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Motivation 

 Use of Internet for content delivery is massive 

… and becoming more so 

 How to make scalable and efficient? 

 Server-based and peer-to-peer 

 Chunk-based approach proven scalable 

 Files split into smaller chunks 

 Clients can download from both servers and other 

clients (peers) 

 How to best manage large-scale content 

replication systems 

 E.g., where to place chunks? 

 Must first understand workload dynamics ... 



Background: BitTorrent  
Single file download 
 File split into many smaller chunks 

 Downloaded from both seeds and downloaders 

 Distribution paths are dynamically determined 
 Based on data availability 
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Contributions 

 Longitudinal multi-torrent analysis 

 48 weeks from two vantage points  

 Capturing differences in dynamics observed 

locally and globally 

 University campus vs. global tracker-based 

 Example observations 

 Campus users download larger files 

 Campus users early adopters (except music) 

 High popularity churn 

 Most popular content peak later 

 



Measurement overview 
Active + passive measurements 

 

Swarm 

 Longitudinal data 

 Two vantage points 
 University campus 

(ingress/egress) 

 Global trackers 

Popularity dynamics 



University: tracker communication 
Passive measurements 

     

Extract HTTP peer-to-tracker 

traffic at campus ingress/egress  
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Global: Tracker scrapes 
Active measurements 

Periodically request the current 

state as observed at a large set 

of trackers 
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Popularity dynamics 

Measurement overview 
Active + passive measurements 
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E.g., Dan & Carlsson [IPTPS 2010] 

Previous work 
Popularity distribution 

     

 Popularity distribution statistics  
 Over lifetime 

 Over different time period 

 Different sampling methods 

 



Summary of datasets 

 

 

Property University Global Mininova 

Trackers 
Torrents 

Downloads 
HTTP requests 

2,371 
56,963 
1.73 M 
249 M 

721 
11.2 M 
37.0 B 

-- 

1,690 
911,687 

-- 
-- 

Start date 
End date 

Frequency 

Sep. 15, 2008 
Aug. 17, 2009 
All requests 

Sep. 15, 2008 
Aug. 17, 2009 
Weekly scrapes 

Sep., 2008 
Aug., 2009 

Twice 
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 48 weeks of overlapping longitudinal data 
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 Many torrents (and downloads) … 

 



Dataset summary 
Torrents observed 
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Dataset summary 
Torrents observed 

 Most of the files observed locally are also observed 

in the global dataset 
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Content download characteristics 
File size distribution, per download 

 Campus users download larger files 
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 Campus users download larger files 
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Content download characteristics  
Breakdown per category 

 Campus users download 
 More movies and TV shows 

 Less music 

 Again, biased towards larger 
contents ... 
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Difference in peak times 
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Early adopters 
Downloads relative to global peak 

 Campus users are generally early adopters of content 
 70% of downloads before global peak 

 40% of downloads at least 10 weeks before global peak  
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 And used for seeding such content 



Early adopters 
Downloads relative to global peak 

 Campus users  are generally early adopters of content   
 Except for music 

 Perhaps campus users can be used to predict some future 
popularity ... 
 And used for seeding such content 

Exception 



 Better predictor the more popular the content becomes 
 As well as for some niche content ... 
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 As well as for some niche content ... 

Early adopters 
Downloads relative to global peak 

Early local 

peaks!! 



Time until peak 
Global popularity peaks ... 

 The global popularity often peak late for popular content 
 Early flash crowds do not dominate the popularity 

 Perhaps a sign that rich-gets-richer a better model ... 

 



Time until peak 
Global popularity peaks ... 

 The global popularity often peak later for popular content 
 Early flash crowds do not dominate the popularity 

 Perhaps a sign that rich-gets-richer a better model ... 
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Time until peak 
Global popularity peaks ... 

 Rich-gets-richer 
 Close to linear from week-to-week  

 Cumulative total downloads show weaker (sub-linear) rich-
gets-richer behavior    
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Hotset analysis 
Popularity churn 

 High popularity churn 
 Roughly 50-60% new 

videos each week 

 Some files reoccur 

 Some video reoccur in 
hotset 
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Popularity churn 

 High popularity churn 
 Roughly 50-60% new 

videos each week 

 Some files reoccur 

 Some video reoccur in 
hotset 

Similarity between weeks 

Similarity with week 20 



Conclusions 
 Large-scale longitudinal multi-torrent analysis 

 University campus 

 Global trackers  

 Campus users download more large files (TV shows 

and movies) and a smaller fraction of music 

 Campus users are “early adopters” 

 Except for music  

 High weekly churn in set of popular files 

 Most of the popular files peak well after their initial use 

 Signs of rich-gets-richer behavior 
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