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Abstract. Certificate Transparency (CT) was developed to mitigate
shortcomings in the TLS/SSL landscape and to assess the trustworthi-
ness of Certificate Authorities (CAs) and the certificates they create.
With CT, certificates should be logged in public, audible, append-only
CT logs and servers should provide clients (browsers) evidence, in the
form of Signed Certificate Timestamps (SCTs), that the certificates that
they present have been logged in credible CT logs. These SCTs can be
delivered using three different methods: (i) X.509v3 extension, (ii) TLS
extension, and (iii) OSCP stapling. In this paper, we develop a client-side
measurement tool that implements all three methods and use the tool
to analyze the SCT adoption among the one-million most popular web
domains. Using two snapshots (from May and Oct. 2017), we answer a
wide range of questions related to the delivery choices made by different
domains, identify differences in the certificates used by these domains,
the CT logs they use, and characterize the overheads and potential per-
formance impact of the SCT delivery methods. By highlighting some of
the tradeoffs between the methods and differences in the websites select-
ing them, we provide insights into the current SCT adoption status and
differences in how domains have gone upon adopting this new technology.

1 Introduction

The majority of the internet traffic is delivered using HTTPS and encrypted
using Transport Layer Security (TLS). While most of these connections use
relatively strong security algorithms [20], one of the major weaknesses in securing
the end-to-end communication is instead the amount of trust that is placed in
the Certificate Authorities (CAs) that generate the X.509 certificates (connecting
public keys to servers/domains) needed for us (and our browsers) to trust that
the servers/domains that we communicate with are who they claim to be [8,15].

Browsers typically trust that the private key associated with the public key
inside a certificate belongs to a given server/domain as long as (i) the certificate
is signed by a CA (or an organization that a CA has delegated trust to, using
chained certificates), and (ii) the CA’s corresponding root certificate, or a root
certificate that the certificate chains back to, is stored in the browser’s root
store. Unfortunately, not all CAs are equally trustworthy, CAs sometimes make
mistakes (e.g., due to human errors, intentional fraud, etc. [16]), and there is no
current PKI mechanism informing domain owners of issued certificates.

The high reliance on CAs combined with some high-profile (but hard-to-
detect) incidents have prompted various efforts to address the shortcomings of
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the TLS/SSL landscape [6,13,14,17,18,23]. One of the most successfully deployed
such systems is Certification Transparency (CT) [12, 18, 19]. To address some
of the flaws with the current TLS landscape, CT requires that certificates are
published in public append-only logs and that servers provide clients (browsers)
proof, in the form of Signed Certificate Timestamps (SCTs), that the certificates
have been logged in credible CT logs.

CT is already used by Google’s Chrome browser for validation of certifi-
cates and Mozilla is drafting their own CT policies for Firefox. There also exist
many public well-maintained logs that have proven valuable in identifying rogue
certificates. In prior work, we analyzed the content of these CT logs [12] and
VanderSloot et al. [22] have analyzed their certificate coverage. Here, we instead
study the server-side adoption. In particular, we characterize the SCT usage
among the one million most popular domains according to alexa.com, which
due to high popularity skew are responsible for most of the web traffic [11].

SCTs can be delivered to a client in three different ways [18]: (i) using the
X.509v3 extension, (ii) using the TLS extension, and (iii) using Online Certificate
Status Protocol (OSCP) stapling. Each of these methods comes with their own
advantages and disadvantages. In this paper, we first highlight some of these
tradeoffs (Section 2) and then analyze the delivery choices made by different
domains, including what domains select which delivery method and whether
there are differences in the certificates associated with the different methods,
the logs used to store the corresponding certificates, and other factors. We also
use our measurements to look closer at overheads and the potential performance
impact that SCT delivery may have when using the different methods.

For this work, we developed a measurement tool (Section 3) that extracts rich
meta information about the handshake process, the SCTs, the SCT delivery, and
the associated certificates. Using the tool, we collect and analyze two snapshots
of the server-side SCT adoption as seen on May 30, 2017 and Oct. 6, 2017. These
datasets allow us to capture the current status and comment on the impact that
potential trends may have on the results. For our analysis, we first characterize
the SCT usage (Section 4) as seen across popularities and how the number of
SCTs and the log selection differ between domains that use different SCT meth-
ods. We then present a certificate-based analysis (Section 5) that looks closer
at biases between the SCT delivery methods used and the type of certificates,
signatures, and public keys, for example, providing us with some initial insight
into the characteristics of the domains that use each delivery method. Finally,
we present a performance and overhead analysis (Section 6) in which we analyze
the handshake times, time until the clients obtain the SCTs, and quantify the
potential delay and byte overheads associated with delivering the SCTs.

Our observations has implications on organizations running web services and
our basic quantifications highlight SCTs minimal overheads. While most do-
mains using SCTs opt to use the simplest delivery method (X.509v3 extension),
which does not require any server-side changes, the fastest delivery method (TLS
extension), which delivers the SCTs earlier within the handshake and only to
clients requesting SCTs, is most frequently used by organizations (e.g., Google)



Fig. 1. High-level overview of the three SCT delivery methods.

that we (based on our measurement observations) conjecture are more perfor-
mance oriented. It is also very encouraging that certificates that are accompanied
with SCTs are much less likely to use weak signatures or public keys. Overall,
the CT adoption, and use of the TLS extension in particular, is highest among
the top domains, hopefully pushing others to follow.

2 Background

Browsers are increasingly requiring certificates to be included in CT logs. For
example, since 2015, Google’s Chrome browser has required that all Extended
Validation (EV) certificates are accompanied by multiple SCTs before display-
ing visual cues to the user that normally come with these certificates. Today,
they also require all certificates created by some (less trusted) CAs that have
been caught misbehaving (e.g., Symantec) to be logged, and during the 39th
CA/Browser Forum (Nov. 2016), the Chrome team announced plans that all
certificates issued in Oct. 2017 or later will be expected to comply with Chrome’s
CT policy. Recently, Mozilla has also announced that CT is coming to Firefox.1

There are three methods for a server/domain to obtain and deliver SCTs to
the clients. These methods use (i) the X.509v3 extension, (ii) the TLS extension,
and (iii) OCSP stapling. The methods differ both by how the server obtains the
SCTs and how the SCTs are delivered to the client. Figure 1 summarizes the
main differences. From a service provider’s perspective, the X.509v3 extension
is by far the simplest method and does not require any server changes. Instead,
the CA submits the certificate to the logs, obtains the corresponding SCTs, and
bundles them together with the certificate (as part of the X.509v3 extension),
allowing the server to deliver the STCs as a bundle together with the certificate
(during a regular handshake). In contrast, with the TLS extension, the server
submits the certificate (obtained from the CA) directly to the desired logs, ob-
tains the corresponding SCTs, and then delivers the STCs to the client using the
TLS extension option. While this method requires some changes to the server, we
note that the TLS extension option comes earlier in the handshake and therefore
typically allows faster delivery of SCTs. (This observation is analyzed further in
Section 6.) Also OCSP stapling requires additional modifications on the server
side; in this case to obtain an OCSP stapled SCT bundle that the CA creates af-
ter obtaining the SCTs. Compared with the other two methods, OCSP stapling
results in later SCT delivery, since it takes place at the end of the handshake.

1 https://www.thesslstore.com/blog/firefox-certificate-transparency/



3 Methodology

Using a collection of Java APIs available via Bouncy Castle2, we implemented
a special purpose program that we use as a tool for data collection and man-
agement of measurement campaigns.3 Given a list of domains (in our case the
top one million websites according to alexa.com), our program tries to estab-
lish a TLS/SSL connection with servers representing each domain. Using the
SSLSocket in the Bouncy Castle library, during the TLS handshake, the program
extracts and records detailed statistics about byte overheads, the SCT bundles,
the certificates, the algorithms used during the handshake, timing information
(e.g., time of handshakes, and time to obtain SCT bundles), and general infor-
mation regarding the handshake process (e.g., why some connections fail).

The program implements all three SCT delivery methods and records in-
formation up-to the time of the first HTTP request, when connections are fully
established and all potential SCTs have been obtained. After download of SCTs,
the program decodes the SCTs and collects information about the logs used and
the SCTs themselves. Public lists of known object identifiers (OIDs) and issuer
information are used to determine the validation method of certificates.

To allow efficient processing even when a significant number of domains time-
out and reduce time-of-day effects, the program runs 600 parallel client threads.
At each point in time a thread is responsible for collecting statistics for one
domain. To avoid startup and end effects (e.g., unfair CPU availability for the
first opened threads), at the start and end of an experimental run, a set of addi-
tional HTTPS “dummy” websites are processed but not included in the results.
We have run experiments with other number of parallel client threads, but have
found that 600 provides a nice tradeoff between the speed of the measurement
campaign and representative (and stable) performance values when a client visits
these domains. A measurement campaign takes on average four hours.

Limitations: Perhaps the largest limitations of our setup is that we only run
experiments from a single machine, and that we needed to run parallel threads
to obtain timely results. Naturally, the network connectivity and location of the
measurement device impacts the absolute handshake and SCT delivery times
reported. However, we believe that the relative timing values still provide nice
insights into differences observed between SCT delivery methods and that byte
overheads will likely be much less impacted by location. We therefore focus on
relative differences observed between the SCT delivery methods, not absolute
delivery times. Focusing on these aspects also minimize the impact that the use
of parallel threads may have on conclusions and insights.

4 Dataset and SCT Usage

Due to the current changes in the CT landscape, we present results based on
two datasets collected roughly four months apart: May 30, 2017, and Oct. 6,

2 Bouncy Castle, https://www.bouncycastle.org
3 Code+datasets available: http://www.ida.liu.se/~nikca89/papers/pam18.html.



Fig. 2. Overview of dataset.
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Fig. 3. Usage across domain popularities.

2017. Throughout this paper we use x1 → x2 to indicate the values x1 and x2,
for the same metric x, observed on these dates, respectively. The relative change
provides an estimate of current change in the metric x.

Overview: For these two datasets, out of the top one million domains (ac-
cording to alexa.com), 8.70→8.68% did not respond, 10.88→8.72% did not pro-
vide a certificate (and was deemed not to use HTTPS), and 23.52→26.20%
resulted in the tool flagging a TLS error (typically indicating that the certifi-
cate is not valid). This left us with 557,485→563,866 sites that delivered valid
X.509 certificates. While this suggests a small relative increase in the number of
domains that uses HTTPS over this period, we were encouraged to see that the
subset of domains that deliver SCTs with their certificates have increased more;
from 130,768 (23.46%) to 148,468 (26.33%).

Figure 2 provides a breakdown of the delivery methods used by the servers
to deliver these SCT bundles and how the use of the methods have changed. We
note that the majority (103,482→120,002) of the SCT bundles are delivered using
the X.509v3 extension. This is perhaps not surprising since this method does not
require any changes to the servers. However, we also observe many SCT bundles
(27,279→28,451) that are delivered using the TLS extension and a few (16→25)
that are delivered using OCSP stapling. Again, both these later methods require
server-side modifications. This may also explain why the X.509v3 extension is
responsible for most of the increase in SCT usage.

Popularity-based usage breakdown: Figure 3 shows the SCT usage for
domains with different popularity rank. Here, and throughout all other bar
graphs in the paper (except Figure 5), we use bars to show the May 2017 values
and large dots (with same colors) to indicate the corresponding Oct. 2017 values.
The SCT usage is highest among the most popular domains (e.g., above 60%
in among the top-100 domains and 49% among the top-1000 domains across
both datasets). The top domains are also relatively equally likely to use the
TLS extension and the X.509v3 extension for the delivery of the SCTs, whereas
the (simpler) X.509v3 extension by far is the most popular choice among the
less popular domains (e.g., X.509v3 is used to deliver 69.0→70.5% of the SCT
bundles in the range (104, 105] and 81.1→82.7% of the bundles in the range
(105, 106]). The reason that OCSP stapling is not visible in the figure is that all
16→25 cases are for less popular domains, in the (104, 106] range.

Bundle sizes: Certificates are expected to be accompanied by multiple
SCTs. For example, with Chrome’s EV policy a certificate should be logged
in at least one Google operated log and one other (typically CA operated) log.
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that the observed CT logs covers.

The mean and median number of SCTs per bundle are relatively similar across
the methods and we have not seen any major changes in the numbers. For ex-
ample, in May the averages were 3.08 (X.509v3), 2.71 (TLS), and 3.56 (OCSP),
respectively, and in Oct. the averages were 3.16, 2.70, and 3.72. Similarly, the
median has remained equal to 3 for all three classes. However, there are substan-
tial distribution differences between the methods. This is illustrated in Figure 4.
With the TLS extension, almost all bundles include two (30.1→31.2%) or three
(69.0→68.0%) SCTs. In contrast, the size of the bundles delivered using the
X.509v3 extension are much more diverse. Although, the most common cases
again is that two (38.0→32.6%) or three (29.0→31.7%) SCTs are included, with
the X.509v3 extension, there is also a substantial number of bundles with four
(20.3→23.2%) and five (12.7→12.6%) SCTs per bundle. Also with OCSP sta-
pling we see relatively more SCTs per bundle. For example, 44→48% of these
bundles have four or five SCTs. The smaller and more homogeneous bundle sizes
observed with the TLS extensions are likely due to these sites being more per-
formance conscious. We discuss this further in Section 6, when looking at the
overheads and delivery times of the SCT bundles.

Logs used: Figure 5 shows the percentage of times each log is observed in
an SCT bundle observed in the Oct. 2017 dataset. In general, the log usage
is heavily skewed towards a small subset of logs, dominated by Google logs
and logs operated by three major CAs (Digicert, Symantec, and Wosign). The
main differences between the two datasets (May 2017 omitted this time) are
that the Oct. 2017 dataset contains four extra logs (16 vs. 20) and that Aviator
(operated by Google) has seen a drop in rank (from 4 to 6) and number (percent)
of SCT bundles; from 39,889 (30.5%) to 27,336 (18.4%). This drop is explained
by Aviator being frozen on Nov 29, 2016.4

Referring to the Chrome policy, we only found 21 SCT bundles in the Oct.
dataset that did not have at least one SCT from a Google operated log. All
these contained a single SCT; 4 were logged in Deneb (by Symantec) and 17
came from an “unknown” log for which we could not find a public log with the
listed logID.5 However, since all certificates with SCTs from this log (the same
set of 17 single-log bundles) were issued by StartCom, we conjecture that it is
operated by StartCom. Another interesting observation is that the main Digicert

4 Chrome bug report: https://crbug.com/389514.
5 https://www.certificate-transparency.org/known-logs
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log (rank 4) and Aviator (old Google log with rank 6) almost entirely contains
certificates for which the SCTs are delivered with the X.509v3 extension (12 of
38,964 and 6 of 27,336 non-X.509v3 extension SCTs, respectively) and that the
Wosign log (rank 7) contains almost only certificates for which the SCTs are
delivered using the TLS extension (only 198 of the 19,691 domains logging their
certificates in this log do not use the TLS extension). This suggests that some
CAs may have strong biases in how they help their customers deliver SCTs.

5 Certificate-based Analysis

Certificate type: We have found very large differences in how different types
of certificates are delivered. This is highlighted in Figure 6, which breaks down
the SCT delivery methods used for each type of certificate. We note that the
SCT usage is by far the highest among domains that use EV certificates and the
lowest among domains that use DV certificates. For example, 98.6→99.0% of
the domains that use EV certificates use SCTs, but only 15.3→15.1% of the DV
domains uses SCTs. The large SCT adoption for domains using EV certificates
is expected since SCT compliance has long been required for Chrome (and soon
other browsers). Perhaps more surprising is that we still observed 289→203
domains in the top-million websites that did not yet appear to deliver SCTs
with their EV certificates. Despite being a decreasing fraction (1.4→1.0%), this
is still a non-negligible number of domains. For OV certificates the absolute
number of SCT domains is larger and increasing, although unfortunately the
ratio of OV domains that use SCTs is decreasing (47.0→44.0%).

The X.509v3 extension is by far the dominating (98.5→98.9%) delivery method
for EV domains. This may be an effect of many domains having had to scramble
to deliver SCTs for their EV certificates and therefore opted to use the simplest-
to-deploy method, not requiring any changes to their servers. However, it may
also be due to rumors that Chrome would stop supporting the TLS extension
and OCSP stapling (rumors that Google have strongly dismissed!6), domains
using the least resistance path (not requiring any server changes), and biases
in the methods promoted by some CAs (e.g., Figure 5). For domains using OV
certificates, 36.8→34.8% of the domains use X.509v3 and 10.2→9.1% use the
TLS extension. Figure 7 breaks down the same data on a per-delivery method

6 CT FAQ: https://www.certificate-transparency.org/faq



Table 1. Top-five issuers for domains using each SCT delivery method (Oct. 2017) and
the number of domains using their certificates with that delivery method (in brackets).

Rank X.509v3 ext. TLS ext. OCSP stapling No SCT used

1 RapidSSL (25,130→34,006) Comodo (18,392→19,525) SwissSign (11→20) Comodo (95,940→95,956)

2 GeoTrust (16,434→17,464) Google (7,888→7,858) DigiCert (5→5) Let’s Encrypt (52,891→65,635)

3 Thawte (12,349→13,545) Go Daddy (358→366) - Go Daddy (33,000→32,474)

4 Symantec (12,649→13,260) DigiCert (158→219) - cPanel (31,629→32,118)

5 AlphaSSL (8,676→10,880) CloudFlare (121→122) - DigiCert (21,053→21,378)

basis. Again, differences between the methods are visible. For example, the do-
mains using the X.509v3 extension typically deliver a much larger fraction of EV
certificates than those that use the TLS extension.

Top issuers: Table 1 summarizes the top issuers in each category. Except
Let’s Encrypt, which targets the low-budget market, most top CAs appear to
have increased their SCT usage. RapidSSL has seen the largest increase in SCTs
delivered with the X.509v3 extension (25,130→34,006), simultaneously as drop-
ping of the top-five list for non-SCT certificates (25,087→8,766). The other main
exception is DigiCert, who now delivers less certificates with the X.509v3 exten-
sion (10,576→9,403) and slightly more non-SCT certificates (21,053→21,378).

For certificates delivered with the TLS extension, we found that 7,888→7,858
of the 8,314→8,374 OV domains used certificates from Google (typically clear
Google owned domains such as google.com, google.se, or some-name.blogspot.com,
for example) and Comodo was responsible for 18,335→19,458 of the 18,960→20,074
DV domains (and 57→67 OV domains). In the complete dataset, we only ob-
served 149→193 other domains using Google issued certificates. Also these where
OV certificates, but no corresponding SCTs where delivered during the hand-
shake. These domains typically were associated with companies that have Google
as parent company (e.g., nest.com). Clearly, Google has decided to use the TLS
extension to deliver SCTs for their domains. One reason for this is perhaps that
SCTs delivered using the TLS extension are delivered earlier in the handshake
than when using the X.509v3 extension; therefore, allowing more time to process
the SCTs. In Section 6 we look closer at this and other performance aspect.

In contrast to Google, Comodo also had issued many certificates for domains
that used the X.509v3 extension (5,374→5,355) and domains that did not use
SCTs (102,092→96,629), including 21→20 EV certificates without SCTs. Over-
all, Google and Comodo appears to be early adopters of the TLS extension. For
domains using OCSP stapling, eleven used SwissSign and five used DigiCert.
The set of top issuers using the X.509v3 extension was much more diverse.

Signatures: Figure 8 shows the fraction of domains that use different signa-
ture algorithms together with each type of SCT delivery method. We note that
99.9→99.8% of the certificates associated with X509.v3 SCTs are signed with
RSA. This is very similar to what we observe for the certificates delivered using
OCSP stapling and those that we did not associate with any SCTs. In sharp
contrast, 65.0% of the certificates associated with SCTs delivered using the TLS
extension are signed with ECDSA (all using SHA256).

We have also found that domains using SCTs are less likely to use weak
signature algorithms than the non-SCT domains. For example, among the SCT
domains, we only found 318 (0.24%)→ 1,017 (0.68%) domains that used SHA1
(with RSA). The corresponding numbers for non-SCT domains are 49,607 (11.6%)
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→ 44,398 (10.7%). There were even 2,048 (0.48%) → 1,813 (0.44%) non-SCT do-
mains that used MD5. The significant use of SHA1 and MD5 are concerning since
they long have been known to be susceptible to attacks. While the SCT domains
clearly use weak signatures algorithms much more seldom, we were surprised by
the relative raise in use SHA1 among these domains. A closer look revealed that
except one GeoTrust certificate, all the other 1,016 SHA1 certificates were DV
certificates issued by Comodo (DV legacy server).

Public keys: Also when looking at the public keys included in the cer-
tificates, the certificates with SCTs delivered using the TLS extensions sticks
out. In particular, among these 27,279→28,451 certificates, a total of 17,724
(65.0%)→ 18,071 (63.5%) are using Elliptic Curve (EC) keys. In contrast, among
the 103,482→120.002 domains associated with SCT bundles delivered with the
X.509v3 extension only 164 (0.16%) → 230 (0.19%) and none of the 16→25
OCSP stapled certificates use EC. For SCT related certificates, all remaining
public keys use RSA. When interpreting these results, it should be noted that
RSA (99.5→99.6%) also is dominating among the public keys seen among non-
SCT domains. Again, a significant reason for the above differences are due to
Comodo, who is responsible for 17,940 of the 18,071 domains using EC with the
TLS extension. The other EC users in the TLS category (although using EC less
frequently) are CloudFare (122), Let’s Encrypt (5), DigiCert (2), and AlphaSSL
(2). While omitted, we have also found that public keys not associated with
SCTs are more likely to use shorter RSA key lengths.

6 Performance and Overhead Analysis

Handshake and SCT delivery times: We have not observed any significant
differences in the handshake times when using our SCT enabled client with the
SCT capability turned on or off, regardless if it communicates with domains
that use SCTs or not. Instead, the handshake time distributions for these client
variations are almost identical, regardless of the subset of domains considered. In
the following, we therefore only show results for a client using all three methods.

When comparing the delivery methods, on the other hand, there are signifi-
cant differences in the handshake times, and (perhaps most importantly) in the
times until the SCTs are delivered to the clients. Figure 9 highlights these dif-
ferences. Here, we have plotted the total handshake times (solid lines) and the
SCT delivery times (dotted lines) for the different delivery methods.
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First, note that the handshake time distribution for domains using the X.509v3
extension is almost identical to that of non-SCT domains. In contrast, the hand-
shake times with domains using the TLS extension are much shorter. This sug-
gests that the domains using the TLS extension may leverage service replication
(e.g., using third-party CDNs or their own distributed data centers) to a larger
extent. This observation also matches our prior observation (e.g., Figure 3) that
these domains are more likely to be popular domains that perhaps are more
likely to be both performance aware and early adopters. As interesting and sup-
portive evidence for the conjecture that these domains are more performance
aware, we note that the bump with low-delay handshakes is almost entirely due
to Google domains. This is highlighted in Figure 10. Here, we also separate Co-
modo and the “other” domains using the TLS extension; both of which have
roughly the same handshake time distribution. Similar short-tailed, low-delay
distributions as we observe for Google here, have also been observed when ana-
lyzing the RTTs (from many different locations) to Google infrastructure in the
past [3]. It is also interesting that the other domains using the TLS extensions
provide lower handshake times than both the non-SCT domains and X.509v3
domains and that those domains are responsible for the majority of the distribu-
tion. In addition, performance aware websites may select the TLS method since
this method allows the SCTs to be delivered only to clients requesting SCTs.

Figure 9 highlights that the SCTs often are delivered much sooner (within
the handshake) when using TLS than when using the X.509v3 extension. The
reason for this was highlighted in Section 2 and is due to the TLS extension
happening earlier in the handshake. Clearly, this would give a client (browser)
more time to decode the SCTs and process the information associated with them.
As a reference point, the simple/naive decoder that we used was able to decode
99% of the individual SCT bundles within 0.161 ms (during the data collection).
Since this delay is small compared to the handshake itself, we can approximate
also the distribution of the time until the clients have the decoded SCTs with
the dotted lines, again highlighting that the TLS extension would be preferred
from a performance standpoint.

Finally, Figure 11 summarizes the byte overheads associated with the SCTs.
Here, we plot both the size of the SCT bundles and the total bytes received
during the handshake. Overall, the byte overheads of the SCTs are very small
(x-axis on log scale) and there are only small differences between the delivery
methods (due to differences in the number of SCTs per bundle; see Figure 4).



7 Related Work

Being relatively new, there is limited research characterizing the CT landscape.
In parallel work to ours, Amann et al. [2] use both active and passive mea-
surements to evaluate the adoption of a number of improvements and additions
proposed to strengthen the X.509 PKI, including CT. Compared to that work,
we use only active measurements, but place particular focus on the comparison
of the relative differences in the server-side use and client-side performance of
the three alternative SCT delivery methods. Gustafsson et al. [12] have charac-
terized the usage of public CT logs and the certificates observed in these, but
do not consider the use of different SCT delivery methods. VanderSloot have
evaluated the certification coverage of the CT logs [22]. Others have proposed
optimizations or enhancements to CT [7,21].

There are also a lot of measurement-based research that have characterized
the TLS/SSL landscape [1,4,10,15,16]. This includes many works that have tried
to capture the trust landscape [16, 20], identified weaknesses in the TLS/SSL
connection establishment [5,9], or identified SSL error codes and their reasons [1].
These works typically excluding CT from the analysis, although a few have
commented that CT may significantly change the landscape. We should also
note that there have been various other attempts to address the limitations in
the current TLS/SSL landscape [6,13,14,17,18,23], but thus far most other have
seen limited adoption [2].

8 Conclusions

Our analysis of two snapshots (May and Oct. 2017) of the SCT usage among the
one million most popular web domains provides insights into the current status
of the SCT adoption and highlights key tradeoffs between the three different
SCT delivery methods and the choices made by different domains. Whereas the
majority of domains have opted for the simplest solution (using the X.509v3
extension) that does not require any server side changes, it is interesting to see
that the method that provides the fastest delivery of SCTs (the TLS extension)
is used by organizations (e.g., Google) that appear to provide much faster con-
nection establishment, handshake times, and smaller SCT bundle sizes. We have
also seen that SCT delivery has low overhead and that SCT usage is highest
among the very top domains, hopefully pushing others to follow. By comparing
the two snapshots we also observe some positive and encouraging trends in the
adoption, including an overall increase in use of SCTs, how the use of SCTs goes
hand-in-hand with a reduced use of weak signatures and public keys, and that
big players such as Google is pushing the adoption. On the slightly negative side,
it appears that some CAs may have a bias towards the (simpler) X.509v3 ex-
tension, although (performance-wise) many of their customers may benefit from
implementing the TLS extension method (e.g., as used by Google).
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