[j]← NULL ▷ Mark the unknown challenge
8: i← 0
9: while i < n do ▷ Insert n− 1 other random challenges

10: if i ̸= j then
11: a← RandV alue(0, 1)
12: expected[i]← (a < 0.5)
13: challenges[i]← C(EncField(a), β)
14: end if
15: i← i+ 1
16: end while
17: return challenges, expected

Algorithm 2b Challenge Generation (remote comparison)
Require: θA, θB , n ≥ 0
1: challenges← [0;n] ▷ Challenge array of size n
2: expected← [false;n] ▷ Expected challenge results array
3: γ ← RandV alue() ▷ Random padding
4: γ(θA)← PadOrder(θA, γ)
5: γ(θB)← PadOrder(θB , γ)
6: j ← RandV alue(0, n) ▷ Random index for unknown challenge
7: challenges[j]← C(γ(θA), γ(θB))
8: expected[j]← NULL ▷ Mark the unknown challenge
9: i← 0

10: while i < n do ▷ Insert n− 1 other random challenges
11: if i ̸= j then
12: a← RandV alue()
13: b← RandV alue()
14: expected[i]← (a < b)
15: challenges[i]← C(EncField(a), EncF ield(b))
16: end if
17: i← i+ 1
18: end while
19: return challenges, expected

Algorithm 5 Matching Algorithm
Require: θA, θB
1: θAP , θAV ← θA

2: θBP , θBV ← θB

3: γ ← RandV alue() ▷ Random padding
4: γ(θAP),← EncAdd(θAP , γ)
5: γ(θBP)← EncAdd(θBP , γ)
6: result← Compare(γ(θAP), γ(θBP)) ▷ Compare price using local
7: or remote comparison method
8: if not result then
9: return ▷ No more matches as the highest bid price

10: is lower than lowest ask price
11: end if
12: γ ← RandV alue()
13: γ(θAV)← EncAdd(θAV , γ)
14: γ(θBV))← EncAdd(θBV , γ)
15: result← Compare(γ(θAV), γ(θBV)) ▷ Compare volume using
16: local or remote comparison
17: θV ← NULL
18: if result then
19: θBV ← EncSub(θBV , θAV) ▷ Partially filled order
20: θV ← θAV ▷ Traded volume
21: θAV ← EncField(0) ▷ Marked order as filled
22: else
23: θAV ← EncSub(θAV , θBV)
24: θV ← θBV
25: θBV ← EncField(0)
26: end if
27: PublishOrder(θAP , θV)

