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Abstract. Certificates are the foundation of secure communication over
the internet. However, not all certificates are created and managed in a
consistent manner and the certificate authorities (CAs) issuing certifi-
cates achieve different levels of trust. Furthermore, user trust in public
keys, certificates, and CAs can quickly change. Combined with the ex-
pectation of 24/7 encrypted access to websites, this quickly evolving
landscape has made careful certificate management both an important
and challenging problem. In this paper, we first present a novel server-
side characterization of the certificate replacement (CR) relationships in
the wild, including the reuse of public keys. Our data-driven CR analysis
captures management biases, highlights a lack of industry standards for
replacement policies, and features successful example cases and trends.
Based on the characterization results we then propose an efficient solu-
tion to an important revocation problem that currently leaves web users
vulnerable long after a certificate has been revoked.

1 Introduction

Aided by several initiatives (e.g., [1, 16, 68]), the last decade saw a major shift
from non-encrypted to encrypted web traffic. Today, most websites use HTTPS [9,
14,37] and other TLS-based protocols (e.g., QUIC [48]) to deliver their content.
These protocols rely heavily on X.509 certificates. At a high-level, before a se-
cure and trusted connection can be established, the server must present the client
with a valid X.509 certificate that maps the server’s public key to the server’s
domain and that has been issued (and signed) by a recognized Certification Au-
thority (CA) that is trusted by the client. Since users expect 24/7 secure access
to trusted services, it is therefore important that the servers present clients with
a valid and trusted certificate. This has made careful certificate management an
important problem.

Careful certificate management is also a challenging problem, as not all cer-
tificates are created and managed in the same way. From a domain administrator
perspective, there are many issues to consider. For example, there are many issu-
ing CAs and certificate types with different issuing processes and costs, the trust
and usage of different CAs is changing over time, different services have different
security requirements, and the trust in individual keys may quickly change.
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To complicate the situation, for a number of reasons [76] modern browsers
do not perform sufficient revocation checks [28] to protect users against man-
in-the-middle attacks made possible by compromised keys even after they have
been revoked by the domain owner and its CA [55]. While Chrome and Firefox
browsers periodically (e.g., with software updates) push a proprietary set of
revocations to their users [41, 59], the frequency and size of such revocation
sets leave clients vulnerable long after most compromised certificates have been
revoked. The situation appears most pressing for mobile browsers. For example,
Liu et al. [55] found that not a single native mobile browser on iOS, Android, or
Windows Phones checks the revocation status of certificates. Finally, regardless
of the choices made by the websites and CAs to address these challenges, websites
(with the help of the CAs) need to make sure that they always can present their
clients with valid and trusted certificates.

In this paper, we (1) present a novel server-side characterization of the certifi-
cate replacement (CR) relationships observed in practice, which provides insights
into biases in how services manage their certificates; (2) examine the subset of
CRs that reuse the same key when a certificate is replaced; and (3) demonstrate
how targeted modifications to how CRs with reused keys are handled can reduce
the reliance of revocation checks and solve this revocation problem.

Our analysis is based on data extracted from all biweekly scans of port 443
(Oct. 30, 2013 to Jul. 13, 2020) done within Rapid7’s Project Sonar [2]. After
presenting our methodology (§ 2), we characterize the full set of CRs (§ 3) that
highlights positive trends and behaviors. For this analysis, we use mismanage-
ment indicators and study how much safety margin servers use (e.g., in terms of
validity period overlap), differences in the timing of validity periods and when
certificate changes actually are observed, and whether there are replacement
differences based on validity type, key reuse, CA changes, and CA selection.

Our characterization demonstrates and highlights the effects of a lack of gen-
eral industry standards for replacement policies [38]. This includes, for example,
a clear discrepancy in the overlap patterns between the top-issuing CAs, divid-
ing those having automated renewal/replacement support and those dependent
on manual effort. However, despite several of the CAs issuing cheaper domain
validated (DV) certificates with shorter validity periods using common validity-
period overlaps, the least gaps (defined as CRs in which the validity periods of
the replaced and replacing certificates are non-overlapping) and early/late usage
of certificates are still associated with more expensive certificates using extended
validation (EV). Positive trends include a decreasing fraction of CRs with gaps,
and a decreasing fraction of certificates being observed in use before they are
valid or after they have expired. We also observe that the decision to change
CAs often is associated with gaps, but that the decision to reuse keys is not.

The later parts of the paper look closer at two particularly interesting aspects
identified in the dataset and motivated by our findings, respectively. First, we
study the subset of CRs in which the same key is reused by the replacing cer-
tificate. Here, we also examine the “replacement chains” that are formed when
the same key is reused for a series of consecutive CRs in which the replacing



certificate of CR i is the replaced certificate in CR i+ 1 of the series. Through-
out the paper, we call such a CR and chain a Same Key CR (SKCR) and an
SKCR chain, respectively. Our analysis highlights big differences in how cus-
tomers of different CAs reuse keys. While the customers of three CAs (Sectigo,
GlobalSign, Go Daddy) had higher than 65% key reuse, the customers of several
other CAs (e.g., Google, cPanel, Amazon, Microsoft) typically did not appear to
reuse keys. Encouragingly, the three CAs with the most key reuse achieved sub-
stantially fewer gaps when reusing keys than when not reusing keys. However,
while SKCRs make up only 14% of Let’s Encrypt’s customers’ CRs, they present
the perhaps most interesting use case. For example, by combining longer key-
reuse chains with consistent issuing of 90-day certificates with 30-day overlaps,
their customers achieve high relative key utilization (e.g., aggregated lifetime
compared to aggregate validity period over the certificate making up the reuse
chains) without having to frequently replace the public keys used on their servers.

Finally, motivated by the effectiveness and potential of some of the observed
automation solutions and trends, we outline a new way (§ 5) to address the cur-
rently open revocation problem discussed above. Our solution framework is based
on observations highlighted in the paper, takes some current trends to the ex-
treme, and combines the use of short-lived three-phase certificates (modification
of an idea by Rivest [66]). It also introduces the new concept of parent-child cer-
tificate relationships and new simple management rules. The framework ensures
efficient use of certificates in such a way that it does not need to increase how
frequently servers change their public keys or how frequently certificates must
be logged in Certificate Transparency (CT) logs [50]. Using our CR datasets, we
also demonstrate and quantify the reduced overhead that these efficiencies of our
approach would provide when some set of CAs select to reduce their certificate
lifetimes using our approach rather than naively.

In summary, the paper provides both new insights into the status of cur-
rent HTTPS certificate management (§3), including the reuse of keys (§4), and
novel solutions to improve certificate management and to address the currently
unresolved revocation problem so far unsatisfactorily handled by browsers (§5).

2 Analysis methodology

Rapid7 dataset: We used two certificate datasets [3] from Project Sonar [2].
These datasets consist of biweekly scans of the IPv4 address space, collected
using Rapid7’s extensions [4] of ZMap [35]. First, we used all HTTPS certs files
between 2013-10-30 and 2020-07-13 to extract the full Privacy-Enhanced Mail
(PEM) [44,54] encoded certificates and their SHA-1 fingerprints. Second, for our
observation-based statistics, we used the corresponding hosts files collected for
port 443 to determine at what IP addresses and time these certificates were
observed (using the SHA-1 fingerprints for mapping between the files).

Identifying and extracting CR relationships: Using the above datasets,
we identify certificate replacement (CR) relationships. Here, we define a CR to
exist between a pair of certificates under the following conditions. (1) The two
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Fig. 1: Replacement relation between two certificates.

certificates were observed at the same IP address (and port number). (2) The two
subjectCN either matched perfectly or matched after following three wildcard
rules: wildcards are only allowed to be used at the lowest domain level, at the
third domain level and down, and only one wildcard is allowed per match. (3) The
validity period of the replacing certificate must begin later than the beginning
of the validity period of the replaced certificate and must extend past the end
of the validity of the replaced certificate. Figure 1 shows a toy example with
overlapping validity periods (green color) and the first certificate of the CR only
were observed during three scans (first three red markers). Here, the validity
period is defined as the time between the notBefore and notAfter values in the
certificate, and following the terminology used by Chung et al. [29], the lifetime
is defined as the time period between the first scan when a certificate is observed
(referred to as its birth) and the last scan it is observed (referred to as its death).

In addition to extracting information about the individual certificates and
different metrics related to their relative validity periods (e.g., the overlap in
Figure 1), we also extract information regarding when the two certificates were
seen in use. Of particular interest here are cases when the servers present their
certificates before the validity period has started or after it has expired.

Multi-step CR identification and extraction: We performed a series of
processing steps to create an aggregated dataset including all CR relationships.

– Step 1 (parse + process certificates): Using a Node.js library node-
forge1 and OpenSSL (when node-forge was unable to parse a certificate)
we extracted data from the certificates, including (1) certificate identifiers
and basic information, (2) issuer and subject identifiers, (3) CA status and
chain info (e.g., we determined whether the subject is a CA and whether it
is self-signed, self-issued, or signed by third party), (4) validity period, (5)
verification type (determined based on the Object Identifiers (OIDs) [5, 7]),
and (6) public key properties.

– Steps 2+3 (extract birth and death): We next identify the birth and
death of each certificate, respectively. In these steps, the output files were
sorted based on the first birth (step 2) and last death (step 3). We also keep
track of IP addresses and the number of observations.

– Step 4 (extract CR relations): CRs were identified one certificate at a
time based on each certificate’s birth. For each certificate, we search back-
wards in time from its time of death (increasing overlap); stopping as soon
as we find a matching CR. If no such CR is found, we instead search for

1 Available at: https://www.npmjs.com/package/node-forge/v/0.9.0

https://www.npmjs.com/package/node-forge/v/0.9.0
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Fig. 2: Certificate replacement search order.

births forward in time (decreasing overlaps) until either such CR is found or
no CR can be identified for the certificate. (Figure 2 illustrates the search
order.) For every match, the precision difference between the subjectCN is
stored, indicating if it was an exact match, if it is more precise, or if it is less
precise. To allow wildcard certificates to be replaced by multiple certificates,
a wildcard certificate is considered for multiple matches if it has the same
birth date as the first found CR.

– Step 5 (identify SKCR chains): Finally, we used the SHA1 hashes of the
replaced and replacing certificate of each CR in which the two certificates
contained the same public key (i.e., an SKCR relationship) to identify chains
of SKCRs. Starting from the base case of a single SKCR, which has a chain
length of one, we search for additional CRs for which the replaced certificate
was the replacing certificate of the most recent SKCR. The chaining was
repeated until ether a new public key was used in the chain, or until no
matching CR could be found.

Our analysis mostly focuses on the outputs from steps 4 and 5.
Limitations: Like most internet measurements, the Rapid7 dataset has its

limitations. First, the biweekly scans limit how fine a granularity we can consider
for CRs. Second, Project Sonar only tries each IP address once during a scan.
While many certificates are seen across many IPs, this could potentially intro-
duce biases against certificates of services with few servers or that are further
away from the scanners. Third, the dataset does not capture how many real users
download each certificate or how popular the services using the certificates are.
Here, we treat all certificates observed in the Rapid7 datasets equally. Fourth,
the Rapid7 dataset misses many certificates that may be found in CT logs [78].
While this may cause us to miss some certificates that may be of interest, the
Rapid7 dataset has the advantage that it allows us to measure when a certifi-
cate was used (not only what its intended validity period is) and helps focus on
certificates actually observed in the wild.

Fifth, some HTTPS servers listen on ports other than 443. The addition
of scans of non-443 ports could have increased the observed lifetimes of some
certificates. However, the majority of HTTPS servers use port 443. Sixth, long-
lived certificates can bias the CRs observed in the beginning of the measurement
period and CRs with large gaps may be missed towards the end. Given current
validation period and overlap distributions, these biases should have limited
impact on the set of CRs identified between 2016-2019. Despite these limitations,
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Fig. 3: Total number of certificate replacements (bottom panes) and the fractions
of these for which the second certificate had a new issuer (top panes). The ranking
of CAs are shown based on the certificates from the last three years (2018-2020)
shown using combined boxes around those years.

we believe our analysis provides an insightful glimpse into HTTPS certificate and
public key management on the Internet over the past seven years.

Finally, we acknowledge that our paper would benefit from a measure of how
often security incidents exploited revoked certificates. For example, such a mea-
sure would enable a risk assessment and help determine the ideal validity period
of a certificate. However, to the best of our knowledge, such a measurement has
not been published and is out of scope of our paper.

3 Certificate Replacement Analysis

In total, we observed 217,221,681 unique certificates and identified 129,382,646
CRs. After filtering out self-issued and self-signed certificates, the number of
CRs reduced to 108,751,863. (21.4 million CRs for the set ≤2017, 22.8 million
for 2018, 35.9 million for 2019, and 28.6 million for 2020 (Jan-Jun).)

3.1 Certificate selection characterization

Not all certificates are created and managed in the same way. For example,
different CAs offer different trust, issuing processes, and costs, and there are
several validation types. Different websites therefore make different choices, and
some may change CAs. Figure 3 summarizes the most common certificate choices
in the last few years. The bottom panes show the total number of CRs per
certificate type and issuer, and the top panes show the fraction of those CRs that
changed issuer. Throughout the paper we label CRs using the characteristics of
the replaced certificate and say that the issuer has changed whenever the issuer’s
common name (issuerCN) is different. For the per-CA breakdown we rank the
CAs based on the number of CRs between 2018-2020 (shown as combined bars
in the plot) and only show results for CAs with at least 100,000 CRs and for



which the majority of the certificates are approved by the major browser vendor’s
trust stores. When interpreting these plots, it is important to note that a CR
represents a successful certificate replacement.

For the analysis in this paper, we omit self-signed and self-issued certificates.
Prior works have shown that these certificates are responsible for the majority
of invalid certificates in the dataset [29]. To illustrate how big a portion of the
CRs that these two certificate types represent we include them in the right-hand
panes here, but exclude them from all other analysis (including the results shown
in the left-hand panes). Here it is important to note that the majority of the
studied certificates are issued by the top-CA.

Certificate types and issuer changes: There are big differences in the
issuance requirements of different validity types. Domain Validated (DV) cer-
tificates have the least requirements and Extended Validation (EV) certificates
the most rigorous (and time consuming) requirements [7]. Organization Vali-
dated (OV) and Individual Validation (IV) certificates fall between the two,
adding somewhat to the requirements (and costs) of DVs [5]. DV certificates
is the dominating certificate type in the dataset. Customers using DV certifi-
cates seldomly change issuer. A key reason for the higher issuer change rates of
the other types is likely customers switching to cheaper services (e.g., free DV
certificates). Two contributing factors for users having moved away from EV
certificates during this period may be (1) the introduction of Let’s Encrypt’s
free and easy-to-use DV certificates and (2) several major browsers (e.g., Safari,
Chrome, Firefox) ending or announcing the ending of user interfaces displaying
EV certificates differently than DV certificates. Both these aspects are expected
to have reduced the incentive to spend extra money/effort for EV certificates.

Selected CAs and their retention rates: For the per-CA breakdown,
we rank CAs based on CRs between 2018-2020 and only show results for CAs
with at least 100,000 CRs and for which the majority of the certificates are
approved by the major browser vendors’ trust stores (e.g., Apple, Microsoft,
Mozilla/NSS). With these root stores having been responsible for most TLS user
agents [56] at the time the dataset was collected (and before Chrome released
their own root store in Dec. 2020 [6]) and all of them having significant overlaps
in their root selections [45], we expect these CAs to have very good end-user
reach. Both Symantec and GeoTrust have had very few CRs the last two years
(purple+orange bars in bottom-right pane of Figure 3). This is also reflected
by the high rate of new issuers associated with CRs involving these two CAs
(constantly above 25% for all four time buckets). Domains leaving Symantec
is perhaps not surprising given that Google over this time period implemented
a plan to distrust Symantec [65]. Microsoft and TrustAsia have also seen high
issuer churn over this time period. Of the dominant CAs, Let’s Encrypt has the
lowest change rate, suggesting that they have a high customer retention rate.
DigiCert’s change rate is increasing over time, while Google, Sectigo (formerly
Comodo), and GlobalSign were able to improve their retention rates in 2020.
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Fig. 4: Fraction of CRs with gaps or for which the first certificate was presented
after it had expired or before it became valid. Only 2019 CRs are used here (with
exception for the three categories “2020”, “2018” and “≤2017” to the left).

3.2 Analysis using mismanagement indicators

Changing a certificate (or CA) is not always seamless. We next look closer at
potential mismanagement indicators, including CRs with gaps between the va-
lidity periods of the two certificates in the CR, and the certificates that are used
either after their expiry or before their validity period started. These results are
summarized in Figure 4. For this and all later figures, all results are based only
on the CRs from 2019 (the most recent complete year of data we have; marked
“*”), unless a different year is indicated (labeled “≤2017”, “2018” or “2020”),
and we use the same order of the CAs as provided by the rankings in Figure 3.

Decreasing fraction of gaps: There has been a clear improvement over
time. For example, since CRs including 2017 (9.34% gapped), the fraction of CRs
with a gap has steadily decreased and was more than halved by 2020 (4.26%).
This suggests that servers may be becoming better at replacing their certificates
on time. One possible explanation is that Chrome and other browsers increas-
ingly inform and/or block users from accessing websites that do not meet current
HTTPS standards and practices, incentivizing websites to be compliant.

Changing CA more frequently results in gaps: We have observed a
disproportionate fraction of gaps associated with issuer changes. This may in
part be due to some administrators leaving updates until it is too late. We have
also found that the first certificate in a CR with overlapping validity periods
typically is used for the better part of the overlap period, suggesting that server
administrators may not be in a rush to switch to the replacement certificate or
that they do not always get access to them right away, even when the certificate
has an overlapping validity period.

Reuse of keys: At an aggregate level, the reuse of keys does not appear
to change the fraction of CR gaps, post-usage of expired certificates, or the
pre-usage of not-yet valid certificates. Section 4 analyzes this case further.

CRs with EV and OV certificates have the fewest gaps: The CRs
with the fewest-to-most gaps are: EV, OV, DV, and IV. This suggests that ser-
vices that pay extra for EV (and OV) certificates indeed manage to ensure that
they have fewer CR gaps than organizations that use cheaper DV certificates.



This could potentially be due to differences in operational support between such
websites. As IV usage is becoming increasingly rare, people may find fewer rea-
sons to keep them up-to-date. Furthermore, with the use of timestamped code,
code-signing certificates can be used for validation also after expiration [67].

Management indicators differ substantially across CAs: First, there
is a big difference between the CAs with the largest fraction of gapped (bad) and
overlapping (good) CRs. Like for validation types, the largest fraction of gapped
CRs is associated with the CAs with the lowest retention rates and decreasing
usage: Symantec (25%), GeoTrust (38%), and TrustAsia (32%). As expected,
these three CAs also have the largest fraction of certificates used after their ex-
piry date. We also observed 9.3% gaps associated with the free DV certificates
issued by Let’s Encrypt. In contrast, CRs with certificates issued by Microsoft
(0.08%), CSC (0.4%), Google (1.0%), Entrust (1.1%), Amazon (1.7%), and Dig-
iCert (1.9%) are much less likely to have gaps. The relatively low fraction of
gaps suggests a significant level of automation and/or better process for certifi-
cate replacements. Second, we have observed a substantially higher fraction of
certificate observations timestamped before they were valid when issued by four
(different) CAs: Go Daddy (5.4%), Entrust (4.2%), GlobalSign (3.3%), and Let’s
Encrypt (2.8%). While the exact fraction of certificates observed early may be
inflated by the granularity and accuracy of our birth estimates, the significant
differences between the CAs are substantial and shows that some CAs may use
significantly bigger safety margins than others to ensure that some clients (with
clock offsets, for example) does not invalidate an okay certificate. Careful cer-
tificate management include both using sufficient overlap in the validity periods
and deciding when to switch from using one certificate of a CR to the next.

The above differences may also be an indication that different classes of
organizations are more likely to choose certain CAs. For example, one would
expect significant differences in the fraction of gaps between organizations that
depend on HTTPS for their business and those that simply want a web presence.
The latter likely lack either the incentives or the means to prevent problems like
gaps. Our results also suggest that organizations that are looking to switch CAs
(possibly due to cost) are likely to contribute to yet additional one-time gaps.

EV and OV certificates are more carefully managed: Similar to
gapped CRs, the fraction of certificates that are used after or before their valid-
ity period is much smaller for OV and EV certificates than for DV certificates.
This again shows that organizations employing such certificates indeed appear
to manage their certificates more carefully.

3.3 Overlap analysis

Overlapping validity periods are typically used to protect against service outages.
To better understand the safety margins used in practice, we next compare and
contrast the overlaps of different CR sets. Figure 5 shows a box-and-whisker plot
of the CR overlaps and the validity periods, for different categories of CRs.

Decreasing overlaps: Regardless of which percentile we consider, overlaps
have decreased over time. This observation is both interesting and encouraging,
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when considered in combination with our earlier observation that the fraction of
gapped CRs has reduced substantially over the same period.

The above reductions have been achieved at the same time that the valida-
tion periods themselves have been reduced. The reduction in validity periods is
particularly clear when considering the fraction of long-lived certificates (e.g.,
see 90-percentile values in Figure 5) that have been pushed away by new regula-
tions and best practices such as the CA/Browser Forum Baseline Requirements
(BR) [5]. This trend towards shorter validity periods is expected to continue.
As an example, in March 2020, Apple decided to reduce the maximum allowed
lifetime of certificates in its root policy to 398 days (previously 825 days) for cer-
tificates issued starting September 2020 [12, 31]. Chrome (June), Mozilla (July)
and the BR (July) have since followed suit [25,40,81].

Gap issues with older (long-lived) certificates: There is a dispropor-
tionate fraction of gaps associated with instances where old long-lived certificates
expire. One possible explanation is that without automated solutions, the use of
long-lived certificates increases the chance that a customer forgets to renew the
certificate in time. While we expect CAs using automated issuance to be more
likely to use short-lived certificates and provide/support automated certificate
replacement solutions for their customers, we could only see a weak correla-
tion between the CAs with longer validation periods and those with more gaps,
when excluding Let’s Encrypt. Instead, Let’s Encrypt had a surprising number
of gaps. We expect this to have more to do with the domains that select to use
free certificates than the service provided by Let’s Encrypt. However, more work
is needed to confirm the underlying reasons for the above observations.

Subject vs issuer dominated overlap decisions: Clearly, all subjects
have some control over the certificate overlaps: first the size of the validity period
overlaps and second the specific date and time when to replace a certificate (and
a key). Subjects can also decide if and when to change their issuing CA. How-
ever, the variation in these overlaps and decisions differ substantially depending
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Fig. 6: CDFs for the 12 most frequently observed CAs. (Based on CRs in 2019.)

on which issuing CA the subject uses. For example, the CAs with longer validity
times have higher variability in the overlap distribution relative to CRs with cer-
tificates issued by CAs with shorter validity periods. One possible explanation
is that the overlap of short-validity certificates is influenced more by the issuer
than the subject, whereas the overlap with long-validity certificates appears in-
fluenced more by the subject. We again do not see any major differences when
conditioning on whether the key is reused in the certificates.

DV certificates use shorter validity periods and overlaps than OV
and EV certificates: The validity periods are shorter for DV certificates re-
gardless of whether Let’s Encrypt certificates are included or excluded. While
the average statistic (not shown) increases from 103 to 187 days when excluding
Let’s Encrypt, these values are still lower than for OV (241 days) and EV (461
days). One reason is that DV certificates typically use a faster validation process,
simplifying use of short-lived certificates. Interestingly, DV certificates typically
also use much shorter overlaps (safety margin). For example, the EV certificates
have a median overlap of 317 days compared to 29 days for DV certificates.

Distinguishing features of CAs: There are big differences in the validity
periods and the overlaps. For example, Let’s Encrypt, Google, and cPanel always
use 90-day validity periods; services using their certificates have fairly specific
overlaps for the majority of their CRs (typically 15 or 30 days). In contrast,
most of the other CAs use much longer validity periods and their customers use
both larger and much more diverse overlaps.

To better understand the distinct behaviors observed for the customers of
different CAs, Figure 6 shows the empirical cumulative distribution function
(CDF) of the validity periods and CR overlaps observed in 2019 for each of the
top-12 CAs in our dataset. To improve readability, the top-6 are shown with
distinct color coding and enumeration, the CAs with ranks 7-9 are shown in
green, and the CAs with ranks 10-12 are shown in yellow.

Increasing validity periods with decreasing rank: While there are ex-
ceptions, we note a clear shift in the CDFs based on the CA ranks. The three
CAs with the shortest validity periods (left-most CDFs in Figure 6) are roughly
followed by the three CAs with ranks 2, 5 and 6, which are followed by the three
CAs with ranks 7-9 (green curves), which finally are followed by the CAs with



ranks 9-12 (yellow curves). This is in part due to some of the top-ranked CAs
now offering attractive low-cost certificates with simple, automated validation
checks and shorter validity periods. These distribution examples also show that
many of the less popular CAs have had to make relatively bigger changes to
comply with the recently imposed 398-day limit.

Automated replacement solutions: Some of the CAs have a clear “knee”
in their overlap distributions. This behavior appears to be due to default values
used in automated processes simplifying certificate management. For example,
the two CAs with the most significant knee are cPanel (rank 4) and Let’s Encrypt
(rank 1). These CAs typically have an overlap of 15 and 30 days, respectively.

Both Let’s Encrypt and cPanel automate some of their certificate services
with the recently standardized Automatic Certificate Management Environment
(ACME) [9,17]. Let’s Encrypt, for instance, has created its own automation tool
Certbot as an ACME agent [75]. The cPanel system also issues other certificates,
and almost one out of five Let’s Encrypt certificates are issued using cPanel [9].

Other CAs with sharp (although smaller) knees in the overlap distribution
are Google (multiple steps), Sectigo (30 days), Amazon (60 days), Microsoft (30
days), and CSC (148 days). This suggests that websites using these services also
use automated certificate replacement processes to a significant degree.

4 Reuse of Keys

There is a cost associated with mapping subjects to keys. Unless a key has been
compromised, in some cases it may therefore be desirable to keep using the same
key when issuing a new certificate. For example, servers do not have to replace
their private keys and the CA could potentially simplify the domain validation
process somewhat knowing that the domain already is in possession of the key.
We call a CR where the public key is reused a Same Key CR (SKCR). The
fraction of SKCRs is increasing and are today responsible for roughly 13% of all
CRs. We next look closer at the SKCRs and the SKCR chains formed when a
key is reused for consecutive replacements.

4.1 High-level SKCR analysis

Figure 7 shows the fraction of CRs that reuse the same key (black bars), and
the fraction of those that have gaps (purple bars). As a reference point, we
also include the overall fraction of gaps for each category (× markers). These
reference point values are the same that were reported in Figure 4.

Small difference or reduced fraction of gaps: In most cases, reusing a
key has limited effect on the results. We have only seen a few cases when services
reusing keys have more gaps: the issuer changes, the certificate is of type EV,
and (at a first glance) the first certificate in a CR was issued by certain CAs.
However, these cases can be explained by a change in CA (the characteristic
most likely resulting in a gap). For example, the three CAs (Google, cPanel,
CSC) with noticeable higher fraction of SKCR gaps (i.e., higher purple bars
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Fig. 7: Fraction of CRs that are SKCRs and have gaps. Only 2019 CRs are used
here (with exception for the 3 categories “2020”, “2018”, “≤2017” to the left).

than × markers), as well as Amazon, have very small key reuse (black bars).
It appears that these CAs typically do not allow reuse of keys. Instead, these
rare cases are associated with a customer re-using their key with a different CA.
(Google, cPanel, and Amazon has less than 0.003% reuse and CSC 0.6%.)

Three CAs with high key reuse and fewer gaps: The customers of
three CAs have higher than 65% key reuse: Sectigo (81%), GlobalSign (66%),
and Go Daddy (75%). The highest reuse among the other CAs is less than
13%. Interestingly, these three CAs (together with DigiCert and Trust Asia)
also achieved less gaps when reusing a key (shorter purple bars than × markers).
We believe that the reuse of keys is part of the operational practices of these
CAs and may simplify the validation process as well as the key and certificate
management process of the customers. In Section 5 we expand on this observation
and show how key reuse can be used as a building block in an improved certificate
management system.

4.2 SKCR-chain analysis

Let us next consider the SKCR chains formed when the same key is reused for a
series of SKCRs (numbered from first to last) in which the replacing certificate
in SKCR i is the certificate being replaced in SKCR i+ 1 of the series.

Short chains are common:We have found that most chains are short (e.g.,
CDF in Figure 8 shows that 80% of the chains of lengths at least two are no
longer than five) and that the tail of the chain-length distribution has exponential
characteristics (e.g., straight-line CCDF behavior on linear-log scale).

Long chains are dominated by automated services: Figure 9 shows
the CDFs of the aggregate validity periods, when merging the validity periods
of all certificates associated with an SKCR chain. When interpreting this figure,
note that the single certificate line roughly captures the overall validity period
distribution across all certificates. For example, as shown in Figures 5 and 6, most
certificates have a validity period of 90 days (Let’s Encrypt, Google, cPanel) or
around either one or two years (most other top-CAs). While we see some chains
of length two (pink line) that clearly include long-lived certificates (e.g., steps
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around 1 year and 2 years), close to 40% of the chains with length 2 (pink line)
have an aggregate validity period of 150 days (90+60), matching our previous
observation that most of the Let’s Encrypt certificates have a validity of 90 days
and an overlap of 30 days. For chain lengths of three, the higher age steps have
almost disappeared, and the aggregate duration instead appears to be dominated
by Let’s Encrypt chains. This is seen by the consecutive CDFs being shifted by
roughly 60 days up-to a chain length of 10 certificates. The 11+ curve includes
a mix of longer chain lengths (mapped to different CAs) and therefore has a
somewhat different general shape, without any distinct steps.

Keys used in chains are typically used for close to the full aggregate
validity period: Figure 10 shows contour plots of the aggregate validity period
versus (vs) the aggregate observed use for certificate-replacement chains of dif-
ferent replacement lengths. For easier visualization, we use contour plots. These
plots are based on data between 2017-01-02 and 2020-07-13 and are generated
using a matrix granularity of 5 days (meaning that any point falling within any
of the 5×5 possible day combinations would add to the same counter), outliers
are removed using a threshold of 0.15% of the total observations, and we have
applied a Gaussian smoothing with a smoothing constant (sigma) of 2, where the
smoothing can be seen as us simply taking the sum across twice as many buck-
ets when doing a regional summation. We separate results based on whether the
chain is eventually replaced by a new chain (Figure 10(a)), which uses a different
key, or whether no additional certificate replacement is observed (Figure 10(b)).
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Fig. 11: CA-based comparison of the validity vs. use as aggregated over all cer-
tificates in certificate-replacement chains. (Rank in parenthesis.)

While we observe more variations in both use and validation periods for the
second case, the general characteristics and observations are the same for both
cases. First, the largest volumes (peaks or ridges in the plots) are observed just
under the diagonal, suggesting that the observed use typically spans almost the
full aggregate validity period. This shows that the websites typically make good
use of the aggregate validity period. Second, we the shortest chains (red) have
the largest portion of points well below the diagonal.

Behavior varies noticeably by CA: Looking closer at individual CAs,
Let’s Encrypt has the most interesting behavior. Figure 10(c) shows how it nicely
stacks up longer and longer chains along the diagonal. As discussed above, this
is desirable and demonstrates good use of the aggregated validity periods. This
shift comes from Let’s Encrypt customers consistently using a validity period of
90 days and often using an overlap of approximately 30 days.

CA-based comparisons: Figure 11 shows the aggregated validity period
vs. the aggregated use (over all certificates in the SKCR chains) for the other
four CAs with key reuse of at least 12% in 2019. As a reminder, Let’s Encrypt
and DigiCert had just over 12% SKCRs and the other three CAs shown (Sectigo,
GlobalSign, and GoDaddy) all had over 65% SKCRs. (Keys from certificates by
Google and cPanel, with ranks 3 and 4, respectively, only were reused in 4.7·10−6

and 1.2 · 10−5 of their respective CRs.) For the customers of the other CAs we
observe much more diverse behaviors. For these other CAs, many chains are also
only observed for a small portion of the aggregate validity period (i.e., areas well
below the diagonal). While four CAs have clear singularities in the aggregate
validity period (e.g., around the 1-year and 2-year marks), their diversity differs
substantially. Both DigiCert and GoDaddy primarily appear to have aggregated
validity period of a year, suggesting that they limit the reuse and often have
significant overlap in their SKCRs. In contrast, both Sectigo and GlobalSign
has much more diversity in their SKCR chains (both with regards to aggregate
validity period and aggregate usage period). For all four of these later CAs, we
again see a shift towards the diagonal as the chains become longer.

Let’s Encrypt highly automated: As we have seen, Let’s Encrypt’s highly
automated services stand out in many ways. Another way to highlight this is
shown in Figures 12(a) and 13. Here, we compare the replacement timing, mea-
sured using the average overlap (based on validity periods) versus the average
of the validity left for the first certificate of each SKCR in the SKCR chains
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Fig. 12: Replacement timing for Let’s Encrypt (rank #1), measured using (a)
the average overlap vs the average validity left for the certificates in CR chains
and (b) the average validity vs. use for certificates in CR chains.

500 250 0 250 500 750
1000

1250

Avg. overlap (days)

0
200
400
600
800

1000
1200

Av
g.

 v
al

id
ity

 ti
m

e 
le

ft 
(d

ay
s)

Once
2-3
4-5
6+

Once
2-3
4-5
6+

(a) DigiCert (#2)

500 250 0 250 500 750
1000

1250

Avg. overlap (days)

0
200
400
600
800

1000
1200

Av
g.

 v
al

id
ity

 ti
m

e 
le

ft 
(d

ay
s)

Once
2-3
4-5
6+

Once
2-3
4-5
6+

(b) Sectigo (#5)

500 250 0 250 500 750
1000

1250

Avg. overlap (days)

0
200
400
600
800

1000
1200

Av
g.

 v
al

id
ity

 ti
m

e 
le

ft 
(d

ay
s)

Once
2-3
4-5
6+

Once
2-3
4-5
6+

(c) GlobalSign (#6)

500 250 0 250 500 750
1000

1250

Avg. overlap (days)

0
200
400
600
800

1000
1200

Av
g.

 v
al

id
ity

 ti
m

e 
le

ft 
(d

ay
s)

Once
2-3
4-5
6+

Once
2-3
4-5
6+

(d) Go Daddy (#7)

Fig. 13: Example CA-based comparison of the replacement timing as measured
using the average overlap vs the average validity left for the certificates in
certificate-replacement chains. (Rank in parenthesis.)

when the replaced certificate is last observed. Again, Let’s Encrypt displays a
highly distinct pattern, as all CRs in the SKCR chains are equally treated. In
particular, the validity periods are always 90 days and Let’s Encrypt appears to
aim to use a 30-day overlap, regardless of whether a key is re-used or not.

Replacement certificates typically used close to the time they be-
come valid: For all five CAs, the replacement certificates are typically being
seen in use soon after they have become valid. This is seen by almost all points
falling along (or slightly above) the diagonal in Figure 13. However, exactly as
we observed for the full set of CRs (Figure 6(b)), compared with Let’s Encrypt,
the overlaps of the other four CAs are much more diverse and are therefore
spread much more evenly along the diagonal. Yet, these results clearly show
that certificates typically are replaced almost immediately even when there are
large overlaps. While this may suggest that the old certificates in some cases are
invalidated prematurely (especially in the case they are replaced with a certifi-
cate of the same key), it should be noted that websites or CAs may select to
change certificates prematurely for other reasons (e.g., to add/remove domains
or subdomains that can use the key).



5 Towards short-lived certificates

Motivated by the success of recent automation systems (observed in prior sec-
tions), in this section we present a data-driven case study that take current
trends of the validity periods and reuse of keys (characterized in prior sections)
to the extreme. After presenting the problem and highlighting current trends, we
first sketch out a solution that combines several new ideas to address the revoca-
tion problem that currently leaves all web users vulnerable to man-in-the-middle
attacks on most compromised keys long after a certificate has been revoked. Sec-
ond, we demonstrate the effectiveness of our solution using the different subsets
of the CRs identified and characterized in the previous sections as baselines.

5.1 Motivation

Revocation problem: While we have shown that some CAs (e.g., Let’s En-
crypt, Google, cPanel) mostly issue certificates with roughly 90-day validity
periods, even these validity periods can leave users vulnerable to attacks for a
long time period. One reason for this is that most browsers (especially mobile
browsers) do not sufficiently verify whether an X.509 certificate has been revoked
or not [55]. While, as discussed in the introduction, Chrome and Firefox browsers
periodically push a by-them-selected set of revocations to their users [41,59], the
frequency and size of these revocation sets still leave users of most revoked (leaf)
certificates vulnerable long after the compromised certificates have been revoked.

A case for shorter validity periods: One way to address the lack of
revocation checks is to use short-lived certificates. This is not new [62, 71, 76].
One reason this idea has not been widely adopted is due to the lack of automation
in past systems (e.g., wide-scale automation was first implemented and deployed
by Let’s Encrypt [9]), but also due to the significant increase in the number of
certificates that would need to be handled.

Current status:We have seen several success stories of automated solutions,
including the effectiveness of Let’s Encrypt’s automated solutions. In addition,
our results show that Let’s Encrypt allows its customers to effectively reuse the
same key over multiple certificates in a resource effective way.

Overhead tradeoffs: There are important security-overhead tradeoffs to
consider with short-lived certificates. On one hand, short validity periods reduce
the attacker’s time window and the potential impact of a compromised key.
However, its use also increases the issuance and replacement overheads, and puts
much tighter and less flexible timing requirements on certificate replacements.

It is easy to see how automation can help resolve timing issues in the cer-
tificate distribution between CAs and their customers. However, there still are
significant overheads associated with the subject-key verification during issuance
and it is unclear how Certificate Transparency (CT) logs [42,50,69] would han-
dle the increased submission rates resulting from use of short-lived certificates.
For example, while splitting a log into several logs may offset the load that a
single log would observe, it does not reduce the combined load of the logs. To



provide similar response times, for example, the combined set of resources of
such solution would hence still need to scale with the load.

The primary purpose of CT is to provide public immutable records that
help detect maliciously or mistakenly issued certificates. Since 2018, Chrome
and Apple require all newly issued certificates to be included in CT logs [13,63].
These are public, auditable, append-only logs that at submission return a Signed
Certificate Timestamps (SCTs) that the servers can then deliver with their cer-
tificates so to prove that the certificate has been logged. However, CT logs do
not log revocations and do not protect from misuse of a revoked certificate.

Without new methods to reduce the overheads associated with short-lived
certificates, it is unlikely that short-lived, CA-issued certificates with validity
periods of one or a few days will see extended use in the near future.

5.2 Parent-child certs: Limiting the cost of short-lived certificates

We next propose a novel approach to address the above tradeoff so as to achieve
the advantages of short-lived certificates while keeping the overheads low for
CAs. Our approach makes use of three key observations.

First, and most importantly, we note that significant overhead savings can
be achieved by decoupling the subject-key verification done by CAs and their
issuance of certificates confirming the validity of these pairings. Such decoupling
allows CAs to easily create many short-lived certificates that reuse the same key
without requiring new domain validation checks. As long as the owner of a key
does not report to the CA that the key has been compromised, the CA can
continue to generate short-lived certificates with that key.

Second, when using short-lived certificates, it is important to have a fallback
mechanism when a certificate is not replaced in time. A key observation here is
that the current Online Certificate Status Protocol (OCSP) [39] solutions pro-
vide an excellent fallback mechanism (that can be called upon at such instances).
OCSP is already implemented by all CAs and the server load is primarily de-
termined by the request volume, not by the number of certificates with tracked
status. (Memory and disk to keep track of certificates are not expected to be
bottlenecks for an individual CA.)

Third, with today’s high CT compliance, the load of CT logs would be pro-
portional to the rate that new certificates are issued. As a naive implementation
of short-lived certificates would result in a huge increase in the issuance rate
of new certificates (e.g., Figure 15, discussed later in this section), this could
result in a very high load also at CT logs. To address this issue, we introduce
the concept of parent and child certificates. This concept would enable the CAs
to submit a parent certificate to the CT logs as a means to obtain a special SCT
that can be used as inclusion proof for all issued child certificates that use the
same subject-key mapping and for which the validity period t is a subset of the
parent’s validity period T (i.e., t ⊆ T ).

The idea of logging a parent on behalf of its child certificates is inspired by the
use of pre-certificates in current CT systems [51]. Pre-certificates are created and
logged prior to certificate issuance in order to obtain an SCT for the certificate,



Fig. 14: Parent-child issuance overview. Left-hand side shows parent certificates
logged in CT. Right-hand side zooms in on a few overlapping child certificates.

but include a critical poison extension that ensures that it can not be validated
by a client. By only logging parent certificates, the CAs can help keep the load
on CT logs low even when issuing many more child certificates. An alternative
idea of how to effectively obtain an SCT for a larger set of certificates (in our case
a set of child certificates) is to introduce specific log entries into CT logs [36],
where several short-lived certificates can be contained in one CT entry. Our
solution would work with this approach too.

Motivated by these three key observations, we propose an approach inspired
by the general ideas of a three-phased certificate, first presented by Rivest in
1998 [66]. In contrast to regular certificates (as used today), which only have
two phases: probable (check revocation status) and expired, Rivest suggested
that certificates should have three phases: guaranteed, probable, expired. The
idea is to make checking revocation status unnecessary during the first (guaran-
teed) phase and only check in the second (probable) phase. To combine the first
two observations, we extend Rivest’s idea to separate the key generation and
validation process from the certificate generation process. To do this: (1) Parent
certificates with a validity period T are issued and submitted to CT logs every
∆ days with an overlap of O=T−∆ days. (2) Child certificates are issued every
δ ≪ ∆ days with an overlap of og=g−δ days in the guaranteed phases, where
g is the duration of the guaranteed phase. (3) Revocations are handled by (i)
requiring OCSP checks of child certificates after g days and (ii) asking the CA
to stop generating/releasing new child certificates based on that key. Figure 14
provides an overview of the issuance and logging process.

Note that a client would only need to perform OCSP calls when a child
certificate is not replaced with another child certificate within time g or when a
certificate actually is compromised. In both cases, the client would perform the
OCSP checks as soon as the guaranteed period g has expired. At this time, a
client would be informed whether the certificate (and its parent certificate) has
been revoked.

Browser discussion:With our solution, the parent should not sign the child.
Instead, the child certificate’s is expected to use a validity period t ⊆ T that is a
subset of its parent’s validity period T . Non-CT enabled browsers can treat the
certificate independently, while CT-enabled browsers implementing our solution
can use the special shared SCTs to validate that the subject-key mapping has
been logged in a similar manner as with SCTs based on regular pre-certificates.



Another interesting browser-related aspect is the browser-side usage of OCSP
checks. Here, our solution is designed such that OCSP only is used as a fallback
mechanism during the probable phase. This design choice is motivated by similar
reasons (e.g., privacy, performance, etc.) as why Chrome today does not perform
OCSP checks [76]. By avoiding the use of OCSP checks for any certificate in the
guaranteed phase we incentivize CAs and servers to properly manage their cer-
tificates so that they always can present a certificate in its guaranteed phase. Any
performance penalties (which can be sever if enforcing strict OCSP checks), for
example, are only endured when a certificate already should have been replaced
by a new child certificate. While Chrome currently does not perform OCSP
checks, other browsers do. Furthermore, all CAs operate active OCSP servers
that provide (mostly) good response rate for status checks of all their issued cer-
tificates up to the expiry time of each individual certificate (and beyond) [46].
Implementing such fallback mechanism is therefore expected to be trivial for all
browsers. Also, as long as the servers properly maintain their certificates, the
browsers should never need to make any OCSP checks.

Parameter discussion: We next briefly discuss the best parameter choices
in the context of prior research and best practices. For part of this discussion,
we refer to the CA/Browser Forum Baseline Requirements (BR). These BR are
shaped in a democratic process of CAs and browser vendors, where both the
browser vendors and the CAs have a strong interest in security while keeping
costs low. Today, the BR has a central role in the governance of CAs [19]. For
example, non-compliance has been used as an argument for root removal [57],
and the major root programs require CAs to comply with the BR [70].

The guaranteed period determines the worst-case response time to a revo-
cation. The intention is to allow organizations to choose their own guaranteed
period based on their individual risk assessment. However, for the CAs to comply
with the BR, they must revoke certificates within 24 hours in some serious cases
(e.g., key compromise) and within 5 days for less critical cases [24,26]. Therefore,
the revocation mechanism would remain a part of the system. Furthermore, us-
ing a guaranteed period g of 24 hours is expected to provide as good protection
as achieved by a conservative client always performing revocation checks and
better protection than the current status-quo of not doing revocation checks.
Motivated by OCSP responses being cached for 4 days on average [74], others
have suggested that similar guarantees as OCSP can be achieved using certifi-
cates with a 4-day validity period [76]. Based on these observations, we foresee
that a good selection for the guaranteed period g may vary between 1-to-4 days.

Currently, the CA/Browser EV Guidelines suggest that EV certificates should
be valid for up to a year [7]. Given this and the measured average frequency that
different CAs currently issue certificates, we suggest that new keys are gener-
ated, CAs perform re-validation checks of such subject-key mappings, and that
the parent certificates are submitted to CT logs accordingly (i.e., ∆<T is less
than a year). During this period, new child certificates (reusing this key) are
then generated every δ days. To ensure overlapping guaranteed phases and avoid
unnecessary OCSP checks, we suggest using δ<g. Finally, we note that the va-



lidity periods of the child certificates can be much longer than g, as long as the
browsers commit to OCSP lookups during the probable phase.

This approach ensures that domains that always maintain an up-to-date
certificate in the guaranteed phase can provide services to their clients without
any performance penalty. We propose that browsers only penalize the domains
that do not provide up-to-date certs (i.e., that are in the probable phase).

Deployment incentives and challenges: Like past successful changes to
the certificate management practices (e.g., CAs becoming CT compliant and
398-day compliant), new solutions must be easy to deploy and/or driven by de-
mand/pressure from users and browser vendors. First, assuming that browsers
would demand CA compliance, we believe that our solution easily can be de-
ployed by CAs to meet such expectations. Second, there already is interest in
shorter certificate lifetimes. For example, Let’s Encrypt publicly expressed inter-
est in shorter lifetimes than the 90-day validity periods used today [8], which was
selected to “allow plenty of time for manual renewal if necessary”. Third, our so-
lution allows individual CAs to use different parameters and safety margins based
on the level of automation that they can provide each customer. Since different
safety margins have different security-performance tradeoffs, some CAs are likely
to compete based on the level of automation that they can provide. This could
drive the demand of good implementations compatible with our framework.

Finally, there are other subtle policy decisions that browsers can do to in-
centivize CAs and servers to implement and properly maintain up-to-date child
certificates. For example, consider again our use of OCSP checks as a potential
fallback mechanism during the probable phase. While they initially could use a
safe-fail policy here (to limit performance implications of slow OCSP responses),
it is foreseeable that some may eventually (in the long term) push for strict OCSP
checks for any certificate that is not within its (short initial) guaranteed phase,
regardless of whether it is a child certificate or a regular certificate. This would
incentivize servers to both use our child-parent approach and to make sure that
they always can present an up-to-date child certificate. Ideally all servers would
eventually try to maintain up-to-date child certificates and OCSP checks would
only be needed when a server fails to do so (of legit or non-legit reasons).

5.3 Data-driven overhead analysis

In this section we examine the overhead associated with different high-level cer-
tificate management solutions. For this analysis, we assume that the overhead
is proportional to the issuance rate of certificates that require (1) the validation
of subject-key mappings and (2) the submission of new certificates to CT logs.
Both overheads are important since the subject-key validation process can be
both time consuming and costly, and since many CT logs already contain more
than a billion certificates and the log sizes are quickly growing [73].

To illustrate the value of parent certificates, we present a simple model that
captures the relative increase in the number of certificates (parent or traditional)
that must be issued for a set of domains when the validity period is reduced.
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Fig. 15: Relative increase in the number of subject-key validations and CT sub-
missions of selected management policies compared to two baselines.

Model: Consider the set of certificates N currently used by a large set of
servers. Let T and O denote the average validity time and overlap, respectively.
Assuming the system is in steady state, we can then use Little’s law to obtain
the average rate λ that new certificates must be generated as: λ=N/(T−O),
where T>O and N=|N |. The relative increase in the issuance rate can now be
calculated as: (Told−Oold)/(Tnew−Onew), where the subscripts capture change.

Baseline comparisons: Figure 15 illustrates the effect that certificate life-
times can have on the issuance rate. For this discussion, we normalize all num-
bers relative to two basic baselines. In particular, we show the relative increase in
the number of subject-key validations and CT submissions of when using a few
different example management policies relative to the corresponding overhead
when using these two baselines, as a function of the selected validity period when
using the different example policies. Figure 15(a) shows the relative (multiplica-
tive) increase when we start with an average validity time of 398 days and an
average overlap of 60 days, and then reduce the lifetimes in different manners.
Figure 15(b) shows the corresponding statistics when we start with an average
validity period of 90 days and an average overlap of 30 days. The first default
scenario corresponds to changes relative to the most commonly used certificates
and overlaps used by Amazon and the second case corresponds to what subjects
using Let’s Encrypt usually use. In both cases, we include results for the case
when the overlap is scaled proportionally to the validity period, the cases when
a fixed overlap (e.g., 1, 4, 15, or 60 days) always is used (regardless of validity
period), and for our proposed method. Here, we assume that parent certificates
are issued with a similar frequency and overlap as in the baseline systems. For
this solution, the validity time (on the x-axis) corresponds to the frequency that
child certificates are generated (by CA) and used (by servers). Again, the over-
head associated with these actions is very small compared to the overhead of
validating a subject-key pairing and submitting parent certificates to CT logs.

The first scenario (Figure 15(a)) illustrates that a CA reducing its validity
period from 398 days to 90 days using normal means would increase its issuance
overhead by more than a factor of four (i.e., > 300%), and that further reductions



Table 1: Increase in overhead for different CAs using short-lived certificates with-
out the proposed technique. We show results for different average inter-issuance
intervals ∆ = Tnew−Onew, measured in days. The columns to the left are based
on the CAs’ current median values for Told and Oold. The columns to the right
are based on the observed distributions of Told and Oold for each CR of a CA.

60 20 10 5 2 1 60 20 10 5 2 1
Let's Encrypt 1.02 3.05 6.10 12.20 30.50 61.00 1.05 3.14 6.28 12.56 31.39 62.78
DigiCert 2.32 6.95 13.90 27.80 69.50 139.00 1.59 4.76 9.52 19.04 47.60 95.19
Google 0.52 1.55 3.10 6.20 15.50 31.00 0.52 1.57 3.15 6.29 15.73 31.45
cPanel 1.27 3.80 7.60 15.20 38.00 76.00 1.35 4.06 8.12 16.23 40.58 81.16
Sectigo/Comodo 2.68 8.05 16.10 32.20 80.50 161.00 2.72 8.16 16.32 32.63 81.59 163.17
GlobalSign 2.32 6.95 13.90 27.80 69.50 139.00 1.87 5.60 11.21 22.42 56.04 112.08
Go Daddy 2.72 8.15 16.30 32.60 81.50 163.00 2.22 6.65 13.30 26.61 66.51 133.03

Based on full distributionBased on median values

to a 5-day validity period with a 1-day overlap would increase overhead by a fac-
tor of 84.5 (or 8,350%). In contrast, our parent-based solutions can be used with
even shorter guaranteed periods without increasing the number of subject-key
verifications or CT-log submissions. This clearly demonstrates the effectiveness
of our approach. When comparing against the second baseline (Figure 15(b)) of
90-day certificates (e.g., currently used by Let’s Encrypt) we still see significant
reductions in overhead. For example, with a validity period of 5-days and a 1-day
overlap, we would see a factor 15 (or 1,400%) difference and for organizations
that would want daily certificates the overhead would be 90x (8,900%) higher
than the parent certificate approach.

Measurement-based CA comparisons: To put the above changes in per-
spective we first refer back to the CDFs of the most popular CAs validity periods
and current overlaps (Figure 6). With all CAs having a median value well above
one of these two base cases, our approach would hence consistently result in
substantial improvements in overhead compared to the näıve approaches when
using short-lived certificates.

We next quantify the improvements for individual CAs. Table 1 shows the
relative overhead increases that the top-7 CAs (including the five for which
we observed key re-usage) would see when changing to use different example
certificate update intervals (listed in the second row and measured in days).
This corresponds to ∆new = Tnew − Onew. Here, we calculate the increases in
two ways: (1) The columns to the left are based on the CAs’ current median
values for Told and Oold. (2) The columns to the right are based on the actual
distributions of Told and Oold values, as observed for CRs associated with each
CA. Note that the increase is substantial when we get down to update intervals
of less than a week. For example, with an update interval of 5 days (e.g., a 7-day
certificate with a 2-day overlap) all CAs except Google would need to submit
12-33 times as many certificates to CT logs as they do now, and if updating
certificates on a daily basis (potentially still with bigger overlap) the overhead
increase would be 61-163 times current loads. The lower overheads for Google are



due to them already using substantially shorter update intervals than the other
CAs (e.g., median of (70-39) days compared to (90-29) days for Let’s Encrypt).

In comparison, using our approach a CA could easily use the same certificate
update interval for their parent certificates as they do now (i.e., ∆ = Told−Oold),
or perhaps more likely even increase it. If they increase the update interval for
parent certificates, the improvements would be even greater with our approach
than suggested here. For example, we expect updates of parent certificates to
be significantly less frequent than the 41 days used by Google on average at the
moment. By creating and submitting new using parent certificates less frequently,
CAs could hence easily reduce the number of CT submissions and subject-to-key
checks they perform at the same time as the lifetime of their child certificates
can be reduced substantially.

Finally, there are many validity-overlap pairings that result in the same up-
date intervals. The best overlap is expected to be both website dependent and
depend on how strictly browsers would enforce OCSP checks (suggested as a
fallback mechanism during the probable phase). Differences are also expected
between CAs. Again, the relatively bigger overlaps used by Google compared to
Let’s Encrypt was a contributing factor to their shorter update intervals.

6 Related work

Wide-area certificate scanning: Fast internet-scale certificate measurements
using systems and tools such as ZMap [35] and Censys [33] have enabled re-
searchers to quickly scan large IP address spaces to collect and analyze large
volumes of certificates. Researchers have studied the certificates collected us-
ing such tools (e.g., Rapid7 and Censys) and the certificates found in public
CT logs [42, 50, 69] to characterize the certificate landscape [78], analyze how
well CAs construct certificates [47], study the popularity of cryptographic li-
braries [61], label devices [11], and a wide range of other purposes. Others have
considered the effect of location [79] or discussed how to best adapt the scanning
solutions for the much larger IPv6 address space [60].

Certificate management: Complicated issuance and certificate manage-
ment processes are believed to have slowed down the original HTTPS deploy-
ment [20]. Let’s Encrypt addressed many of these issues through the introduction
of Certbot and other automated processes [9,75]. However, there are still many is-
sues yet to address, including frequent errors in the CAs’ issuance processes [47].
Kumar et al. [47] developed a certificate linter (ZLint), quantified the compli-
ance of the CA/Browser Forum’s baseline requirements and RFC 5280 [22].
While there has been a drastic reduction in the fraction of certificates with er-
rors, errors are still frequent [47]. Acer et al. [10] used client-side reports from
within Chrome to analyze the main causes of certificate errors, and found that
almost all date errors are caused by expired certificates.

Others have proposed extensions to the ACME protocol. For example, Borghol
et al. [23] presents a related mitigation technique to better protect against do-
main takeover attacks for trust-based domain-validation services. Their solution



introduces an additional issuance challenge (for trusted re-issuance) that eas-
ily can be solved by domains that are currently in possession of the private
key associated with a trusted certificate that has been previously issued for the
domain.

Certificate replacements: Most papers on certificate replacement consider
the reissuing and revoking of certificates during mass-revocation events related
to Heartbleed [34,82] or the case when invalid certificates are replaced by other
invalid certificates [29]. These studies suggested that the top sites were quicker
at revoking certificates and addressing the Heartbleed vulnerabilities than less
popular sites [34] and that sites that did not do this immediately were very slow
to do so [34,82]. None of these works considered replacement relationships under
normal circumstances, the primary focus in this paper. Mirian [58] finds that
popular websites are more likely to be proactive in their certificate renewal than
less popular websites. In parallel work, Omolola et al. [64] evaluated how reactive
administrators utilizing automation for reissuing certificates were in the event
of the Let’s Encrypt mass-revocation event (Apr. 2020). They found that 28%
successfully reissued their certificates manually within a week—around three
times better than the result a week after the Heartbleed bug. They focus on
Let’s Encrypt certificates found in CT logs and do not consider key reusage or
when replacements occur on the servers.

Revocation problems: Browsers have traditionally performed revocation
checks using the Online Certificate Status Protocol (OCSP) [39] or Certificate
Revocation Lists (CRLs) [22]. However, due to several security, privacy, and
performance issues many browser vendors today do not utilize these proto-
cols [28,55].

One area of broad research interest is better ways to revoke certificates.
While the goal is the same as OCSP and CRLs, the paths taken differ substan-
tially between solution approaches [30,32,49,72]. Proposals include more efficient
push-based protocols and compact forms to convey which certificates have been
revoked [49,72] and the caching/sharing of revocation statuses [32]. Others have
considered if the world is ready for OCSP Must-Staple and hard-fail policies [30].

Short-lived certificates: Other solutions to the above problem include the
use of short-lived certificates [62,71,76], proxy certificates [28,77,80], and the use
of different delegation schemes [15,18,21,27,43,52,53]. Conceptually, the idea to
use shorter validity periods is simple. Unlike our work, previous works on short-
lived certificates did not reuse keys. As we previously noted, just shortening
the validity period would result in a big overhead for CAs and CT logs. An
interesting alternative way to obtains SCTs for the child certificates may be to
combine our idea with that of utilizing special log entries for a collection of short-
lived certificates [36]. However, such hybrid scheme may require some extra care
in how to best ensure that child certificates are not leaked ahead of time and
would still benefit from key reusage and the rest of our proposal.

Both proxy certificates and delegation schemes typically are designed to al-
low a third party to serve content on behalf of a domain owner without giving
them access to the private key of the domain owner. Chuat et al. [28] present



a nice survey and high-level comparison of the above approaches, in which they
also make a case for the use of short-lived proxy certificates. While proxy certifi-
cates [28] and delegated credentials [15,43] (and similar approaches) help reduce
the number of servers that keep long-lived certificates, they do not address the
actual problem of speeding up revocations when revocations are needed.

7 Conclusion

This paper first presents a novel server-side characterization of the CR relation-
ships in the wild, including the reuse of public keys. Second, it proposes and
demonstrates a simple way to combine parent-child certificate relationships and
three-phase certificate handling to reduce the reliance of revocation checks.

Our data-driven CR analysis captures management biases, including the in-
fluence that the services offered by different CAs may have on the timing of
replacements, safety margins, certificate violations (e.g., early/late usage), and
whether the public key is reused. The results highlight a lack of industry stan-
dards for replacement policies [38]. Interestingly, the top-CAs using shorter va-
lidity periods often also use more common (default) overlaps and their customers
achieve more consistent/predictable lifetime characteristics. Having said that,
we observe the smallest fraction of gaps and early/late usage for the more expen-
sive (and longer-lived) EV certificates. Another interesting observation is that
the three CAs (Sectigo, GlobalSign, Go Daddy) with highest key reuse (>65%)
all achieved substantially less gaps when reusing keys than when not reusing
keys. While they do not have as high key reuse, Let’s Encrypt nicely demon-
strates how key-reuse chains can help customers achieve good key utilization.

Finally, motivated by the effectiveness and potential of some of the observed
automation solutions and trends, we present a new way to address an important
revocation problem currently leaving web users highly vulnerable to man-in-the
middle attacks of compromised keys. Our solution takes some current trends to
the extreme and combines the use of short-lived three-phase certificates, the in-
troduction of the concept of parent-child certificate relationships, and some sim-
ple management rules. The solution addresses the important revocation problem
without needing to increase the frequency of subject-key validations and CT log
submissions.

Interesting future work includes the collection and analysis of more fine-
grained datasets, comparisons with alternative data sources (e.g., CT logs) to
obtain a more complete picture of the certificate replacement landscape, perform-
ing additional analyses to understand other characteristics (such as relationship
of current characteristics to domain popularity), and the implementation and
testing of the proposed solution.
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