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ABSTRACT

With 360° video, only a limited fraction of the full view is displayed

at each point in time. This has prompted the design of streaming

delivery techniques that allow alternative playback qualities to be

delivered for each candidate viewing direction. However, while

prefetching based on the user’s expected viewing direction is best

done close to playback deadlines, large bufers are needed to pro-

tect against shortfalls in future available bandwidth. This results in

conlicting goals and an important prefetch aggressiveness tradeof

problem regarding how far ahead in time from the current play-

point prefetching should be done. This paper presents the irst

characterization of this tradeof. The main contributions include

an empirical characterization of head movement behavior based

on data from viewing sessions of four diferent categories of 360°

video, an optimization-based comparison of the prefetch aggres-

siveness tradeofs seen for these video categories, and a data-driven

discussion of further optimizations, which include a novel system

design that allows both tradeof objectives to be targeted simulta-

neously. By qualitatively and quantitatively analyzing the above

tradeofs, we provide insights into how to best design tomorrow’s

delivery systems for 360° videos, allowing content providers to

reduce bandwidth costs and improve users’ playback experiences.
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1 INTRODUCTION

Interactive video streaming is becoming increasingly popular, with

360° video leading the way. For example, since 2015 both YouTube

(Mar. 20151) and Facebook (Sep. 20152) ofer a rapidly growing

selection of 360° videos that can be viewed in the browser on PCs,

on smartphones, on tablets, or with head mounted displays (HMDs).

360° videos are typically recorded using an omnidirectional camera

that captures every direction or by a collection of cameras whose

1https://youtube-creators.googleblog.com/2015/03/a-new-way-to-see-and-share-
your-world.html
2https://newsroom.fb.com/news/2015/09/introducing-360-video-on-facebook/
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video streams are stitched together into a single video [18]. When

viewing these videos, users can freely chose to look in any viewing

direction (e.g., by moving their head while wearing an HMD). The

lexibility in the users’ choice of view (or region of interest) provides

users an enriched viewing experience as they can explore a scene

similar to as if they were at the location of the ilming. However, this

lexibility comes at the cost of signiicant bandwidth consumption

for content providers delivering these services over the internet.

360° videos are typically signiicantly larger than regular videos

and can therefore consume a lot of bandwidth. However, similar to

in everyday life, users have a limited ield of view, resulting in only

a small fraction (e.g., 20-30%) of the video data being needed for the

actual viewing. Recently, this observation has prompted research

into delivery techniques that allow alternative playback qualities

to be delivered for each candidate viewing direction [3, 6, 15].

Clearly, delivery solutions that ignore the users’ current ield

of view are likely to waste a lot of bandwidth delivering data that

corresponds to scene data outside of this ield of view or delivering

higher than necessary data quality for scenes at the periphery of

the ield of view. In the ideal case, a content provider would be

able to perfectly predict both the head movements and future band-

widths so that it could deliver only the data that the user views, at

the highest possible quality allowed by the time-varying available

bandwidth. Unfortunately, neither head-movement prediction nor

bandwidth prediction is perfect. Content providers wanting to de-

liver these services efectively over the internet therefore face the

following two challenges.

First, content providers must take into account the uncertainty in

the user viewing directions and the impact that changes in viewing

direction may have on the perceived playback quality. Second, as

with regular streaming, video data must be bufered at the clients

so to protect against playback stalls caused by (future) bandwidth

variations. Maintaining a reasonably large playback bufer is par-

ticularly important when using HTTP-based Adaptive Streaming

(HAS) solutions such as those used by the most popular interna-

tional streaming services (e.g., YouTube, Facebook, Apple, Netlix)

and most regional streaming providers, and that are currently being

standardized though MPEG-DASH. Such services typically down-

load 2-5 second chunks using HTTP(S) and try to maintain signii-

cant bufers (e.g., 10-120 seconds, depending on service and type of

network device) to account for today’s networks being best-efort

with signiicant bandwidth variations being common.

While much work has been done to study quality adaptation

algorithms for regular non-360° videos [26], for which the user

viewing direction is ixed, to the best of our knowledge, no prior

work has considered the problem of prefetching aggressiveness (i.e.,

how far ahead in time from the current play point should prefetch-

ing be done), for 360° videos where the user viewing direction may

vary. In this work we present the irst such study. This is an im-

portant problem for wide-area delivery techniques, since here the
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(a) T =2s (b) T =20s (c)

Figure 1: Example heat-maps for two categories of movies:

Rides (top) and Moving focus (bottom).

need to protect against shortfalls in future available bandwidth and

the need to quickly respond to changes in user viewing direction

result in conlicting goals. To see this, note that the need to protect

against future bandwidth drops motivates building up a large bufer

(i.e., aggressively prefetching well-ahead of the current play point).

On the other hand, prefetched data can be worthwhile only if the

data will be within the user’s ield of view. Use of a small prefetch

bufer is motivated by the observation that prediction of the user

viewing direction is most accurate over short time scales.

Figure 1 illustrates the dependency between uncertainty in the

user viewing direction, and the time scale, using two example cat-

egories of videos (each category deined in Section 3). For both

categories, we show the relative probability distributions of the

change in the viewing direction of a set of example users view-

ing the same subset of movies, conditioned on the time duration

T (in seconds), where T=2s (left) and T=20s (right). The origin in

the igure corresponds to no change and all changes are measured

relative to the viewing direction the user had T seconds earlier. It

is clear from these results that the playback quality selection for

each potential viewing direction can be best optimized when done

very close to the playback of a frame, suggesting the use of small

bufer margins. This shows that there is an important tradeof be-

tween the goal of making good prefetching decisions with respect

to the quality that should be prefetched for each direction, and the

goal of prefetching far ahead in time, so to protect against future

bandwidth variations or other randomness causing stalls.

This paper presents a measurement-driven characterization of

the prefetching aggressiveness tradeofs associated with diferent

categories of 360° videos, providing both qualitative and quanti-

tative insights regarding how best to address these tradeofs. In

particular, we present a characterization of the user behavior, as

well as an optimization framework that captures the prefetching

aggressiveness tradeofs experienced by a content provider wanting

to optimize the quality selection in each viewing direction so to

maximize the user’s expected quality of experience (QoE). The opti-

mization framework takes into account both the probability of the

user having a particular viewing direction at a particular point in

time, and the bufer levels needed to avoid playback interruptions.

Our optimization framework assumes the use of chunk-based

streaming (e.g., using DASH or alternative HAS-based formats) and

takes into account the viewing behaviors we observe for diferent

categories of 360° videos. Using measurements from our user study

and our optimization framework, we provide insights into the best

possible tradeofs when delivering 360° videos over the internet.

Our main contributions are as follows:

1) User-driven head-movement characterization: We record the

orientation and rotation velocity of an Oculus Rift HMD during

playback of diferent categories of 360° videos. More than 21 hours

of viewing data (based on the viewing of 32 participants) is analyzed

to characterize viewing patterns relevant for optimizing the wide-

area delivery of 360° video. Signiicant diferences in the viewing

patterns between the diferent categories are observed. However,

for most video categories the head movements (e.g., as in Figure 1)

are suiciently conined that, although viewing direction prediction

is most accurate at short time scales, prefetching with optimized

quality selection can also be beneicial at larger time scales.

2) Optimized bufer-quality tradeofs: We present an optimiza-

tion framework that captures the optimal tradeofs between the

goal of prefetching far ahead in time (to protect against bandwidth

variations and stalls) and the goal of making the best quality se-

lections for each potential viewing direction when prefetching so

as to maximize the expected playback utility (as is dependent on

the probability distribution of the user’s viewing direction when a

particular play time is reached, and the qualities of the prefetched

chunks for this play time). Using this framework we then evaluate

the optimized tradeofs for diferent categories of videos, utility

functions, and bandwidth conditions. Our evaluation highlights

diferences across video categories and the possible impact of how

bandwidth constrained clients are.

3) Discussion of further design optimizations: Finally, based on our

indings, we present an adaptive policy framework and describe

additional optimizations that could be done to improve client per-

formance for the diferent video categories. The framework allows

clients to simultaneously protect against bandwidth variations and

provide personalized and content-based quality adaptation, best

optimized at shorter time scales. Using our measurements, we then

discuss additional optimizations that leverage biases in head move-

ments related to the current rate of change in the viewing direction,

the relative viewing direction compared to that at the start of the

video, and if the viewer is in an initial exploration phase (that we

have observed) or not.

The remainder of the paper is organized as follows. Section 2 pro-

vides a brief introduction to 360° video. Our measurement method-

ology and dataset are described in Section 3. Section 4 presents

a characterization of the observed head movements, before Sec-

tion 5 presents our optimization framework and characterizes the

prefetch aggressiveness tradeofs. Motivated by these tradeofs and

observations, Section 6 then presents an adaptive framework that al-

lows both substantial prefetching well ahead of playback deadlines

and ine grained quality adaptation based on predicted viewing

directions, followed by a data-driven characterization of some fur-

ther considerations that such a system could account for. Finally,

Section 7 presents related work and Section 8 concludes the paper.
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Figure 2: Head-movement coordinates: Yaw, pitch, and roll.

2 BACKGROUND

360° videos provide users with an interactive video experience, in

which the users can freely select any viewing direction within a

spherical virtual environment. Users can experience 360° videos in

several ways. On a PC, the user typically controls the view using

either the W-A-S-D keyboard buttons or by clicking and dragging

using the mouse. On a smartphone or tablet, the user can change

the view by swiping the screen or by changing the orientation of

the phone/tablet. Finally, with virtual reality (VR) head mounted

displays (HMDs), the users simply move their heads in the same

way as if they were at the location where the video was recorded,

creating a more immersive experience.

In this project, we use the irst consumer version (CV1) of the

Oculus Rift headset, released March 2016. The Oculus Rift hard-

ware system consists of a sensor, a headset, and a remote. The

headset works as a display using OLED panels with a resolution of

1080x1200 per eye, resulting in 2160x1200 across the entire ield of

view. Oculus ofers a 110° horizontal ield of view. The VR applica-

tions run on a PC which transfers video and audio to the headset

via an HDMI cable. To allow users to move in the virtual space, the

sensor ofers position tracking by monitoring infrared LEDs that

are embedded in the headset. The remote can be used for navigation,

but was not needed for our experiments.

The headset features a set of Micro-Electro-Mechanical System

(MEMS) sensors, namely a magnetometer, gyroscope and an ac-

celerometer which are combined so as to track the orientation of

the headset [14]. The headset orientation is interpreted according to

an internal virtual coordinate system, transmitted from the headset

to the PC at a rate of 1000 Hz. This allows applications to accurately

track a user’s head movements and update the view accordingly.

3 MEASUREMENT METHODOLOGY

We next describe our measurement setup.

Physical setup:We used a dedicated PC with Intel Xeon CPU

E5-1620 V4 3.50GHz, 32GB RAM, and a NVIDIA GeForce GTX 1080

graphics card. The PC ran Windows 10 and was connected to the

Oculus Rift CV1 headset and sensor via USB 3.0. To deliver audio

and visuals, an HDMI cable was connected directly between the

headset and the HDMI port of the dedicated graphic card of the PC.

Once connected, the sensor was placed on a table facing towards

an open area in the room where the user wearing the headset was

placed on a turning chair approximately 1.5 meters away.

Sensor readings and viewing traces: Sensor readings were

extracted using the Oculus Software Developer Kit (SDK) 1.8.0 and

Oculus runtime 1.9.0 291603. For this purpose, we developed a

minimal application in C++ that extracts the head orientation and

rotation velocity from the MEMS sensors. For easy interpretation,

we convert orientation readings (from quaternions) to yaw-pitch-

roll format based on the user’s head orientation relative to that at

the start of each video and velocities to degrees per second. The

yaw-pitch-roll format is illustrated in Figure 2. Here, all directions

are measured relative to the 0° line. Importantly, to allow direct com-

parison of the viewing directions within a scene, for yaw (±180°),
we set the 0° line on a per-video basis. In particular, rather than

using the direction of the sensor (default) as zero line, we instead

use the head orientation that the user has at the start of the video.

The reason for this is that videos are played relative to this initial

viewing direction. This adjustment ensures that we record the same

yaw angle for two users looking at the same object at the same

time instance within a video, regardless of their original head posi-

tioning. For pitch (±90°), the 0° line is parallel to the ground, and

for roll the zero value corresponds to holding the head straight.

Video playback and recording: Our application utilizes the

Whirligig video player3 to sequentially play a list of mp4 videos

stored locally on the PC. For each video viewing, the user’s head

orientation and movements are recorded and stored to trace iles.

Video selection:We irst identiied 30 videos from YouTube’s

360° collection that we found nicely represented diferent categories

of 360° videos. We then used the trace collector application to down-

load these videos in 4K resolution, ensuring that we can ofer good

quality of experience during viewing. The videos are 1-5 minutes

long (3 min on average) and divided into ive categories.

• Exploration: In these videos, there is no particular object

or direction of special interest and the users are expected

to explore the entire sphere throughout the video duration.

Furthermore, two independent viewers of the same video

are expected to have substantially diferent viewing angles

at each point in time. (Example: Camera positioned on top

of a tall building overlooking a city.)

• Static focus: In these videos, the main focus of attention

is deemed to always be at the same location in the video.

A static viewing behavior is expected since the focus of

attention does not move. With these videos, most of the

time a near-zero yaw angle is expected. (Example: A theatre

performance or a concert being displayed on a scene.)

• Moving focus: Story-driven videos where there is an object

of special interest that is moving across the 360° sphere.

With these videos, a high correlation is expected between

the viewing angles of users over time, since they typically

would follow the objects of interest. (Example: An action

scene where the involved characters move around the view-

ing sphere, causing the user to follow.)

• Rides: In these videos, the users take a virtual ride in which

the camera is moving forward at a high speed, making

users feel that they too are moving forward quickly. In the

majority of the video the user is expected to look forward,

as when taking a ride in real life. (Example: Roller-coaster.)

• Miscellaneous: This category includes videos that were

deemed to have a mix of the characteristics of the other

categories or had a hard-to-classify łunique feelž to them.

The full set of videos and their categorization are summarized

in Table 1. We note that some of these categories are named in

3https://www.oculus.com/experiences/rift/1130182873666293/

https://www.oculus.com/experiences/rift/1130182873666293/
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Table 1: Summary of videos. (To watch video, use URL

of the form: https://www.youtube.com/watch?v=VideoID,

where VideoID is replaced based on the table entries.

Category Video Name (Duration, VideoID)

Exploration Zayed Road (3:00, uZGrikvGen4), Burj Khalifa (2:30,

bdq4H1CIehI), Hadrain’s Wall (3:36, 2zeKpeRZ8uA),

New York (1:59, T3e-GqZ37uc), White House (5:16,

98U2jdk8OGI), Waldo (1:00, hM9Tg_dQkxY), Skyhub (4:00,

D9-i_F3xYhI)

Static Christmas Scene (2:49, 4qLi-MnkxBY), Boxing (3:29,

raKh0OIERew), Elephants (2:49, 2bpICIClAIg), Mongolia

(1:52, VuOfQzt2rI0), Orange (2:43, i29ITMfLVU0)

Moving Christmas Story (4:14, XiDRZfeL_hc), Assassin’s Creed (2:31,

a69EoIiYqoE), Clash of Clans (1:23, wczdECcwRw0), Frog

(3:13, sk8hm7DXD5w), Solar System (4:32, ZnOTprOTHc8),

Invasion (4:04, gPUDZPWhiiE)

Rides F1 (1:54, 2M0inetghnk), Le Mans (3:00, LD4XfM2TZ2k),

Roller Coaster (2:11, LhfkK6nQSow), Total War (1:49,

YSBWwnOHvM8), Blue Angels (2:30, H6SsB3JYqQg), Ski

(2:48, kMCYo5rO6RY)

Misc. Hockey (2:25, 8DKVvb17xsM), Tennis (4:05, U-_yX4e4Z_

w), Avenger (2:58, 3LSf6_ROCdY), Trike Bike (3:14,

jU-pZSsYhDk), Temple (4:36, Lx14NDttRWo), Cats (1:59,

0RtmVnD8_XM)

part based on the expected viewing behavior of a user watching

the video. We believe that this allows for a natural categorization

that can be used on larger sets of videos. Of course alternative

classiications are possible. However, for the purpose of this study,

this categorization is suicient to characterize and evaluate how the

diferences in viewing behavior of these diverse categories impact

the best prefetching tradeofs.

User study: An open invitation was sent out to diferent groups

at the university, allowing people to sign up for one-to-three 45-

minute sessions (but at most one per day). In total, 32 people signed

up for a total of 45 sessions. To avoid bias in the results and encour-

age viewers to follow their instincts, at the start of each session,

users were not given any instructions on how to view a video, but

instead simply watched a four minute introduction video about

VR produced by Oculus. This allows the user to get accustomed to

the 360° surrounding and feel comfortable wearing the headset. Af-

ter the introduction, the participants then view ten łsemi-randomž

videos. Videos for each session are selected at random from the set

of videos that the user has not viewed in the past (so that users

attending multiple sessions do not watch the same video twice)

and we make sure that all users watch one łrepresentativež video

from each category (irst video in each row of Table 1).4 After the

views to the representative videos had been accounted for, the other

videos got between 8-13 views each. The additional views to the

łrepresentativež videos allows for more detailed analysis for these

videos. It should also be noted that some videos were avoided for

users that indicated that they had fear of heights or were prone

to motion sickness or dizziness (asked at the start of the session).

Finally, to avoid biases related to the order videos are played, the

order of the videos selected for a given session is randomized.

4By deinition, it is impossible to choose a łrepresentativež video for the Miscella-
neous category. However, due to sports-related follow-up work, we selected a video
(łHockeyž) in which viewers watch a hockey game from between the player benches.

Figure 3: Heatmap of most utilized yaw and pitch an-

gles: Rides (top-left), Exploration (top-right), Moving focus

(bottom-left), Static focus (bottom-right).

 0

 0.2

 0.4

 0.6

 0.8

 1

-180-135-90 -45 0 45 90 135180
C

D
F

Angle (degrees)

Yaw
Pitch
Roll

(a) Rides

 0

 0.2

 0.4

 0.6

 0.8

 1

-180-135-90 -45 0 45 90 135180

C
D

F

Angle (degrees)

Yaw
Pitch
Roll

(b) Exploration

 0

 0.2

 0.4

 0.6

 0.8

 1

-180-135-90 -45 0 45 90 135180

C
D

F

Angle (degrees)

Yaw
Pitch
Roll

(c) Moving focus

 0

 0.2

 0.4

 0.6

 0.8

 1

-180-135-90 -45 0 45 90 135180

C
D

F

Angle (degrees)

Yaw
Pitch
Roll

(d) Static focus

Figure 4: CDFs of angle utilization.

In total, we recorded the head movements from 439 unique view-

ings, totaling 21 hours and 40 minutes. The age distribution of the

32 participants was: 20-29 (66%), 30-39 (28%), 40-49 (3%), 50-59 (3%).

56% of the participants were male and 44% female. Moreover, 25

participants had never tried VR and only 3 had tried it with Oculus.

No personal information is stored or included in our datasets. For

our analysis we only perform per-category and per-video analysis,

no per-user analysis, and only aggregate information is reported.

Finally, we note that we did not make any modiications to the

videos or otherwise try to efect the user experience. The users

simply watched the videos as they otherwise would, while we used

the API to record their head movements.

4 CATEGORY-BASED CHARACTERIZATION

4.1 Angular utilizations

We begin by looking at how the viewing angles have been utilized

for the videos of the diferent categories. Figure 3 shows a heatmap

of the most utilized yaw and pitch angles over the full duration

of the videos. A quantiication of the angular utilizations (also

including the roll) is provided in Figure 4. Here, for each category,

we show the cumulative distribution function (CDF) of the observed

angles for yaw (red), pitch (green) and roll (blue).

https://www.youtube.com/watch?v=VideoID
uZGrikvGen4
bdq4H1CIehI
2zeKpeRZ8uA
T3e-GqZ37uc
98U2jdk8OGI
hM9Tg_dQkxY
D9-i_F3xYhI
4qLi-MnkxBY
raKh0OIERew
2bpICIClAIg
VuOfQzt2rI0
i29ITMfLVU0
XiDRZfeL_hc
a69EoIiYqoE
wczdECcwRw0
sk8hm7DXD5w
ZnOTprOTHc8
gPUDZPWhiiE
2M0inetghnk
LD4XfM2TZ2k
LhfkK6nQSow
YSBWwnOHvM8
H6SsB3JYqQg
kMCYo5rO6RY
8DKVvb17xsM
U-_yX4e4Z_w
U-_yX4e4Z_w
3LSf6_ROCdY
jU-pZSsYhDk
Lx14NDttRWo
0RtmVnD8_XM


The Prefetch Aggressiveness Tradeof in 360° Video Streaming MMSys’18, June 12ś15, 2018, Amsterdam, Netherlands

0

22.5

45

67.5

90

0 20 40 60 80 100 120

P
a
ir
w

is
e
 d

iff
. 
(d

e
g
.)

Playpoint (seconds)

Yaw
Pitch
Roll

(a) Rides

0

22.5

45

67.5

90

0 20 40 60 80 100 120

P
a
ir
w

is
e
 d

iff
. 
(d

e
g
.)

Playpoint (seconds)

Yaw
Pitch
Roll

(b) Exploration

0

22.5

45

67.5

90

0 20 40 60 80 100120140160

P
a
ir
w

is
e
 d

iff
. 
(d

e
g
.)

Playpoint (seconds)

Yaw
Pitch
Roll

(c) Moving focus

0

22.5

45

67.5

90

0 20 40 60 80 100 120

P
a
ir
w

is
e
 d

iff
. 
(d

e
g
.)

Playpoint (seconds)

Yaw
Pitch
Roll

(d) Static focus

Figure 5: Average pairwise angular diference betweenusers.

We note that yaw is the most dominant orientation movement

across all categories, with angular utilizations much more widely

distributed than for pitch and (especially) roll. This suggests that

predicting and accounting for changes in yaw, is most important

when trying to adapt the prefetch quality based on the expected

viewing direction by the time a prefetched frame is played.

In general, for the videos that we selected, the distributions are

relatively symmetric. Except for the moving focus category (bottom-

left), for which there is a slight bias towards the left, we do not see

any major biases between leftwards or rightwards utilizations. The

slight bias observed for the moving focus videos is likely due to the

particular choice of videos. Furthermore, except for the exploration

videos, there is only a very small bias to look downwards rather

than upwards. For the exploration videos this bias is reinforced by

videos (taken in Dubai) where the viewer is positioned at the top

of a very large building or when lying above the city. For roll, we

observe only small non-biased changes over the video playback

durations (e.g., 98% within ±10°).
Finally, and perhaps most importantly, both Figures 3 and 4

clearly show that there are signiicant diferences in the angular

utilizations between the diferent categories. For example, if we

focus on the (dominant) yaw-angle distributions, we observe sub-

stantially more evenly spread angular utilization with the explo-

ration (top-right) videos than with the rides (top-left) and static

focus (bottom-right) videos. With both these latter categories, users

spend most of the time in the original direction (e.g., 80% of the

time within ±30° and 90% within ±60°) in which the video playback

was initiated. These results show that for these categories of videos,

the original (or intended primary) viewing direction can be used

as a good predictor of what directions to prioritize aggressively

prefetching data for future playback.

While the angular utilizations (Figure 4) of the moving focus

(bottom-left) videos are more similar to those of the exploration

videos (top-right), we have found that these videos difer substan-

tially in how predictable the movements are. This is illustrated in

Figure 5. Here, we show the average angle diference between each

pair of users watching the same video, as a function of the playtime

(with time-axis constrained by the duration of the shortest video).

In contrast to the results shown in Figure 4, Figure 5 shows that

the average angle diference between each pair of users watching
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Figure 6: The yaw angle over time for four example users

watching the łSolar systemž video.

the same moving focus (bottom-left) video is more similar to that

for rides (top-left) and static focus (bottom-right) videos than for

exploration (top-right) videos. These results suggest that the view-

ing patterns of other users who have watched moving focus, rides,

and static focus videos are valuable when predicting the viewing

directions of future viewers; hence, allowing better prefetching

when diferentiating the quality for diferent directions.

Figure 6 provides a more concrete example of how diferent

viewers may have similar viewing patterns despite using the full

spectrum of yaw angles. Here, we show the yaw angle for four ex-

ample viewers as they watch the samemoving focus video (in which

the viewer is taken on a narrated journey through the solar system).

The above results suggest that we use a reasonable categorization of

videos, in which each category has distinct properties visible in the

observed viewing characteristics. Note in particular, from Figure 5,

the considerably diferent behavior for the exploration (top-right)

videos. For this category of videos, the average pairwise diference

is only slightly within 90° (where 90° corresponds to the average

pairwise diference that would be observed if viewing directions

were random). Clearly, users watching these videos tend to move

completely independently, focus on highly diferent things, and

have mostly uncorrelated viewing angles for the full video duration.

Finally, we note that there often appears to be some exploratory

behavior when viewing the videos of the other categories as well,

in particular at the beginning of a video. This is particularly visible

when considering the static focus (bottom-right) videos in Figure 5.

Here, we see a substantial initial spike in the pairwise angular

diferences between users during the irst 20 seconds of the playback.

This suggests that users tend to explore once they are put in a new

environment, as at the start of a new video. We will examine this

further in Section 6.

4.2 Changes in Viewpoint

For shorter time scales, one of the most natural and commonly used

predictors of a user’s future viewpoint is the current viewpoint.

However, since users can quickly turn their head or body, when

using such a predictor, it is important to understand how such

viewpoint changes vary across diferent categories of videos and

how the absolute changes depend on the time T over which the

change is measured. We next take a closer look at how much the

viewpoint difers between two time points separated by T seconds.

To cover a wide range of 360° delivery technologies we consider

time intervals T between 0.2 seconds to 20 seconds. Here, the low-

end intervals (e.g., 0.2-1 second) may be most applicable for low-

latency scenarios where edge servers are used to render frames that
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Figure 7: CDFs and CCDFs of the yaw change over diferent

time intervals T .
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Figure 8: Log-scale version of Figures 7(a) and 7(c).

the users may view and the multi-second range (e.g., 2-20 seconds)

may be most applicable for HAS-based designs, which typically

use 2-10 second chunks and typically must account for signiicant

wide-area bandwidth variations.

In both scenarios, we foresee either the client adapting the qual-

ities it requests for each direction based on view change probabili-

ties or the servers adapting the qualities for each direction based

on the user’s current viewing direction and statistics about view

change probabilities. Note that some bufering is necessary in all

scenarios as the human tolerance threshold for diferences in the

displayed content and the actual viewing direction is approximately

50 ms [1, 2, 4] and at the minimum we must account for network jit-

ter and other network efects, which may be on the order of 100 ms

or more in modern LTE networks, for example [28]. Further delays

beyond 50 ms can result in user discomfort and motion sickness.

Figure 7 shows the CDFs and Complementary CDFs (CCDFs)

of the change in the yaw angle for each of four video categories.

For the short time scales (e.g., 200ms) we have only observed very

minor diferences between the video categories. The extreme values

(i.e., the tail values) of these distributions are bounded by the speed

with which the participants moved their heads when watching the

videos. For example, for all categories 99% of the head movements

are within ±28° yaw angle and ±13° pitch angle. The correspond-

ing numbers for 99.9% are: ±46° and ±19°, respectively. Across all
experiments, the largest changes that we observe over 200ms are

95° for yaw and 35° for pitch. Again, the maximum is almost the

same for all four video categories.

The above 200 ms results suggest that a signiicant portion of the

potential viewing ield may not need to be pre-rendered in edge-

based rendering systems operating at the extremely low-latency

(i.e., sub-200 ms) time scale. However, modern networks do not

provide performance guarantees suicient to operate at such time

scales yet [28]. Instead, most video streaming services today there-

fore require substantial bufers to protect against bandwidth varia-

tions and other interruptions, and HAS-based solutions with larger

bufers are likely to continue to dominate the markets for the fore-

seeable future.

Considering head movements over longer time scales, for all

categories the full range (i.e., ±180°) of head movements is covered

already after a second. In fact, for the explore and moving focus

categories, we observe such full range yaw rotations already at

the 0.5 second time scale. For the rides and static focus videos the

most extreme movements reach at most 100° and 90°, respectively,

over this 0.5 second time window. To better quantify these extreme

changes in viewing direction, Figure 8 presents log-scale versions

of the Figure 7 plots for the rides and moving focus categories. The

(omitted) plot for exploration is similar to moving focus and the

(omitted) plot for static focus is similar to that of rides.

Overall, we observe diminishing increases in the variations as

the time interval T increases and the distributions become more

similar to the life-time distributions (shown in Figure 4). This is most

clear for rides and static focus. For these categories, the diferences

between the 5-second and 20-second curves are much smaller than

for the other neighboring curves and the 20-second curves provide

similar accuracy as when using the life-time distribution, suggesting

that for these two categories it is equally good to use the current

viewing direction as the zero-degree line (used for the life-time

distributions) as predictors when maintaining a 20-second bufer.

In general, as the bufer needed becomes greater, the more value

should be placed on the angular distribution and the viewpoint

directions of other users that have watched the same video, for ex-

ample. This is particularly apparent when considering the moving

focus category (e.g., as exempliied in Figure 6). For this category we

also see that the current direction is a slightly better predictor than

the zero-degree line. Interestingly, for the exploration category, on

the other hand, the zero-degree line is a (slightly) better predictor

for the 20-second time scale. To see this, note that the 20-second

distribution for the exploration category closely resembles that of

a uniform distribution (showing that yaw-based angular prioritiza-

tion has no beneit for the exploration category when maintaining

a 20+ second bufer), whereas the life-time distribution is somewhat

more concentrated around the zero-degree line.

In summary, our results show clear diferences in the viewpoint

distributions and how predictable the head movements are (e.g., as

measured by how concentrated distributions are), both across video

categories and with regards to the time scale over which prediction

is done. We next determine the (optimized) tradeofs between the

bufer used and the expected achievable playback utility.

5 OPTIMIZED PREFETCHING TRADEOFF

Let us now consider the basic prefetch aggressiveness tradeof

between clients trying to maintain a bufer T (to protect against

stalls due to bandwidth variations or other service interruptions)
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and the expected playback utility E[u |T ] experienced by the client,

where we use playback utility to measure the client’s perceived

playback quality. To better understand this tradeof we consider

the optimized prefetch schedule of a client that operates in steady-

state, maintaining a ixed bufer of T seconds, and that prefetches

data at a known average download rate D. For this client, we then

determine the optimized prefetch schedule for diferent bufer levels

T , allowing us to investigate the tradeof between the optimized

E[u |T ] and T .

5.1 High-level optimization model

Without loss of generality, consider the optimized download sched-

ule of an arbitrary chunk with playback duration ∆. For each view-

ing direction θn of such a chunk we assume that the player can

choose a tile n of quality level l (0 < l ≤ L) with encoding rate

qn,l or to not download any data for that direction. We use l = 0

to indicate this last choice. Furthermore, we assume that each tile

can be delivered independently (or together with other tiles, as a

combined chunk) and that these tiles can be stitched together either

at the client or at the server (when creating a combined chunk).

For simplicity, since the majority of the head movements are

yaw rotations (with small pitch and negligible roll), we will focus

our analysis here on the yaw angle. We also discretize the possible

angles (possible viewing directions). In particular, we let directions

n = 0,1, ...,N − 1 correspond to increasing yaw angles from the

initial viewing direction, with wrap-around when n = N (i.e., di-

rection N is the same as the initial viewing direction, direction 0).

Each of these viewing directions corresponds to a single tile. Note

that the entire view ield at any point in time may encompass a

number of these tiles. Generalizations that also take into account

pitch are relatively straightforward, whereas models that also take

into account roll require signiicantly more geometry and notation.

At a high level, given the available bandwidth budget in the

next ∆ seconds, an average bufer of T , and a known conditional

probability distribution pn (T ) that the user looks in direction n

another T seconds after the chunk was requested by the client, we

maximize the expected playback utility:

E[u |T ] =
N−1
∑

n=0

pn (T )u (n |q0,q1, ...,qN−1), (1)

where u (n |q0,q1, ...,qN−1) is the playback utility experienced by

the client when looking in direction n after having prefetched tile

qualities q0,q1, ...,qN−1 for the N directions. For the purpose of our

numeric evaluation, we calculate the probabilities pn (T ) as follows:

pn (T ) =

∫ θn+1

θn

p (θ |T )dθ , (2)

where θn is the yaw angle corresponding to directionn, using CDFs

such as those studied in Section 4.

To model the expected utility u (n |q0,q1, ...,qN−1), we use a util-
ity model that weights (i) the playback utilityu (qn ) of the encoding

rate qn in the current viewing direction n, (ii) the playback utility

of neighboring viewing directions (i.e., u (qn−1), u (qn+1)), and (iii)

the relative utility diferences compared to neighboring directions

(i.e., −|u (qn ) − u (qn−1) | and −|u (qn ) − u (qn+1) |), the last of which
potentially may cause negative efects. Since we are not aware of

Table 2: Notation for streaming model for a single chunk.
Symbol Deinition

L Number of non-zero quality levels of the video

N Number of tiles or discrete viewing directions

xn,l Binary variable indicating that the client will

prefetch tile n of the chunk at quality level l

qn,l Playback encoding of tile n of the chunk with

quality level l

bn,l = b (qn,l ) Size of tile n of the chunk with quality level l

un,l = u (qn,l ) Playback utility of playing tile n (direction n) of

the chunk with quality level l

∆ Playback duration of the chunk

D Download rate

T Average maintained bufer size in seconds

E[u |T ] Expected playback utility, conditioned on T

pn (T ) Probability looking in direction n, T time later

β Parameter used to weight factors (0 ≤ β ≤ 1)

any research that has provided relative weights to these factors

for the context of 360° videos, we use variable-sized weights and

evaluate their relative importance. It turns out that by careful se-

lection of constants, only a single parameter β is needed. To see

this, let us give each of the above factors the relative weights (i)

(1 − α − β ), (ii) α
2 times their probability ratios (

pn−1
pn

and
pn+1
pn

),

and (iii)
β
2 , respectively. Summing over all directions, the objective

function can now be simpliied as follows:

E[u |T ] =
N−1
∑

n=0

pn

(

(1 − α − β )u (qn ) +
α

2
(
pn−1
pn

u (qn−1) +
pn+1

pn
u (qn+1))

−
β

2
( |u (qn ) − u (qn−1) | + |u (qn ) − u (qn+1) |

)

= (1 − β )

N−1
∑

n=0

pnu (qn ) − β

N−1
∑

n=0

pn + pn+1

2
|u (qn ) − u (qn+1) |.

(3)

Here, we have dropped the argument T from pn (T ) and used qn to

represent the selected encoding rate for direction n. Note that this

expression is independent of α .

Discussion of utility model: Similar HAS/DASH models have

been used to capture the quality of experience (QoE) of łregularž

non-interactive streaming video, rather than 360° video. For exam-

ple, Yin et al. [32] try to capture the QoE by the following metrics:

(i) the average video quality, (ii) the average quality variations,

(iii) number and duration of rebuferings, and (iv) the startup de-

lay. Looking at a single chunk during steady-state streaming, the

startup delay and average quality variations are not applicable to

our model. Instead, we use the expected bufer (T ) to capture the

protection against stalls/rebuferings (i.e., factor (iii)) and consider

the quality variations relative to nearby viewing angles, in the case

that a user changes viewing direction and also to take into account

that the viewield, especially the peripheral view, typically will be

made up by tiles from neighboring directions. It is therefore good

if the quality diferences between neighboring tiles are not too

obvious. We note that this objective will somewhat ofset greedy

maximization of the average (expected) video quality, and weight

the two factors using a variable β (0 ≤ β ≤ 1).
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Algorithm 1: Calculate optimal single-slot prefetch schedule.

Input: Number of directions N , total bytes to download ∆D ,

probabilities pn , tile sizes bn,l , and utilities u (qn,l ).

Output: Optimal set of qualities (equivalent to xn,l ) and value of the

corresponding (optimal) objective function.

1 foreach 0 ≤ l0 ≤ L do

2 foreach 0 ≤ C ≤ ∆D do

3 foreach 0 ≤ n ≤ N − 1 do
4 foreach 0 ≤ l ≤ L do

5 DP (l0, l, n,C ) ← equation (9)

6 Return max0≤l0≤L DP (l0, l0, N − 1, ∆D ) and corresp. parent pointers;

5.2 Detailed optimization model

Let qn,l denote the video encoding rate of tile n with quality level l

(ordered from lowest to highest quality), let bn,l = b (qn,l ) denote

the size of the tile (proportional to its encoding rate), let un,l =

u (qn,l ) denote the estimated playback utility of this tile, and let xn,l
be a binary decision variable (indicating that tile n of the chunk

is downloaded at quality level l whenever xn,l = 1). (See Table 2.)

We can now formulate the problem of choosing optimal quality

encodings as a packing problem:

maximize E[u |T ], (4)

where

E[u |T ] = (1 − β )

(N−1
∑

n=0

pn (T )

L
∑

l=0

xn,lun,l

)

− β

(N−1
∑

n=0

pn (T ) + pn+1 (T )

2

×
L

∑

l=0

L
∑

l ′=0

xn,lxn+1,l ′ |un,l − un+1,l ′ |
)

, (5)

such that
L

∑

l=0

xn,l = 1, 0 ≤ n < N , (6)

N−1
∑

n=0

L
∑

l=0

xn,lbn,l ≤ D∆, (7)

xn,l ∈ {0,1}, 0 ≤ n < N ,0 ≤ l ≤ L. (8)

As is typically the case, for our evaluation, we assume thatu (qn,l )

is a concave function of qn,l and that bn,l is a linear function of qn,l .

Furthermore, we model the case when there is missing data (i.e.,

when xn,0 = 1) using bn ,0 = 0 and a negative utilityun,0 = −f un,L ,
where f is a penalty factor.

For the special case that β = 0, the above problem simpliies

to the standard 0-1 knapsack problem. It is therefore trivial to for-

mulate any 0-1 knapsack problem using our formulation, and our

problem is therefore at least as hard as the 0-1 knapsack problem,

which is NP-complete. As with the standard 0-1 knapsack problem,

under some circumstances this problem can be solved using dy-

namic progrmaming. We next describe one such formulation and

then discuss variations thereof.

5.3 Dynamic programming solution

For simplicity, in the following, we assume that the size bn,l of each

tile, as well as the amount of data that can be downloaded during

the interval ∆ (i.e., D∆), can be represented using integers (e.g.,

measured in kilobytes).5 Under these assumptions, given a list of

tiles, we can formulate the sub-problem of determining the maxi-

mum utility for directions 0:n, given a total prefetching capacity C

for these directions. To allow us to take into account both the utility

diferences between neighboring tiles and operation over a circular

space (with modulus N ), we also condition each sub-problem on

the encoding selections for tiles 0 and n + 1. Denoting the quality

selections for tiles n+ 1 and 0 by l and l0, respectively, we can write

out the following optimization recursion:

DP (l0,l ,n,C )

=



(1 − β )p0u (q0,l0 ) − β
p0+p1

2 |u (q0,l0 ) − u (q1,l ) |,
if n = 0,b0,l0 ≤ C

max{l ′ |bn,l ′+b0,l0 ≤C }

[
(1 − β )pnu (qn,l ′ )

−β pn+pn+12 |u (qn,l ) − u (qn+1,l ′ ) |

+DP (l0,l
′,n − 1,C − bn,l ′ )

]
, if 1 ≤ n ≤ N − 1

(9)

with the boundary cases that DP (l0,l ,n,C ) = −∞ whenever bn,l +

b0,l0 > C . Given this recursion, the optimal solution can be calcu-

lated by considering all choices for direction 0; i.e., max0≤l ≤L DP (l ,l ,N−
1,D∆). Algorithm 1 summarizes the calculations, from which the

optimal solution is obtained through parent pointers.

Runtime analysis: There are Θ(CNL2) sub-problems. Each

takes Θ(L) to calculate, resulting in a total run-time of Θ(CNL3).

5.4 Example characterization

Using the above optimization formulation, we next characterize

the optimized prefetch aggressiveness tradeof. Throughout the

experiments presented in this section we assume encoding rates

proportional to those found in an example YouTube video (equal

to: 144, 268, 625, 1124, 2217, 4198 kbps) and present results for

diferent prefetch capacities C = D∆ (the number of bytes that can

be downloaded during a timeslot), the four diferent video categories

considered in the paper, and four diferent utility functions: (i) a

linear model, (ii) a square-root model, (iii) a logarithmic model, and

(iv) a large-screen model proposed by Vleeschauwer et al. [30]:

u (q) = b ·
(q/θ )1−a − 1

1 − a
, (10)

where a > 1, b > 0 and θ > 0 are screen dependent parameters,

in our case set to a = 2, b = 10, θ = 0.2Mbps . Finally, a negative

utility un,0 is used. In the experiments, we vary the stall penalty
un,0
un,L

between -0.1 (small) to -100 (large).

To allow easier comparison, all utilization values reported were

normalized such that the maximum utility (when playing at the

highest available quality encoding) was always 1. Furthermore,

each tile could be selected in one of the discrete sizes: 144, 268, 625,

1124, 2217, 4198 łunitsž and the capacity C was measured in the

same units. (These units allow us to avoid having to pick a chunk

playback duration ∆.)

Figure 9 compares the tradeof curves for the diferent video cat-

egories, with each sub-igure using a diferent utility function but

the same prefetch capacity C = 2500, stall penalty
un,0
un,L

= −1, and

5The development of (1 + ϵ ) FPTAS approximations appear possible when these
quantities are non-integers.
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(d) Large-screen utility

Figure 9: Example tradeofs for diferent 360° video cate-

gories. (C = 2500 and
un,0
un,L

= −1 in all sub-igures.)
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Figure 10: Example tradeofs for diferent utility functions.

(C = 2500,
un,0
un,L

= −1, β = 0.001.)

β = 0.001. We note that in all cases the static focus and exploration

categories provide the two extremes and the other two categories

fall in between. Interestingly, all the static focus and rides curves

latten out after 5 seconds. This suggests that these categories can

use prefetching to build larger bufers at little expense in expected

utility. In contrast, moving focus and especially exploration typi-

cally have a more gradual tradeof curve. For these categories, there

are noticeable beneits to the expected utility (assuming stalls do

not occur) when using more short-term prefetching; e.g., using

T = 5 compared to T = 20, for example. However, since smaller

bufers come at high risks, we note that these categories may beneit

from more incremental prefetching algorithms in which each tile

is gradually prefetched using layered encoding. In the next section

we describe and discuss one such candidate solution.

Comparing the sub-igures themselves, we note a general order-

ing between the utility functions. This is more clearly illustrated in

Figure 10, where we have extracted the corresponding curves for

two example categories: static focus and exploration. These results

show that a user’s sensitivity to temporary quality degradations

after sudden head movements (captured by the diferent utility

functions) signiicantly impacts the importance of more accurate

prediction, or as we will see next use of additional prefetch capacity.

For example, the linear (pessimistic) assumption consistently results

in the lowest utility, while the logarithmic (optimistic) assumption

consistently results in the highest utility. For the reminder of this

section, we focus on the large-screen model, which is motivated by

existing work [30] and provides intermediate results.

To study the impact of various system parameters and conditions,

we next show example results for the two extreme categories: static
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Figure 11: Example tradeofs for diferent capacities. (Large-

screen utility function with
un,0
un,L

= −1 and β = 0.001.)
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Figure 12: Example tradeofs for diferent penalties
un,0
un,L

.

(Large-screen utility function with C = 2500 and β = 0.001.)

focus and exploration. The results for the other two categories

typically fall in between, with results for rides being more similar

to those of static focus and the results for moving focus being more

similar to the exploration results. Throughout this analysis we use

the large-screen utility function, consider one parameter at a time,

and use the following default values: penalty factor
un,0
un,L

= −1,
β = 0.001, and capacity C = 2500.

Diminishing prefetch capacity returns: Figure 11 illustrates

the impact of the capacity C . We observe diminishing returns from

doubling the capacity (from 1,250 all the way up to 20,000) and note

that even a capacity of 5000 is able to achieve a utility of 0.837 and

0.737 even with T = 20 seconds. For static focus this is achieved by

selecting rates somewhat more aggressive rates towards the front

(with tile qualities: 1×2217, 4×625, 1×268), than for the exploration

category (2×1124, 4×625).
Limited impact of stall penalty: Figure 12 shows example

tradeofs for diferent stall penalty factors
un,0
un,L

, ranging from small (-

0.1) to large (-100).We note that there only are very small diferences

observed here. In fact, for capacitiesC = 5000 and larger, the results

are independent of the stall penalty, since the optimal solutions

with these capacities always involved obtaining at least the lowest

encoding rate for each tile. This highlights the importance of always

protecting against stalls.

Impact ofweight given to quality diferences betweenneigh-

boring tiles: While we expect that the most realistic β typically

would be small, we have experimented with diferent β values. In

general, a larger (negative) β factor does not impact the quality

choices substantially, but does shift the weighted utility curves

downwards. This is illustrated by comparing Figure 13 (with β =

0.25) and Figure 11 (with β = 0.001). As expected, we have found

that there are somewhat more evenly distributed quality selections

with β = 0.25. For example, the right-most points for the C = 5000

curves for static focus (which we discussed above) now use (3×1124,
2×625, 1×268), compared to (1×2217, 4×625, 1×268) with β = 0.001.

For exploration, the two optimal solutions are identical. For similar
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Figure 13: Capacity tradeofs with large β = 0.25. (Large-

screen utility function with
un,0
un,L

= −1.)

reasons, we see somewhat latter tradeof curves with static focus

when β increases, whereas they remain similar for the exploration

category. Again, remember that the absolute utilities in the two

diferent plots should not be compared against each other, only the

relative shapes, since they represent substantially diferent utility

models. Yet, the high β results show that the insights obtained for

smaller β also hold for larger β .

6 DISCUSSION OF FURTHER DESIGN
OPTIMIZATIONS

When considering the optimal solutions, at both short and long time

scalesT , it is typically optimal to download some minimum quality

in each viewing direction so as to protect against stalls (or missing

tiles). Motivated by this observation we argue that prefetching can

be split over multiple time scales.

Framework to split prefetching across time scales: In the

following we describe a simple framework that allows us to si-

multaneously perform both (i) long-term prefetching so to protect

against bandwidth variations and other unforeseen service outages,

for example, and (ii) ine grained optimized prefetching based on

the current viewing direction, as best done closer to the playback

deadline. In its simplest form, a client separates the prefetching

process into two (or more) modules that operate in parallel. The

irst module is responsible for prefetching an initial base layer (e.g.,

based on SVC technology) for all viewing directions and can use a

large bufer (e.g., 20-120 seconds). The latter prefetching module(s)

then prefetch additional enhancement layers for each tile based on

more up-to-date view-direction predictions.

For simplicity, let us assume that we use two modules. For this

case, the optimization problem that must be solved by the sec-

ond module, can easily be derived using a modiied version of the

optimization problem (and solution) described and evaluated in

Section 5. In particular, assuming that the client has tile quality l ′

in direction n, we can simply use bn,l = 0 for all l ≤ l ′, captur-
ing that we already have tile quality l ′ for this direction. For the
other tile qualities, the size will depend on whether some form of

layered coding is implemented or not. For example, in the ideal

case, assuming łperfectž SVC without any overhead, we would have

bn,l ≈ ∆(qn,l − qn,l ′ ). At the other extreme, assuming that tiles

would need to be completely re-downloaded at a higher quality

level, we would have bn,l ≈ ∆qn,l . Naturally, diferent implementa-

tions will fall somewhere in between these two extremes.

Figure 14 shows the example layers that a client has prefetched

in each step, when using SVC together with three prefetching mod-

ules. Here, the irst module (A) made its decision at time TA based

on viewing direction (0,1), the second module (B) based on a direc-

tion ( 1√
2
, 1√

2
), and the inal module (C), based on viewing direction

(1,0). In each step, the previously prefetched tile qualities are lever-

aged so to best use the available prefetching capacity of that module,

each module solving the above optimization problem.

We next use our measurements to study additional biases that

can be used to further optimize the inal quality selections.

Short-term biases based on velocity: Not surprisingly, over

short time scales, there is strong correlation between the direction

of head movement and the future viewing direction. Figure 15

shows the change in yaw-angle after 200 ms for all videos, when

the user’s current velocity was higher than ± 5° per second (±5°/s,
for short). Here, a positive (negative) velocity means that a user is

turning to the left (right).

Even with a small velocity threshold of ±5°/s (with 55% of all

readings having a larger directional velocity), in 97% of these cases

the eventual view angle is strictly in the direction suggested by

the head movement direction 200 ms earlier. The results are even

stronger if using a small (additional) safety angle. For example,

in 99.9% of the cases, the direction is no further in the opposite

direction than 9° and 7°, respectively. This is due to head move-

ments being relatively smooth and shows that there is potential

for shrinking the range of angles that the point-of-view is likely to

be rotated to next. For example, referring back to Figure 7 we note

that the user’s view is expected to change no more than ±46° 99%
of the time. However, as per the above examples, in more than half

of the cases this range can be cut by 40.2% and 42.4%, respectively,

if also taking into account the current velocity. This shows that for

the inal enhancements (prefetched over shorter time scales), it is

possible to further improve prediction accuracy.

We have observed clear biases for time scales up to 2 seconds.

Figure 16 shows the prediction error rates when predicting left

or right movement based on the current velocity direction over

diferent time intervalsT : 0.2s, 0.5s, 1s and 2s. Here, the error rate is

measured as the fraction of cases that the user’s viewpoint did not

end up in the same relative direction as suggested by its velocity T

seconds earlier. For these results we varied the velocity threshold.

As expected, the accuracy typically improves with larger thresholds.

(The bump for the 2 second curve can partially be explained by

instances where users turn more than 180 degrees.) While the

tighter thresholds result in smaller error rates, there are fewer

instances that meet these criteria. Given the relatively lat curves, a

relatively small threshold may therefore often be beneicial, using a

small extra safety margin (as in the example in Figure 16), of course,

so to protect against fast back-and-forth directional changes.

Reduced exploration over time: Referring back to our discus-

sion of Figure 5, we have found that users tend to explore more at

the beginning of a video and that the head movements typically re-

duce over time. This is also illustrated in Figure 17, where we show

the viewing angle of three example viewers watching the Christmas

scene video (from the static focus category). During the irst 20

seconds, there is a lot of head movements as each user explores

almost every yaw angle. Once the users have learned where the

focus should be, the viewing angle stays relatively stable, centered

roughly between ±30°. This behavior has been observed for many

users for most of the static focus and rides videos.
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Figure 14: Example of personal-

ized łlayersž based on viewing di-

rection and downloaded tiles.
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ing the Christmas scene (from the Static focus category).
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Figure 18: Change in view angle conditioned on users being

in initial 20 second exploration phase or later in the videos.

This shows that it may be possible to be more restrictive in

the prefetched viewing angles. To quantify these efects, consider

Figure 18. Here, we show the CDFs (on dual-log scales) for the

change in yaw angle during the exploration phase (irst 20 seconds)

versus the rest of the video. Results are shown across all users, when

the view change is measured over both 200 ms and 2s. For the case

when measuring changes over 200ms, 99% of the changes after the

exploration phase are smaller than ±15° compared to ±39° for the
exploration phase. The corresponding 99.9% ranges are ±24° and
±49°. When measuring changes over 2s, the diferences are smaller

but still noticeable. For example, the 99% ranges reduce from ±164°
to ±77° and the 99.9% ranges from ±178° to ±122°.

Although prediction schemes could beneit from adjusting the

parameters used for predictions over the duration of a video, the

video content is an important factor. Analysis of individual videos

may be required to learn how each video is best divided so to opti-

mize the prefetching. In this paper, we primarily compare categories

of videos (rather than individual videos) across diferent time scales.

Fine grained optimizations such as the ones discussed in this para-

graph (or when discussing moving focus optimizations that take

into account prior viewers of that video) remain future work.

7 RELATED WORK

While it is common that the whole 360° view is streamed to a client

in a single chunk with a consistent encoding rate across the frame,

diferent projection and quality adaptive download techniques are

being used by some of the most popular 360° HMDs [33]. We are

also not the irst to consider the possibility of adaptively download-

ing diferent qualities for diferent viewing directions [3, 12] or to

characterize 360° viewer behavior [7, 15].

Some of the most important challenges in this area include user

head movement tracking/prediction [3, 23] and bandwidth man-

agement [12, 20]. Bao et al. [3] propose a motion-prediction-based

transmission scheme that reduces bandwidth consumption during

streaming of 360° videos. The prediction scheme is based on viewing

behavior data collected similarly to this paper, but with substantially

shorter user sessions and without categorizing videos. Yet, their

indings suggest that view-dependent 360° transmission schemes

with motion prediction can reduce bandwidth consumption by 45%

at the cost of only very small performance degradation.

Others have shown signiicant storage and bandwidth savings

by converting the equirectangular representation typically used to

store 360° videos to a cube map layout [21], performed QoE-based

measurement studies [25], and studied the impact that projection

techniques, quantization parameters, and tile patterns may have on

the playback experience and resource requirements [10]. The usage

of tiles allows for independent encoding of diferent regions of a

frame. This helps the decoder, both in terms of potential decoding

parallelism and in selective reconstruction of parts of the frame.

Hosseini and Swaminathan [12] propose an adaptive tile-based

streaming approach for bandwidth-eicient streaming of 360° videos.

The system spatially divides a 360° video’s equirectangular repre-

sentation into several tiles, utilizes MPEG-DASH Spatial Represen-

tation Description (SRD) [19] to describe the spatial relationship

between the tiles, and then prioritizes the tiles based on the user’s

ield of view. Again, large bandwidth savings (72%) are demon-

strated with only small quality degradation. Hamza and Hefeeda [9]

illustrate how a client can be implemented to make use of the SRD

to ind the available resolution layers, select the most appropriate

ones and enabling a seamless switch when panning between spatial

regions of a video.

Rather than using tiles, Kuzyakov and Pio [22] present a view-

dependent streaming technique for 360° video that eiciently uti-

lizes bandwidth by transforming the original video into 30 smaller

sized versions, where each version has a speciic area in high quality,

gradually decreasing the quality away from this area.
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Several prior works have demonstrated interactive tiled stream-

ing of high-resolution videos [8, 24, 29]. This includes delivery of

ultra-high resolution videos based on a user’s region-of-interest [16,

17]. Others have used tile-based spatial segmentation to support

pan/tilt/zoom interactions during live streaming [29], for interac-

tive 4k video delivery during the 2014 Commonwealth games [24],

and for a coaching/training application [8].

Within the context of HAS, the tradeof between accurate prefetch-

ing based on expected user behavior and eventual quality of expe-

rience has also been analyzed for other forms of interactive media,

including multi-view video [5, 27], branched video [13], and free-

viewpoint video [11, 31]. For all these types of video the simplest

method is to download the entire video (or set of views) but sig-

niicant download savings are possible by carefully and adaptively

prefetching diferent areas of the video at diferent encoding rates.

In contrast to the above 360° works, we consider longer ses-

sions in which the users watch diferent categories of videos, we

characterize the viewing behavior within and across these video cat-

egories, and we use an optimization framework to both qualitatively

and quantitatively characterize the general prefetch aggressiveness

tradeof described and analyzed in this paper.

8 CONCLUSIONS

This paper presents a data-driven characterization of the prefetch-

ing aggressiveness tradeof associated with how far ahead in time

from the current play point prefetching should be done. In particu-

lar, we collect head movement data for 32 users as they watch a set

of 30 videos a total of 439 times. Using this data, we then character-

ize user behavior for four diferent categories of 360° videos (i.e.,

static focus, moving focus, rides, and exploration) and provide both

qualitative and quantitative insights regarding how best to address

the prefetching aggressiveness tradeof.

In general, we have observed signiicant diferences among the

video categories with respect to the predictability of the view-

point at diferent time scales, and hence on the granularity with

which view-based prefetching can be done. As expected, the highest

predictability is achieved over short time ranges. To explore the

prefetching aggressiveness tradeofmore precisely, we presented an

optimization problem that we solved using dynamic programming,

allowing us to study the optimized tradeof curves. Based on the

insights provided by the optimization model, we then discuss other

system optimizations and measurement-based biases that can be

used to further improve the user’s quality of experience.
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