
Peer-assisted On-demand Video
Streaming with Selfish Peers

Niklas Carlsson1 Derek Eager2 Anirban Mahanti3

1 University of Calgary, Canada
2 University of Saskatchewan, Canada

3 NICTA, Australia

IFIP Networking 2009, Aachen, Germany, 2009

Peer-assisted Content Delivery
Using BitTorrent-like Systems

 Second generation file-sharing protocol
 Effectively serve many concurrent clients

 Files split into many small pieces
 Pieces are downloaded from

 Leechers (partial) and seeds (full copy)
 Server(s)

 Distribution paths are dynamically determined
 Based on data availability

 On-demand Streaming
 Allow playback to begin well before the entire file

is retrieved

Download using BitTorrent
Incentive and Piece Selection

 Incentive: Rate-based tit-for-tat policy
 Establish connections to large set of peers

 Leechers: Upload preference to the leechers that
provide the highest download rates
 (n - 1) unchoked based on download rate

 1 optimistically unchoked (random peer)

 Piece selection: Rarest first

 Request the piece that is the rarest among the set
of pieces that the peer’s neighbors have (and the
peer itself needs)

 Achieves high piece diversity

On-demand Streaming
Using BitTorrent-like Systems (2)

 Greedy peers

 Require incentive : Peers are motivated to upload
data to others owing to the likely beneficial impact
on their own performance

 Mediates the conflict between the goals of

 Low start-up delay and consistently on-time piece
delivery

 Motivates piece delivery that is more “in-order”

 The requirements of effective tit-for-tat

 Motivates delivery that is more “rarest first”

On-demand Streaming
using BitTorrent-like Systems (3)

 (basic) Protocols has three components
 1) Piece selection policy

 Determines which piece to download

 2) Start-up rule
 Determines when playback can safely commence

 3) Peer selection policy
 Determines which peer(s) to upload to

Baseline Protocol
Piece Selection (1)

 Which piece to upload?
 Basic tradeoff

 Piece diversity
 Tit-for-tat is most effective with “rarest-first”

 In-order requirements
 Streaming is most natural using “in-order”

 Baseline policy (from ‘07 paper)

 Simple probabilistic policy
 Bias towards earlier pieces

 Zipf()

Piece Selection Policy
Example Results

0.0001

0.001

0.01

0.1

1

0 4 8 12 16
Client Bandwidth

A
v

e
ra

g
e
 S

ta
rt

u
p

 D
e
la

y

inorder
portion, 90%
portion, 50%
rarest
zipf(1.25)

 Inorder, Rarest

 Portion, x%

 x% inorder

 (100-x)% rarest

 Zipf()

 Random with bias towards
earlier pieces

 Bias follow Zipf distribution

Baseline protocol
Start-up Rule

 When to commence playback?
 Without significant chance of playback interruption

 Simple rule based on
 At least retrieved the first two segments

 Initial buffering: less likely falling behind
 Get reasonable rate estimate

 Rate (estimate) in-order pieces are retrieved
 Sufficient to allow playback to begin (if that rate was to

be maintained)

Start-up Rule
Intuition

 In-order buffer
 Contains all pieces up to the first missing piece

 The rate the size of the in-order buffer increases is
expected to increase with time (as holes are filled)

The total amount of data received The amount of in-order

data received (i.e., the size

of the in-order buffer)

T time

d
at

a

x

Start-up Rule
Intuition

 Estimate the rate using a “long-term” average (LTA)
 Adjusts start-up delay based on network conditions, allowing

it to maintain a small number of late pieces
 Initial buffer
 Enough (in-order) pieces to get a reasonable rate estimate

The total amount of data received The amount of in-order

 data received

T time

d
at

a

The amount of data played out if

playback starts at time T

Required amount of in-order

data, if received at constant rate
x

Baseline protocol
Peer Selection

 Which peer to upload to?
 Baseline policy (basic BitTorrent policy)

 Server unchoke rule
 Random peer

 Peer unchoke rule
 Rate based tit-for-tat
 Optimistic unchoke is done using random peer

 Design Goals
 Do not want to alter tit-for-tat (used by peers)
 High piece sharing efficiency (efficient tit-for-tat)
 Low start-up delay
 No/few late pieces

Acquiring Rare Pieces
Peer Selection

 Previous protocols
 Rely on older peers uploading to “new” peers

 Including baseline protocol

 “New” peers typically do not have anything to
offer in exchange

 Relatively long time until “new” peers acquire rare
pieces

 Want to allow for quicker dissemination of
“rare” pieces

 Proposed policy
 Rare Piece delivery to New Peers (RPNP)

Acquiring Rare Pieces
Rare Piece delivery to New Peers (RPNP)

 1) When server unchokes a “new” peer (that
has not yet begun playback)
 Upload the rarest piece that is not currently being

uploaded
 Ties are broken randomly except when

 only the server has these pieces, or
 the server can serve every active peer at the play rate

 In these cases Zipf is used to break ties

 2) Server gives upload priority to “new” peers
 Among such peers, the server gives priority to

peers that it has uploaded less data
 Server only uploads to the n peers with the

highest priority, with ties broken at random

Prioritize Urgent Piece Downloads
Peer Selection

 RPNP is oblivious to if clients have begun
playback or not

 Would like to increase the likelihood that each
piece is received by its scheduled playback point

 Proposed policy
 Urgent piece Prioritization with Rare Piece delivery

to New Peers (UP/RPNP)

 Define “Low-buffer” state:

 have started playback, and

 the next required piece is within either the
segment being played back, or the next segment

Prioritize Urgent Piece Downloads
 Urgent piece Prioritization with Rare Piece
delivery to New Peers (UP/RPNP)

 1) Peers in the low-buffer state use in-order
piece selection (rather than Zipf)

 2) The server gives the highest upload
priority to peers in the low-buffer state

 Among these peers, priority is given to peers that
the server has uploaded less data

 The remaining peers are prioritized as in RPNP

 As with RPNP, the server uploads to the n highest
priority peers, with ties broken randomly

Simulations

 Assumptions
 Connection bottlenecks are located at end points

 Max-min fair bandwidth sharing (e.g., TCP)
 Single seed; all leechers leave as soon as fully downloaded

 Example Scenarios …
 Steady state
 Flash crowd (range: “all at once”  steady state)
 Early departures (churn)
 Client heterogeneity
 Free loading scenarios

 Various parameters considered
 E.g., client bandwidth, peer arrival rate, download/upload

bandwidth ratio, server/client bandwidth ratio

Performance Comparison
Example Results: Steady state scenario

(a) Late pieces (b) Start-up delay
 Bandwidth requirements: 2-40 times server capacity
 Client upload b/w: 1-2 times the play rate

Performance Comparison
Example Results: Steady state scenario

 Baseline RPNP UP/RPNP

 RPNP: much fever later pieces
 UP/RPNP: additional improvements in both late pieces and delay

Performance Comparison
Example Results: Heterogeneous scenario

(a) Late pieces (b) Start-up delay

 For both Baseline and UP/RPNP, high bandwidth peers achieve both:
 Fever late pieces
 Smaller start-up delay

Performance Comparison
Example Results: Freeloader scenario

 (a) Late pieces (b) Start-up delay

 UP/RPNP achieve significant improvements in both late pieces and
start-up delay

 Both protocols achieve significant discrimination against freeloaders

Performance Comparison
Example Results: Impact of upload capacity

(a) Late pieces (b) Start-up delay

 Improvements as upload resources increases

Summary and Conclusions (1)

 Devised BitTorrent-like VoD streaming protocol

 Tit-for-tat compatible policies

 Peers are motivated to upload data to others owing to
the likely beneficial impact on their own performance

 Mediates the conflict between the goals of

 1) Low start-up delay and consistently on-time piece
delivery (motivates “in-order”), and

 2) Effective tit-for-tat (motivates “rarest first”)

Summary and Conclusions (2)

 Server (for which tit-for-tat is not an issue), gives
upload preference to

 1) Peers at imminent risk of receiving data too late for
playback

 2) Upload of rare pieces to newly arrived peers

 Performance evaluation shows that

 Our policies are able to provide substantial
improvements in quality of service while ensuring that
the piece diversity is sufficient for peers to effectively
employ tit-for-tat

Questions…

Contact information:
Niklas Carlsson; carlsson@cs.usask.ca
Derek L. Eager; eager@cs.usask.ca
Anirban Mahanti; anirban.mahanti@nicta.au

