
Optimized Dynamic Cache Instantiation (extended)

Niklas Carlsson

Linköping University, Sweden

Derek Eager

University of Saskatchewan, Canada

Abstract—By caching content at geographically distributed
servers, content delivery applications can achieve scalability
and reduce wide-area network traffic. However, each deployed
cache has an associated cost. When the request rate from the
local region is sufficiently high this cost will be justified, but
as the request rate varies, for example according to a daily
cycle, there may be long periods when the benefit of the cache
does not justify the cost. Cloud computing offers a solution to
problems of this kind, by supporting the dynamic allocation
and release of resources. In this paper, we analyze the potential
benefits from dynamically instantiating caches using resources
from cloud service providers. We develop novel analytic caching
models that accommodate time-varying request rates, transient
behavior as a cache fills following instantiation, and selective
cache insertion policies. Using these models, within the context
of a simple cost model, we then develop bounds and compare
policies with optimized parameter selections to obtain insights
into key cost/performance tradeoffs. We find (among other things)
that dynamic cache instantiation can provide substantial cost
reductions, that potential reductions strongly dependent on the
object popularity skew, and that selective cache insertion can be
even more beneficial in this context than with conventional edge
caches.

I. INTRODUCTION

The performance and scalability of content delivery systems

benefit significantly from geographically distributed caches.

It is therefore not surprising that caching solutions for these

systems have generated much research (Section VII). However,

despite the emergence of distributed, regional, and edge cloud

computing offering a completely new service paradigm – on-

demand caching – surprisingly few works have taken into

account on-demand cache provisioning [2]–[6], and, to our

knowledge, no prior work has considered, rigorously mod-

elled, and analyzed the problem of when to instantiate and

release caches in such environments.

We note that request rates of these systems typically differ

between locations and vary over time (e.g., according to a

relatively predictable daily cycle [7]–[9]. In systems where

the service provider pays on an on-demand basis, the cost

of a local cache (in some locations) may therefore only be

justified during the daily peak in the request rates. Ideally, we

would like to incur the cost of a cache only when the request

rate is sufficiently high to justify this cost.

In this paper, we take a first look at the potential benefits

from dynamically instantiating and releasing caches (e.g.,

based on daily cycles). In particular, we develop novel an-

alytic models of cache performance that accommodate the

This paper is an extended version of our original IFIP Networking paper [1].
It is posted here by permission of IFIP for your personal use. Not for
redistribution. Please cite our original paper (with the same title) published
in IFIP Networking, Paris, France, June 2020. http://IFIP-DL-URL

important challenges of taking into account (i) arbitrarily time-

varying request rates and (ii) periods of transient behavior

when a cache fills following instantiation, and apply these

models within the context of a simple cost model to study

cost/performance tradeoffs.

First, to accommodate time-varying request rates and peri-

ods of transient behavior, we develop a modelling approach

based on what we term here “request count window” (RCW)

caches. Objects are evicted from an RCW cache if not

requested over a window consisting of the most recent L
requests, where L is a parameter of the system. As we

show here empirically, similarly as with “Time-to-Live” (TTL)

caches [10]–[14] in scenarios with fixed request rates, the

performance of an RCW cache closely approximates the

performance of an LRU cache when the size of the window

(for an RCW cache, measured in number of requests) is set

such that the average occupancy equals the LRU cache size.

Second, we carry out analytic analyses of RCW caches

for both indiscriminate Cache on 1st request and selective

Cache on kth request cache insertion policies. This includes

the derivation of explicit, exact expressions for key cache

performance metrics under the independent reference model,

including (i) the hit and insertion rates for permanently al-

located caches, and (ii) the average rates over the transient

period during which a newly instantiated cache is filling. We

note that for this context, selective Cache on kth request cache

insertion policies are of particular interest, since dynamically

instantiated caches may be relatively small, and therefore

cache pollution may be a particularly important concern. Our

RCW analysis makes no assumptions regarding inter-request

time distributions or request rate variations, ensuring that our

RCW results (in contrast to prior TTL approximations [10]–

[14]) can be used to approximate LRU cache performance

under highly time-varying request volumes. In general, for

time-varying workloads, the concept of RCW caches provides

a more natural choice than TTL caches when approximating

fixed-capacity LRU caches.

Third, in addition to the cache insertion policy, important

design issues in a dynamic cache instantiation system include

the choice of cache size and the duration of the cache

instantiation interval. We develop optimization models for

these parameters for both Cache on 1st request and Cache on

kth request. We also develop bounds on the best potentially

achievable cost/performance tradeoffs, assessing how much

room for improvement there may be through use of more

complex caching policies.

Finally, we apply our analyses to obtain insights into

the potential cost reductions possible with dynamic cache

instantiation and explore key system tradeoffs. (1) We find

that dynamic cache instantiation has the potential to provide

significant cost reductions, sometimes more than halving the

costs of (optimized) baselines that either use a cache or not,

depending on which results in a lower cost. (2) The cost

reductions are strongly dependent on the object popularity

skew. When there is high skew, dynamic instantiation can work

particularly well since a newly instantiated cache is quickly

populated with frequently requested items that will capture

a substantial fraction of the requests. (3) We also find that

selective Cache on kth request cache insertion policies can

be even more beneficial in this context than with conven-

tional edge caches, and that, when there is high popularity

skew, there is likely only modest room for improvement in

cost/performance through use of more complex cache insertion

and replacement policies. Overall, these results show that

dynamic cache instantiation using Cache on kth request is

a promising approach for content delivery applications.

Roadmap: Section II describes our workload and system

assumptions, the caching policies considered, and the metrics

of interest. Section III presents our analysis of RCW caches

for the baseline case without use of dynamic instantiation.

Section IV provides an analysis of the period of transient

behavior as an RCW cache fills. Optimization models and

performance results for dynamic instantiation are presented in

Sections V and VI, respectively. Section VII describes related

work, before Section VIII concludes the paper.

II. SYSTEM DESCRIPTION AND METRICS

Workload Assumptions: We focus on a single region

within the service area of a content delivery application, or a

cache location to which a subset of geographically distributed

clients are directed [15]. For this cache location, we consider a

time period of duration T (e.g., one day), over which the total

(aggregated over all objects) content request rate λ(t) varies.

We assume that these variations are predictable (e.g., based on

prior days), and so for any desired cache instantiation duration

D < T , it would be possible to identify in advance the interval

of duration D with the highest average request rate over all

intervals of duration D within the time period.

Short-term temporal locality, non-stationary object popular-

ities, and high rates of new content creation make dynamic

cache instantiation potentially more promising, since they

reduce the value of old cache contents. Here, we provide

a conservative estimate of the benefits of dynamic cache

instantiation, assuming a fixed set of objects with stationary

object popularities, and with requests following the indepen-

dent reference model. We denote the number of objects by N ,

and index the objects such that pi ≥ pi+1 for 1 ≤ i < N ,

where pi denotes the probability that a request is for object i.

Cache Policies: We model what we term here “request

count window” (RCW) caches. Objects are evicted from an

RCW cache if not requested over a window consisting of the

most recent L requests, where L is a system parameter. As we

empirically demonstrate, the performance of an RCW cache

closely approximates the performance of an LRU cache when

the value of L is set such that the average occupancy equals

the size of the LRU cache.

Both indiscriminate, Cache on 1st request, and selective

Cache on kth request cache insertion policies are considered.

For Cache on kth request with k>1, we assume that the

system maintains some state information regarding uncached

objects that have been requested at least once over a window

consisting of the most recent W requests, where W is a policy

parameter. Specifically, for each such “caching candidate”, a

count of how many requests are made for the object while

it is a caching candidate is maintained. When a request is

received for an uncached object that was not already a caching

candidate, the object becomes a caching candidate with count

initialized to one. Should this count reach k, the object is

cached. Should no request be made to the object for W
requests, the object is removed as a caching candidate.

For the dynamic instantiation, we assume that the cloud

provider returns an empty cache when (re)instantiated. This

does not require us to make any assumption of the type of

cache (e.g., in memory vs disk-based storage, type of VMs,

etc.). However, we note that the cloud provider that is not

able to rent out the resources to serve other workloads may

decide to only shut down disks/memory to save energy and in

some of these cases therefore potentially could return part of

the cache in its original state. For such a case, our analysis

provides a pessimistic performance bound.

Metrics and Cost Assumptions: The metrics of primary

interest are the expected fraction of requests served locally

from cache (over the entire time period), and the cache cost.

With dynamic cache instantiation, the first of these two metrics

is given by
H̄ta:td

∫ td
ta

λ(t)dt
∫ T
0

λ(t)dt
, where ta denotes the time at which

the cache is allocated, td the time at which it is deallocated,

and H̄ta:td the average hit rate over this interval. Note that the

hit rate (probability) will vary over the interval, with the hit

rate immediately after instantiation being zero (empty cache).

Implementations of dynamic cache instantiation could use a

variety of technologies. One option would be to use dynamic

allocation of a virtual machine, with main memory used for

the cache. We assume here a simple cost model where the cost

per unit time of a cache of capacity C objects is proportional

to C+ b, where the constant b captures the portion of the cost

that is independent of cache size. The total cost over the period

T is then proportional to (td− ta)(C+ b). More complex cost

models could be easily accommodated; the only issue being

the computational cost of evaluating the cost function when

solving our optimization models.

In addition to the above metrics, when analyzing RCW

caches we evaluate the hit rate H , the cache insertion rate

I (fraction of requests that result in object insertions into

the cache) as well as the insertion fraction I/(I + H), and

the average number A of objects in the cache. The insertion

fraction is an important measure of overhead; cache insertions

consume node resources, but do not yield any benefit unless

there are subsequent resulting cache hits. The average number

of objects in the cache is used to match the cache capacity C

TABLE I
SUMMARY OF NOTATION

Notation Definition

T Total duration of time period

ta Time at which cache is allocated

td Time at which cache is deallocated

N Number of objects

α Parameter of Zipf popularity distribution

pi Probability that a request is to object i
L Cache lifetime parameter (# requests)

W Cache on kth request window (# requests)

C Cache capacity (# objects)

b Cost per unit time independent of cache size

H Cache hit rate

I Cache insertion rate

A Average number of objects in cache

Θi Object i duration in cache (# requests)

∆i Object i duration out of cache (# requests)

γ Euler-Mascheroni constant (≈ 0.577)

Ω Zipf normalization constant

of an LRU cache with similar performance.

III. RCW CACHE ANALYSIS

In this section we present analysis and performance results

for a permanently allocated RCW cache. Table I summarizes

our notation.

A. Exact “Always on” RCW Analysis

Cache on 1st Request: The probability that a request for

object i finds it in the cache is given by 1− (1− pi)
L, since

object i will be in the cache if and only if at least one of the

most recent L requests was to object i. The average number

A of objects in the cache, as seen by a random request, the

insertion rate I , and the hit rate H , are therefore given by

A=N−
N
∑

i=1

(1−pi)L, I=

N
∑

i=1

pi(1−pi)L, H=1−
N
∑

i=1

pi(1−pi)L.

(1)

Cache on 2nd Request: The expected value E[Θi] of the

object i duration in the cache, measured in number of requests,

is given by the average number of requests until there is a

sequence of L requests in a row that do not include a request

for object i. Since requests follow the independent reference

model and the probability of a request for object i is pi, this

is the same as the average number of flips of a biased coin

that are required to get L heads in a row, with the probability

of a head equal to 1− pi:

E[Θi] =

L
∑

r=1

1

(1− pi)r
=

1− (1− pi)
L

pi(1− pi)L
. (2)

With Cache on 2nd request, the expected value E[∆i] of the

object i duration out of the cache, measured in number of

requests, satisfies the following equation:

E[∆i] = 1/pi + (1− pi)
W (W + E[∆i])

+(1− (1− pi)
W)

(

1/pi −
(1− pi)

WW

1− (1− pi)W

)

(3)

Here, the first term (1/pi) gives the expected number of

requests until the first request for object i following its removal

from the cache. The second term gives the expected number

of additional requests until object i is added to the cache,

conditional on the first request not being followed by another

request within the window W , multiplied by the probability

of this condition. The third term gives the expected number

of additional requests until object i is added to the cache,

conditional on the first request being followed by another

request within the window W , multiplied by the probability

of this condition. Solving for E[∆i] yields:

E[∆i] =
2− (1− pi)

W

pi(1− (1− pi)W)
. (4)

Noting that A =
∑

i
E[Θi]

E[Θi]+E[∆i]
, H =

∑

i pi
E[Θi]

E[Θi]+E[∆i]
,

and I =
∑

i
1

E[Θi]+E[∆i]
, we have:

A =

N
∑

i=1

1− (1− pi)
L − (1− pi)

W + (1− pi)
L+W

1 + (1− pi)L − (1− pi)W
, (5)

H =

N
∑

i=1

pi
1− (1− pi)

L − (1− pi)
W + (1− pi)

L+W

1 + (1− pi)L − (1− pi)W
, (6)

I =

N
∑

i=1

pi
(1− pi)

L − (1− pi)
L+W

1 + (1− pi)L − (1− pi)W
. (7)

Cache on kth Request: The analysis for general k ≥ 2
differs from that for Cache on 2nd request with respect to
E[∆i], the expected value of the object i duration out of the
cache, measured in number of requests. Denoting E[∆i] for
Cache on kth request by Ek[∆i], Ek[∆i] (k ≥ 2) can be
expressed as a function of Ek−1[∆i] as follows:

Ek[∆i] =
Ek−1[∆i] + (1−pi)

WW + (1−(1−pi)
W)

(

1
pi

−
(1−pi)

WW

1−(1−pi)W

)

1−(1−pi)W
,

(8)

with E1[∆i] defined as 1/pi. The numerator of the right-hand

side of this equation gives the expected number of requests

from when an object is removed from cache or removed as a

caching candidate, until it next exits from the state in which

it is a caching candidate with a count of k − 1 (either owing

to being cached because of a request occurring within the

window W , or removed as a caching candidate if no such

request occurs). The denominator is the probability of being

cached when exiting from the state in which it is a caching

candidate with a count of k − 1, and therefore the inverse of

the denominator gives the expected number of times the object

will enter this state until it is finally cached. Simplifying yields

Ek[∆i] =
Ek−1[∆i]

1− (1− pi)W
+

1

pi
, (9)

implying

Ek[∆i] =
1

pi

(

1− (1− (1− pi)
W)k

(1− pi)W (1− (1− pi)W)k−1

)

. (10)

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(a) k = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(b) k = 2

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

Normalized cache size (A/N)

α=1

Upper bound H

α=0.5 Upper bound H

RCW, exact

RCW, O(1) approx

LRU, simulation

(c) k = 4
Fig. 1. Performance of Cache on kth request (N=100, 000); dashed lines show the hit rate when the cache is kept filled with the ⌊C⌋ most popular objects.

Expressing A, H , and I in terms of Ek[∆i] and E[Θi], and

then substituting in the above expression for Ek[∆i] and the

expression for E[Θi] from (2), yields:

A =

N
∑

i=1

1− (1− pi)
L

1− (1− pi)L + (1−pi)L(1−(1−(1−pi)W)k)
(1−pi)W (1−(1−pi)W)k−1

, (11)

H =
N
∑

i=1

pi
1− (1− pi)

L

1− (1− pi)L + (1−pi)L(1−(1−(1−pi)W)k)
(1−pi)W (1−(1−pi)W)k−1

, (12)

I =

N
∑

i=1

pi
(1− pi)

L

1− (1− pi)L + (1−pi)L(1−(1−(1−pi)W)k)
(1−pi)W (1−(1−pi)W)k−1

. (13)

Note that for W=L, equations (11), (12), and (13) reduce to:

A =

N
∑

i=1

(1− (1− pi)
L)k, H =

N
∑

i=1

pi(1− (1− pi)
L)k,

I =

N
∑

i=1

pi(1− pi)
L(1− (1− pi)

L)k−1. (14)

B. Validation and Performance Results

Figure 1 compares our exact RCW cache hit rate results (red

’+’ markers), using W=L, with the results from simulations of

corresponding fixed-capacity LRU caches (blue ’×’ markers),

for N=100, 000 objects, different k, and over a large range of

cache sizes (A/N=0.0001 corresponds here to A=10). Also

shown in the figure are the upper bound hit rate (dashed black

lines), corresponding to when the cache is kept filled with the

⌊C⌋ most popular objects, and O(1) approximations (green

lines) that we have derived using Taylor series expansions (see

appendices) for the special cases of Zipf distributions with

α=1 and α=0.5. We note that popularity skew typically is

intermediate between these two cases.

For the simulations, we set the LRU cache size C equals

A. To match use of W=L in the case of the RCW caches, we

assume an implementation of LRU with Cache on kth request

in which, when the cache is full (as it is in steady state),

W is dynamically set to the number of requests since the

“least recently requested” object currently in the cache was last

requested. Similar to an RCW cache with W=L, this choice

ensures that an object remains a “caching candidate” as long as

it is requested at least as recently as the least recently requested

object in the cache. For the simulation results reported here

and in subsequent sections, each simulation was run for six

million requests, with the statistics for the initial two million

requests removed from the measurements.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
ra

c
t.
 i
n
s
e
rt

s
.
(I

/(
I+

H
))

Fraction served locally (H)

k=1

k=2

k=4

(a) α = 1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

F
ra

c
t.
 i
n
s
e
rt

s
.
(I

/(
I+

H
))

Fraction served locally (H)

k=1

k=2

k=4

(b) α = 0.5
Fig. 2. Tradeoff curves for different Cache on kth request policies. Here,
N = 100, 000 and we use the following markers: “RCW, exact” (+), “RCW,
approx” (line), and LRU (×).

The following observations stand out. First, for all cases

(including larger k), the exact RCW results closely match

the LRU simulation results. This shows that the RCW anal-

ysis (presented here) can be used as an effective method

to approximate the performance of an LRU cache. Second,

the O(1) approximations are relatively accurate, for both

cases where caching is quite effective (α=1) and largely

ineffective (α=0.5). For relative insertion rates (not shown),

the O(1) diverge somewhat more, but errors remain within

10% for all cases except for the cases of (i) small cache

sizes (A/N < 0.001) when k=4 and α=0.5, and (ii) large

cache sizes (A/N > 0.1) when k=4 and α=0.5. For α=1,

the relative insertion rate errors remain within 5%, and for

k=1 (regardless of α) the errors are within 0.3%. Third, the

gap in hit rate between the policies and the upper bound is

substantial with k=1 (regular LRU), narrows with k=2, and

is almost eliminated with k=4, leaving little room for further

hit rate improvements.

While comparing the different figures suggest that further

increasing k beyond k=2 yields only small additional im-

provements in the hit rates, it should be noted that larger

improvements are seen in the insertion fraction and that these

improvements continue (at least with respect to relative rather

than absolute differences) as k is increased. To illustrate this,

Figure 2 shows the tradeoff between hit rate (on x-axis)

and insertion fraction (y-axis) for different k. Note that with

selective cache insertion policies (i.e., larger k), the same hit

rate can be achieved with a much lower insertion fraction.

IV. DYNAMIC INSTANTIATION ANALYSIS

A. Cache on 1st Request

Consider now the case where the cache is allocated for

only a portion of the time period, and is initially empty

when instantiated. With Cache on 1st request, after the first

L requests following instantiation, the cache will have the

occupancy probabilities derived earlier for the “always-on”

case in Section III, and so for requests following the first L
requests the analysis in Section III can be used. The average

insertion rate over the first L requests (the transient period) is

given by the expression for the average number A of objects

in cache from (1), divided by L. Denoting the average hit rate

during the transient period by H̄transient, this gives:

H̄transient = 1− A

L
= 1− N −∑N

i=1(1− pi)
L

L
, (15)

and from equation (1) for H , assuming that
∫ td
ta

λ(t)dt ≥ L,

H̄ta:td
=

LH̄transient +
(

∫ td
ta

λ(t)dt − L
)(

1 − ∑N
i=1 pi(1 − pi)

L
)

∫ td
ta

λ(t)dt
. (16)

Finally, for Cache on 1st request, Ītransient and Īta:td are given

simply by 1−H̄transient and 1−H̄ta:td .

B. Cache on kth Request (k ≥ 2)

As described in Section II, Cache on kth request requires

maintenance of state information regarding “caching candi-

dates” and all currently cached objects. We assume that when

a cache using Cache on kth request is deallocated, the state

information of both types is transferred to the upstream system

to which requests will now be directed. The upstream system

maintains and updates this state information when receiving

requests that the cache would have received had it been

allocated, and transfers it back when the cache is instantiated

again. Therefore, although the cache is initially empty when

instantiated, it can use the acquired state information to

selectively cache newly requested objects, caching a requested

object not present in the cache, whenever that object should be

in (or be put in) the cache according to its state information.

Note that after the first L requests following instantiation,

the cache will have the cache occupancy probabilities derived

earlier for the “always-on” case, and so for requests following

the first L requests the analysis in Section III can be used.

Note that over the transient period consisting of the first L
requests, no objects are removed from the cache. The average

insertion rate during the transient period Ītransient is therefore

given by the average number A of objects in cache (from (5)

for k=2 and (11) for general k), divided by L. Under the

assumption that
∫ td
ta

λ(t)dt ≥ L, it is then straightforward

to combine Ītransient with the always-on insertion rate from

Section III to obtain Īta:td .

The average hit rate during the transient period is given by

one minus the average transient period insertion rate, minus the

average probability that a requested object is not present in the

cache and should not be inserted. Recall that the cache receives

up-to-date state information when instantiated, and a requested

object is cached according to this state information. Therefore,

a requested object is not present in the cache and should not be

inserted, if and only if it would not be in the cache and would

not be inserted into the cache on this request with an always-

on cache. The probability of this case is equal to one minus the

hit rate for an always-on cache minus the insertion rate for an

always-on cache. The above implies that the average hit rate

during the transient period, H̄transient, is given by the always-

on cache hit rate (in (12)) plus the always-on cache insertion

rate (in (13)) minus the average transient period insertion rate

Ītransient; i.e., H̄transient = H + I −A/L. Under the assumption

that
∫ td
ta

λ(t)dt ≥ L, it is then straightforward to combine

H̄transient with the always-on hit rate (in (12)) to obtain H̄ta:td .

C. Transient Period Performance Results

Figure 3 shows sample results for the transient period when

using Cache on kth request with different k = 1, 2, 4 and

Zipf with α = 0.5 or 1. In all experiments, we used W=L
and show results only for the transient period itself. For the

analytic expressions, we used the O(1) approximations for

each metric (see appendices). For the simulations, we start

with an empty cache, and simulate the system until the system

reaches steady-state conditions. At that time, we empty the

cache and begin a new transient period. This is repeated for

2,000 transient periods or until we have simulated 6,000,000

requests, whichever occurs first, and statistics are reported

based on fully completed transient periods. With these settings,

each data point was calculated based on at least 17 transient

periods. (This occurred with A/N=0.2, k=4, and α=1.) To

improve readability, as in prior figures, confidence intervals are

not included. However, in general, the confidence intervals are

tight (e.g., ±0.0016 for the data point mentioned above).

For the RCW simulations, the system maintains the same

state information and operates in the same way as described for

our analysis assumptions. As in the steady-state simulations,

for the corresponding LRU cache, the capacity C was set equal

to A, and when the cache is full, W is dynamically set to the

number of requests since the “least recently requested” object

currently in the cache (and with at least k requests within

W of each other) was last requested. To reach steady state

conditions, the cache must be filled completely with objects

requested at least k times during that period.

The transient results very much resemble the steady-state

results. For example, the tradeoff curves in Figure 3 are

very similar to those observed in Figure 1, and the analytic

approximations again nicely match the simulated RCW values

for most instances (which themselves nicely match the exact

analysis results). Most importantly, there is a very good match

for all hit rate results (red curves/markers: RCW approxima-

tions, RCW simulations, and LRU simulations); the metric

that we will use in the optimization models (Section V) and

the evaluation thereof (Section VI). Substantive differences

between the RCW simulations and analytic approximations

are observed only for the insertion fraction metric (shown in

blue) when using very small cache sizes (e.g., A/N less than

0.001) when α=0.5. When k=4 and α=0.5, we also observe

some noticeable differences in the insertion fraction between

RCW and LRU. This may suggest that when k is large, RCW

is a worse approximation for LRU (as we compare them)

during transient periods than during steady state. Yet, for all

considered k and α, we find the approximations sufficiently

accurate to justify using them for our optimization of dynamic

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(a) k = 1, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(b) k = 2, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

RCW, approx

--''--

RCW, sim

--''--

LRU, sim

--''--

(c) k = 4, α = 1

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

(d) k = 1, α = 0.5

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

(e) k = 2, α = 0.5

0

0.2

0.4

0.6

0.8

1

 0.0001 0.001 0.01 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

c
ti
o

n
 s

e
rv

e
d

 l
o

c
a

lly
 (

H
)

F
ra

c
ti
o

n
 i
n

s
e

rt
io

n
s
 (

I/
(I

+
H

))

Normalized cache size (A/N)

H

I/(I+H)

(f) k = 4, α = 0.5
Fig. 3. Transient period results. Performance of Cache on kth request (N = 100,000) during transient period.

cache instantiation. Again, in the following sections, we will

leverage the (more accurate) hit rate results.

V. OPTIMIZATION MODELS FOR DYNAMIC INSTANTIATION

Consider now the problem of jointly optimizing the capacity

C of a dynamically instantiated cache, and the interval over

which the cache is allocated, so as to minimize the cache

cost subject to achieving a target fraction of requests Hmin

(0 < Hmin < 1) that will be served locally:

minimize (td − ta)(C + b), (17)

subject to
H̄ta:td

∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

≥ Hmin.

Note that a smaller cache has the advantages of a shorter

transient period until it fills and lower cost per unit time, while

a larger cache has the advantage of a higher hit rate once filled.

For convenience, in the following we assume that λ(t) > 0, ∀t.
A. Lower Bound

A lower bound on cost can be obtained by using an upper

bound for the average hit rate over the cache allocation

interval. One such bound can be obtained by assuming that

there is a hit whenever the requested object is one that has

been requested previously, since the cache was allocated. We

apply this bound to obtain a lower bound on the duration of the

cache allocation interval. Another bound is the hit rate when

the ⌊C⌋ most popular objects are present in the cache. We

apply this bound to the more constrained optimization problem

that results from our use of the first bound.
Denote by H̄R the average hit rate over the first R requests

after the cache has been allocated. At best, request r, 1 ≤ r ≤
R is a hit if and only if the requested object was the object
requested by one or more of the r−1 earlier requests, giving:

H̄R ≤
1

R

(

R
∑

r=1

N
∑

i=1

pi(1−(1−pi)
r−1)

)

= 1−
1

R

(

N −

N
∑

i=1

(1−pi)
R

)

.

(18)

Since this is a concave function of R, we can bound the

average hit rate over the cache allocation interval by setting

R =
∫ td
ta

λ(t)dt, the expected value of the number of requests

within this interval. Applying this bound to the hit rate

constraint in (17) yields
(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

)(

1− 1

R

(

N −
N
∑

i=1

(1− pi)
R

))

≥ Hmin,

(19)

implying that

∫ td

ta

λ(t)dt+

N
∑

i=1

(1−pi)
∫ td
ta

λ(t)dt ≥
(

∫ T

0

λ(t)dt

)

Hmin+N.

(20)

Given that we choose ta and td as the beginning and end,

respectively, of a time interval with the largest average request

rate, the left-hand side is a strictly increasing function of

td−ta, as can be verified by taking the derivative with respect

to
∫ td
ta

λ(t)dt, noting that this derivative is minimized for

minimum
∫ td
ta

λ(t)dt (which is at least one, in the region of

interest), and using the fact that − ln(x) is a convex function.

Therefore, for any particular workload this relation defines a

lower bound Dl for the interval duration td − ta.

Applying now the upper bound on hit rate from when the

⌊C⌋ most popular objects are present in the cache, gives the

following optimization problem:

minimize (td − ta)(C + b), (21)

subject to

(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

) ⌊C⌋
∑

i=1

pi ≥ Hmin, Dl ≤ td−ta ≤ T.

Solution of this problem yields a lower bound on cost.

Specializations of this problem for the cases of Zipf popularity

distributions with α = 1 and 0.5 are developed in Appendix D.

B. Policy-based Cost Optimizations

Cache on 1st request: For an LRU cache using this policy,

equating the cache capacity C to the average occupancy A of

an RCW cache and applying (16) yields:

minimize (td − ta)(C + b), (22)

subject to C = N −
N
∑

i=1

(1− pi)
L, L ≤

∫ td

ta

λ(t)dt,

L− C +
(

∫ td
ta

λ(t)dt− L
)(

1−
∑N

i=1 pi(1− pi)
L
)

∫ T

0
λ(t)dt

≥ Hmin.

Similarly as for the lower bound, specializations of this

problem for the cases of Zipf popularity distributions with

α = 1 and 0.5 are developed in Appendix D.

Cache on kth request: Similarly, equating the capacity C
to the average occupancy A of an RCW cache and applying

the Section IV-B analysis yields the optimization problem:

minimize (td − ta)(C + b), (23)

subject to

C =

N
∑

i=1

1− (1− pi)
L

1− (1− pi)L + (1−pi)L(1−(1−(1−pi)W)k)

(1−pi)W (1−(1−pi)W)k−1

, L ≤

∫ td

ta

λ(t)dt,

∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

N
∑

i=1

pi
1− (1− pi)

L

1− (1− pi)L + (1−pi)L(1−(1−(1−pi)W)k)

(1−pi)W (1−(1−pi)W)k−1

+

L
∑N

i=1 pi
(1−pi)

L

1−(1−pi)L+
(1−pi)

L(1−(1−(1−pi)
W)k)

(1−pi)
W (1−(1−pi)

W)k−1

− C

∫ T

0
λ(t)dt

≥ Hmin.

Appendix D develops specializations of this problem for W =
L and the cases of Zipf popularity distributions with α = 1

and 0.5.

VI. DYNAMIC INSTANTIATION PERFORMANCE

For an initial model of request rate variation, we use a

single-parameter model in which the request rate increases

linearly from a rate of zero at the beginning of the time

period to a rate λhigh half-way through, and then decreases

linearly such that the request rate at the end of the period

is back to zero. Default parameter settings (each used unless

otherwise stated) are T = 1440 min. (24 hours), λhigh = 20
req./min., b = 500 (and so for a cache capacity of 1000

objects, for example, the size-independent portion of the cache

cost contributes half of the total), Hmin = 0.4, N = 100, 000,

and a Zipf object popularity distribution with α = 1.

Figures 4(a), (b), and (c) show the ratio of the minimal

cost for a dynamically instantiated cache using different cache

insertion policies (using W=L for the Cache on kth request

policies) to the cost lower bound, as obtained from numerically

solving the optimization models of Section V, as a function

of the cost parameter b, the hit rate constraint Hmin, and the

peak request rate λhigh, respectively. Also shown are the cost

ratios for Cache on 1st request and Cache on 2nd request for

the baseline case of a permanently allocated cache with hit

rate Hmin. In each figure, all other parameters are set to their

default values. Note that in these results: (1) unless b is very

small (in which case, it is most cost-effective to permanently

allocate a small cache), Hmin is large, or λhigh is too small

for a dynamically instantiated cache to fill, dynamic cache

instantiation can yield substantial cost savings; (2) Cache on

kth request for k ≥ 2 provides a better cost/performance

tradeoff curve compared to Cache on 1st request; and (3) there

is only modest room for further improvement through use of

more complex cache insertion and replacement policies.

The potential benefits of dynamic cache instantiation (and

of caching itself) are strongly dependent on the popularity

skew. When object popularities follow a Zipf distribution with

α=0.5, with our default parameters it is not even possible

to achieve the target fraction of requests Hmin to be served

locally, using dynamic cache instantiation. This is partly due

to the fact that for α=0.5, caching performance is degraded

much more severely when in the transient period than for α=1
(e.g., results in Section IV), and partly due to the fact that a

larger cache is required to achieve a given hit rate. The impact

of the popularity skew can be clearly seen by comparing

the results in Figures 5(a) and (b), which use N=10, 000
instead of the default value of 100,000 so as to allow the

hit rate constraint to be met over a significant range of values,

even when α=0.5. In addition to the poorer performance of

dynamic cache instantiation that is seen in Figure 5(a), note

also the increased gap with respect to the lower bound, and the

poorer performance of Cache on 2nd request relative to Cache

on 1st request (compared to the relative performance seen in

Figure 5(b)). (Results for Cache on kth request for k = 3, 4
are not shown in Figure 5(a), since the required value of L
becomes too large for all but the smallest cache sizes.)

The significant impact of N can be seen by comparing

Figures 4(b) and 5(b), which both use α=1 and differ only

in the value of N . Finally, the extent of rate variability also

has a substantial impact. This is illustrated in Figure 5(c), for

which our model of request rate variation is modified so that

the minimum rate is λlow, 0<λlow<λhigh, rather than zero, and

with linear rate increase/decrease occupying only a fraction

1−|h| of the time period, where h is a parameter between −1

and 1. When h>0, the request rate is λlow for the rest of the

time period, while when h<0, the request rate is λhigh for the

rest of the time period (and so during the fraction 1−|h| of

the time period the rate first decreases linearly to λlow and

then increases linearly back to λhigh), giving a peak to mean

request rate ratio for −1<h<1 of 2/(1−h+(1+h)λlow/λhigh).
Results are shown for varying h, with λlow fixed at 10% of

λhigh, and λhigh scaled for each value of h so as to maintain

the same total request volume as with the default single-

parameter model. Note that h=1 and h=−1 correspond to the

same scenario, since in both cases the request rate is constant

throughout the period. Note also that the lower bound becomes

overly optimistic for h around 0.7; in this case the requests

are highly concentrated, and the solution to the lower bound

optimization problem is a large cache allocated for a short

period of time (for which the upper bound on hit rate when

the ⌊C⌋ most popular objects are present in the cache becomes

quite loose). Most importantly, observe that when the pattern

of request rate variation is such that there is a substantial

“valley” (h>0) within the time period during which the request

rate is relatively low, the benefits of dynamic instantiation are

much higher than when there is a substantial “plateau” (h<0).

0

1

2

3

4

5

 0 200 400 600 800 1000

M
in

im
a
l
c
o
s
t
ra

ti
o

Cost (b) independent of size

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(a) Varying b

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
in

im
a
l
c
o
s
t
ra

ti
o

Target bound on hit ratio (Hmin)

Lower bound

Base, k=1

Cache 1st

Base, k=2

Cache 2nd

Cache 3rd

Cache 4th

(b) Varying Hmin

0

1

2

3

4

5

 2 4 8 16 32 64 128

M
in

im
a
l
c
o
s
t
ra

ti
o

Peak arrival rate (λhigh)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(c) Varying λhigh
Fig. 4. Ratio of the minimal cost to the lower bound versus b, Hmin, and λhigh (other parameters at defaults).

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
in

im
a
l
c
o
s
t
ra

ti
o

Target bound on hit ratio (Hmin)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

(a) Varying Hmin, α = 0.5, N = 10, 000

0

1

2

3

4

5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
M

in
im

a
l
c
o
s
t
ra

ti
o

Target bound on hit ratio (Hmin)

Lower bound

Base, k=1

Cache 1st

Base, k=2

Cache 2nd

Cache 3rd

Cache 4th

(b) Varying Hmin, α = 1, N = 10, 000

0

1

2

3

4

5

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

M
in

im
a
l
c
o
s
t
ra

ti
o

Workload parameter (h)

Lower bound

Baseline, k=1

Cache on 1st

Baseline, k=2

Cache on 2nd

Cache on 3rd

Cache on 4th

(c) Varying h; λlow = 0.1, λhigh, λhigh scaled so
req. vol. unchanged

Fig. 5. Impact of popularity skew, number of objects, and request rate variability.

VII. RELATED WORK

Caching policies typically either evict objects from the

cache when the cache becomes full (i.e., capacity-driven

policies [16]–[21]) or based on the time since each individual

object was last accessed or entered the cache (i.e., timing-

based policies [20], [21]). In practice, use of capacity-based

policies such as LRU have dominated. Unfortunatly, these

policies are extremely hard to analyze exactly (e.g., [22],

[23]). This prompted the development of approximations [18],

[24], [25] and analysis of asymptotic properties [26]–[30].

Most recent work use that the performance of capacity-driven

policies often can be well approximated using TTL-based

caches [10]–[14], [31]. TTL-based models have also been

used to analyze networks of caches [13], [14], [32]–[34], to

derive asymptotically optimized solutions [35], for optimized

server selection [36], for utility maximization [37], and for

on-demand contract design [38].

Few papers (regardless of replacement policy) have modeled

discriminatory caching policies such as Cache on kth request.

In our context, these policies are motivated by the risk of cache

pollution in small dynamically instantiated caches, and more

generally by the long tail of one-timers (one-hit wonders) ob-

served in edge networks [7], [39]–[41]. Recent works include

trace-based evaluations of Cache on kth request policies [40],

[41], simple analytic models for hit and insertion probabilities

that (in contrast to us) ignore cache replacement [41], or works

that have used TTL-based recurrence expressions to model

variations of Cache on kth request [14], [31], [42]–[44]. Of

these works, only Carlsson and Eager try to minimize the

delivery cost [31]. However, in contrast to us, they assume

elastic TTL caches and only consider a single file.

Other related works have adapted the individual TTL values

of each object so to achieve some objective [45], [46]. For

example, Carra et al. [2] demonstrate how the individual TTL

values of each object can be adapted (with constant overhead)

so to closely track the optimal cache configurations. However,

these works only consider Cache on 1st request policies.

To simplify analysis, TTL-based approximations of LRU-

based caches typically leverages the general ideas of a cache

characterization time [10], [11], which in the simplest case

corresponds to the (approximate) time that the object stays

in the cache if not requested again. This time corresponds

closely to our parameter L, with the important difference

that the RCW caches use a request count window rather than

a time window. This subtle difference makes our approach

favorable when modeling fixed capacity caches in systems

with substantial request rate variations (e.g., according to a

diurnal cycle). Furthermore, our RCW approach allows us to

derive (i) exact expressions for general Cache on kth request

policies, popularity distributions, and transient periods, and (ii)

corresponding O(1) computational cost approximations. Such

results, which we need for our optimization models, are not

found in the TTL-based modeling literature.

For the case of an infinite Cache on 1st request cache

with a finite request stream, Breslau et al. [24] provide exact

hit rate expression for general popularity distributions, as

well as approximate scaling properties for Zipf distributions.

However, we did not find these scaling relationships (focusing

on orders) sufficient for our analysis and therefore developed

more precise expressions for Zipf with α = 1 and α = 0.5.

The (general) idea of dynamically adapting the amount of

dedicated resource based on time-varying wokloads is not

new [47]–[50]. Within the context of cloud-based caching,

some recent works consider how to scale resources based

on time varying workloads and diurnal patterns [2]–[4]. For

example, in addition to the work by Carra et al. [2] (discussed

above), Sundarrajan et al. [3] use discriminatory caching

algorithms together with partitioned caches to save energy

during off-peak hours, Dan and Carlsson [4] optimize what

objects to push to cloud storage based on diurnal demands

and a basic cost model, and Cai et al. [5] considered the

problem of how to scale the number of cache servers in a

hierarchy of LRU caches. Others have considered how CDNs

best collaborate with ISPs making available microdatacen-

ters [51], how to build virtual CDNs on-the-fly on top of

shared third-party infrastructures [6], or have optimized the

caching hierarchy of cloud caches based on the assumption

that request rates are known and stationary (ignoring time-

varying request loads) [52]. None of these works consider the

problem of optimized cache instantiation.

VIII. CONCLUSIONS

In this paper we have taken a first look at dynamic cache

instantiation. For this purpose, we have derived new analysis

results for what we term “request count window” (RCW)

caches, including explicit, exact expressions for cache per-

formance metrics for Cache on kth request RCW caches for

general k, and new O(1) computational cost approximations

for cache performance metrics for Zipf popularity distributions

with α=1 and α=0.5. These results are of interest in their own

right, especially as the performance of RCW caches are shown

to closely match the performance of the corresponding Cache

on kth request LRU caches. We then applied our analysis

results to develop optimization models for dynamic cache

instantiation parameters, specifically the cache size and the

duration of the cache instantiation interval, for different cache

insertion policies, as well as for a cost lower bound that holds

for any caching policy. Our results show that dynamic cache

instantiation using a selective cache insertion policy such as

Cache on 2nd request may yield substantial benefits compared

to a permanently allocated cache, and is a promising approach

for content delivery applications. Finally, we note that the

use of the independent reference model (used here) provides

conservative estimates of the potential improvements using

dynamic instantiation, since in practice short-term temporal

locality, non-stationary object popularities, and high rates of

addition of new content typically would make yesterday’s

cache contents less useful.

ACKNOWLEDGEMENTS

This work was supported by funding from the Swedish Re-

search Council (VR) and the Natural Sciences and Engineering

Research Council (NSERC) of Canada.

REFERENCES

[1] N. Carlsson and D. Eager, “Optimized dynamic cache instantiation,” in
Proc. IFIP Networking, June 2020.

[2] D. Carra, G. Neglia, and P. Michiardi, “TTL-based cloud caches,” in
Proc. IEEE INFOCOM, 2019.

[3] A. Sundarrajan, M. Kasbekar, and R. Sitaraman, “Energy-efficient disk
caching for content delivery,” in Proc. ACM e-Energy, 2016.

[4] G. Dan and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in Proc. IEEE INFOCOM, 2014.

[5] C. X. Cai, G. Liang, and U. C. Kozat, “Load balancing and dynamic
scaling of cache storage against Zipfian workloads,” in Proc. IEEE ICC,
2014.

[6] S. Kuenzer et al., “Unikernels everywhere: The case for elastic CDNs,”
ACM SIGPLAN Notices, vol. 52, no. 7, pp. 15–29, 2017.

[7] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteriza-
tion: A view from the edge,” in Proc. IMC, 2007.

[8] P. Gill, M. Arlitt, N. Carlsson, A. Mahanti, and C. Williamson,
“Characterizing organizational use of web-based services: Methodology,
challenges, observations, and insights,” ACM Transactions on the Web,
vol. 5, no. 4, pp. 19:1–19:23, 2011.

[9] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and
S. Rao, “Dissecting video server selection strategies in the youtube cdn,”
in Proc. ICDCS, 2011.

[10] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE JSAC, vol. 20, 2002.

[11] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for LRU cache performance,” in Proc. ITC, 2012.

[12] G. Bianchi, A. Detti, A. Caponi, and N. B. Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM CCR, vol. 43, no. 3, pp. 59–67, 2013.

[13] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[14] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM ToMPECS, vol. 1, 2016.

[15] F. Chen et al., “End-user mapping: Next generation request routing for
content delivery,” in Proc. ACM SIGCOMM, 2015.

[16] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374–398, 2003.

[17] G. Barish and K. Obraczke, “World wide web caching: trends and
techniques,” IEEE Comm. Mag., vol. 38, no. 5, pp. 178–184, 2000.

[18] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO
buffer replacement schemes,” in Proc. ACM SIGMETRICS, 1990.

[19] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” ACM SIGMET-

RICS Performance Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

[20] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
Internet caches,” in Proc. IEEE INFOCOM, 2003.

[21] O. Bahat and A. M. Makowski, “Measuring consistency in TTL-based
caches,” Performance Evaluation, vol. 62, no. 1, pp. 439–455, 2005.

[22] W. F. King III, “Analysis of demand paging algorithms,” in Proc. IFIP

Congress, 1971, (Also IBM Research Report, RC 3288, Mar., 1971.).

[23] E. Gelenbe, “A unified approach to the evaluation of a class of replace-
ment algorithms,” IEEE Trans. on Computers, vol. 22, 1973.

[24] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE

INFOCOM, 1999.

[25] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in Proc. IEEE INFOCOM, 2010.

[26] J. A. Fill, “Limits and rates of convergence for the distribution of search
cost under the move-to-front rule,” Theoretical Computer Science, vol.
164, no. 1, pp. 185–206, 1996.

[27] P. R. Jelenkovic, “Asymptotic approximation of the move-to-front search
cost distribution and least-recently used caching fault probabilities,”
Annals of Applied Probability, vol. 9, no. 2, pp. 430–464, 1999.

[28] P. R. Jelenkovic and A. Radovanovic, “Asymptotic insensitivity of
least-recently-used caching to statistical dependency,” in Proc. IEEE

INFOCOM, 2003.

[29] ——, “The persistent-access-caching algorithm,” Random Structures &

Algorithms, vol. 33, no. 2, pp. 219–251, 2008.

[30] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy,
“Performance evaluation of the random replacement policy for networks
of caches,” Performance Evaluation, vol. 72, pp. 16–36, 2014.

[31] N. Carlsson and D. Eager, “Worst-case bounds and optimized cache
on m-th request cache insertion policies under elastic conditions,”
Performance Evaluation, vol. 127-128, pp. 70–92, 2018.

[32] N. C. Fofack, P. Nain, G. Neglia, and D. Towsely, “Analysis of TTL-
based cache networks,” in Proc. VALUETOOLS, 2012.

[33] N. C. Fofack et al., “On the performance of general cache networks,”
in Proc. VALUETOOLS, 2014.

[34] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212–231, 2014.

[35] A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing TTL caches
under heavy-tailed demands,” in Proc. ACM SIGMETRICS, 2016.

[36] N. Carlsson, D. Eager, A. Gopinathan, and Z. Li, “Caching and
optimized request routing in cloud-based content delivery systems,”
Performance Evaluation, vol. 79, pp. 38–55, 2014.

[37] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in Proc. IEEE

INFOCOM, 2016.

[38] R. T. B. Ma and D. Towsley, “Cashing in on caching: on-demand
contract design with linear pricing,” in Proc. ACM CoNEXT, 2015.

[39] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network - measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501–514, 2009.

[40] B. Maggs and K. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM CCR, vol. 45, no. 3, pp. 52–66, 2015.

[41] N. Carlsson and D. Eager, “Ephemeral content popularity at the edge
and implications for on-demand caching,” IEEE Trans. on Parallel and

Distributed Systems, vol. 28, no. 6, pp. 1621–1634, 2017.
[42] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the

performance analysis of caching systems,” in Proc. INFOCOM, 2014.
[43] N. Gast and B. Van Houdt, “Transient and steady-state regime of

a family of list-based cache replacement algorithms,” in Proc. ACM

SIGMETRICS, 2015.
[44] N. Gast and B. V. Houdt, “Asymptotically exact TTL-approximations of

the cache replacement algorithms LRU(m) and h-LRU,” in ITC, 2016.
[45] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi, “Elastic

caching,” in Proc. ACM-SIAM SODA, 2019.
[46] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,

“Adaptive TTL-based caching for content delivery,” in Proc. ACM

SIGMETRICS (abstract), 2017.
[47] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-

sizing for power-proportional data centers,” IEEE/ACM Transactions on

Networking, vol. 21, no. 5, pp. 1378–1391, 2013.
[48] V. Mathew, R. K. Sitaraman, and P. Shenoy, “Energy-aware load

balancing in content delivery networks,” in Proc. IEEE INFOCOM,
2012.

[49] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.

[50] A. V. Papadopoulos, A. Ali-Eldin, K.-E. Arzen, J. Tordsson, and
E. Elmroth, “PEAS: A performance evaluation framework for auto-
scaling strategies in cloud applications,” ACM Transactions on Modeling

and Performance Evaluation of Computing Systems, vol. 1, no. 4, pp.
15:1–15:31, 2016.

[51] B. Frank et al., “Pushing CDN-ISP collaboration to the limit,” ACM

CCR, vol. 43, no. 3, pp. 34–44, 2013.
[52] P. Marchetta, J. Llorca, A. M. Tulino, and A. Pescape, “Mc3: A

cloud caching strategy for next generation virtual content distribution
networks,” in Proc. IFIP Networking, 2016.

TABLE II
O(1) APPROXIMATIONS.

Policy (or sum) Zipf, α = 1 Zipf, α = 0.5

S
u
m

s

∑N
i=1(1 − pi)

L
N − L

lnN+γ

(

lnN − ln
(

L
lnN+γ

)

+ 1 − γ + L
2N(lnN+γ)

)

N − L + L2

4N

(

ln((2N)/L) + L
6N + 3

2 − γ
)

∑N
i=1 pi(1 − pi)

L 1 − ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))
lnN+γ 1 − L

2N

(

ln((2N)/L) + L
4N + 1 − γ

)

A
lw

ay
s

o
n

(s
te

ad
y

st
at

e) Cache on 1st
A ≈ L

lnN+γ

(

lnN − ln
(

L
lnN+γ

)

+ 1 − γ + L
2N(lnN+γ)

)

I ≈ 1 − ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))
lnN+γ

H ≈ ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))
lnN+γ

A ≈ L
(

1 − L
4N

(

ln((2N)/L) + L
6N + 3

2 − γ
))

I ≈ 1 − L
2N

(

ln((2N)/L) + L
4N + 1 − γ

)

H ≈ L
2N

(

ln((2N)/L) + L
4N + 1 − γ

)

Cache on 2nd, W = L

A ≈ (2 ln 2−L/(N(lnN+γ)))L
lnN+γ

H ≈ ln(L/(lnN+γ))+2γ−ln 2
lnN+γ

I ≈ ln 2−L/(N(lnN+γ))
lnN+γ

A ≈ L2

2N

(

ln(N/(2L)) + L
2N + 3

2 − γ
)

H ≈ L
N

(

ln 2 − L
4N

)

I ≈ L
2N

(

ln(N/(2L)) + 3L
4N + 1 − γ

)

Cache on kth, k ≥ 3, W = L

A ≈
(

∑k
j=2(−1)j

(

k
j

)

j ln(j)
)

L

lnN+γ

H ≈
ln(L/(lnN+γ))+2γ−

∑k
j=2(−1)j

(

k
j

)

ln(j)

lnN+γ

I ≈
∑k

j=2(−1)j
(

k−1
j−1

)

ln(j)

lnN+γ

A ≈







(9 ln 3 − 12 ln 2 − L/N)L2/(4N) k = 3,
(

∑k
j=2(−1)j+1

(

k
j

)

j2 ln(j)
)

L2/(4N) k ≥ 4.

H ≈ L
2N

∑k
j=2(−1)j

(

k
j

)

j ln(j)

I ≈







(L/(2N))
(

3 ln 3 − 4 ln 2 − L
2N

)

k = 3,

(L/(2N))
∑k−1

j=1
(−1)j

(

k−1
j

)

(j + 1) ln(j + 1) k ≥ 4.

T
ra

n
si

en
t

Cache on 1st H̄transient ≈ ln(L/(lnN+γ))+2γ−1−L/(2N(lnN+γ))
lnN+γ H̄transient ≈ L

4N

(

ln((2N)/L) + L
6N + 3

2 − γ
)

Cache on 2nd, W = L H̄transient ≈ ln(L/(lnN+γ))+2γ−2 ln 2
lnN+γ H̄transient ≈ L

N

(

ln 2 − L
8N − 1

4

)

Cache on kth, k ≥ 3, W = L Insert above into H̄transient = H + I − A
L Insert above into H̄transient = H + I − A

L

APPENDIX A

SUMMATION APPROXIMATIONS

We have derived approximate expressions of O(1) computational cost for the cases of Zipf object popularities with α =

1 and α = 0.5. Table II summarizes the key approximations that we obtain. Here in Appendix A, foundational summation

approximations are established, which are then applied in the subsequent appendices to derive the approximations shown in

Table II.

A. Zipf with α = 1

Consider the case of a Zipf object popularity distribution with α = 1, and denote the normalization constant
∑N

i=1 1/i by

Ω. Note that for large N , Ω ≈ lnN + γ where γ denotes the Euler-Mascheroni constant (≈ 0.577).

For large N , L, and g → ∞,

N
∑

i=1

(1− pi)
L ≈

N
∑

i=1

e−L/(iΩ) ≈
∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))dx. (24)

Using a Taylor series expansion for ey gives:

∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))dx =

∫ N

L/(g(lnN+γ))

∞
∑

j=0

(−L/(x(lnN + γ)))j

j!
dx

= N − L

lnN + γ



lnN +
L

2N(lnN + γ)
−

∞
∑

j=2

(−L/(N(lnN + γ)))j

(j + 1)!j





− L

lnN + γ



1/g − ln(L/(lnN + γ)) + ln(g) +
∞
∑

j=1

(−g)j

(j + 1)!j



 . (25)

Note that

ln(g) +

∞
∑

j=1

(−g)j

j!j
= Ei(−g)− γ, (26)

where Ei is the exponential integral function, and that

∞
∑

j=1

(−g)j

(j + 1)!j
−

∞
∑

j=1

(−g)j

j!j
=

1

g

∞
∑

j=1

(−g)j+1

(j + 1)!
=

1

g

(

e−g + g − 1
)

, (27)

which tends to 1 as g → ∞. Also, for g → ∞, Ei(−g) → 0. Therefore, for g → ∞,

1/g + ln(g) +

∞
∑

j=1

(−g)j

(j + 1)!j
→ 1− γ. (28)

Substituting this result into (25), and neglecting the terms in the summation on the second line of (25) under the assumption

that L is substantially smaller than N(lnN + γ), yields

N
∑

i=1

(1− pi)
L ≈ N − L

lnN + γ

(

lnN − ln

(

L

lnN + γ

)

+ 1− γ +
L

2N(lnN + γ)

)

. (29)

Again assuming large N , L, and g → ∞,

N
∑

i=1

pi(1− pi)
L ≈

N
∑

i=1

e−L/(iΩ)

iΩ
≈
∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))

x(lnN + γ)
dx. (30)

Using a Taylor series expansion for ey gives:

∫ N

L/(g(lnN+γ))

e−L/(x(lnN+γ))

x(lnN + γ)
dx =

∫ N

L/(g(lnN+γ))

∞
∑

j=0

(−L)j(x(lnN + γ))−(j+1)

j!
dx

=
1

lnN + γ



ln(N) +
L

N(lnN + γ)
−

∞
∑

j=2

(−L/(N(lnN + γ)))j

j!j





− 1

lnN + γ



ln(L/(lnN + γ))− ln(g)−
∞
∑

j=1

(−g)j

j!j



 . (31)

Applying (26) and considering g → ∞, and neglecting the terms in the summation on the second line of (31) yields

N
∑

i=1

pi(1− pi)
L ≈ 1− ln(L/(lnN + γ)) + 2γ − L/(N(lnN + γ))

lnN + γ
. (32)

B. Zipf with α = 0.5

Consider the case of a Zipf object popularity distribution with α = 0.5, and denote the normalization constant
∑N

i=1 1/
√
i

by Ω. Note that for large N , Ω ≈ 2
√
N .

For large N , L, and g → ∞,

N
∑

i=1

(1− pi)
L ≈

N
∑

i=1

e−L/((
√
i)Ω) ≈

∫ N

(L/(2g
√
N))2

e−L/(2
√
x
√
N)dx. (33)

Using a Taylor series expansion for ey gives:

∫ N

(L/(2g
√
N))2

e−L/(2
√
x
√
N)dx =

∫ N

(L/(2g
√
N))2

∞
∑

j=0

(−L/(2
√
x
√
N))j

j!
dx

= N − L+ (L2/(8N)) lnN +
L3

24N2
− L2

4N

∞
∑

j=4

(−L/(2N))j−2

j!(j/2− 1)

− L2

4N



1/g2 − 2/g + ln(L/(2
√
N))− ln(g)− 2

g2

∞
∑

j=3

(−g)j

j!(j − 2)



 . (34)

Applying (26) as well as the Taylor series expansion for ey , note that

2

g2

∞
∑

j=3

(−g)j

j!(j − 2)
=

1

g2

∞
∑

j=3

(−g)j

(j − 1)!(j − 2)
+

2

g2

∞
∑

j=3

(−g)j

(j − 1)!(j − 2)

(

1

j
− 1

2

)

=
1

g2

∞
∑

j=3

(−g)j

(j − 1)!(j − 2)
− 1

g2

∞
∑

j=3

(−g)j

j!

=

(

1

g

(

e−g + g − 1
)

+ Ei(−g)− γ − ln g

)

− 1

g2

(

e−g − g2

2
+ g − 1

)

. (35)

Therefore, for g → ∞,

1/g2 − 2/g − ln(g)− 2

g2

∞
∑

j=3

(−g)j

j!(j − 2)
→ −3

2
+ γ. (36)

Substituting this result into (34), and neglecting the terms in the summation on the second line of (34) under the assumption

that L is substantially smaller than 2N , yields

N
∑

i=1

(1− pi)
L ≈ N − L+

L2

4N

(

ln((2N)/L) +
L

6N
+

3

2
− γ

)

. (37)

Again assuming large N , L, and g → ∞,

N
∑

i=1

pi(1− pi)
L ≈

N
∑

i=1

e−L/((
√
i)Ω)

(
√
i)Ω

≈
∫ N

(L/(2g
√
N))2

e−L/(2
√
x
√
N)

2
√
x
√
N

dx. (38)

Using a Taylor series expansion for ey gives:

∫ N

(L/(2g
√
N))2

e−L/(2
√
x
√
N)

2
√
x
√
N

dx =

∫ N

(L/(2g
√
N))2

∞
∑

j=0

(−L)j

j!(2
√
x
√
N)j+1

dx

= 1− (L/(4N)) lnN − L2/(8N2)−
∞
∑

j=3

(−L/(2N))j

j!(j − 1)

− L

2N



1/g − ln(L/(2
√
N)) + ln(g) +

∞
∑

j=2

(−g)j−1

j!(j − 1)



 . (39)

Finally, making the assumption that L is substantially smaller than 2N , we neglect the terms in the summation on the second

line of (39). Applying (28) then yields

N
∑

i=1

pi(1− pi)
L ≈ 1− L

2N

(

ln((2N)/L) +
L

4N
+ 1− γ

)

. (40)

APPENDIX B

RCW CACHE APPROXIMATIONS

A. Cache on 1st Request

1) Zipf with α = 1: Consider now the case of a Zipf popularity distribution with α = 1. Applying (29) to the equation for

A in (1), and (32) to the equations for I and H , yields:

A ≈ L

lnN + γ

(

lnN − ln

(

L

lnN + γ

)

+ 1− γ +
L

2N(lnN + γ)

)

, (41)

I ≈ 1− ln(L/(lnN + γ)) + 2γ − L/(N(lnN + γ))

lnN + γ
, (42)

H ≈ ln(L/(lnN + γ)) + 2γ − L/(N(lnN + γ))

lnN + γ
. (43)

As we show empirically, the performance of an RCW cache closely approximates the performance of an LRU cache when

L is set such that the average occupancy equals the size of the LRU cache. Suppose that the LRU cache capacity C = Nβ

for 0 < β < 1. Equating the LRU cache capacity to the approximation for A given in (41) yields

Nβ =
L

lnN + γ

(

lnN − ln

(

L

lnN + γ

)

+ 1− γ +
L

2N(lnN + γ)

)

. (44)

An accurate approximation for the value of L satisfying this equation in the region of interest can be obtained by substituting

for L in this equation with Nβ/((1 − (lnN/(lnN + γ))β)(1 + a)), using the approximation ln(1 + a) ≈ a when |a| < 1,

neglecting the last term on the right-hand side, and then solving for a to obtain:

a =
ln((1− β) lnN + γ) + 1− 2γ

(1− β) lnN − (1− γ)
. (45)

This yields:

L ≈ Nβ(lnN + γ)((1− β) lnN + γ − 1)

((1− β) lnN + γ)((1− β) lnN − γ + ln((1− β) lnN + γ))
. (46)

Note that for large N , L is substantially smaller than N(lnN + γ), as was assumed for the approximations (29) and (32).

Substituting into expressions (43) and (42) yield cache hit rate and corresponding insertion rate approximations. For the hit

rate, the resulting approximation is β minus a term that (slowly) goes to zero as N → ∞:

H ≈ β −
(

ln
(

((1−β) lnN+γ)((1−β) lnN−γ+ln((1−β) lnN+γ))
(1−β) lnN+γ−1

)

lnN + γ
+

(1−β) lnN+γ−1
N1−β((1−β) lnN+γ)((1−β) lnN−γ+ln((1−β) lnN+γ))

− γ(2− β)

lnN + γ

)

. (47)

We observe that further approximations can yield a simpler approximation for H , accurate over a broad range of cache sizes, of

β−c(1−β)/(2−β) where c is a small constant dependent on N (e.g. c = 1/3 gives good results for N in the 10,000 to 100,000

range). In contrast, note that the hit rate when the cache is kept filled with the ⌊C⌋ most popular objects (the optimal policy

under the IRM assumption, without knowledge of future requests) is given in this case by
∑⌊C⌋

i=1 pi ≈ (lnC + γ)/(lnN + γ).
When C = Nβ , this equals β + γ(1− β)/(lnN + γ).

2) Zipf with α = 0.5: Consider now the case of a Zipf popularity distribution with α = 0.5. Applying (37) to the equation

for A in (1), and (40) to the equations for I and H , yields:

A ≈ L

(

1− L

4N

(

ln((2N)/L) +
L

6N
+

3

2
− γ

))

, (48)

I ≈ 1− L

2N

(

ln((2N)/L) +
L

4N
+ 1− γ

)

, (49)

H ≈ L

2N

(

ln((2N)/L) +
L

4N
+ 1− γ

)

. (50)

Suppose now that the corresponding LRU cache capacity C = fN for some f > 0. Equating the cache capacity C to the

approximation for the average number of objects in the cache as given by (48) gives

fN = L

(

1− L

4N

(

ln((2N)/L) +
L

6N
+

3

2
− γ

))

. (51)

An accurate approximation for the value of L satisfying this equation for L ≤ 1.5N can be obtained by writing L as fN/(1+a),
using ln(1 + a) ≈ a, and neglecting the L/(6N) term, yielding the following equation for a:

a2 +

(

1 +
f

4

)

a+
f

4

(

ln(2/f) +
3

2
− γ

)

= 0. (52)

Solving for a gives

L ≈ 2fN

1− f/4 +
√

(1 + f/4)2 − f(ln(2/f) + 3/2− γ)
. (53)

The relation L ≤ 1.5N corresponds to an upper bound on f of about 0.68. Substitution into (49) and (50) yields approximations

for the insertion and hit rates, respectively. For small/moderate f (e.g., f ≤ 0.2, so that the cache capacity is at most 20% of

the objects), a simpler approximation for H is (f/2) ln(c/f) where c is a suitable constant such as 4.5. Note the considerable

contrast between the scaling of hit rate with cache size for α = 1 versus α = 0.5. Also, when α = 0.5 there is a bigger

gap with respect to the hit rate when the cache is kept filled with the most popular objects. In this case, the hit rate is
∑⌊C⌋

i=1 pi ≈
√
C/

√
N . When C = fN , this equals

√
f .

B. Cache on 2nd Request

1) W=L, Zipf with α = 1: Consider now the case of W = L, and a Zipf object popularity distribution with α = 1.

Applying (29) to (5), and (32) to (6) and (7), yields

A ≈ (2 ln 2− L/(N(lnN + γ)))L

lnN + γ
, H ≈ ln(L/(lnN + γ)) + 2γ − ln 2

lnN + γ
, I ≈ ln 2− L/(N(lnN + γ))

lnN + γ
. (54)

With respect to the range of values for L for which these approximations are accurate, note that, when W = L, (5), (6),

and (7) include both (1− pi)
L and (1− pi)

2L terms. Therefore, when L is substantially smaller than N(lnN + γ), but 2L is

not, the accuracy of these approximations is uncertain a priori, and requires experimental assessment. A similar issue arises

in the case of α = 0.5, and for Cache on kth request with k > 2.

Equating the corresponding LRU cache capacity C to the approximation for the average number A of objects in the cache

as given in (54), solving for L, and then applying the approximation
√
1− x ≈ 1− x/2− x2/8 for small x yields:

L ≈ C(lnN + γ)(1 + C/(4(ln 2)2N))

2 ln 2
. (55)

If the cache capacity C = Nβ for 0 < β < 1, substituting from (55) into the expression for H in (54) yields an approximation

for the cache hit rate which for large N is very close to β:

H ≈ β − ln(4 ln 2)− ln(1 + 1/(4(ln 2)2N1−β))− γ(2− β)

lnN + γ
, (56)

while substitution into the expression for I in (54) yields an approximation for the cache insertion rate.

2) W=L, Zipf with α = 0.5: For the case of W = L and a Zipf object popularity distribution with α = 0.5, applying (37)

to (5), and (40) to (6) and (7), yields:

A ≈ L2

2N

(

ln(N/(2L)) +
L

2N
+

3

2
− γ

)

, H ≈ L

N

(

ln 2− L

4N

)

, I ≈ L

2N

(

ln(N/(2L)) +
3L

4N
+ 1− γ

)

. (57)

Suppose now that the corresponding LRU cache capacity C = fN for some f > 0. Equating the cache capacity C to the

approximation for the average number A of objects in the cache as given in (57), writing L as f
1
2N/(1 + a), and employing

the approximations ln(1 + a) ≈ a and 1/(1 + a) ≈ 1− a yields the following equation for a:

2a2 +

(

3 +
f

1
2

2

)

a+ ln(2f
1
2)− f

1
2

2
+

1

2
+ γ = 0. (58)

Solving for a gives

L ≈ 4f
1
2N

1− f
1
2

2 +

√

(

3 + f
1
2

2

)2

− 8(ln(2f
1
2)− f

1
2

2 + 1
2 + γ)

. (59)

Substitution into the expressions for H and I in (57) yields approximations for the hit and insertion rates. For small/moderate

f , a rough approximation for H is cf1/2 where c is a suitable constant such as 0.7.

C. Cache on kth Request

1) W=L, Zipf with α = 1: Consider now the case of W = L, and a Zipf object popularity distribution with α = 1. Writing

out (1 − (1 − pi)
L)k as a polynomial in (1 − pi)

L and applying (29) yields, for k ≥ 3, the following approximation for the

average number of objects in the cache:

A ≈

(

∑k
j=2(−1)j

(

k
j

)

j ln(j)
)

L

lnN + γ
. (60)

Applying (32) the cache hit rate can be approximated by

H ≈
ln(L/(lnN + γ)) + 2γ −

∑k
j=2(−1)j

(

k
j

)

ln(j)

lnN + γ
, (61)

and, for k ≥ 3, the cache insertion rate by

I ≈
∑k

j=2(−1)j
(

k−1
j−1

)

ln(j)

lnN + γ
. (62)

Equating the corresponding LRU cache capacity C to the approximation for the average number of objects in the cache as

given by expression (60), and solving for L, yields, for k ≥ 3,

L ≈ C(lnN + γ)
∑k

j=2(−1)j
(

k
j

)

j ln(j)
. (63)

If the cache capacity C = Nβ for 0 < β < 1, substituting from (63) into expression (61) yields, for k ≥ 3, an approximation for

the cache hit rate which for large N is very close to β, while the cache insertion rate can be approximated using expression (62).

2) W=L, Zipf with α = 0.5: For the case of W = L and a Zipf object popularity distribution with α = 0.5, applying (37)

to the equation for A in (14) yields:

A ≈
{

(9 ln 3− 12 ln 2− L/N)L2/(4N) k = 3,
(

∑k
j=2(−1)j+1

(

k
j

)

j2 ln(j)
)

L2/(4N) k ≥ 4.
(64)

Applying (40) to the equation for H in (14) yields the following approximation for the cache hit rate for k ≥ 3:

H ≈ L

2N

k
∑

j=2

(−1)j
(

k

j

)

j ln(j). (65)

Applying (40) to the equation for I in (14) yields:

I ≈
{

(L/(2N))
(

3 ln 3− 4 ln 2− L
2N

)

k = 3,

(L/(2N))
∑k−1

j=1 (−1)j
(

k−1
j

)

(j + 1) ln(j + 1) k ≥ 4.
(66)

Suppose now that the corresponding LRU cache capacity C = fN for some f > 0. Equating the cache capacity C to the

approximation for the average number of objects in the cache given in (64) for k ≥ 4, and solving for L, yields

L ≈ 2f
1
2N

∑k
j=2(−1)j+1

(

k
j

)

j2 ln(j)
. (67)

Substitution into (66) (k ≥ 4 case) and (65) yields approximations for the insertion and hit rates. Note that the approximation

for H simplifies in this case to cf1/2 where c is a k-dependent constant.

Equating the corresponding LRU cache capacity C = fN to the approximation for the average number of objects in the

cache given in (64) for k = 3, writing L as 2f
1
2N/(1 + a), and employing the approximation 1/(1 + a) ≈ 1− a+ a2 for the

L/N term, yields the following equation for a:

(1 + 2f
1
2)a2 + 2

(

1− f
1
2

)

a+ 1 + 2f
1
2 − 9 ln 3 + 12 ln 2 = 0. (68)

Solving for a gives, for k = 3,

L ≈ 2f
1
2 (1 + 2f

1
2)N

3f
1
2 +

√

(f
1
2 − 1)2 − (1 + 2f

1
2)(1 + 2f

1
2 − 9 ln 3 + 12 ln 2)

. (69)

Substitution into (66) (k = 3 case) and (65) yield approximations for the cache insertion and hit rates, respectively. As with

Cache on 2nd request, a rough approximation for H is cf1/2 for a constant c.

APPENDIX C

DYNAMIC INSTANTIATION ANALYSIS

A. Cache on 1st Request

The ratio of the average cache hit rate over the transient period to the hit rate once the cache has filled can yield substantial

insight into the impact of the transient period on performance. For the special case of a Zipf object popularity distribution

with α = 1, using (41) to substitute for A in H̄transient = 1− A
L yields

H̄transient ≈
ln(L/(lnN + γ)) + 2γ − 1− L/(2N(lnN + γ))

lnN + γ
. (70)

The ratio of the average cache hit rate over the transient period to the hit rate once the cache has filled (given by expression (43))

is therefore approximately 1− (1− L/(2N(lnN + γ)))/(lnN + γ). For α = 0.5, using (48) to substitute for A yields

H̄transient ≈
L

4N

(

ln((2N)/L) +
L

6N
+

3

2
− γ

)

. (71)

In this case the ratio of the average hit rate over the transient period to the hit rate once the cache has filled (given in (50)) is

between 0.5 and 0.7 (for 0 < L < 2N), substantially smaller than for α = 1.

B. Cache on kth Request (k ≥ 2)

Consider now approximations for the case of W = L and a Zipf object popularity distribution. For α = 1 and k = 2,

applying the expressions for H and I in (54), and using the expression for A in (54) to substitute for A in the transient period

insertion rate A/L, yields an approximation for the average hit rate during the transient period of

H̄transient ≈
ln(L/(lnN + γ)) + 2γ − ln 2

lnN + γ
+

ln 2− L/(N(lnN + γ))

lnN + γ
− 2 ln 2− L/(N(lnN + γ))

lnN + γ

=
ln(L/(lnN + γ)) + 2γ − 2 ln 2

lnN + γ
. (72)

The ratio of the cache hit rate over the transient period to the hit rate once the cache has filled (given in (54)) is therefore

approximately 1− (ln 2)/(ln(L/(lnN + γ))+ 2γ− ln 2). In contrast, for α = 0.5 and k = 2, applying the expressions for the

hit and insertion rates in (57), and the expression for A in (57) to substitute for A in the transient period insertion rate A/L,

yields an approximation for the average hit rate over the transient period of

H̄transient ≈
L

N

(

ln 2− L

8N
− 1

4

)

. (73)

From comparison with the hit rate expression in (57), the ratio of the average cache hit rate over the transient period to the

hit rate once the cache has filled is between about 0.64 and 0.72 (considering here 0 < L < N), substantially smaller than for

α = 1. Results similar in nature are obtained for k ≥ 3, applying (61), (62), and (60) for α = 1, and (65), (66), and (64) for

α = 0.5.

APPENDIX D

APPROXIMATIONS FOR BOUNDS AND OPTIMIZATION MODELS

A. Lower Bound

1) Zipf with α = 1: Consider now the special case of a Zipf object popularity distribution with parameter α = 1, and

denote the normalization constant
∑N

i=1 1/i by Ω. In the case that R < (N + 1)(ln(N + 1) + γ), we have

N
∑

i=1

(1− pi)
R =

N
∑

i=1

(

1− 1

iΩ

)(iΩ) R
iΩ

≤
N
∑

i=1

e−R/(iΩ) <

∫ N+1

1

e−R/(xΩ)dx <

∫ N+1

1

e−R/(x(ln(N+1)+γ))dx

< (N + 1)−R+
R

ln(N + 1) + γ

(

ln

(

R

ln(N + 1) + γ

)

+ 2γ − 1

)

, (74)

where the second last inequality uses Ω < ln(N +1)+ γ, and the last inequality follows from the Taylor series expansion (as

in (25) in the Appendix) under the assumption that R < (N +1)(ln(N +1)+γ). Using R =
∫ td
ta

λ(t)dt, under the assumption

that R =
∫ td
ta

λ(t)dt < (N + 1)(ln(N + 1) + γ), we can substitute into (20) to obtain:

∫ td
ta

λ(t)dt

ln(N + 1) + γ

(

ln

(
∫ td
ta

λ(t)dt

ln(N + 1) + γ

)

+ 2γ − 1

)

≥
(

∫ T

0

λ(t)dt

)

Hmin − 1. (75)

When the right-hand side of this relation is positive, which it is for parameters of interest, the left-hand side must be a strictly

increasing function of td − ta. Under the assumption that
∫ td
ta

λ(t)dt < (N +1)(ln(N +1)+ γ), a lower bound D′
l for td − ta

can therefore be obtained from this relation for any particular workload of interest (setting D′
l = ∞ if no value for td− ta ≤ T

satisfies this relation). Denoting by D′′
l the maximum value of td − ta such that

∫ td
ta

λ(t)dt ≤ (N + 1)(ln(N + 1) + γ), with

D′′
l = ∞ if this still holds for td − ta = T , a lower bound Dl for td − ta is given by:

Dl = min [D′
l, D

′′
l] . (76)

Also, for the special case of a Zipf object popularity distribution with parameter α = 1 and C ≤ N ,
∑⌊C⌋

i=1 pi < (ln(C +
1) + γ)/(lnN + γ). Applying this bound to the hit rate constraint in (21) yields the following optimization problem:

minimize (td − ta)(C + b), (77)

subject to

(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

)

ln(C + 1) + γ

lnN + γ
≥ Hmin, C ≤ N, Dl ≤ td − ta ≤ T,

where Dl is given by (76). This optimization problem can be further specialized to any particular workload of interest by

specifying, as a function of the duration D = td − ta ≤ T , the average request rate that the cache would experience should

it be allocated for the interval of duration D, within the time period under consideration, with the highest average request

rate. It is then straightforward to solve the optimization problem to any desired degree of precision. The computational cost of

evaluating the optimization function and checking the constraints is O(1), and it is feasible to simply search over all choices

of C and the duration td − ta of the cache allocation interval, at some desired granularity, to find the choices that satisfy the

constraints (should any such choices exist) with lowest cost.

2) Zipf with α = 0.5: For a Zipf object popularity distribution with α = 0.5, the normalization constant Ω =
∑N

i=1 1/
√
i.

In the case that R < 2(N + 1) we have

N
∑

i=1

(1− pi)
R =

N
∑

i=1

(

1− 1

(
√
i)Ω

)((
√
i)Ω) R

(
√

i)Ω

≤
N
∑

i=1

e
−R

(
√

i)Ω <

∫ N+1

1

e−R/((
√
x)Ω)dx

<

∫ N+1

1

e−R/(2
√
x
√
N+1)dx < N + 1−R+

R2

4(N + 1)

(

ln

(

2(N + 1)

R

)

+
R

6(N + 1)
+

3

2
− γ

)

, (78)

where the second last inequality uses Ω < 2
√
N + 1, and the last inequality follows from the Taylor series expansion (as

in (34) in the Appendix) under the assumption that R < 2(N + 1). Using R =
∫ td
ta

λ(t)dt, under the assumption that

R =
∫ td
ta

λ(t)dt < 2(N + 1), we can substitute into (20) to obtain:

(

∫ td
ta

λ(t)dt
)2

4(N + 1)

(

ln

(

2(N + 1)
∫ td
ta

λ(t)dt

)

+

∫ td
ta

λ(t)dt

6(N + 1)
+

3

2
− γ

)

≥
(

∫ T

0

λ(t)dt

)

Hmin − 1. (79)

The left-hand side of this relation is a strictly increasing function of td−ta. Under the assumption that
∫ td
ta

λ(t)dt < 2(N+1), a

lower bound D′
l for td−ta can therefore be obtained from this relation for any particular workload of interest (setting D′

l = ∞ if

no value for td−ta ≤ T satisfies this relation). Denoting by D′′
l the maximum value of td−ta such that

∫ td
ta

λ(t)dt ≤ 2(N+1),
with D′′

l = ∞ if this still holds for td − ta = T , a lower bound Dl for td − ta is given by Dl = min [D′
l, D

′′
l].

Also, for the special case of a Zipf object popularity distribution with parameter α = 0.5 and C ≤ N ,

⌊C⌋
∑

i=1

pi <
2
√

C + 1
2 −

√
2

2
√
N + 1− 2

=

√

C + 1
2 − 1√

2√
N + 1− 1

, C ≤ N. (80)

Applying the bound in (80) to the hit rate constraint in (21) yields the following optimization problem:

minimize (td − ta)(C + b), (81)

subject to

(
∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

)

√

C + 1
2 − 1√

2√
N + 1− 1

≥ Hmin, C ≤ N, Dl ≤ td − ta ≤ T.

As before, it is straightforward to specialize this optimization problem to any particular workload of interest, and to then solve

it to any desired degree of precision.

B. Cache on 1st Request

For the special case of a Zipf object popularity distribution with parameter α = 1, applying (43) and (46) this becomes:

minimize (td − ta)(C + b), (82)

subject to β =
lnC

lnN
, L =

Nβ(lnN + γ)((1− β) lnN + γ − 1)

((1− β) lnN + γ)((1− β) lnN − γ + ln((1− β) lnN + γ))
,

L ≤
∫ td

ta

λ(t)dt,
L− C
∫ T

0
λ(t)dt

+

(

∫ td
ta

λ(t)dt− L
)(

ln(L/(lnN+γ))+2γ−L/(N(lnN+γ))
lnN+γ

)

∫ T

0
λ(t)dt

≥ Hmin.

Similarly, applying (50) and (53) yields the corresponding optimization problem for α = 0.5. As before, it is feasible to simply

search over all choices of C and the duration td − ta of the cache allocation interval, at some desired granularity, to find the

choices that satisfy the constraints (should any such choices exist) with lowest cost.

C. Cache on kth Request

For the special case of W = L and a Zipf object popularity distribution with parameter α = 1, applying the expressions for

H and I in (54), and (55), yields the following optimization problem for Cache on 2nd request:

minimize (td − ta)(C + b), (83)

subject to L =
C(lnN + γ)(1 + C/(4(ln 2)2N))

2 ln 2
, L ≤

∫ td

ta

λ(t)dt,

L
(

ln 2−L/(N(lnN+γ))
lnN+γ

)

− C
∫ T

0
λ(t)dt

+

∫ td
ta

λ(t)dt
∫ T

0
λ(t)dt

(

ln(L/(lnN + γ)) + 2γ − ln 2

lnN + γ

)

≥ Hmin.

Similarly, applying (61), (62), and (63) yields the corresponding optimization problem for k ≥ 3, while applying the expressions

for H and I in (57), and (59) (k = 2), and (65), (66), (67), and (69) (k ≥ 3) yield the corresponding optimization problems

for α = 0.5.

