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Abstract—Tracker-based peer-discovery is used in most com- At the opposite end of the availability spectrum is central-
mercial peer-to-peer content distribution systems, as it provide jzed peer discovery using a single tracker. A tracker makes i
performance benefits compared to distributed solutions, and easy to monitor peer participation, to enforce access antr

facilitates the control and monitoring of the overlay. But a tracker ditis al fficient in t f head. M ful
is a central point of failure, and its deployment and maintenance and 1t Is aiso etficient in terms of overhead. viany successiu

incur costs; hence an important question is hovhigh tracker avail-  Open-source and proprietary P2P content distributioresyst

ability can be achieved atow cost. We investigate highly available, rely on trackers for peer discovery (e.g., BitTorrent, Rielji]

low overhead peer discovery, usingndependent trackers and a and Akamai Netsession [5], a hybrid P2P content delivery

simple gossip protocol. This work is a step towards understanding | 51f0rm). Nevertheless, the tracker is a central poinedtife

the trade-off between the overhead and the achievable peer - ) . ’ .

connectivity in highly available distributed overlay-management and It§ traffic load 'Sf prpportlonal to_ the number ,Of pe?rs-_

systems for peer-to-peer content distribution. While tracker availability can be improved by investing in
We propose two protocols that connect peers in different reliable network connectivity, hardware and software .(e.g

swarms efficiently with a constant, but tunable, overhead. The a reliable database), it is often cheaper to deploy multiple

two protocols, Random Peer Migration (RPM) and Random yrackers based on commodity hardware and network access,

Multi-Tracking (RMT), employ a small fraction of peers in a - .
torrent to virtually increase the size of swarms. We develop and to ensure that failures would be independent (through

analytical models of the protocols based on renewal theory, 9eographic, topographic and vendor diversity). BitTotréor

and validate the models using both extensive simulations and example, allows the use of multiple trackers through thetiMul
controlled experiments. We illustrate the potential value of the tracker Metadata Extension (BEP-0012 [6]). However, using
protocols using large-scale measurement data that contains hun- multiple trackers can have some adverse effects. On the one

dreds of thousands of public torrents with several small swarms, . . .
with limited peer connectivity. We estimate the achievable gains hand, if all peers communicate to all trackers, then théidraf

to be up to 40% on average for small torrents. costs increase proportionally to the number of trackesslitey
to overhead. On the other hand, if every peer communicates
|. INTRODUCTION with one tracker only, then the overlay is split into a number

Efficient overlay-membership management and peer discai-disjoint sets of connected peers, even if gossip prosocol
ery are crucial components of large-scale peer-to-pedr)(P2are used within the disjoint sets of peers to reduce the érack
content distribution systems. Peer discovery providesstite load; e.g., as in BitTorrent (the Peer Exchange Protocql [6]
of potential neighbors with which a peer can exchange ddi) and in PPLive [4].
and, in general, the efficiency of content distribution imy@s  The focus of our work is to develop and demonstrate a
as the set of potential neighbors increases. Without pdwtbrid approach, which has the advantages of the centualize
discovery, a P2P system is not able to operate, and hemws decentralized peer-discovery mechanisms, but aveéis t
high system availability is a key requirement. Furthermae respective disadvantages. In particular, the questiondaeeas
large-scale P2P systems can have up to tens of millionsiofthis paper is whether it is possible to achidughly avail-
peers simultaneously exchanging millions of distinct otje able and efficientpeer-discovery, which avoids the formation
efficiency and low-overhead are key requirements as well. of disjoint swarms, aow overheady employingindependent

Fully distributed peer-discovery mechanisms, such as digackers and relying only on agossip protocal Our main
tributed hash tables (DHTSs) used in BitTorrent [1], and ureontributions in this paper are the following:
structured overlays used in Gnutella, provide high avditgb 1) We propose two novel distributed algorithms that rely
Maintaining consistency and avoiding stale routing tables on a gossip protocol only, and mix otherwise disjoint
under node churn at a low overhead is, however, challenging sets of peers into a single overlay. The overhead of both
and affects the performance of DHT-based peer discovery in  protocols is independent of the number of peers.
practice [1], [2]. In unstructured overlays, traffic ovesldehas  2) We develop an analytical model based on the theory of
to be traded for good peer discovery [3]. Furthermore, fully renewal-reward processes and show that, under certain
distributed overlay management and peer discovery render conditions, the mixing performance of the algorithms is
it more difficult for P2P content providers to monitor peer independent of the rate of peer churn and of the overlay
participation (e.g., for charging purposes), and to ermforc size. We validate the analytical results using simulations
content access control. and controlled experiments with BitTorrent clients.



3) Based on a large-scale measurement study of BitTorrent ;ymbO' geetf'g}t'frgckers
content popularity, we estimate the potential throughput 7 Set of torrents
performance improvement in today’s BitTorrent. Z(t) Set of trackers that track torrent
Th ind f th . ized foll S 7(r) Set of torrents that are tracked by tracker
. e remam ero e pgper IS organized as Tollows. Sec- Xt Number of peers associated with torrént
tion 1l describes our terminology and system model. Sec- Xer Number of peers of torrentthat are tracked
tion Il explains our proposed overlay management prowcol by trackerr _ _
Section IV provides analytic models of the protocols. Sec- n Fraction of peers ImplementingPM or RMT
. . . . . B RPM or RMT protocol parameter (willingness|
tion V shows simulation and experimental results to vaédat P Peer list length for the gossip protocol

the models. Section VI shows performance results based on TABLE |

measurements data. Related work is discussed in Section VII FREQUENTLY USED NOTATION

Section VIII concludes the paper.

number of peers that a peer is connected to in a swarm,

p < %,. Table | summarizes our notation.
Whereas our protocols and analysis are applicable to

tracker-based P2P content distribution in general, thioug I1l. OVERLAY MANAGEMENT PROTOCOLS
the paper we use BitTorrent terminology to refer to compo- Efficient peer-discovery mechanisms are an important com-
nents of the P2P content distribution system and protocpbnent in achieving high content-distribution efficienay i
Since our focus is on the control plane, we do not discuP2P systems. If every peer registers with one tracker chosen
any aspects of data forwarding. at random, then the tracker load is minimal both in terms
The P2P system consists of peers that are interested infaraffic and the amount of system state to be maintained.
number of contents (e.g., they share a set of files or thEyevertheless, the different swarms of the same torrentbeill
distribute live or on-demand streaming content). The set phirwise disjoint, and peers will not be aware of peers ireoth
peers that share a particular content is calletbreent We swarms. We refer to this scheme @isk-one Alternatively, if
denote the set of torrents by’. The number of peers in every peer registers with all trackers, then the trackerad|
torrentt € .7 is denoted byx. For the case of file sharing,increases proportional to the number of swarms per torrent
we distinguish between peers that have the entire conteht aveighted by the torrent sizes. As an advantage, all peers can
only upload content, calledeeds and peers that only havepotentially discover all other peers; however, this mayuie
parts of the file and are downloading, callegchers much higher traffic overhead. We refer to this schempiels
Trackersare used to maintain state information about th&ll. These two schemes are the two extremes in terms of
peers currently having pieces of a particular file. We denot&erhead and overlay connectivity.
the set of trackers byz, and byZ(t) the set of trackers that In the following we propose two protocols, Random Peer
track torrentt € .7. .7 (r) denotes the set of torrents that ardigration (RPM) and Random Multi-TrackingRMT), that
tracked by tracker € . The number of trackergZ(t)| > 1 provide good overlay connectivity at the price of low ovextie
is a function of the target torrent availability, and is atsys (compared topick-ong, based on independent trackers and a
parameter. Our focus is on the case whetit)| > 1. gossip protocol. We analyze the protocols in Section IV.
A peer that wants to join a torrent has to obtain theent ] )
meta-datawhich contains the set of available trackers for th® Random Peer Migration (RPM)
torrent,Z(t). The peer then chooses a subset of the availablePeers that follow theRPM protocol migrate between the
trackers, registers with those trackers, and periodicaltige swarms of the torrent at random, and whenever they arrive
every announceperiod of timeTa, provides them with infor- to a new swarm they distribute the addresses of the peers in
mation about its state, e.g., when it completes download até previous swarm using the gossip protocol. Letting peers
when it leaves. Upomnnounce requesthe tracker can also migrate between swarms is a novel but simple way to increase
provide the peer with a subset of the registered peers. Tthe number of peers that know about each other (i.e., theaVirt
term swarmis used to denote the set of peers that share thige of the swarms). What is particularly novel, and what
same file and are tracked by the same tracker. We denote itheekesRPM non-trivial, is that the migration rule is defined
number of peers tracked by trackerfor torrentt, i.e., the such as to ensure that the protocol has a constant, but gjnabl
swarm size, by . tracker overhead independent of the torrent’s size. At dmees
Apart from a tracker, a peer can also obtain peer informatidime it provides good performance for a wide range of swarm
from other peers using gossip protocal Peers use the gossipsizes, peer arrival rates and holding times.
protocol to periodically exchange addresses of known peersThe RPM protocol that we propose works as follows. Upon
with their neighbors. Ideally, a peer would remember afirrival a peer registers with a trackee #(t) chosen uniform
addresses ever learned, and would gossip all known addresderandom. Every time a peer downloading torrertacked
to randomly chosen peers. In practice, however, gossigingby trackerr finishes uploading or downloading data worth
often limited to a slowly changing set of neighbors, and only/(B(|#(t)| — 1)) portion of the shared content’s size, it
the addresses of connected peers are distributed. To rifiect chooses to migrate to another swarm of the same torrent
limitation we denote byp the peer list, i.e., the maximumwith probability 1/x .. We call the protocol parametg the

Il. SYSTEM MODEL



willingness to migrate. If a peer chooses to migrate, the ped = 3.4, (% /x)2, which is minimal for uniform swarm
chooses uniformly at random a trackerother than tracker sizes W1 =1/|%(t)|). The gain of swarm management is then
r (e, r' € Z(t)\ {r}), and scrapes the chosen tracker. lthe increase of the virtual swarm size due to mixing
X = 0, the peer stays in swarm otherwise, it migrates
to swarmr’. In order to migrate, the peer unregisters from dM=M - Z (% /%)% @
tracker r, registers with tracker’, obtains a list of known re#
peers from tracker’, and uses the gossip protocol to distribute We quantify the overhead of the proposed protocols primar-
the addresses of the peers it knows about from the previdlysin terms of thetracker overheacdtcompared to thgick-one
swarmr to the peers it now knows in swarm. We refer to scheme. The overhead is due to the redundant state informati
the peers whose addresses get to be known in swathis maintained in the trackers and to the tracker scrapes and
way as external peers, as they are not tracked by tra¢ker announce requests performed by the peers. We do not provide
: . an analysis of the peers’ overhead due to gossiping for two
B. Random Multi-Tracking (RMT) reasons)./ First, the ogerhead iS no greater thz?n if aFI)I pgeere w
Peers that follow theRMT protocol associate with severalin a single swarm. Second, the amount of gossiping traffic is
trackers at random upon arrival, which is a rather naturgl waegligible compared to the amount of data traffic, as shown

to achieve mixing between swarms, inspired by fhek-all by our experiments with BitTorrent clients in Section V-B.
scheme. The novelty lies in the choice of the number of multi-
tracked peersRMT provides good mixing between the swarm§. Virtual Swarm Size
for a wide range of swarm sizes, peer arrival intensities andin the following we describe our modeling assumptions and
content sizes. At the same time it leads to constant, bubtana then derive closed form expressions for the average number
tracker announce overhead. of external peerg,,, and discuss its impact on the average
The proposedRMT protocol works as follows. When a peemixing efficiency of each of the protocols.
joins torrentt it scrapes all trackers € Z(t) to obtain the  Consider a torrent and two of its swarms andr’. Assume
number of peersg. If x =0, then the peer registers withpeers arrive to swarm of the torrent according to a Poisson
one tracker chosen uniform at random.xf> 0, then with process with rate\;. A sharen of the arriving peers follows
probability min(1, %) it registers withk trackers chosen the RPM or the RMT protocol. The holding time of the peers
uniform at random, otherwise it registers with one trackes exponentially distributed with meary fi;. The time it takes
chosen uniform at random. We call the protocol paramgBtera peer to download the content in torreénis exponentially
the willingness to multi-track. Peers that are registeréi W distributed with mean Av;. In such a system peers depart with
trackers maintain an equal number of connections with pegi®bability u; /(u + vr) without finishing the download of the
in the different swarms, on averagepeers per swarm. To content. Using the above notation, the average number of pee
provide mixing they use the gossip protocol to distribute thtracked by tracker is A, /i, independent of the peers’ holding
addresses of the peers they are connected to. time distribution. We do not incorporate the effecbn v, in
this model. This simplification is pessimistic fRPM: if peer

) ) __migration increases the torrent throughput, then it ineesa
In the following we develop analytical models that providg, "sq that migration would become more frequent and swarm

insight into the effect of the protocol parameters on “Wnixing would be more efficient.
protocol performance. Our focus is on a single torrent, and|, grder to develop a lower bound on the average number
for simplicity we omit the subscript in this section. of external peers from swarm known in swarmr, i.e.,
A. Performance Metrics V., we model the protocols with a renewal reward process
VJéJi’Ri) i >0} [8]. The jump times); of the renewal process
fire the migration events in case BPM, and the arrival
epochs of a multi-tracked peer and the time instances of the
announces made by the last arriving multi-tracked peer for
B RMT. The rewardsR; are the cumulative number of external

M, = X + 2 remt)\{r} Yrr (1) Peers during a renewal period. The rewaJ_rd overitheenewal

X ’ period [J,Ji+1] can be defined a& = Ji'*lyrtr/(r)dr. The

wherey, . is the average number of external peers known mverage number of external peers equals the average reward,
swarmr tracked in swarnt’, andx is the number of peers Vorr = IimHm%ziN:({) Ri, whereN(1) is the counting process
in the torrent. WithoutRPM and RMT y,» = 0. In general, for the renewal process (i.e., the number of renewal epochs
Vorr = IimHm%fOT Y, (h)dh, wherey, (h) is the number of until time t). In the following we give lower bounds oy s
external peers in swarmtracked in swarnm’ at timeh. using the above modeling assumptions Ri*M and RMT.

The average virtual swarm sizéor torrentt can be ex- 1) Random Peer Migration (RPM)Consider a swarm, to
pressed as the weighted average= %zre%(t)Xer. This  which peers migrate from swarrh The migrating peers know
metric corresponds to the average effective swarm size atioutp peers of swarm’, and spread the addresses of these
served by a peer and is upper bounddds. 1. Without mixing peers upon their arrival to swarmPessimistically, we assume

IV. PROTOCOLPERFORMANCE

In order to evaluate the performance of the protocols
define thevirtual swarm sizes the average number of interna
and external peers known in swarmormalized with the total
number of peers in the torrent
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Fig. 1. Jump times and renewal periods in the renewal procesRRdM  Fig. 2. Jump times and renewal periods in the renewal proce$3NT. At
Jump timesly, ..., Js correspond to the migration of peee=0,...,4 to the Jy peer 1 arrives, af; peer 1 performs an announce,Jatpeer 1 performs
swarm. Peer 3 departs some time befdse The renewal period length is another announce, 8t peer 2 arrives and &l peer 3 arrives. Peer 2 departs
exponentially distributed. some time beforéd,.

that the peers in swarmforget about the external peers theyf swarms out of théZ(t)|(|%(t)| —1)/2 pairs of swarms, so
learnt about from the previous migrating peer every timee pehat an arbitrary multi-tracked peer is registered wittckeas
migrates to swarmn from swarmr’. This assumption implies r andr’ with probability \%(I)TEI\;;(lt))\—l)' Hence, the arrival rate
that all external peers from swarm known in swarmr are ;¢ - iti-tracked peers registefed with trackerandr’ is

known due to the last migrating peer. Using this assumption

we underestimate the number of external peers from swarm nB k(k—1) k-1

known in swarnr. Peers depart with intensify, so that time A =NA kx [2(1)|(|Z2 (1) —1) - ”BW“’ ®6)
z after the last migration event the average number of externa

peers that remain from the originplpeers isy;/(z) = pe #2.  where we used that=A/p in steady state.

Figure 1 illustrates the renewal process; the jump tidies Every multi-tracked peer is connectedggeers per swarm.
and the instantaneous reward, which is equal to the averaybenever a multi-tracked peer arrives or announces to tracke
number of external peesg /(1) at time 1. The time between r, it obtains a list ofp peers from tracker and disseminates the
migration events is exponentially distributed with intigpns information among peers in swarrh But since peers depart

npBv, so the average renewal period length is with intensity u, time z after the last announce the average
‘ L _1 number of external peers that remain from the origingkers
Eldira—3]=(0nBv)™ ®) is ¥/ (z) = pe H%. Pessimistically, we assume that every time
and the average reward over a renewal period is a new multi-tracked peer arrives to swarmandr’, the peers

o oh in swarmr forget about the external peers from swarnthat
E[R] :/ (/ pefﬂzdz)n[;vefnﬁ"hdh: p(nﬁv+u)*1, they learnt about previously (and vice-versa). After thet la
o Jo (4) multi-tracked peer departs, the number of known externailgpe
keeps decaying until a new multi-tracked peer arrives. &hes
assumptions are similar to the ones made for the analysis of
}/Tyr (1) = [E[Ri] _ . nBv (5) RPM and provide us with a lower bound on the number of
0" E

We can calculate the average reward over time as

Y Tlm’ T Jit1—J] npv+p’ external peers from swarmi known in swarmr.
where the second equality holds with probability one accord In the following we calculate the average renewal period
ing to the renewal reward theorem [8], and the third equalitgngth and the average reward during a renewal period. Fig-
is obtained by substituting (3) and (4). We can make thrége 2 illustrates the three kinds of renewal periods; thepjum
important observations based on (5). times J; and the instantaneous reward, which is equal to the
First, the average number of external peers increasesakgrage number of external pegrs (1) at timet.
the willingness to migratg8, but with a decreasing marginal The first kind of renewal period is between two announces
gain. Since the scraping overhead increases lineary (see performed by a multi-tracked peer. The multi-tracked pesr p
Section IV-C1),3 should not be chosen too high. forms the first announce upon arrival, and performs annaunce
Second, if one only considers torrents in which the averageriodically everyTa time. The corresponding renewal periods
peer holding time is at least equal to the average time ito Figure 2 are[Jp,J1] and [J1,J2]. Such renewal periods
download (i.e.,v > u) thenv = u is a worst case scenario,happen if the last multi-tracked peer does not depart dwaing
and the number of external peers is lower boundeqhgg,ﬂ. announce interval and no new multi-tracked peer arrivess Th
Third, the bound is a function of the produgp, hence it happens with probabilityp; = eHTag!'™. The distribution
is enough to focus on the effect of the paramgdeior fixed of the length of this renewal period is deterministic, with
n to understand the mixing efficiency. For simplicity, we caprobability density functionf;(h) = r, (h).
assume thap = 1 and varyn B by varyingB. This result also ~ The second kind of renewal period is between an announce
shows thalRPM can be highly beneficial even if only a smallperformed by a multi-tracked peer and the arrival of a new
fraction n of peers implements the protocol. multi-tracked peer before the next announce period. The
2) Random Multi-Tracking (RMT):Consider the number corresponding renewal period in Figure 2[d,J3]. Such a
of multi-tracked peers that are registered with trackemd renewal period happens if a new multi-tracked peer arrives
r’. These are the peers that contribute to the mixing betweleefore timeTa after the last announce. This happens with
the two swarms. A multi-tracked peer that registers with probability p2:1—e’Ar=r/TA. The length of this renewal period
trackers transfers peer information betwdék — 1)/2 pairs follows a truncated exponential distribution on the in&érv
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(0,Ta], with probability density functiorf,(h) = Ar,we%”'h which is equal to the lower bound obtained RPMfor v =

1-¢ A in (5). Furthermorey, ., is a monotonically decreasing, convex

The third kind of renewal period is between an announgg tion of u; hence, (12) is a lower bound f®MT. This

perfqrmed by a muly-tracked peer gnd the arrival of a N€%ems counterintuitive at first, but can be explained by that
multi-tracked peer, if the last multi-tracked peer depart

& high peer arrival rate is needed to maintain a given torrent
&ze under a high peer departure rate. A fraction of theiagiv

period in Figure. 2 i9J3,J4]. Such a renewal period happen eers becomes multi-tracked, and hence provides good gnixin
if the last multi-tracked peer departs and the next multi-

tracked peer arrives more than tirfig after the last announce. C- Tracker Overhead
This happens with probabilityps = e’\r=r’TA(1— elTa), The In the following we quantify the tracker overhead for the
length of the renewal period follows a shifted exponentidio protocols using the same notation as in Section IV-B. We
distribution on the intervalTa,) with probability density show that the tracker overhead RPM and RMT is constant
function fa(h) = A, e (TA), independent of the number of peers.
The average renewal period length is the weighted averagel) Random Peer Migration (RPM)Let us consider the
rate of migration in swarm, with % peers and a download

T, oo
Eli-d] — pilat pz/ Ahfz(h)dh+ pg/ hfsz(h)dh completion rate ofy;. For this swarm, the instantaneous rate
X 0 JTA of peers migrating away from the swarm is

— _ _ 7(“+)‘r1r/)TA V
= A te ) @ XB(ZOI -1 =pI#O-Dw.  (13)
and the average reward over a renewal period is Since a migrating peer chooses the destination swarm amifor
T Ta T at random, the migration rate from swamto r’ is Bv;.
ER] = pl/ Ve (T)dT + p2/ / Y. (h) f2(h)dhdr Similarly, the instantaneous migration rate to swariis
Jo 7 Jo Jo
1
o 1-e @thThy T B(l12 (1)~ v = Byy. (14)
+pa [ A | e (0 oy = p! e Ol Lo PR

We note that the two rates are equal if the per peer normalized
throughput in the different swarms;,{ is equal.
B 1T E[R] With RPM, a peer only performs a tracker scrape if it
Yoo = Tlm,}_/o Yrr ()dh= m ©) chooses to migrate between swarms, and in this case it also
Ap(1— e,(gquAr,)TA) performs a tracker announce. Therefore, the overhe&Pof
= rr (10) is directly proportional to the willingness to migrate. The

We can calculate the average reward over time as

()\”/+u)(17e’<““”’m) scrape rate and the announce rate per tracker and torrent is
BK1 (1—e_( +nﬁﬁ)un\) Bv(|Z(t)| — 1) due to migration. For example, if it takes on
- p NP o1 - (11) average one hour to download the content and there are two
- —(1+nB A uTay
(1+ nﬁ\zgk(tﬁ)(l_e (L+nB ZHi-1)H ) swarms, then the number of tracker announces and scrapes

is B per hour. Per design, the announce and scrape rates per

where (9) holds with probability one according to the rerlew@acker and torrent are independent of the swarm sizes
reward theorem [8], and (10) is obtained by substituting (7) 2) Random Multi-Tracking (RMT):Let us consider the
and (8) into (9). We substitute (6) into (10) to obtain th@umber of peers registered wikitrackers. For an arrival rate
relationship between the protocol paramet@rsand k and of A to the torrent wherx > % the arrival rate of multi-
the average number of external peers. We can make thtegked peers is
important observations based on (11). A |%(1)|B

First, (11) is a monotonically increasing concave function kx -
B i.e., the number of external peers increases in the willinghe average peer holding time ig/(l, and in steady state
ness to multi-track with a decreasing marginal gain. Sihee tx = A /u, so that the average number of peers registered with
tracker overhead increases linearlyfn(see Section IV-C2), k trackers becomes
B should not be chosen too high, like fBPM |Z0)|B1 |Z2(1)

Second, similar toRPM, the bound is a function of the A kx W ~ Tk B (16)
productn B, hence it is enough to focus on the effect of th
parametel for fixed n, as forRPM

(15)

Every multi-tracked peer is registered wihrackers. Hence,

the total tracker announce overhead|48(t)|3, and the an-

Third, (11) is a .monotonically inprgasing concave functioﬂounce overhead per tracker 85 i.e., directly proportional
of ki hence choosing = |%(t)| maximizes (11) for the SAME 4, the protocol parametg8. The announce overhead is in-

pverhead. :/r\]/herk = |2(V)] abnd trf]e pt)eer Ideparture rae dependent ok by design as a consequence of the way the
INcreases, the average humber of external peers converge?) obability that a peer joink trackers is selected. Unlike for

(k—1)np . ng RPM, for RMT the scrape overhead s, as all peers scrape
p(kf HnB+(#t)-1) pnp+1’ (12) all trackersonce upon arrival.

lim y,. =
uﬂmyr,r/
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Fig. 3. Virtual swarm size vs. swarm imbalanc€&ig. 4. Virtual swarm size vs. share of peers usirfgig. 5. Virtual swarm size vs. swarm imbalance
for RPM for various values ofi8 = 3, unlimited the protocols. FORPM u = v, for RMT k=nand for RPMwith limited peer list =50),nB=08=

peer list, andu = v. 1/u = Ta. Balanced swarmp = 0.5 and unlimited 4. Simulation results marked with 'x’; curves w/o
peer list. markers show bound (5).
V. NUMERICAL RESULTS show analytical and simulation results to evaluate the ohpa

In the following we show numerical results based on th%f the peer list on the virtual swarm size.

mode|sy and validate the ana|ytica| results via simulatiand For the simulations we consider two distributions for the

controlled experiments. peer holding times. We use the exponential distributiorved-e
uate the tightness of the bounds in (5) and (11). Furthermore
A. Analytical and Simulation Results we use the shifted Pareto distribution with distributiondtion

We start with an evaluation of the protocol parameters d:n(x) N 1___ (1+X/ b)™ b>0 anda> 1 [10.] to e_va!uate
the performance. To keep the number of variables low, JJae sensitivity of the results to the holding time distribat

consider a torrent tracked by two trackars and rp. This Fo(rj a-> 1h the diﬁtribultionb:cs h(:]avg-tailhed; we uwhzlg'
simplification does not affect the results significantly: RPM @nd We choose the value ofsuch that the average holding

the migration intensity between any pair of swarms of a tarrel!Me 1/p is matched. We are not aware of.an_y m_easurement
ults that would provide an analytical distribution ftwet

is independent of the number and size of the rest of thg> ) .
swarms, and foRMT for k= |#(t)| mixing is independent of downl_oaql times of BitTorrent peers. _Hence, RPM we use
1%(t)|. Without loss of generality we set — 1, and regulate two dlstr|put|qns_ for_ the download tlm_e qf the content, the
the swarm sizes by choosirg. We denote the imbalance ofexp_onennal distribution and a nor_mal dlstrlbqtpn trutechat
the swarm sizes bp = Ar, /(Ar; +Ar,), €.9., forp =0.5 the 0 with the same mean but a coefficient of variation of. 0'he
two swarms have equal number of peers on average. normal distribution of the download times was motivated by

1) Unlimited Peer List: Ideally, peers perform gossiping?urtextp‘i__;'mentS tpre_ser;fted n SIeCt'(I)n V-B: uskljng trt'e L_cblletfth
with all peers in a swarm. In this case, f&PM, a peer hes ?h Tp(terrlcirt]h signi |c,a(;10e Ievz t_We cou nfo rejec el
migrating from swarmr’ to swarmr can gossip about all ypothesis that the peers: downlioad imes came from a norma

the peers in swarnt’, such thatp = x.. Consequently, the distribution. Inspection of the QQ-plots (not shown fonbitg

average virtual swarm size is independent of the torrer si%f the download times also supported the hypothesis.

x, and can be expressed as a function of the swarm imbalanc&igure 5 shows the average virtual swarm size as a function
p by substituting (5) into (1) for both swarms and takin@f the swarm imbalance foRPM for a peer list of at most
the weighted average. In this ideal calkis a quadratic S0 peers; i.e.p=min(50,x-). Since in this case the virtual
function of p, and is convex becaus¥M /dp? > 0 constant. swarm size is not independent of the torrent size, we show
FurthermoreM attains its minimum ap = 0.5 independent of results for four torrent sizes & 50,100,150 200) andB = 4.

the value of the other parameters. Figure 3 shows the averdiéh limited peer list perfect load balancing & 0.5) is not
virtual swarm size as a function of the swarm imbalance f@ways the worst case scenario, but the lowest averagebirtu
various values of3 (N =B for n = 1). B = 0 corresponds Swarm size is only slightly lower than the one attaineddes

to noRPM, and shows that the increase of the average virtd&p- The simulation results with exponential holding time and
swarm sizedM is highest foro = 0.5; i.e., when the averagedownload time distributions are better than the lower bound

virtual swarm size is smallest. as expected, but they show similar characteristics.

Figure 4 shows the virtual swarm size as a function of Thoughp = 0.5 is not always the worst case, the decrease of
the sharen of the peers usindRPM and RMT. We observe the virtual swarm size is biggest fpr= 0.5 as the torrent size
that RMT outperformsRPM, which is in accordance with the increases. Furthermore, if peers upon arrival choose &drac
asymptotic result fopt — oo in (12), but the difference in terms uniform at random thep = 1/|%(t)|. Figure 6(a) shows the
of mixing performance is minor. average virtual swarm size fg@r = 0.5 as a function of the

2) Limited Peer List:In practice, peers are connected to torrent population. The virtual swarm size starts to dropvab
subset of the swarm they belong to. For example, BitTorrext= 50 (i.e.,x = 100), as the migrating peers cannot carry
peers are typically not connected to more than 50 to 1@0e addresses of all the peers of a swarm. The drop around
peers depending on the implementation [9]. Furthermorespex, = 50= p is rather intuitive, and in general we can conclude
only advertise connected peers, even if they might know tllgat mixing is most efficient as long ag < p. Naturally, by
addresses of significantly more peers. In the following wiacreasing the peer ligb of the clients,RPM can effectively
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mix bigger swarms. The simulation results are insensitive of scrape requests sent per peer and tracker (lines w. marker
the holding time distribution, and fof = 8 the results are The scrape overhead f&MT is 1 (1 scrape upon peer arrival),
fairly insensitive to the download time distribution. Hovee, while for RPM it converges to 0 as the torrent size increases.
the download time distribution seems to affect the reswts fThe higher overhead ®MT is the price of the better mixing
B =1, the smaller variance of the truncated normal distributiqperformance compared ®PM
leads to a lower mixing efficiency for small torrents than the Figure 9 shows the average virtual swarm size and the
exponential distribution. Figure 6(b) shows the corresiilmgp normalized PEX traffic as a function of the torrent size fa th
results forRMT, and allows us to draw similar conclusions. case of three swarms. Comparing Figures 7 and 9 we observe
that the increase of the virtual swarm sizdf) due to mixing
is nearly constant if we compare the results for equal swarm
As a proof of concept we implementé®PM and RMT  gjzesx, /|2(t)|. The amount of PEX traffic increases with a
in rTorrent [11], an open source C++ BitTorrent client. Wegecreasing marginal gain as a function of the torrent size,
changed the standard BitTorrent peer behavior [6], whidb is yhich is a sign thap = 20 limits the mixing of the swarms as
pick a tracker uniform at randonpick-ong to our protocols. the torrent size increases. Unlike the tracker overheadPEX
For the gossip protocol we relied on the Peer Exchangggfic is not directly proportional to the protocol paraee8.
Protocol (PEX) [6], which is supported by the most recent Figyre 10 shows the average virtual swarm size and the
versions of almost all popular BitTorrent clients [7]. SChormalized PEX traffic for a torrent of = 100 peers tracked
the implementation oRPM and RMT is transparent to the by 1 to 8 trackers. The virtual swarm size for bd&PM
trackers, we could use Opentrac_ker [12] as tracker softwargnd RMT decreases with a decreasing marginal rate, but is
We performed controlled experiments on a cluster of 5 hogi§atively high even for 8 swarms: an average peer knows more
to validate the model. In our experiments peers arrivedr@eCcothan 50% of all peers in the torrent (as opposed to 12.5% if
ing to a Poisson process to a torrent, downloaded a contglitpeers follow thepick-onescheme).
of SOMB (file size for a shorter TV episode), and departed The figure also shows that the amount of PEX traffic
upon download completion (i.ey/u = 1). We limited the gecreases as the number of swarms increases. In general,
upload rates of the peers to18B/s, and the peer list was the amount of PEX traffic is negligibleompared to the peer
p = 20. The announce period was set @ = 60s, so that pioad capacities; this is the reason why we did not analyze
every peer performed approximately 10 announces on averag@ gossip protocol’s overhead in Section IV. Figure 11 show
Every experiment lasted for two hours, and the results shoyfy frequency of announce and scrape requests sent to the
are the averages of three to six experiments. \We monitorggciers (in total) for the same experiment. The figure waéid
the peers’ neighbor lists to calculate the average virwal'®  the analytical model: the request rate increases lineartpé
size. Furthermore, we measured the amount of PEX traffic seimper of swarmsZ(t)| for given torrent size. However, the

by every peer, and the amount of tracker traffic. rate of increase is much smaller than fisck-all, which would
Figure 7 shows the average virtual swarm size as a fU”C“E’Grrespond to a curve of unit slope.

of the torrent size for the case of two swarms. The results

for the two protocols closely resemble the analytical and VI. BITTORRENTCASE STUDY

simulation results, and show that the models capture theRPM andRMT could be deployed incrementally in BitTor-
mixing of the swarms rather well. Figure 8 shows the numbesnt without any changes to the existing tracker infrastruc
of announce requests sent to the tracker when uBIRY ture. In the following we estimate the performance improve-
or RMT divided by the number of requests sent when usingient that the proposed overlay management protocols could

pick-one (lines w/o marker). Surprisingly, for small torrentsachieve, if deployed, based on BitTorrent measurements.
the number of announce requests is less than ysitigone

This is because peers finish downloading the content fasfer Empirical Data Set

as an effect of mixing the small swarms. For larger torrents We used two kinds of measurements to obtain our data
the announce overhead approaches 1, and is slightly higket. First, we performed a screen-scrape of the torrentlsear
for RMT than for RPM The figure also shows the numbeenginewww.mininova.org In addition to claiming to be the

B. Experimental Validation
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Fig. 11. Tracker overhead vs. number of swarni§g. 12. Number of swarms per torrent for OctFig. 13. Average virtual swarm size as a function
for RPM(pnp,u/v) and RMT(pnpB,Tau). Ex- 10, 2008. More than 300 thousand torrents consist the number of peers fdRPM(pnpB,u/v) and
perimental resultsg = 100 peersp = 20. of two swarms. RMT(pn B, Tam).

largest torrent search enginajninovawas the most popular average virtual swarm siz€l; based on the number of peers
torrent search engine accordingvwovw.alexa.conduring our in each swarm, for all multi-tracked torrents in the data set
measurement period (Alexa-rank of 75, August 1, 2008). FromFigure 13 shows the average virtual swarm size as a function
the screen-scrapes we obtained the sizes of abou0880diles of the number of peers in the torrent for October 10, 2008
shared using BitTorrent, and the addresses,60Q trackers. for RPM and RMT. The figure shows results for the original
Second, we scraped the@BO0 trackers to obtain the numbemeer allocation and for various values @f(we setn =1, so
of leechers, seeds, and completed downloads for the terrepB = 3 as discussed in Section Ill). Peer lists wiph= 50
they track. peers are assumed. We note that lREMM andRMT increase

We performed the tracker-scrapes daily from October 1the virtual swarm size significantly even f@ =1, and the
2008, to October 17, 2008 as part of an 11 months long memarginal gain of increasingd decreases. While foff =1
surement campaign [13]. All scrapes were performed at 8g@RMT slightly outperformsRPM, for 3 = 8 the results are
GMT. We performed correlation tests to identify and removiadistinguishable. As expected from Figure 6, the effect on
redundant tracker-scrapes (for example, from trackers wihe virtual swarm size is negligible above torrent sizes of a
multiple hostnames) [14]. This way we removed redundaféew hundred peers. However, for torrent sizes smaller than
information about the same swarms of peers, and identifi@@0 peers, the proposed protocols consistently achieveast |
721 independent trackers. 85% virtual swarm size whefi =1 (> 95% when = 8).

During the measurements we observed—460 million
active peers on a weekly basis. These peers downloaded m(t‘jreS
than 8 billion copies of over 10 million torrents in 48 weeks. In the following we estimate the throughput of different
Our measurement data shows that there is a substantial nungtized swarms based on the large-scale data set. Then we use
of torrents with moderate popularity [13]. For example, abo the throughput estimates to estimate the potential pegoo®
2.84 million of the 286 million torrents observed on Octobergains small torrents can obtain using our protocols.
10, 2008 have less than 200 peers, and about 50% of thd) Throughput EstimationTo estimate the throughput of
peers are in these torrents. Figure 12 shows the numberapy particular swarm we measured the number of segds(
torrents with a given number of unique swarms (after ren@viﬁeechers () in the torrents, as well as the cumulative number
duplicates). There are a substantial number of torrents tighdownloads D) between two consecutive measurement times
are served independently by multiple trackers. Out of thaseT1 and T, separated by one day. Using these values we
significant portion was shown to benefit from merging [14].estimated the average throughput per leecher as the file size

o o B divided by the estimated download (service) timgvl

B. Mixing Efficiency Using Little’s law 1/v = L/A, whereL is the average number

To evaluate the performance &PM and RMT, we used of leechers currently being served in the system and the
the lower bound in (5) and (11), respectively, to estimate tharrival rateA can be estimated as the number of download

warm Throughput
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two consecutive measurements. To summarize, we have a o4  _RPMG0.41)|  Torrent

— ~ RMT(50,4,1) throughput gain

estimated throughput q_fm Finally, throgghput est|mates
for any particular swarm type were obtained by taking the
average over all swarms of that particular size.

Figures 14(a) and 14(b) show throughput estimation results
based on a 24 hour interval starting at 8pm GMT on October : :
10, 2008 and at 8am GMT on October 11, 2008, respectively. "o 1 2
Swarms are classified based on the total number of peers in the
swarm G+ L) and the seed-to-leecher rafo60 bins are used ™19

for the swarm sizes and three curves are used for the differen . . . . .
seed-to-leecher ratios. We note that the results for swapms"lues of the migration willingnes® (againn = 1). The figure

to just over 1000 peers are similar in both figures and argOWs & pessimisti.c estimate of the throughput improvement
consistent with intuition and previous studies [15], [16]. for three reasons: (i) we used the analytical model to eséima

For larger swarm sizes, however, the results in Figure 14%@ average virtual swarm size given the swarm siges(i)

> . . . peer list was limited to 50 peers, and (iii) the mixing
are surprising. We attribute the seemingly decreasingititro 2
. e .~ model assumed that peers on average depart upon finishing
put to two factors. First, the estimation for large swarmgss

accurate due to fewer samples. For example, while the num her download of the content (i.q1, = v). In accordance with

of swarms smaller than,@00 peers for which we could obtain Blg_ur8e tlhge fo;f hi:ejeRtl\rg Sslgsgy Zl;l:]pe{?ermﬁsl\g)iu;f?sr
content size information frormininova.orgis 282 827, there 7, y gain. 9 :
are only 861 swarms that are larger thanao peers. The lack close to the upper bound, hence we conclude that a relatively

7 o . - low intensity of peer migration can lead to close to maximal
of statistical significance for swarm sizes aboy8QD peers is ains. This observation coincides with the observationdema
illustrated by the large fluctuation of the curves in the fegur 9 )

S ) =~ _in Section Ill-A about the effect g8. The results also indicate
Second, estimation errors may be due to inaccurate esdmmat,g S U
hat the peer list limit ofp = 50 does not significantly decrease

(S)Lrt:r?] ear:{[erae?; dnum]t;er;)fdgerﬁhd;ﬁ\éirséhf 2;15 r:)(;uvrvor?ﬁg-at e benefits ofRPM for small torrents. With botiRPM and
P : Pop y yp T the throughput is typically increased by 40% (30%) or

typically follows a diurnal pattern. The measurement at Spm?re on average when torrents have less than 10 peers, and

GMT was done at peak hours, consequently the through%u 10% (5%) or more on average when torrents have less

estimate is pessimistic. The measurement at 8am GMT was :
. . an 200 peers. Torrents above approximately 200 peers are
done when swarms are smallest, and the estimate is hen

C ) .
optimistic. (This effect is captured by the almost consitiye ot affected by the protocols, but by increasipgne could

higher throughput estimates in Figure 14(b), relative tséh increase the virtual swarm size fo_r larger torrents as_well.
L2 : Figure 16 shows the relative estimated throughput improve-
in Figure 14(a).) The difference between the two throughput .

. . ment for leechers in torrents smaller than 300 peers over a
estimates for large swarms suggests that the populariproé|

- : V\feek. The curves marked witlk show the non-weighted
swarms may show heavier diurnal fluctuation than that ofkmal .~ . . . .
Swarms gain; the curves without markers show the gain weighted with

] the torrent sizes. The throughput gains are rather steamty. F
2) Estimated Throughput Improvementor swarms below example, the average torrent with less than 300 peers sees an
1,000 peers the two estimates coincide well, and we use {grease in throughput by 25% on average (and the average

throughput estimates from 8pm GMT to estimate the speedb@er in such a torrent sees a throughput increase by 12%).
achieved by the proposed algorithms. Tumper boundshown

in the figures corresponds to perfect mixing (i.Bl, = 1), VIl. RELATED WORK

which is the case if all peers follow thgick-all scheme. The efficiency of P2P content distribution typically im-
Figure 15 shows the throughput improvement for leechepsoves with the number of peers in the swarm that can

as a function of the torrent size fRPMandRMT for different share data with others [14]-[17]. Sharing opportunitiea ca
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be improved by using efficient peer discovery techniques; e.available and efficient peer-discovery at low overhead. As
by retrieving peer information from trackers, and by gosgjp an example of the potential value of these protocols, we
with other peers, as discussed in the paper. Distributed hg®rformed a measurement-based protocol evaluation. Using
tables (DHTSs) [1] and unstructured overlays [3] were pragbs large-scale measurement data from a large set of BitTorrent
for the purpose of highly available peer-discovery. Howgverackers, we showed that the proposed protocols could tead t
it has proven challenging for DHTs to maintain consistencysignificant improvement in terms of peer throughput at g ver
and avoid stale routing tables under node churn at a Idaw overhead. While our experimental protocol evaluation is
overhead, ultimately affecting the performance of DHTdahs done in the context of BitTorrent, the protocols are in gaher
peer-discovery in practice [1], [2], [18]. With unstrucdgr applicable to tracker-based overlay management systems.
overlays, good peer discovery typically comes at the cost of
high overhead [3], [18]. IX. ACKN.OWLEDGEMENT . |
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