
Optimized Dynamic Cache Instantiation

Niklas Carlsson

Linköping University, Sweden

Derek Eager

University of Saskatchewan, Canada

Abstract—By caching content at geographically distributed
servers, content delivery applications can achieve scalability and
reduce wide-area network traffic. However, each deployed cache
has an associated cost. As the request rate from a region varies
(e.g., according to a daily cycle), there may be periods when
the request rate is high enough to justify this cost, and other
periods when it is not. Cloud computing offers a solution to
problems of this kind, by supporting the dynamic allocation
and release of resources. In this paper, we analyze the potential
benefits from dynamically instantiating caches using resources
from cloud service providers. We develop novel analytic caching
models that accommodate time-varying request rates, transient
behavior as a cache fills following instantiation, and selective
cache insertion policies. Using these models, within the context
of a simple cost model, we then develop bounds and compare
policies with optimized parameter selections to obtain insights
into key cost/performance tradeoffs. We find that dynamic cache
instantiation can provide substantial cost reductions, that poten-
tial reductions strongly dependent on the object popularity skew,
and that selective cache insertion can be even more beneficial in
this context than with conventional edge caches.

I. INTRODUCTION

The performance and scalability of content delivery systems

benefit significantly from geographically distributed caches,

and so these have been the subject of much research (Sec-

tion VII). However, despite the emergence of distributed,

regional, and edge cloud computing offering a completely

new service paradigm – on-demand caching – surprisingly

few works have taken into account on-demand cache provi-

sioning [1]–[4], and, to our knowledge, no prior work has

considered, rigorously modelled, and analyzed the problem of

when to instantiate and release caches in such environments.

Content request rates typically differ between locations and

vary over time (e.g., according to a relatively predictable daily

cycle [5]). In systems where the service provider pays on an

on-demand basis, we would, ideally, like to incur the cost of

a local cache only when the local request rate is high enough

to justify this cost.

In this paper, we take a first look at the potential benefits

from dynamically instantiating and releasing caches. In partic-

ular, we develop novel analytic models of cache performance

that accommodate the important challenges of taking into ac-

count (i) arbitrarily time-varying request rates and (ii) periods

of transient behavior when a cache fills following instantiation,

and apply these models within the context of a simple cost

model to study cost/performance tradeoffs.

First, to accommodate time-varying request rates and peri-

ods of transient behavior, we develop a modelling approach

based on what we term here “request count window” (RCW)

caches. Objects are evicted from an RCW cache if not

ISBN 978-3-903176-28-7 © 2020 IFIP

requested over a window consisting of the most recent L
requests, where L is a parameter of the system. As we

show here empirically, similarly as with “Time-to-Live” (TTL)

caches [6]–[10] in scenarios with fixed request rates, the

performance of an RCW cache closely approximates the

performance of an LRU cache when the size of the window

(for an RCW cache, measured in number of requests) is set

such that the average occupancy equals the LRU cache size.

Second, we carry out analytic analyses of RCW caches

for both indiscriminate Cache on 1st request and selective

Cache on kth request cache insertion policies. Explicit, exact

expressions are derived for key cache performance metrics

under the independent reference model, including (i) the hit

and insertion rates for permanently allocated caches, and (ii)

the average rates over the transient period during which a

newly instantiated cache is filling. Selective Cache on kth

request cache insertion policies are of particular interest here,

since dynamically instantiated caches may be relatively small,

and therefore cache pollution may be a particularly important

concern. Our RCW analysis makes no assumptions regard-

ing inter-request time distributions or request rate variations,

ensuring that our RCW results (in contrast to prior TTL

approximations [6]–[10]) can be used to approximate LRU

cache performance under highly time-varying request volumes.

In general, for time-varying workloads, the concept of RCW

caches provides a more natural choice than TTL caches when

approximating fixed-capacity LRU caches.

Third, in addition to the insertion policy, important design

choices in a dynamic cache instantiation system include the

cache size and the duration of the instantiation interval. We de-

velop optimization models for these parameters for both Cache

on 1st request and Cache on kth request. We also develop

bounds on the best potentially achievable cost/performance

tradeoffs, assessing how much room for improvement there

may be through use of more complex caching policies.

Finally, we apply our analyses to obtain insights into dy-

namic cache instantiation and explore key system tradeoffs.

We find that dynamic cache instantiation using Cache on

kth request is a promising approach for content delivery

applications. Specifically: (1) Dynamic cache instantiation has

the potential to provide significant cost reductions, sometimes

more than halving the costs of (optimized) baselines that either

use a cache or not, depending on which results in a lower

cost. (2) The cost reductions are strongly dependent on the

object popularity skew. When there is high skew, dynamic

instantiation can work particularly well since a newly instan-

tiated cache is quickly populated with frequently requested

items that will capture a substantial fraction of the requests.

(3) Cache on kth request cache insertion policies can be even

©IFIP (2020). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.

The definitive version was published in Proc. of IFIP Networking, Paris, France, June 2020, http://IFIP DL URL.

more beneficial in this context than with conventional edge

caches. When there is high popularity skew, there is likely only

modest room for improvement in cost/performance through

use of more complex cache insertion and replacement policies.

Roadmap: Section II describes our workload and system

assumptions, the caching policies considered, and the metrics

of interest. Section III analyzes RCW caches for the baseline

case without use of dynamic instantiation. Section IV analyzes

the transient period as an RCW cache fills. Optimization

models and performance results for dynamic instantiation are

presented in Sections V and VI. Section VII describes related

work, before Section VIII concludes the paper.

II. SYSTEM DESCRIPTION AND METRICS

Workload Assumptions: We focus on a single cache

location serving a sub-population of clients [11]. For this cache

location, we consider a time period of duration T (e.g., one

day), over which the total (aggregated over all objects) content

request rate λ(t) varies. We assume that these variations are

predictable, and so for any desired cache instantiation duration

D < T , it would be possible to identify in advance the interval

of duration D with the highest average request rate over all

intervals of duration D within the time period.

Short-term temporal locality, non-stationary object popular-

ities, and high rates of new content creation make dynamic

cache instantiation potentially more promising, since they

reduce the value of old cache contents. Here, we provide

a conservative estimate of the benefits of dynamic cache

instantiation, assuming a fixed set of objects with stationary

object popularities, and with requests following the indepen-

dent reference model. We denote the number of objects by N ,

and index the objects such that pi ≥ pi+1 for 1 ≤ i < N ,

where pi denotes the probability that a request is for object i.
Cache Policies: We model a “request rate window” (RCW)

cache from which objects are evicted if not requested over

a window consisting of the most recent L requests, where

L is a system parameter. As we empirically demonstrate,

the performance of an RCW cache closely approximates the

performance of an LRU cache when the value of L is set such

that the average occupancy equals the size of the LRU cache.

Both indiscriminate, Cache on 1st request, and selective

Cache on kth request cache insertion policies are considered.

For Cache on kth request with k>1, we assume that the

system maintains some state information regarding uncached

objects that have been requested at least once over a window

consisting of the most recent W requests, where W is a policy

parameter. Specifically, for each such “caching candidate”, a

count of how many requests are made for the object while

it is a caching candidate is maintained. When a request is

received for an uncached object that was not already a caching

candidate, the object becomes a caching candidate with count

initialized to one. Should this count reach k, the object is

cached. Should no request be made to the object for W
requests, the object is removed as a caching candidate.

For the dynamic instantiation, we assume that the cloud

provider returns an empty cache when (re)instantiated. This

does not require us to make any assumption regarding the

type of cache (e.g., in memory vs disk-based storage, type of

VMs, etc.). However, we note that the cloud provider that is

not able to rent out the resources to serve other workloads may

decide to only shut down disks/memory to save energy and in

some of these cases therefore potentially could return part of

the cache in its original state. For such a case, our analysis

provides a pessimistic performance bound.

Metrics and Cost Assumptions: The metrics of primary

interest are the expected fraction of requests served locally

from cache (over the entire time period), and the cache cost.

With dynamic cache instantiation, the first of these two metrics

is given by
H̄ta:td

∫ td
ta

λ(t)dt
∫ T
0

λ(t)dt
, where ta denotes the time at which

the cache is allocated, td the time at which it is deallocated,

and H̄ta:td the average hit rate over this interval. Note that the

hit rate (probability) will vary over the interval, with the hit

rate immediately after instantiation being zero (empty cache).

Implementations of dynamic cache instantiation could use a

variety of technologies. One option would be to use dynamic

allocation of a virtual machine, with main memory used for

the cache. We assume here a simple cost model where the cost

per unit time of a cache of capacity C objects is proportional

to C+ b, where the constant b captures the portion of the cost

that is independent of cache size. The total cost over the period

T is then proportional to (td− ta)(C+ b). More complex cost

models could be easily accommodated; the only issue being

the computational cost of evaluating the cost function when

solving our optimization models.

In addition to the above metrics, when analyzing RCW

caches we evaluate the hit rate H , the cache insertion rate

I (fraction of requests that result in object insertions into

the cache) as well as the insertion fraction I/(I + H), and

the average number A of objects in the cache. The insertion

fraction is an important measure of overhead; cache insertions

consume node resources, but do not yield any benefit unless

there are subsequent resulting cache hits. The average number

of objects in the cache is used to match the cache capacity C
of an LRU cache with similar performance.

III. RCW CACHE ANALYSIS

We consider first a permanently allocated RCW cache.

A. Exact “Always on” RCW Analysis

Cache on 1st Request: The probability that a request for

object i finds it in the cache is given by 1− (1− pi)
L, since

object i will be in the cache if and only if at least one of the

most recent L requests was to object i. The average number

A of objects in the cache, as seen by a random request, the

insertion rate I , and the hit rate H , are therefore given by

A=N−

N
∑

i=1

(1−pi)
L, I=

N
∑

i=1

pi(1−pi)
L, H=1−

N
∑

i=1

pi(1−pi)
L.

(1)

Cache on 2nd Request: The expected value E[Θi] of the

object i duration in the cache, measured in number of requests,

is given by the average number of requests until there is a

sequence of L requests in a row that do not include a request

for object i. Since requests follow the independent reference

model and the probability of a request for object i is pi, this

is the same as the average number of flips of a biased coin

that are required to get L heads in a row, with the probability

of a head equal to 1− pi:

E[Θi] =

L
∑

r=1

1

(1− pi)r
=

1− (1− pi)
L

pi(1− pi)L
. (2)

With Cache on 2nd request, the expected value E[∆i] of the

object i duration out of the cache, measured in number of

requests, satisfies the following equation:

E[∆i] = 1/pi + (1− pi)
W (W + E[∆i])

+(1− (1− pi)
W)

(

1/pi −
(1− pi)

WW

1− (1− pi)W

)

(3)

Here, the first term (1/pi) gives the expected number of

requests until the first request for object i following its removal

from the cache. The second term gives the expected number

of additional requests until object i is added to the cache,

conditional on the first request not being followed by another

request within the window W , multiplied by the probability

of this condition. The third term gives the expected number

of additional requests until object i is added to the cache,

conditional on the first request being followed by another

request within the window W , multiplied by the probability

of this condition. Solving for E[∆i] yields:

E[∆i] =
2− (1− pi)

W

pi(1− (1− pi)W)
. (4)

Expressions for A, H , and I now follow directly from (2)

and (4), and A =
∑

i
E[Θi]

E[Θi]+E[∆i]
, H =

∑

i pi
E[Θi]

E[Θi]+E[∆i]
,

and I =
∑

i
1

E[Θi]+E[∆i]
.

Cache on kth Request: The analysis for general k ≥ 2
differs from that for Cache on 2nd request with respect to
E[∆i], the expected value of the object i duration out of the
cache, measured in number of requests. Denoting E[∆i] for
Cache on kth request by Ek[∆i], Ek[∆i] (k ≥ 2) can be
expressed as a function of Ek−1[∆i] as follows:

Ek[∆i] =
Ek−1[∆i] + (1−pi)

WW + (1−(1−pi)
W)

(

1
pi

−
(1−pi)

WW

1−(1−pi)W

)

1−(1−pi)W
,

(5)

with E1[∆i] defined as 1/pi. The numerator of the right-hand

side of this equation gives the expected number of requests

from when an object is removed from cache or removed as a

caching candidate, until it next exits from the state in which

it is a caching candidate with a count of k − 1 (either owing

to being cached because of a request occurring within the

window W , or removed as a caching candidate if no such

request occurs). The denominator is the probability of being

cached when exiting from the state in which it is a caching

candidate with a count of k − 1, and therefore the inverse of

the denominator gives the expected number of times the object

will enter this state until it is finally cached. Simplifying yields

Ek[∆i] =
Ek−1[∆i]

1− (1− pi)W
+

1

pi
, (6)

implying

Ek[∆i] =
1

pi

(

1− (1− (1− pi)
W)k

(1− pi)W (1− (1− pi)W)k−1

)

. (7)

Expressions for A, H , and I now follow directly from (2) and

(7), once A, H , and I are expressed in terms of Ek[∆i] and

E[Θi] as in the analysis for Cache on 2nd request. For W=L,

these expressions reduce to:

A =

N
∑

i=1

(1− (1− pi)
L)k, H =

N
∑

i=1

pi(1− (1− pi)
L)k,

I =

N
∑

i=1

pi(1− pi)
L(1− (1− pi)

L)k−1. (8)

B. Validation and Performance Results

Figure 1 compares our exact RCW cache hit rate results (red

’+’ markers), using W=L, with the results from simulations of

corresponding fixed-capacity LRU caches (blue ’×’ markers),

for N=100, 000 objects, different k, and over a large range of

cache sizes (A/N=0.0001 corresponds here to A=10). Also

shown in the figure are the upper bound hit rate (dashed black

lines), corresponding to when the cache is kept filled with the

⌊C⌋ most popular objects, and O(1) approximations (green

lines) that we have derived using Taylor series expansions

(see appendix) for the special cases of Zipf distributions with

α=1 and α=0.5. We note that popularity skew typically is

intermediate between these two cases.

For the simulations, we set the LRU cache size C to equal

A. To match use of W=L in the case of the RCW caches, we

assume an implementation of LRU with Cache on kth request

in which, when the cache is full (as it is in steady state),

W is dynamically set to the number of requests since the

“least recently requested” object currently in the cache was last

requested. Similar to an RCW cache with W=L, this choice

ensures that an object remains a “caching candidate” as long as

it is requested at least as recently as the least recently requested

object in the cache. For the simulation results reported here

and in subsequent sections, each simulation was run for six

million requests, with the statistics for the initial two million

requests removed from the measurements.

The following observations stand out. First, for all cases

(including larger k), the exact RCW results closely match the

LRU simulation results. This shows that our RCW analysis can

be used as an effective method to approximate the performance

of an LRU cache. Second, the O(1) approximations are

accurate both for α=1 (caching effective) and α=0.5 (caching

largely ineffective). For the insertion fraction I/(I +H) (not

shown), the O(1) approximations diverge somewhat more, but

errors remain within 10% for all cases except for (i) small

cache sizes (A/N < 0.001) when k=4 and α=0.5, and (ii)

large cache sizes (A/N > 0.1) when k=4 and α=0.5. For

α=1, the insertion fraction errors remain within 5%, and for

k=1 (regardless of α) the errors are within 0.3%. Third, the

gap in hit rate between the policies and the upper bound is

substantial with k=1 (regular LRU), narrows with k=2, and

is almost eliminated with k=4, leaving little room for further

hit rate improvements.

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(a) k = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(b) k = 2

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(c) k = 4
Fig. 1. Performance of Cache on kth request (N=100, 000); dashed lines show the hit rate when the cache is kept filled with the ⌊C⌋ most popular objects.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
ra

c
t.
 i
n
s
e
rt

s
.
(I

/(
I+

H
))

Fraction served locally (H)

k=1

k=2

k=4

(a) α = 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

F
ra

c
t.
 i
n
s
e
rt

s
.
(I

/(
I+

H
))

Fraction served locally (H)

k=1

k=2

k=4

(b) α = 0.5
Fig. 2. Tradeoff curves for Cache on kth request policies. Here, N=105

and we use markers: “RCW, exact” (+), “RCW, approx” (line), and LRU (×).

Although increasing k beyond k=2 yields only small addi-

tional improvements in hit rate, substantial improvements in

the insertion fraction I/(I + H) continue as k is increased.

To illustrate this, Figure 2 shows the tradeoff between hit rate

(on x-axis) and insertion fraction (y-axis) for different k. Note

that with selective insertion policies (i.e., larger k), the same

hit rate can be achieved with a much lower insertion fraction.

IV. DYNAMIC INSTANTIATION ANALYSIS

A. Cache on 1st Request

Consider now the case where the cache is allocated for

only a portion of the time period, and is initially empty

when instantiated. With Cache on 1st request, after the first

L requests following instantiation, the cache will have the

occupancy probabilities derived earlier for the “always-on”

case in Section III, and so for requests following the first L
requests the analysis in Section III can be used. The average

insertion rate over the first L requests (the transient period) is

given by the expression for the average number A of objects

in cache from (1), divided by L. Denoting the average hit rate

during the transient period by H̄transient, this gives:

H̄transient = 1−
A

L
= 1−

N −
∑N

i=1(1− pi)
L

L
, (9)

and from equation (1) for H , assuming that
∫ td
ta

λ(t)dt ≥ L,

H̄ta:td
=

LH̄transient +
(

∫ td
ta

λ(t)dt − L
)(

1 −
∑N

i=1 pi(1 − pi)
L
)

∫ td
ta

λ(t)dt
. (10)

Finally, for Cache on 1st request, Ītransient and Īta:td are given

simply by 1−H̄transient and 1−H̄ta:td .

B. Cache on kth Request (k ≥ 2)

As described in Section II, Cache on kth request requires

maintenance of state information regarding “caching candi-

dates” and all currently cached objects. We assume that when

a cache using Cache on kth request is deallocated, the state

information of both types is transferred to the upstream system

to which requests will now be directed. The upstream system

maintains and updates this state information when receiving

requests that the cache would have received had it been

allocated, and transfers it back when the cache is instantiated

again. Therefore, although the cache is initially empty when

instantiated, it can use the acquired state information to

selectively cache newly requested objects, caching a requested

object not present in the cache, whenever that object should be

in (or be put in) the cache according to its state information.

Note that after the first L requests following instantiation,

the cache will have the cache occupancy probabilities derived

earlier for the “always-on” case, and so for requests following

the first L requests the analysis in Section III can be used.

Note that over the transient period consisting of the first L
requests, no objects are removed from the cache. The average

insertion rate during the transient period Ītransient is therefore

given by the average number A of objects in cache (e.g.

from (8) for the case of W = L) divided by L. Under the

assumption that
∫ td
ta

λ(t)dt ≥ L, it is then straightforward

to combine Ītransient with the always-on insertion rate from

Section III to obtain Īta:td .

The average hit rate during the transient period is given by

one minus the average transient period insertion rate, minus the

average probability that a requested object is not present in the

cache and should not be inserted. Recall that the cache receives

up-to-date state information when instantiated, and a requested

object is cached according to this state information. Therefore,

a requested object is not present in the cache and should not be

inserted, if and only if it would not be in the cache and would

not be inserted into the cache on this request with an always-

on cache. The probability of this case is equal to one minus the

hit rate for an always-on cache minus the insertion rate for an

always-on cache. The above implies that the average hit rate

during the transient period, H̄transient, is given by the always-on

cache hit rate plus the always-on cache insertion rate (e.g. from

(8) for the case of W = L) minus the average transient period

insertion rate Ītransient; i.e., H̄transient = H+I−A/L. Under the

assumption that
∫ td
ta

λ(t)dt ≥ L, it is then straightforward to

combine H̄transient with the always-on hit rate to obtain H̄ta:td .

C. Transient Period Performance Results

Figure 3 shows sample results for the transient period when

using Cache on kth request with different k = 1, 2, 4 and

Zipf with α = 0.5 or 1. In all experiments, we used W=L
and show results only for the transient period itself. For the

analytic expressions, we used the O(1) approximations for

each metric (see appendix). For the simulations, we start with

an empty cache, and simulate the system until the system

reaches steady-state conditions. At that time, we empty the

cache and begin a new transient period. This is repeated for

2,000 transient periods or until we have simulated 6,000,000

requests, whichever occurs first, and statistics are reported

based on fully completed transient periods. With these settings,

each data point was calculated based on at least 17 transient

periods. (This occurred with A/N=0.2, k=4, and α=1.) To

improve readability, as in prior figures, confidence intervals are

not included. However, in general, the confidence intervals are

tight (e.g., ±0.0016 for the data point mentioned above).

For the RCW simulations, the system maintains the same

state information and operates in the same way as described for

our analysis assumptions. As in the steady-state simulations,

for the corresponding LRU cache, the capacity C was set equal

to A, and when the cache is full, W is dynamically set to the

number of requests since the “least recently requested” object

currently in the cache (and with at least k requests within

W of each other) was last requested. To reach steady state

conditions, the cache must be filled completely with objects

requested at least k times during that period.

The transient results very much resemble the steady-state

results. For example, the tradeoff curves in Figure 3 are

very similar to those observed in Figure 1, and the analytic

approximations again nicely match the simulated RCW values

for most instances (which themselves nicely match the exact

analysis results). Most importantly, there is a very good match

for all hit rate results (red curves/markers: RCW approxima-

tions, RCW simulations, and LRU simulations); the metric

that we will use in the optimization models (Section V) and

the evaluation thereof (Section VI). Substantive differences

between the RCW simulations and analytic approximations are

observed only for the insertion fraction metric (shown in blue)

when using very small cache sizes (e.g., A/N less than 0.001)

when α=0.5. When k=4 and α=0.5, we also observe some

noticeable differences in the insertion fraction between RCW

and LRU. This may suggest that when k is large, RCW is a

worse approximation for LRU (as we compare them) during

transient periods than during steady state. Again, in following

sections, we use the (more accurate) hit rate results.

V. OPTIMIZATION MODELS FOR DYNAMIC INSTANTIATION

Consider now the problem of jointly optimizing the capacity

C of a dynamically instantiated cache, and the interval over

which the cache is allocated, so as to minimize the cache

cost subject to achieving a target fraction of requests Hmin

(0 < Hmin < 1) that will be served locally:

minimize (td − ta)(C + b), (11)

subject to
H̄ta:td

∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

≥ Hmin.

Note that a smaller cache has the advantages of a shorter

transient period until it fills and lower cost per unit time, while

a larger cache has the advantage of a higher hit rate once filled.

For convenience, in the following we assume that λ(t) > 0, ∀t.

A. Lower Bound

A lower bound on cost can be obtained by using an upper

bound for the average hit rate over the cache allocation

interval. One such bound can be obtained by assuming that

there is a hit whenever the requested object is one that has

been requested previously, since the cache was allocated. We

apply this bound to obtain a lower bound on the duration of the

cache allocation interval. Another bound is the hit rate when

the ⌊C⌋ most popular objects are present in the cache. We

apply this bound to the more constrained optimization problem

that results from our use of the first bound.
Denote by H̄R the average hit rate over the first R requests

after the cache has been allocated. At best, request r, 1 ≤ r ≤
R is a hit if and only if the requested object was the object
requested by one or more of the r−1 earlier requests, giving:

H̄R ≤
1

R

(

R
∑

r=1

N
∑

i=1

pi(1−(1−pi)
r−1)

)

= 1−
1

R

(

N −

N
∑

i=1

(1−pi)
R

)

.

(12)

Since this is a concave function of R, we can bound the

average hit rate over the cache allocation interval by setting

R =
∫ td
ta

λ(t)dt, the expected value of the number of requests

within this interval. Applying this bound to the hit rate

constraint in (11) yields
(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

)(

1−
1

R

(

N −
N
∑

i=1

(1− pi)
R

))

≥ Hmin,

(13)

implying that

∫ td

ta

λ(t)dt+

N
∑

i=1

(1−pi)
∫ td
ta

λ(t)dt ≥

(

∫ T

0

λ(t)dt

)

Hmin+N.

(14)

Given that we choose ta and td as the beginning and end,

respectively, of a time interval with the largest average request

rate, the left-hand side is a strictly increasing function of

td−ta, as can be verified by taking the derivative with respect

to
∫ td
ta

λ(t)dt, noting that this derivative is minimized for

minimum
∫ td
ta

λ(t)dt (which is at least one, in the region of

interest), and using the fact that − ln(x) is a convex function.

Therefore, for any particular workload this relation defines a

lower bound Dl for the interval duration td − ta.

Applying now the upper bound on hit rate from when the

⌊C⌋ most popular objects are present in the cache, gives the

following optimization problem:

minimize (td − ta)(C + b), (15)

subject to

(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

)

⌊C⌋
∑

i=1

pi ≥ Hmin, Dl ≤ td−ta ≤ T.

Solution of this problem yields a lower bound on cost.

B. Policy-based Cost Optimizations

Cache on 1st request: For an LRU cache using this policy,

equating the cache capacity C to the average occupancy A of

an RCW cache and applying (10) yields:

minimize (td − ta)(C + b), (16)

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(a) k = 1, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(b) k = 2, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(c) k = 4, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))
Normalized cache size (A/N)

H

I/(I+H)

(d) k = 1, α = 0.5

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

(e) k = 2, α = 0.5

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o
n
 s

e
rv

e
d
 l
o
c
a
lly

 (
H

)

F
ra

c
ti
o
n
 i
n
s
e
rt

io
n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

(f) k = 4, α = 0.5
Fig. 3. Transient period results. Performance of Cache on kth request (N = 100,000) during transient period.

subject to C = N −
N
∑

i=1

(1− pi)
L, L ≤

∫ td

ta

λ(t)dt,

L− C +
(

∫ td
ta

λ(t)dt− L
)(

1−
∑N

i=1 pi(1− pi)
L
)

∫ T

0
λ(t)dt

≥ Hmin.

Cache on kth request: An analogous optimization problem

is obtained for Cache on kth request by equating the capacity

C to the average occupancy A of an RCW cache and applying

the Section IV-B analysis.

VI. DYNAMIC INSTANTIATION PERFORMANCE

For an initial model of request rate variation, we use a

single-parameter model in which the request rate increases

linearly from a rate of zero at the beginning of the time

period to a rate λhigh half-way through, and then decreases

linearly such that the request rate at the end of the period

is back to zero. Default parameter settings (each used unless

otherwise stated) are T = 1440 min. (24 hours), λhigh = 20
req./min., b = 500 (and so for a cache capacity of 1000

objects, for example, the size-independent portion of the cache

cost contributes half of the total), Hmin = 0.4, N = 100, 000,

and a Zipf object popularity distribution with α = 1.

Figures 4(a), (b), and (c) show the ratio of the minimal

cost for a dynamically instantiated cache using different cache

insertion policies (using W=L for the Cache on kth request

policies) to the cost lower bound, as obtained from numerically

solving the optimization models of Section V, as a function

of the cost parameter b, the hit rate constraint Hmin, and the

peak request rate λhigh, respectively. Also shown are the cost

ratios for Cache on 1st request and Cache on 2nd request for

the baseline case of a permanently allocated cache with hit

rate Hmin. In each figure, all other parameters are set to their

default values. Note that in these results: (1) unless b is very

small (in which case, it is most cost-effective to permanently

allocate a small cache), Hmin is large, or λhigh is too small

for a dynamically instantiated cache to fill, dynamic cache

instantiation can yield substantial cost savings; (2) Cache on

kth request for k ≥ 2 provides a better cost/performance

tradeoff curve compared to Cache on 1st request; and (3) there

is only modest room for further improvement through use of

more complex cache insertion and replacement policies.

The potential benefits of dynamic cache instantiation (and

of caching itself) are strongly dependent on the popularity

skew. When object popularities follow a Zipf distribution with

α=0.5, with our default parameters it is not even possible

to achieve the target fraction of requests Hmin to be served

locally, using dynamic cache instantiation. This is partly due

to the fact that for α=0.5, caching performance is degraded

much more severely when in the transient period than for α=1
(e.g., results in Section IV), and partly due to the fact that a

larger cache is required to achieve a given hit rate. The impact

of the popularity skew can be clearly seen by comparing

the results in Figures 5(a) and (b), which use N=10, 000
instead of the default value of 100,000 so as to allow the

hit rate constraint to be met over a significant range of values,

even when α=0.5. In addition to the poorer performance of

dynamic cache instantiation that is seen in Figure 5(a), note

also the increased gap with respect to the lower bound, and the

poorer performance of Cache on 2nd request relative to Cache

on 1st request (compared to the relative performance seen in

Figure 5(b)). (Results for Cache on kth request for k = 3, 4
are not shown in Figure 5(a), since the required value of L
becomes too large for all but the smallest cache sizes.)

The significant impact of N can be seen by comparing

Figures 4(b) and 5(b), which both use α=1 and differ only

in the value of N . Finally, the extent of rate variability also

has a substantial impact. This is illustrated in Figure 5(c), for

which our model of request rate variation is modified so that

the minimum rate is λlow, 0<λlow<λhigh, rather than zero, and

with linear rate increase/decrease occupying only a fraction

1−|h| of the time period, where h is a parameter between −1

and 1. When h>0, the request rate is λlow for the rest of the

time period, while when h<0, the request rate is λhigh for the

rest of the time period (and so during the fraction 1−|h| of

the time period the rate first decreases linearly to λlow and

then increases linearly back to λhigh), giving a peak to mean

request rate ratio for −1<h<1 of 2/(1−h+(1+h)λlow/λhigh).

Results are shown for varying h, with λlow fixed at 10% of

λhigh, and λhigh scaled for each value of h so as to maintain

the same total request volume as with the default single-

parameter model. Note that h=1 and h=−1 correspond to the

same scenario, since in both cases the request rate is constant

throughout the period. Note also that the lower bound becomes

overly optimistic for h around 0.7; in this case the requests

are highly concentrated, and the solution to the lower bound

optimization problem is a large cache allocated for a short

period of time (for which the upper bound on hit rate when

the ⌊C⌋ most popular objects are present in the cache becomes

quite loose). Most importantly, observe that when the pattern

of request rate variation is such that there is a substantial

“valley” (h>0) within the time period during which the request

rate is relatively low, the benefits of dynamic instantiation are

much higher than when there is a substantial “plateau” (h<0).

VII. RELATED WORK

Caching policies typically either evict objects from the

cache when the cache becomes full (i.e., capacity-driven

policies [12]–[17]) or based on the time since each individual

object was last accessed or entered the cache (i.e., timing-

based policies [16], [17]). In practice, use of capacity-based

policies such as LRU have dominated. Unfortunatly, these

policies are hard to analyze exactly (e.g., [18], [19]). This

prompted the development of approximations [14], [20], [21]

and asymptotic analyses [22], [23]. Most recent work relies

on accurate approximation of the performance of capacity-

driven policies using TTL-based caches [6]–[10], [24]. TTL-

based models have also been used to analyze networks of

caches [9], [10], [25], [26], to derive asymptotically optimized

solutions [27], for optimized server selection [28], for utility

maximization [29], and for on-demand contract design [30].

Few papers (regardless of replacement policy) have modeled

discriminatory caching policies such as Cache on kth request.

In our context, these policies are motivated by the risk of cache

pollution in small dynamically instantiated caches, and more

generally by the long tail of one-timers (one-hit wonders) ob-

served in edge networks [5], [31]–[33]. Recent works include

trace-based evaluations of Cache on kth request policies [32],

[33], simple analytic models for hit and insertion probabilities

that (in contrast to us) ignore cache replacement [33], or works

that have used TTL-based recurrence expressions to model

variations of Cache on kth request [10], [24], [34]–[36]. Of

these works, none consider dynamic cache instantiation.

Other related works have adapted the individual TTL values

of each object so to achieve some objective [37], [38]. For

example, Carra et al. [1] demonstrate how the individual TTL

values of each object can be adapted (with constant overhead)

so to closely track the optimal cache configurations. However,

these works only consider Cache on 1st request policies.

To simplify analysis, TTL-based approximations of LRU-

based caches typically leverage the general idea of a cache

characterization time [6], [7], which in the simplest case

corresponds to the (approximate) time that the object stays

in the cache if not requested again. This time corresponds

closely to our parameter L, with the important difference

that the RCW caches use a request count window rather than

a time window. This subtle difference makes our approach

favorable when modeling fixed capacity caches in systems

with substantial request rate variations (e.g., according to a

diurnal cycle). Furthermore, our RCW approach allows us to

derive (i) exact expressions for general Cache on kth request

policies, popularity distributions, and transient periods, and (ii)

corresponding O(1) computational cost approximations. Such

results, which we need for our optimization models, are not

found in the TTL-based modeling literature.

For the case of an infinite Cache on 1st request cache

with a finite request stream, Breslau et al. [20] provide exact

hit rate expression for general popularity distributions, as

well as approximate scaling properties for Zipf distributions.

However, we did not find these scaling relationships (focusing

on orders) sufficient for our analysis and therefore developed

more precise expressions for Zipf with α = 1 and α = 0.5.

The (general) idea of dynamically adapting the amount of

dedicated resource based on time-varying workloads is not

new [39], [40]. In the context of cloud-based caching, in

addition to the work by Carra et al. [1] (discussed above),

Sundarrajan et al. [2] use discriminatory caching algorithms

together with partitioned caches to save energy during off-peak

hours, and Dan and Carlsson [3] optimize what objects to push

to cloud storage based on diurnal demands and a basic cost

model. Others have considered how CDNs best collaborate

with ISPs making available microdatacenters [41], how to

build virtual CDNs on-the-fly on top of shared third-party

infrastructures [4], or optimized a cloud caching hierarchy

under the assumption that request rates are known and station-

ary (ignoring time-varying request loads) [42]. None of these

works consider the problem of optimized cache instantiation.

VIII. CONCLUSIONS

In this paper we have taken a first look at dynamic cache

instantiation. For this purpose, we have derived new analysis

results for what we term “request count window” (RCW)

caches, including explicit, exact expressions for cache per-

formance metrics for Cache on kth request RCW caches for

general k, and new O(1) computational cost approximations

for cache performance metrics for Zipf popularity distributions

with α=1 and α=0.5. These results are of interest in their

own right, especially as the performance of RCW caches are

shown to closely match the performance of the corresponding

Cache on kth request LRU caches. We then applied our

analysis results to develop optimization models for dynamic

cache instantiation and derived a cost lower bound that holds

for any caching policy. Our results show that dynamic cache

instantiation using a selective cache insertion policy such as

Cache on 2nd request may yield substantial benefits compared

to a permanently allocated cache, and is a promising approach

for content delivery applications. Finally, we note that the

use of the independent reference model (used here) provides

conservative estimates of the potential improvements using

dynamic instantiation, since in practice short-term temporal

0

1

2

3

4

5

 0 200 400 600 800 1000

M
in

im
a

l
c
o

s
t

ra
ti
o

Cost (b) independent of size

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(a) Varying b

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
in

im
a

l
c
o

s
t

ra
ti
o

Target bound on hit ratio (Hmin)

Lower bound

Base, k=1

Cache 1st

Base, k=2

Cache 2nd

Cache 3rd

Cache 4th

(b) Varying Hmin

0

1

2

3

4

5

 2 4 8 16 32 64 128

M
in

im
a

l
c
o

s
t

ra
ti
o

Peak arrival rate (λhigh)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(c) Varying λhigh
Fig. 4. Ratio of the minimal cost to the lower bound versus b, Hmin, and λhigh (other parameters at defaults).

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
in

im
a

l
c
o

s
t

ra
ti
o

Target bound on hit ratio (Hmin)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

(a) Varying Hmin, α = 0.5, N = 10, 000

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
in

im
a

l
c
o

s
t

ra
ti
o

Target bound on hit ratio (Hmin)

Lower bound

Base, k=1

Cache 1st

Base, k=2

Cache 2nd

Cache 3rd

Cache 4th

(b) Varying Hmin, α = 1, N = 10, 000

0

1

2

3

4

5

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

M
in

im
a

l
c
o

s
t

ra
ti
o

Workload parameter (h)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(c) Varying h; λlow = 0.1, λhigh, λhigh scaled
so req. vol. unchanged

Fig. 5. Impact of popularity skew, number of objects, and request rate variability.

locality, non-stationary object popularities, and high rates of

addition of new content typically would make yesterday’s

cache contents less useful.

Acknowledgements: This work was partially funded by the

Swedish Research Council (VR) and the Natural Sciences and

Engineering Research Council (NSERC) of Canada.

APPENDIX

We have derived approximate expressions of O(1) com-

putational cost for the cases of Zipf object popularities with

parameter α=1 and α=0.5. Table I summarizes the key

approximations derived and used in this paper, and in the

following we present a simple example illustrating the general

methodology used to obtain these approximations. (The full

derivations will be provided in an extended technical report.)

First, let us derive an approximation for the
∑N

i=1(1−pi)
L

for the case α=1. In this case, pi = 1/(iΩ), where Ω =
∑N

i=1 1/i is a normalization constant, and for large N , Ω ≈
lnN + γ, where γ denotes the Euler-Mascheroni constant (≈
0.577). For large N , L, and g → ∞, we then have:

N
∑

i=1

(1− pi)
L
≈

N
∑

i=1

e−L/(iΩ)
≈

∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))
dx.

(17)
Next, using a Taylor series expansion for ey gives:

∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))
dx =

∫ N

L
g(lnN+γ)

∞
∑

j=0

(−L
x(lnN+γ)

)j

j!
dx

= N −
L

lnN + γ

(

lnN +
L

2N(lnN + γ)
−

∞
∑

j=2

(−L
N(lnN+γ)

)j

(j + 1)!j

)

−
L

lnN + γ

(

1/g − ln(L/(lnN + γ)) + ln(g) +
∞
∑

j=1

(−g)j

(j + 1)!j

)

.

(18)

Now, note that ln(g) +
∑∞

j=1
(−g)j

j!j = Ei(−g)− γ, where Ei

is the exponential integral function, and that
∑∞

j=1
(−g)j

(j+1)!j −
∑∞

j=1
(−g)j

j!j = 1
g

∑∞
j=1

(−g)j+1

(j+1)! = 1
g (e

−g + g − 1) , which

tends to 1 as g → ∞. Also, for g → ∞, Ei(−g) → 0.

Therefore, for g → ∞,

1/g + ln(g) +

∞
∑

j=1

(−g)j

(j + 1)!j
→ 1− γ. (19)

Substituting this result into (18), and neglecting the terms in

the summation on the second line of (18) under the assumption

that L is substantially smaller than N(lnN + γ), yields the

result. Similar derivation steps yielded the approximations for

the other three sums (in the first two rows of the table).

Now, applying these summation approximations to the equa-

tion for A, H , and I in (1), we obtain the approximations for

Cache on 1st request. Similarly, for Cache on kth request and

W = L, we applied the summation approximations to (8).

With respect to the range of values for L for which the Cache

on 2nd request approximations are accurate when W = L and

α = 1, note that the equations in (8) with k = 2 include

both (1 − pi)
L and (1 − pi)

2L terms. Therefore, when L is

substantially smaller than N(lnN + γ), but 2L is not, the

accuracy of these approximations is uncertain a priori, and

requires experimental assessment. A similar issue arises in the

case of α = 0.5, and for Cache on kth request with k > 2.

Finally, the transient approximations (three last rows) are

obtained by inserting the appropriate steady-state approxima-

tions for A, H and I (prior rows in the table) into the equation

H̄transient = H + I −A/L, and simplifying. Note that the ratio

of the average cache hit rate over the transient period to the

hit rate once the cache has filled can yield substantial insight

into the impact of the transient period on performance. For

example, for the case with k = 1 and α = 1, the ratio is

approximately 1 − (1 − L/(2N(lnN + γ)))/(lnN + γ) and

for k = 1 and α = 0.5, the ratio can be shown to be between

0.5 and 0.7 (for 0 < L < 2N). Similarly, for k = 2, the ratio

with α = 1 is 1− (ln 2)/(ln(L/(lnN + γ)) + 2γ − ln 2) and

with α = 0.5 it is between about 0.64 and 0.72 (considering

here 0 < L < N). These results show that the ratio typically

is substantially smaller with α = 0.5 than with α = 1.

TABLE I
O(1) APPROXIMATIONS.

Policy (or sum) Zipf, α = 1 Zipf, α = 0.5

S
u
m

s

∑N
i=1(1 − pi)

L
N − L

lnN+γ

(

lnN − ln
(

L
lnN+γ

)

+ 1 − γ + L
2N(lnN+γ)

)

N − L + L2

4N

(

ln((2N)/L) + L
6N + 3

2 − γ
)

∑N
i=1 pi(1 − pi)

L 1 −
ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))

lnN+γ 1 − L
2N

(

ln((2N)/L) + L
4N + 1 − γ

)

A
lw

ay
s

o
n

(s
te

ad
y

st
at

e) Cache on 1st
A ≈ L

lnN+γ

(

lnN − ln
(

L
lnN+γ

)

+ 1 − γ + L
2N(lnN+γ)

)

I ≈ 1 −
ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))

lnN+γ

H ≈
ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))

lnN+γ

A ≈ L
(

1 − L
4N

(

ln((2N)/L) + L
6N + 3

2 − γ
))

I ≈ 1 − L
2N

(

ln((2N)/L) + L
4N + 1 − γ

)

H ≈ L
2N

(

ln((2N)/L) + L
4N + 1 − γ

)

Cache on 2nd, W = L

A ≈
(2 ln 2−L/(N(lnN+γ)))L

lnN+γ

H ≈
ln(L/(lnN+γ))+2γ−ln 2

lnN+γ

I ≈
ln 2−L/(N(lnN+γ))

lnN+γ

A ≈ L2

2N

(

ln(N/(2L)) + L
2N + 3

2 − γ
)

H ≈ L
N

(

ln 2 − L
4N

)

I ≈ L
2N

(

ln(N/(2L)) + 3L
4N + 1 − γ

)

Cache on kth, k ≥ 3, W = L

A ≈

(

∑k
j=2(−1)j

(

k
j

)

j ln(j)
)

L

lnN+γ

H ≈
ln(L/(lnN+γ))+2γ−

∑k
j=2(−1)j

(

k
j

)

ln(j)

lnN+γ

I ≈

∑k
j=2(−1)j

(

k−1
j−1

)

ln(j)

lnN+γ

A ≈

(9 ln 3 − 12 ln 2 − L/N)L2/(4N) k = 3,
(

∑k
j=2(−1)j+1

(

k
j

)

j2 ln(j)
)

L2/(4N) k ≥ 4.

H ≈ L
2N

∑k
j=2(−1)j

(

k
j

)

j ln(j)

I ≈

(L/(2N))
(

3 ln 3 − 4 ln 2 − L
2N

)

k = 3,

(L/(2N))
∑k−1

j=1
(−1)j

(

k−1
j

)

(j + 1) ln(j + 1) k ≥ 4.

T
ra

n
si

en
t

Cache on 1st H̄transient ≈
ln(L/(lnN+γ))+2γ−1−L/(2N(lnN+γ))

lnN+γ H̄transient ≈
L
4N

(

ln((2N)/L) + L
6N + 3

2 − γ
)

Cache on 2nd, W = L H̄transient ≈
ln(L/(lnN+γ))+2γ−2 ln 2

lnN+γ H̄transient ≈
L
N

(

ln 2 − L
8N − 1

4

)

Cache on kth, k ≥ 3, W = L Insert above into H̄transient = H + I − A
L Insert above into H̄transient = H + I − A

L

REFERENCES

[1] D. Carra, G. Neglia, and P. Michiardi, “TTL-based cloud caches,” in
Proc. IEEE INFOCOM, 2019.

[2] A. Sundarrajan, M. Kasbekar, and R. Sitaraman, “Energy-efficient disk
caching for content delivery,” in Proc. ACM e-Energy, 2016.

[3] G. Dan and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in Proc. IEEE INFOCOM, 2014.

[4] S. Kuenzer et al., “Unikernels everywhere: The case for elastic CDNs,”
ACM SIGPLAN Notices, vol. 52, no. 7, pp. 15–29, 2017.

[5] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteriza-
tion: A view from the edge,” in Proc. IMC, 2007.

[6] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE JSAC, vol. 20, 2002.

[7] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for LRU cache performance,” in Proc. ITC, 2012.

[8] G. Bianchi, A. Detti, A. Caponi, and N. B. Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM CCR, vol. 43, no. 3, pp. 59–67, 2013.

[9] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[10] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM ToMPECS, vol. 1, 2016.

[11] F. Chen et al., “End-user mapping: Next generation request routing for
content delivery,” in Proc. ACM SIGCOMM, 2015.

[12] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374–398, 2003.

[13] G. Barish and K. Obraczke, “World wide web caching: trends and
techniques,” IEEE Comm. Mag., vol. 38, no. 5, pp. 178–184, 2000.

[14] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO
buffer replacement schemes,” in Proc. ACM SIGMETRICS, 1990.

[15] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” ACM SIGMET-

RICS Performance Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

[16] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
Internet caches,” in Proc. IEEE INFOCOM, 2003.

[17] O. Bahat and A. M. Makowski, “Measuring consistency in TTL-based
caches,” Performance Evaluation, vol. 62, no. 1, pp. 439–455, 2005.

[18] W. F. King III, “Analysis of demand paging algorithms,” in Proc. IFIP

Congress, 1971, (Also IBM Research Report, RC 3288, Mar., 1971.).

[19] E. Gelenbe, “A unified approach to the evaluation of a class of replace-
ment algorithms,” IEEE Trans. on Computers, vol. 22, 1973.

[20] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE

INFOCOM, 1999.

[21] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in Proc. IEEE INFOCOM, 2010.

[22] P. R. Jelenkovic and A. Radovanovic, “Asymptotic insensitivity of
least-recently-used caching to statistical dependency,” in Proc. IEEE

INFOCOM, 2003.

[23] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy,
“Performance evaluation of the random replacement policy for networks
of caches,” Performance Evaluation, vol. 72, pp. 16–36, 2014.

[24] N. Carlsson and D. Eager, “Worst-case bounds and optimized cache
on m-th request cache insertion policies under elastic conditions,”
Performance Evaluation, vol. 127-128, pp. 70–92, 2018.

[25] N. C. Fofack, P. Nain, G. Neglia, and D. Towsely, “Analysis of TTL-
based cache networks,” in Proc. VALUETOOLS, 2012.

[26] N. C. Fofack et al., “On the performance of general cache networks,”
in Proc. VALUETOOLS, 2014.

[27] A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing TTL caches
under heavy-tailed demands,” in Proc. ACM SIGMETRICS, 2016.

[28] N. Carlsson, D. Eager, A. Gopinathan, and Z. Li, “Caching and
optimized request routing in cloud-based content delivery systems,”
Performance Evaluation, vol. 79, pp. 38–55, 2014.

[29] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in Proc. IEEE

INFOCOM, 2016.
[30] R. T. B. Ma and D. Towsley, “Cashing in on caching: on-demand

contract design with linear pricing,” in Proc. ACM CoNEXT, 2015.
[31] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube

network traffic at a campus network - measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501–514, 2009.

[32] B. Maggs and K. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM CCR, vol. 45, no. 3, pp. 52–66, 2015.

[33] N. Carlsson and D. Eager, “Ephemeral content popularity at the edge
and implications for on-demand caching,” IEEE Trans. on Parallel and

Distributed Systems, vol. 28, no. 6, pp. 1621–1634, 2017.
[34] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the

performance analysis of caching systems,” in Proc. INFOCOM, 2014.
[35] N. Gast and B. Van Houdt, “Transient and steady-state regime of

a family of list-based cache replacement algorithms,” in Proc. ACM

SIGMETRICS, 2015.
[36] N. Gast and B. V. Houdt, “Asymptotically exact TTL-approximations of

the cache replacement algorithms LRU(m) and h-LRU,” in ITC, 2016.
[37] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi, “Elastic

caching,” in Proc. ACM-SIAM SODA, 2019.
[38] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,

“Adaptive TTL-based caching for content delivery,” in Proc. ACM

SIGMETRICS (abstract), 2017.
[39] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-

sizing for power-proportional data centers,” IEEE/ACM Transactions on

Networking, vol. 21, no. 5, pp. 1378–1391, 2013.
[40] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of

auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[41] B. Frank et al., “Pushing CDN-ISP collaboration to the limit,” ACM

CCR, vol. 43, no. 3, pp. 34–44, 2013.
[42] P. Marchetta, J. Llorca, A. M. Tulino, and A. Pescape, “Mc3: A

cloud caching strategy for next generation virtual content distribution
networks,” in Proc. IFIP Networking, 2016.

