
BUFFEST: Predicting Bufer Conditions and Real-time
Requirements of HTTP(S) Adaptive Streaming Clients

Vengatanathan Krishnamoorthi
Linköping University, Sweden

Niklas Carlsson
Linköping University, Sweden

Emir Halepovic
AT&T Labs, USA

Eric Petajan
AT&T Labs, USA

ABSTRACT

Stalls during video playback are perhaps the most important indi-

cator of a client’s viewing experience. To provide the best possible

service, a proactive network operator may therefore want to know

the bufer conditions of streaming clients and use this information

to help avoid stalls due to empty bufers. However, estimation of

clients’ bufer conditions is complicated by most streaming ser-

vices being rate-adaptive, and many of them also encrypted. Rate

adaptation reduces the correlation between network throughput

and client bufer conditions. Usage of HTTPS prevents operators

from observing information related to video chunk requests, such

as indications of rate adaptation or other HTTP-level information.

This paper presents BUFFEST, a novel classiication framework

that can be used to classify and predict streaming clients’ bufer

conditions from both HTTP and HTTPS traic. To illustrate the

tradeofs between prediction accuracy and the available information

used by classiiers, we design and evaluate classiiers of diferent

complexity. At the core of BUFFEST is an event-based bufer emula-

tor module for detailed analysis of clients’ bufer levels throughout a

streaming session, as well as for automated training and evaluation

of online packet-level classiiers. We then present example results

using simple threshold-based classiiers and machine learning clas-

siiers that only use TCP/IP packet-level information. Our results

are encouraging and show that BUFFEST can distinguish stream-

ing clients with low bufer conditions from clients with signiicant

bufer margin during a session even when HTTPS is used.

CCS CONCEPTS

· Information systems→Multimedia streaming; ·Networks

→ Application layer protocols;

KEYWORDS

HTTP-based adaptive streaming, HTTPS, Real-time requirements,

Bufer condition estimation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys’17, June 20-23, 2017, Taipei, Taiwan

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5002-0/17/06. . . $15.00
https://doi.org/10.1145/3083187.3083193

1 INTRODUCTION

To properly provision their networks and provide clients with the

best possible service, operators need to understand the character-

istics of the application traic mix and how the users’ Quality of

Experience (QoE) may vary as data lows compete for bandwidth.

The QoE can vary signiicantly as networks go through diferent

utilization phases (e.g., due to diurnal traic cycles), especially in

constrained networks such as the wireless last mile. To provide

users with high QoE when operating at moderate to high utiliza-

tion, it is therefore important to understand user experience and

real-time requirements associated with diferent network lows.

A new type of low classiication: In the past, various low

classiication techniques have been applied that map lows1 to the

underlying services they provide. For example, by classifying lows

into categories such as real-time streaming and peer-to-peer down-

loads, network providers have been able to prioritize real-time

streaming services at times when the more elastic demands of peer-

to-peer networks have used up much of the bandwidth [7, 18, 25].

These techniques are well explored. However, since video stream-

ing is responsible for the majority of today’s network traic [2],

classifying all video lows into a single class (without further difer-

entiation within this class) would not help much.

Ideally, video lows should instead be continually and individu-

ally (re)classiied based on their clients’ current bufer conditions.

Streaming clients often have highly heterogeneous real-time re-

quirements, and these requirements typically change over the dura-

tion of a playback session. For example, streaming clients that have

built up a large playback bufer may be highly tolerant to delays in

receiving video data (e.g., compared to web clients that often expect

immediate loading of websites), while clients with drained bufers

may have tighter real-time requirements, in that they need addi-

tional video data sooner to avoid stalls (due to empty bufer events).

In addition, the real-time requirements of a client may quickly

change from critical to low priority, as the bufer builds up again.

The importance of diferentiating between these clients becomes

particularly clear when considering that stalls (and their duration)

is the factor that has the largest impact on clients’ QoE [16, 27].

Problem formulation: This paper considers the problem of

classifying video streaming lows based on the clients’ current

bufer conditions (i.e., their current real-time requirements). This is

a challenging problem, which is further complicated by high usage

of HTTPS combined with rate adaptation in almost all popular

streaming services. First, with HTTP-based Adaptive Streaming

(HAS), each video quality encoding is typically split into smaller

1A low is typically deined as a sequence of a packets between a source IP-port pair
and a destination IP-port pair.

∗This is the authors’ version of the work. It is posted here by permission of ACM for your personal use, not for redistribution.
The paper was published in ACM Multimedia Systems (MMSys) ’17, Taipei, Taiwan, June 2017. https://dx.doi.org/10.1145/3083187.3083193

https://doi.org/10.1145/3083187.3083193
https://dx.doi.org/10.1145/3083187.3083193

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

chunks that can be independently downloaded and played. The

use of multiple encodings allows eicient quality adaptation to be

implemented on the clients. This helps clients adapt to network con-

ditions and reduce the number of playback stalls, but also decreases

correlation between packet-level throughput and bufer conditions

(compared to players that do not perform quality adaptation).

Second, increasingly many video streaming services, including

YouTube and Netlix, deliver all or most of their content using

HTTPS. Usage of HTTPS prevents operators from observing HTTP

requests for video chunks and associated metadata [9], restricting

classiiers to TCP/IP packet-level information. Combined with the

lack of correlation between packet-level throughput and bufer

conditions observed for HAS clients, this restriction signiicantly

complicates in-network estimation of clients’ bufer conditions. As

argued later in the paper, this challenge is further augmented in

services such as YouTube, where diferent numbers of chunks may

be requested simultaneously (e.g., using a single range request).

Contributions: Motivated by the need for real-time require-

ment classiication based on streaming clients’ current bufer condi-

tions, we present a novel classiication framework called BUFFEST
2 that can be used on both HTTP and HTTPS traic, as well as

validation and performance results for two classes of classiiers.

The primary technical contribution is the BUFFEST framework

for estimating and predicting the bufer conditions and real-time

requirements of HAS clients. BUFFEST provides tools for (i) detailed

emulation of the clients’ bufer conditions, in which we try to

reconstruct the player’s bufer conditions based on information and

events from observed chunk downloads, (ii) automated training of

online classiiers, and (iii) online classiication of ongoing streaming

sessions for HTTPS traic. The ability to carefully estimate bufer

conditions is important for characterizing and understanding the

user experience of video streaming lows, whereas the ability to

perform accurate online classiication (and the signals it provides)

is important for traic and low management.

The framework includes an event-based bufer emulator module

that uses detailed HTTP and payload data to emulate the bufer

conditions of the clients. For the HTTPS context, the emulator mod-

ule uses a trusted proxy design for data extraction. The emulator

module can be used both on its own (for detailed bufer analysis)

or as a training tool for simpler online classiiers. The framework

also includes training and evaluation modules for supervised and

semi-supervised online classiiers. In contrast to the emulator mod-

ule, these classiiers only require TCP/IP packet-level information,

which can be collected in real-time, do not require any comple-

mentary data to be collected or extracted, and are applicable to

encrypted HTTPS traic. These properties allow the online clas-

siiers to be efectively applied in real-time on ongoing HTTPS

streams, providing us with in-session low-bufer warning signals.

The accuracy of our emulator is validated using two diferent ser-

vices. First, the emulation of a YouTube player is validated against

both the statistical reports sent by YouTube players and an instru-

mented YouTube client that logs its bufer conditions. The former is

obtained from the trusted proxy, while the latter is obtained using

YouTube’s JavaScript interface. Second, we annotate videos of a

2Here, BUFFEST refers to the framework’s ability to perform bufer condition

estimation/prediction.

commercial mobile streaming service with frame information and

record a signiicant number of long duration sessions, for which

we also collect proxy logs, providing us with a third type of ground

truth comparison. Our emulator is shown to provide good estima-

tions of the bufer occupancy, the number of stalls, and the overall

stall duration. Furthermore, our preliminary characterization using

the emulator on sample sessions shows that the rate-adaptive algo-

rithms of both services are typically able to ensure łdelay-tolerancež

in the time until when the next chunk download needs to complete,

as they seldom operate under low bufer conditions. Although we

do not consider priority policies in this paper, delay-tolerance is an

important property, as it suggests that accurate classiication into

a relatively small high-priority class can allow for efective low

management even when operating at high utilizations.

For online classiication, we present and evaluate simple threshold-

based and machine-learning-based classiiers based on TCP/IP

packet-level information, allowing the classiiers to be applied to

HTTPS streams in real-time. The classiiers are shown to efectively

diferentiate between lows that currently have low bufer condi-

tions (and tight real-time requirements) from clients that have built

up a signiicant playback bufer (and have slack). These results sug-

gest that even simple classiiers can be used to identify low-bufer

lows or provide łwarning signsž that one or more users are at risk

of experiencing reduced QoE, possibly allowing operators to take

additional actions and remediation steps (e.g., power management

of network elements, oloading, etc.).

Outline: Section 2 makes a case for passive bufer condition ex-

traction, outlines the general challenges, and presents an overview

of BUFFEST. Section 3 provides the necessary background of the

YouTube streaming service. Sections 4 and 5 present the details

and validation of our emulator module. Section 6 presents our on-

line classiiers and the corresponding performance results. Finally,

Section 7 discusses related work and Section 8 concludes the paper.

2 BUFFER CONDITION ESTIMATION

Playback stalls are key indicators of user satisfaction and signif-

icantly impact video abandonment [16, 22]. Since stalls typically

occur due to empty playback bufers, capturing the bufer occu-

pancy of clients is important when trying to understand the clients’

playback experience. Identiication of clients with low bufer con-

ditions can also be used to improve users’ QoE. For example, at

a coarse time granularity, an operator can use knowledge about

overall streaming quality when performing capacity planning. At a

iner time granularity, per-session knowledge or per-client knowl-

edge every minute, for example, can be used to perform oloading

and adapt resource allocation and availability (e.g., through power

management). Finally, at an even iner granularity, of a few seconds,

for example, clients with low bufer conditions can be helped so to

reduce the risk of stalls.

2.1 Candidate approaches

To understand the playback quality of users, an operator can either

run experiments with instrumented clients or try to extract the

information from passive traic monitoring. Client-side instrumen-

tation is complicated by most popular streaming services using

their own proprietary players. Furthermore, the few websites that

BUFFEST: Predicting Bufer Conditions and Real-time Requirements of HAS Clients MMSys’17, June 20-23, 2017, Taipei, Taiwan

Figure 1: Overview of the BUFFEST framework.

provide player APIs typically signiicantly restrict the parameters

that can be accessed. While additional plugins sometimes can be

used to get around some limitations [30], client-side experiments

typically introduce additional load on the system, and do not help

capture the performance of non-instrumented clients.

In this paper, we instead focus on passive traic monitoring,

using an instrumented client only to validate our approach. This ap-

proach is more scalable and allows us to consider non-instrumented

clients, but may miss some client-side processing, and therefore

only provides an approximation of the clients’ playback sessions.

With most video streaming services using HAS, a natural ap-

proach to estimate the bufer conditions during playback sessions

is to extract HTTP information from traces. For example, HTTP

requests during streaming sessions typically contain information

about which chunks (or range of bytes) are being downloaded, and

at what quality level or bitrate these chunks are downloaded. As we

show here, given the right metadata (typically extracted elsewhere)

regarding chunk boundaries and playback rates, for example, it is

relatively easy to emulate what happens on the client side. How-

ever, with increasingly many services, including YouTube, using

HTTPS for their delivery, extracting HTTP requests and the ap-

propriate metadata information is becoming increasingly diicult.

Future traic monitoring-based approaches may therefore have to

rely only on TCP/IP packet-level information. For this reason, we

design a classiication framework that can be used on both HTTP

and HTTPS traic, and evaluate diferent classiiers’ relative ability

to recognize when clients are experiencing low bufer conditions.

An alternative approach to detect low-bufer instances is for con-

tent providers or players to explicitly inform the łnetworkž about

potential bufer problems (e.g., by setting a packet header lag or

sharing QoE reports). However, such approaches require collabo-

ration between content providers and network operators, can be

manipulated by clients wanting preferential treatment, and are to-

day not implemented by any globally popular service. In the case

such collaborative techniques become common, the techniques pre-

sented here could be valuable in distinguishing legitimate warning

signals from signals generated by greedy clients.

2.2 Classiication framework overview

There is a natural tradeof between the classiiers’ accuracy, com-

plexity, and access to information. BUFFEST explores this tradeof

for the context of adaptive video streaming over HTTPS. At one

end of the spectrum we present a careful bufer emulation module

(Section 4) that uses as much application-layer and metadata in-

formation as possible and requires additional data acquisition and

information extraction. At the other end of the spectrumwe present

simple online classiiers (Section 6) that make their decisions based

on metrics easily calculated in real time from TCP/IP packet-level

traces. To improve their accuracy, we also provide training and

evaluation modules for supervised and semi-supervised learning.

Figure 1 summarizes the BUFFEST framework and its compo-

nents, when used for online classiication. Here, a bufer emulation

module is used for automated labeling of sample lows. To extract

HTTP information from HTTPS connections, the emulator module

relies on a trusted proxy. By simultaneously calculating summary

metrics on the corresponding packet-level data we can create la-

beled training datasets, which we use to extract online classiication

rules. The online classiiers are then applied with these rules on the

encrypted packet-level data.

At a high level, we emulate a player that sits at the network

interface card (NIC) of a client (or wherever the proxy is placed) and

registers available HTTP-level, TCP/IP-level, and stream metadata.

This data includes encoding rates, chunk boundaries, and other

information that is typically contained in metadata iles.

Although in most cases it may be unfeasible for an operator to ac-

quire all information needed for such bufer emulation in real-time

for all clients that it concurrently serves, the emulator provides a

baseline for the potential accuracy that can be achieved with traic

monitoring-based approaches. Therefore, any client routed through

the proxy can provide useful data for training of online classiiers.

For these clients, we use the emulated bufer conditions to build

an automatically labeled training dataset to be used for training

of simpler online classiiers. The detailed chunk-level information

available through the emulator module is also useful in gaining

insights when designing simpler classiiers that can extract action-

able information in real-time. For example, when evaluating online

classiiers, the bufer emulator has proven a valuable tool for further

investigation of cases of special interest.

Our online classiiers trade away some accuracy for faster pro-

cessing. To achieve fast processing, we focus on features based on

simple one-pass metrics that are calculated using only packet-level

information. While our training and evaluation modules can easily

be used for training of any advanced classiier using these metrics,

for the purpose of this paper, we focus on simple threshold-based

classiiers and basic machine learning classiiers. We have identi-

ied classiiers that perform the best after testing methods based on

decision trees and Support Vector Machine (SVM) that are available

in three public machine learning libraries (Wales, LibSVM, and

Microsoft Azure Machine Learning Studio).

Finally, even though our experiments are done with a trusted

proxy, we note that our online classiication techniques do not re-

quire the clients to go through trusted proxies. Instead, transparent

proxies and middleboxes can be used[42]. In order to train these

classiiers, the operator could use bufer emulations based on pilot

experiments with a subset of clients (under their control) going

through a trusted proxy (as done here) or through the use of an

instrumented player, if available, for example.

3 YOUTUBE STREAMING SERVICE

To simplify our discussion and limit the amount of service-speciic

details, we present example classiiers and detailed analysis for the

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

case of YouTube traic. To validate the generality of the bufer em-

ulation framework, we also present some complementary analysis

using screenshot-based measurements from a commercial mobile

streaming service. However, since the focus is on YouTube, we next

present a brief overview of the YouTube service.

YouTube’s streaming techniques are consistent with other HAS

services. During a playback session, the client typically downloads

video from one CDN server. In addition, YouTube clients typically

communicate with a statistics server that collects client-side play-

back statistics and also with various advertisement servers.

YouTube supports playback in both Flash and HTML5 containers,

with both video and audio streams generally being available in for-

mats such as lv, mp4 and WebM. With HTML5 being the expected

industry standard for Web streaming, we report experiments using

HTML5 enabled clients that use WebM encoded videos.

With HAS services, each video quality encoding is typically split

into smaller chunks with unique URLs that can be independently

downloaded and played, allowing for eicient quality adaptation.

With YouTube, however, each encoding of the video is given a sep-

arate identiier and range requests are instead used to download

chunk sequences. This has the advantage that a single request can

be used to request multiple chunks at a time, avoiding unnecessary

on-of periods, for example, that may otherwise hurt client perfor-

mance [3]. One disadvantage of long range-requests, however, is

that clients may be less adaptive to bandwidth variations.

When a client initiates playback, a manifest ile is irst down-

loaded that contains information about the diferent encodings at

which the video is available. As common with many services, the

client also obtains additional metadata about the encodings and

mappings between chunk byte ofsets and their corresponding play-

times. This information is then used by the adaptation algorithms

to make range-requests that typically map to one to six chunks (i.e.,

5-30 seconds of data) at a time. Although the client receives this

data linearly, the player requires a minimum amount of information

before frames can be decoded. In our emulator we assume that a

chunk must be fully downloaded before playback of that chunk.

4 BUFFER EMULATION MODULE

We have built an event-driven module that emulates the bufer

conditions over entire playback sessions using HTTP and metadata

extracted using a trusted proxy design.

4.1 Proxy measurements

We have setup an experimental testbed using a trusted proxy that

splits theHTTPS end-to-end connection, which is a commonmethod

reported in literature [34, 40]. On the client side, we redirect the

browser traic to go through mitmproxy (v0.13)3. The proxy logs

the application-level information for each HTTP request and re-

sponse in clear text, before forwarding the unmodiied (encrypted)

requests/response to/from the server. Simultaneously, we collect

TCP/IP packet-level information. In addition, we download the

manifest ile of each video and the video’s metadata with chunk

boundaries for each video quality encoding.

3https://mitmproxy.org/

For each video session, we then use the mitmdump proxy com-

panion tool to extract information about the communication se-

quences. In particular, for the main video stream, we extract infor-

mation about request initiation times, range requests, their encod-

ing rates, and the ports over which these requests were delivered.

Due to limitations of mitmproxy v0.13, the proxy logs do not

capture download completion times. To obtain these times for range

requests and for the individual chunks that make up each range

request, we irst extract chunk byte boundaries from the metadata

of each encoding (described next), and then count successfully

delivered in-order payload bytes using the packet traces.

Due to variable bit-rate encoding, chunk sizes can vary signii-

cantly even within a speciic video quality proile. To extract and

identify chunk byte boundaries within a given encoding ile and

range request, we use youtube-dl4. The chunk boundaries are then

associated with codec-level metadata to compute the mapping be-

tween playtime and bytes along the video. Themkvinfo tool is used

to parse the metadata and to extract the location, playtime, and

position in the video bit stream of every key frame.

YouTube speciic optimization: In addition to the informa-

tion about chunk transfers, we also extract information about all

statistical reports, sent as separate HTTP requests to YouTube’s sta-

tistics servers. The client-side information extracted from the URI

of these reports include the timestamp of the request, the playpoint

at that time, and the elapsed time since beginning playback.

For non-instrumented clients, these reports can be used as a

coarse-grained ground truth for when stalls occurred and when

playback was resumed. In this paper, we use the information from

the statistical reports to (i) align the emulator’s playback point with

that of the emulations of the proprietary player, and (ii) as a type

of ground truth in our evaluation for when playback was initiated

and stalls took place. For the ground truth evaluations, we say that

a stall has occurred between two statistical reports if there is a

change in the relative time diference between the current video

playtime and the time elapsed since beginning playback. The total

change between these metrics is used to estimate the total stall

duration of such events. It is, however, important to note that the

frequency of statistical reports typically is only once every 20-30

seconds, and they therefore only provide limited time granularity.

4.2 Emulating the bufer at the NIC

The extracted information (described above) captures the data seen

at the client’s NIC. Using this data, our emulator module recon-

structs the bufer conditions of a player, assuming it gets access

to each chunk as soon as the chunk is fully downloaded. The em-

ulator keeps track of the current state (i.e., "bufering", "playing",

or "stalled") and the next event that can change the player’s state,

including chunk download completions and the bufer dropping to

zero (causing stalls). To allow for post processing of player dynam-

ics, we record logs with all emulated events and player states.

YouTube (and otherHAS players) sometimes re-download chunks

at a higher quality [28, 39]. In these cases, our emulator module

(optimistically) assumes that the player always plays the chunk at

the highest quality available at the player at the time the chunk is

about to be played. Finally, we use statistical reports to determine

4https://github.com/rg3/youtube-dl/

https://github.com/rg3/youtube-dl/

BUFFEST: Predicting Bufer Conditions and Real-time Requirements of HAS Clients MMSys’17, June 20-23, 2017, Taipei, Taiwan

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400 450

A
v

a
il

a
b

le
 b

a
n

d
w

id
th

 (
k

b
it

/s
)

Time (s)

(a) Synthetic

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400

A
v

a
il

a
b

le
 b

a
n

d
w

id
th

 (
k

b
it

/s
)

Time (s)

(b) Norwegian commuter
Figure 2: Example bandwidth traces.

Table 1: Summary of bandwidth traces.
Throughput (kbits/s) Duration

Trace Min Max Mean Std (seconds)

Synthetic high 300 12,000 2,986 3,578 450

Synthetic low 1 150 6,000 1,493 1,789 450

Synthetic low 2 100 5,000 1,426 1,606 450

Synthetic low 3 150 6,000 1,493 1,789 450

Synthetic low 4 100 5,000 1,369 1,668 450

Synthetic low 5 150 6,000 1,493 1,789 450

Norway (ferry 1) 22 3,185 1,353 733 400

Norway (ferry 2) 114 3,594 1,376 776 400

Norway (tram 1) 11 4,354 915 806 400

Norway (tram 2) 11 2,999 983 578 400

Norway (tram 3) 11 2,003 609 367 400

Norway (Bus) 0 5,751 1,797 864 700

the time instances playback begins (within a granularity iner than

an RTT) and to re-align the playpoint whenever a stall has occurred.

Thus far we have focused on the case when the user plays the

video from start to inish. With stored on-demand videos, the client

may also use interactive functionalities such as fast-forward, rewind,

and pause. We have extended the framework to handle instances

when the user forwards (or rewinds) to a location in the video that

is beyond (or outside) the current bufer. In this case, our implemen-

tation notices a gap in the chunks downloaded and assumes that the

player has moved to a new playback position. For pause operations,

we note that our emulator will be conservative, as it will continue

to drain the estimated bufer. Although being conservative under

a pause might lead to cases where clients with large bufers are

identiied as otherwise (false positives), our approach would still

avoid false negatives (low bufers identiied as high). This is an

important distinction, as a conservative classiier often is preferred

over aggressive classiiers even if with higher precision.

Finally, we note that although user interactions and additional

trick modes (e.g., playback at other play rates) are available, large

user behavior studies have reported that sessions using these fea-

tures account for a relatively small fraction [14].We leave the design

and evaluation of policies to detect trick play as future work.

5 EMULATOR VALIDATION

The accuracy of our emulator is validated using two diferent

streaming services and multiple ground-truth datasets.

5.1 Videos and bandwidth proiles

For the YouTube validation we use ive synthetic and ive real-

world bandwidth traces from a 3G network [35]. They are chosen

to provide diverse and challenging conditions, and are used together

with 50 YouTube videos (chosen to represent a diverse set of video

 0

 30

 60

 90

 120

 150

 0 50 100 150 200 250 300

B
u

ff
er

 o
cc

u
p

an
cy

 (
s)

Time (s)

Client buffer (API)
Emulated buffer

Figure 3: Example comparison of the bufer estimated at the

NIC (using emulator) and observed at the player (API).

categories): News/TV shows (7), Music videos (5), Professional User

Generated Content (UGC) (11), Homemade UGC (10), Games/Sports

(7), and Short movies/animations (10). All of our videos are 4-8

minutes long, with an average playtime of 347 seconds, and all

videos are played for their full duration. Figure 2 shows two example

traces and Table 1 summarizes key statistics for the bandwidth

traces. As with other representative videos, some videos in this

subset allow us to embed them in any player, particularly in our

instrumented player, whereas others can only be played with the

oicial YouTube player.

5.2 Player-instrumented validation

To validate the event-based emulator, we irst use YouTube’s JavaScript

API to access parameters internal to the player and build a ground

truth of the bufer conditions seen in the player. To access the

YouTube player over the API, each video is embedded in a webpage

to which we add JavaScript code that logs detailed client-level in-

formation. The player is then instrumented to make per-second

logging of the Unix time, bufer occupancy, current play point, play-

back quality, and the true player state (i.e., if it is bufering, playing,

or is stalled). By simultaneously logging HTTP and packet-level

traces of the playback sessions (using our framework), we can em-

ulate and compare the bufer levels and playback states obtained

by our emulator module with those observed on the player.

While this data provides an excellent ground truth, a limitation

of using the API (in our own custom page) to access the YouTube

player is that we cannot use the videos for which the uploader has

disabled embedding into other webpages or videos that require

users to be logged in. This limits the API-based validation to the

subset of 30 videos that can be played back with API-level access.

For our experiments, we use a Google Chrome browser conig-

ured to use a proxy that runs on the client machine. The machine

runs Linux Mint v17 using Linux kernel (3.13.0-24) and is equipped

with a Gigabit Ethernet interface, Intel i7 CPU, and 8 GB of RAM.

We use dummynet [36] to control the available bandwidth at a per-

second granularity. Due to the prevalence of CDNs, no additional

delays are added to the RTTs from/to the YouTube edge servers.

Figure 3 shows an example comparison between the bufer oc-

cupancy reported by the API and the emulated bufer (observed at

the NIC) during a streaming session of a 5.5 minute long video. In

the example, the client has relatively good bandwidth conditions,

allowing it to download chunks at a high quality for most of the

session. As desired, the two bufer curves (for the emulated bufer

and the actual bufer) nicely follow each other, showing that the

emulator captures the general bufer dynamics. A closer look at the

diference between the two curves shows that the emulated bufer

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

 0.2

 0.4

 0.6

 0.8

 1

-20 -10 0 10 20 30 40 50 60

C
D

F

Buffer size difference (s)

Synthetic trace
Real trace
Combined

Figure 4: CDF of the diferences in bufer sizes observed at

the NIC (emulator) and the player (API).

size almost always is slightly larger in this scenario. The reasons

for the slightly larger estimates are that in this example the time in-

stances when playback starts are almost the same for the emulated

player (whose startup instance partially can be adjusted with the

help of statistical reports) and the real player, and the NIC always

receives the chunks before the player (since the players experience

additional operating system (OS) related delays, for example).

We next take a closer look at the diference in bufer sizes ob-

served at the NIC (emulated) and the player (using API). Figure 4

shows the cumulative distribution function (CDF) of the diference

between the two bufer sizes, measured at 1 second intervals dur-

ing playback, over a large number of playback sessions. Here, we

have used six bandwidth traces (3 synthetic and 3 real traces) com-

bined with ive diferent videos per trace. Although the diferences

typically are relatively small, we observe a few larger diferences.

Most of the observed diferences are due to diferences in when

chunks are seen on the NIC (emulated player) and by the API (real

player). First, there is a delay between when a chunk is fully down-

loaded, as seen on the NIC, and when it is available at the player.

This is in part due to OS-related delays, caused by having to pass

TCP bufers and time varying CPU sharing between competing

processes, for example. Second, a more subtle but highly noticeable

diference occurs due to how and when the player receives consec-

utive chunks within a range request. Referring back to Figure 3,

chunks often appear to be delivered to the real player in batches

(indicated by sharp vertical spikes in the API curve). This is typi-

cally (but not always) due to multiple chunks associated with some

range requests being delivered simultaneously, when a subset of

chunks is fully downloaded. In contrast, the emulator always treats

each constituent chunk of a range-request as available for playback

as soon as it is fully downloaded. In these cases, the emulator is

somewhat optimistic in when chunks are available to the player.5

While large diferences due to the above reasons are not uncom-

mon (e.g., 24% difer by more than two chunks), we have found that

the lag causing these diferences normally is temporary and the

player typically quickly catches up. For example, the cases with

more than 20 seconds diference (with an average diference of 27

seconds), the average diference for this subset (ignoring addition-

ally downloaded chunks at the NIC) reduces to 9.5 seconds after 4

seconds and to 0.69 second after 8 seconds. This suggests that the

5 This does not mean we provide a bound for the bufer size, since the startup delays
may still difer (in both directions).

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

Buffer size (s)

B
est

<10, combined
B

est
<10, synthetic

B
est

<10, real
10<B

est
<30, combined

10<B
est

<30, synthetic
10<B

est
<30, real

Figure 5: CDF of the observed bufer size at player (using

API) when the emulated bufer Best (at NIC) is low (<10s) and

intermediate (10-30s).

OS-related delay, even when delivering multiple chunks at once, is

less than 8 seconds.

As acknowledged and considered here, the above delays compli-

cate predicting when chunks are needed by the clients and have im-

plications for the design of the player-side algorithms themselves,

as such algorithms also may need to take into account random

delays introduced by the OS, not only the bandwidth conditions.

Rather than modeling these delays (e.g., using a stochastic model),

we acknowledge their existence and quantify their impact.

5.3 Coarse-grained classiication

While the above OS and player internals make the exact bufer

conditions impossible to capture using only network data, we have

found that the framework can distinguish clients with low bufer

conditions from other clients. To illustrate how this technique can

achieve the goal, Figure 5 shows the actual bufer conditions for

clients that the emulator estimates will have low bufer conditions

(estimated by the emulator to have less than 10 seconds bufered)

and intermediate bufer conditions (estimated to have bufered 10

to 30 seconds). Note that there is a clear separation between these

two categories and most of the cases that are misclassiied are due

to overestimations. Furthermore, for the clients with low-bufer

estimates (Best < 10) the actual bufer is in fact less than 10 in 98%

of the cases and it is very rare that the clients that we predict will

have intermediate bufer conditions (10 < Best < 30), drain their

bufers down to zero. These results show that the emulator can be

used as a good estimator of the coarse-grained bufer conditions of

the player itself, despite the OS-related delays.

5.4 Startup delays and OS-related delays/inertia

In general, we have found that for most streaming sessions, espe-

cially those with good download speeds, playback begins when the

irst chunk is fully downloaded. This is illustrated in the scatter plot

shown in Figure 6(a). Here, example results are shown for three

traces (two synthetic and one real-world trace) and all 50 sample

videos. Results for other traces are similar. Motivated by this ob-

servation, we calculate the time between the reported startup time

and the time that the irst chunk was fully downloaded. Figure 6(b)

shows the CDF of this diference. Note that the time diferences in

most cases are between 1/8 and 1/4 of a second, suggesting that the

OS-related delays for the irst chunk typically are small, although

there clearly are exceptions with signiicantly larger diferences.

BUFFEST: Predicting Bufer Conditions and Real-time Requirements of HAS Clients MMSys’17, June 20-23, 2017, Taipei, Taiwan

Table 2: Stall event summary for the emulator.

Metric

Synthetic

low

Synthetic

high
Bus
trace

Actual stall events 111 6 8

Emulated stalls 107 7 10

Correct stall events 81 6 6

Videos with stall 41 6 5

Videos with emulated stall 41 6 8

Videos with correct stall 41 6 5

Videos with correct irst stall 34 6 4

Overall false positives 0.5 0.02 0.08

Overall sensitivity 0.81 1.00 0.75

Overall speciicity 0.99 0.99 0.99

Overall precision 0.75 0.85 0.63

Overall accuracy 0.98 0.99 0.99

Overall F1 score 0.78 0.92 0.66

Overall stall duration ratio 1.09 1.16 1.41

5.5 Stalls compared with statistical reports

For a provider-side comparison, we have also evaluated the accuracy

of the NIC-based emulator against what YouTube may see based on

the statistical reports that clients periodically send to their statistics

servers. Since these reports do not provide information about bufer

levels, we use stall and stall duration metrics for this evaluation.

Table 2 summarizes various accuracy metrics calculated across

all stalls observed by the emulator, for the same traces and videos

used in Section 5.4. Here, sensitivity (sometimes called recall) is

the ratio of true positives to the sum of true positives and false

negatives. Speciicity is the ratio of true negatives to the sum of

true negatives and false positives. Precision is the ratio of true

positives to true positives and false positives. Accuracy is the ratio

of the sum of true positives and true negatives to the sum of true

positives, false positives, true negatives and false negatives. Finally,

the F1-score is equal to the harmonic mean of the precision and the

sensitivity. Since the statistical reports (submitted roughly every 20-

30 seconds) only allow us to determine if there has been at least one

stall between two reports, and the (combined) duration of any such

stalls, not howmany stalls there have been between the two reports,

all reported statistics are calculated on the granularity of statistical

reports. We call the interval between two reports a stall event if

there was a stall between the two reports and we consider the

emulated stall(s) as łcorrectž only if the stall(s) (i) occurs between

the same two statistical reports as it is observed by YouTube, and

(ii) the combined duration of the stall(s) between these two time

instances difer by at most 50%. The overall stall duration ratio is

calculated as the ratio of the stall duration reported by the emulator

and the stall duration observed from the statistical reports.

Even with the restrictive interval deinition, our emulator cor-

rectly emulates the time and duration for 93 of 125 stall events

observed with the use of statistical reports. While it may appear

that we have 32 false positives here, looking closer at the data, all

these cases too correspond to actual stall events on the player. For

these cases, either the timing or the stall duration do not (exactly)

match those extracted based on the statistical reports. These difer-

ences are primarily due to the coarse granularity with which stalls

are identiied from the statistical reports (as they only reveal that a

stall occurred between two stats reports, not when) combined with

the lag between the NIC and the actual player. Similar observations

hold for the other traces.

Another interesting observation is that we correctly identify

all 52 sessions (out of 150 sessions) that contain at least one stall,

while only having three false positives. Furthermore, for 44 of the

videos the time instance and duration of the irst stall was correct.

The higher than average detection rate for the irst stall (84.6%)

compared to across all stalls (66.4%) is positive, since the irst stall

may be the most important to avoid for user satisfaction purposes.

The higher accuracy can be explained by the initial startup instances

being easier to estimate than those after stalls.

While the OS-related delays explain most stalls observed on the

player that are not captured by the emulator, we have observed

some interesting cases due to partial chunk replacement. In these

cases, the client irst downloads a sequence of chunks (say chunks

1-7) at a low quality, and then requests a sequence of chunks (say

5-7) at a higher rate, but does not obtain all chunks (e.g., chunk

6) by its playback deadline. In these cases, our emulator assumes

that the client always plays at the highest quality for which it has

a complete chunk, whereas it appears that the YouTube player in

some cases does not fall back to the lower encoding after making

a request to replace a set of chunks. This is probably because the

player is implemented so that it cannot make use of the lower

quality chunks as they may have been lushed from the bufer, for

example, and there is overhead associated with switching back to

the lower encoding. As these cases are rare and we expect future

players to handle these situations better, we did not try to modify

our emulator to match the YouTube player’s current behavior.

We have also manually validated that any stall that the emulator

identiies in fact is a stall on the player. This should always be the

case whenever a statistical report has been used to synchronize

the startup time of the emulator. Overall, our results suggest that

emulating the bufer conditions at the NIC provides a reasonable

estimation of the bufer conditions and stalls at the player.

5.6 Fast-forward operations

Experiments have been performed to validate the efectiveness

of the emulator under user interactive operations such as fast-

forwards. Our approach applies to any interactive operation (fast-

forward, rewind, etc.) leading the player to a play-point that has not

been bufered. The results have been positive, with the approach

discovering fast-forwards much faster than the statistical reports

(which typically results in a 5-30 seconds observation delay). Our

YouTube version of the emulator combines the two methods.

To illustrate the efectiveness of the approach, we summarize

the results of 30 random experiments with both fast forwards and

stall events. Out of these, 15 are based on synthetic traces and 15

use real traces. For each experiment, we initially play the video

for 60 seconds, after which the playpoint is forwarded a random

time-duration beyond the current bufer, causing an out-of-bufer

forward. The video is then played until the end and the evaluation

looks at the irst stall event that occurs after the fast-forward. Out of

the 30 experiments, 28 contained stalls after the fast-forward. The

emulator was able to correctly predict the presence of a stall in 86%

of the 28 stall-cases and did not make any false predictions. How-

ever, as before, the emulator in many cases (due to NIC placement)

typically is somewhat ahead of the player and often has some data

in its (emulated) bufer at the time that the stall occurred. Figure 7

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9

T
im

e
to

 d
o

w
n

lo
ad

 f
ir

st
 c

h
u

n
k

 (
s)

Startup time (s)

High-b/w trace
Low-b/w trace

Real-world

(a) Scatter plot

 0.2

 0.4

 0.6

 0.8

 1

1/16 1/8 1/4 1/2 1 2 4 8

C
D

F

Startup delay - completion time of first chunk (s)

High bandwidth trace
Low bandwidth trace

Real-world trace

(b) CDF

Figure 6: Diferences between startup delays and the time that it takes to download

the irst chunk.

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Buffer size (s)

B
est

 at first stall after fast forward

Figure 7: CDF of the emulated bufer con-

ditions at time of stalls.

shows a CDF of the bufer at the emulator at the exact time of these

stalls. In 40% of the cases the emulator sees less than one chunk in

the bufer and in 84% of the cases it sees less than two chunks in

its bufer. Most of the stalls with larger emulated bufer sizes are

related to large range requests containing multiple chunks.

5.7 Third-party validation

While our focus in this paper is on YouTube, we have also validated

our emulation framework using another video service. In particular,

we have obtained simultaneous (i) HTTP transaction logs and (ii)

time-synchronized screen captures of streaming sessions from a

popular commercial service. The HTTP transaction logs are gener-

ated by a proxy that diferent mobile clients (Android and iPhones)

are connected to. The time-synchronized screen captures are gener-

ated while playing a special video which displays the frame number

and bitrate level in every frame. An optical character recognition

(OCR) program reads the per-frame annotated information and logs

the current bitrate level, playtime (frame number) and beginning

and end of stalls and video playback.

Using these traces we have validated our emulator. While the

time-synchronized screen captures do not provide any information

about bufer levels, they do carry per-frame information that help

us identify a ground truth with the exact time of stalls and their

exact duration, as experienced by the user. To estimate the accuracy

of our emulations, we therefore compare the emulated bufer levels

(based on the information in the HTTP transaction logs) at the time

instances when there was a stall. In roughly 50% of the stalls our

emulator has less than a chunk and in 80% of the cases it has less

than two chunks. The cases with larger bufer estimates can mostly

be explained by a larger error in how we estimated when playback

resumed. In particular, with the traces being collected over several

hours and reported for each 30 minute period, we had to estimate

playback starts based on playback resumptions after a preceding

stall event. More speciically, we assumed that any data obtained

after the time of the irst stall occurrence corresponds to data needed

after the stall event (estimated as the initial request) and that the

playback resumed at the time instances that the player resumed

playback. Naturally, this is not always the case, and our estimation

of the startup instance can only be considered an approximation.

6 ONLINE CLASSIFICATION

With YouTube and other services that use HTTPS and/or require

complementary data to be extracted (e.g., encoding rates and chunk

boundary information), it is not possible to emulate the bufer

conditions in real time. We next describe our online classiication

module for such contexts, and present preliminary results using

both threshold-based and machine learning classiiers. While we

focus on detecting low-bufer conditions, as such events are the

most important indicators of viewer experience, our approach can

also be extended to consider playback quality and other metrics.

6.1 Calculating metrics online

For the purpose of our proof-of-concept implementation we contin-

ually calculate the exponential weighted moving average (EWMA)

for diferent window weights α for both the per-second throughput

Xα and the inter-request times Iα . Here, throughput is calculated

based on the packet payloads delivered from the server to the client,

and inter-request times are estimated as the time between request

packets (with payload) from the client to the server. These packets

are larger than a regular ACK, and typically contain an HTTP range

request to the server. Our validation (omitted) has shown that this is

a highly accurate method to capture the timing of range requests.6

In parallel, we also calculate and keep track for how long time

(TX
α) that the weighted throughput metric Xα has been below a

threshold X ∗α , and for how long time (T I
α) that the weighted inter-

request time metric Iα has been above a threshold I∗α . As with the

EWMA metrics, these metrics too can be efectively calculated on-

line, using a single pass. Finally, our online classiiers are designed

to make decisions based on these metrics, as calculated for diferent

α values and thresholds values (X ∗α and I∗α).

6.2 Classiiers

6.2.1 Threshold-based classifiers. First, for the training phase,

we label each training trace based on the emulated bufer condition

seen by the client, use a search to ind the best threshold combina-

tion that provides the best F1 scores (harmonic mean of precision

and sensitivity), where F1 scores are calculated based on how well

the classiier (with selected thresholds) detects low bufer cases (as

classiied by the emulator). We consider the client to have low bufer

conditions when the emulated bufer has less than B
∗ seconds of

content. Note that training with B
∗
= 0 corresponds to only using

6 Again, note that the number of chunks requested in each range request is still
unknown. Otherwise, this information could be used to emulate the bufer of clients
that do not use fast-forward pause, and other VoD functionalities. Within the current
framework, it can also be used as a lower bound on the number of chunks obtained
within a time window.

BUFFEST: Predicting Bufer Conditions and Real-time Requirements of HAS Clients MMSys’17, June 20-23, 2017, Taipei, Taiwan

Table 3: Best classiier coniguration and evaluation results for the threshold-based classiiers.
Training Evaluation

α X
∗

α (Kbit/s) T
X
∗

α F1 score Sensitivity Precision F1 score

Synthetic trace with B∗ = 0 0.15 400 5 0.49 0.49 0.59 0.49

Synthetic trace with B∗ = 5 0.5 550 20 0.28 0.77 0.53 0.51

Synthetic trace with B∗ = 10 0.3 600 25 0.40 0.7 0.66 0.57

Synthetic trace with B∗ = 20 0.2 550 25 0.59 0.58 0.72 0.55

Synthetic trace with B∗ = 40 0.25 300 10 0.71 0.62 0.73 0.58

Real trace with B∗ = 0 0.45 800 25 0.37 0.37 0.66 0.40

Real trace with B∗ = 5 0.15 600 5 0.16 0.63 0.46 0.48

Real trace with B∗ = 10 0.05 900 10 0.35 0.72 0.73 0.67

Real trace with B∗ = 20 0.1 850 20 0.61 0.53 0.72 0.55

Real trace with B∗ = 40 0.15 900 20 0.70 0.62 0.85 0.65

stall instances for training. With this deinition, a true positive is

any instance where the classiier would indicate a bufer below B
∗

and the bufer actually is below B
∗.

We have found that the best throughput-based classiiers almost

always outperform the inter-request-based classiiers. For example,

in our default scenario all inter-request-based classiiers obtain F1

scores less than 0.2. For this reason, we will focus primarily on the

throughput-based classiiers7.

To ind a good threshold-based classiier we perform a ine-

grained brute force search over all α values and threshold pairs X ∗α
and TX

∗

α in which we use 20 diferent levels of α values and 105

diferent threshold pairs to identify the best combination of values

which results in the highest F1 score. This coniguration is then

used for the evaluation on the evaluation set, diferent from the

training set, for which we report results in Section 6.3.

6.2.2 Machine learning classifiers. Although threshold-based

classiiers allow quick parameter selection and online reconigura-

tion, their predictive powers are generally considered limited when

compared to machine learning techniques. In this work we tested

the techniques based on decision trees and Support Vector Machine

(SVM) implemented in three popular machine learning packages

(Wales8, LibSVM9, and Microsoft Azure Machine Learning Stu-

dio10). Here, we report results for the two-class boosted decision

tree classiier. Among the classiiers we considered, this classiier

provided the best scores both during training and evaluation.

Boosted decision trees [21] is a class of decision trees that adjusts

(boosts) the weights of the trees at the end of every training step

based on whether the previous tree classiied the data correctly.

In our context, the classiication problem is based on whether a

playback stall would occur or not, given the observed throughputs

over diferent time periods. Boosted decision trees are particularly

attractive when features are related (have low entropy) [10].

For the evaluation, the training data was generated by comput-

ing the average throughput per second observed over diferent time

windows during playback. The window sizes that we consider are 5,

10, 20, 40, 80 and 160 seconds. By computing the average throughput

over diferent time windows, we aim to capture short-term luctua-

tions with the smaller windows and long-term degradation with

7A combination of throughput-based and inter-request-based classiiers could also be
used. While we leave this as future work, such techniques could be used to capture
trick play modes (2x, 4x, etc.), where the inter-request-time could be used to estimate
the playback rate.
8http://wales.sourceforge.net/
9https://www.csie.ntu.edu.tw/~cjlin/libsvm/
10https://studio.azureml.net/

the larger windows. As before, both the training and evaluation

datasets (diferent) are tagged with stall occurrences based on the

emulated bufer. While these metrics are simple and easy to extract,

it should be noted that they are correlated, again motivating the

choice of boosted decision trees.

6.3 Prediction evaluation

For both threshold-based and machine learning classiiers, our eval-

uation was performed separately on the synthetic and the real

traces. In all cases, we picked three bandwidth trace types for train-

ing and two diferent bandwidth trace types for evaluation. For

each trace type, we run ten diferent experiments, with diferent

randomly selected videos, giving us 2×30 training and 2×20 evalu-

ation instances. Although we only have a limited set of bandwidth

traces, this methodology allows us to ensure that there is no overlap

in the bandwidth traces or in the videos between the two sets.

6.3.1 Threshold-based classifiers. The results of the threshold-

based classiiers are summarized in Table 3. Here, we show the

parameter selection from training (columns 2-4), the F1 score on the

training dataset (column 5), and the results on the evaluation dataset

(columns 6-8); broken down into sensitivity (column 6), precision

(column 7) and F1 scores (column 8). For both the synthetic and

real scenarios we show results with B
∗ equal to 0, 5, 10, 20, and 40

seconds. In general, a larger B∗ value provides a larger window for

detection. Referring to the parameter selection (columns 2-4), we

note that our training framework allows us to adjust the parameters

for each case. When interpreting the results it should be noted

that the choice of B∗ impacts the performance measures and the

tests (and techniques) are designed to test how well low-bufer

conditions (rather than stall events) can be identiied.

Figure 8 shows the CDF of the bufer conditions as seen when the

threshold-based online classiiers predicted low bufer conditions,

and put them in contrast to the conditions as observed over all

sessions. The substantial diferences in the CDFs are encouraging as

it shows that relatively simple classiiers can be useful in predicting

low bufer conditions even when the traic is encrypted.

While our results presented here are with relatively simple

threshold classiiers, the generality of the framework allows auto-

mated labeling and training using a much richer set of classiiers.

We next consider the machine learning classiiers.

6.3.2 Machine learning classifiers. Table 4 shows the results of

the boosted decision tree classiier available in Microsoft Azure

Machine Learning Studio. We note that this classiier improves

http://waffles.sourceforge.net/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://studio.azureml.net/

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

C
D

F

Buffer size (s)

B
*
 = 0

B
*
 = 5

B
*
 = 10

B
*
 = 20

B
*
 = 40

Buffer size distribution

(a) Synthetic trace

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Buffer size (s)

B
*
 = 0

B
*
 = 5

B
*
 = 10

B
*
 = 20

B
*
 = 40

Buffer size distribution

(b) Real trace

Figure 8: CDF of emulated bufer sizes and bufer conditions when using the threshold-based classiiers.

Table 4: Results for boosted decision tree classiier.
Sensitivity Precision F1 score

Synthetic trace with B∗ = 0 0.49 0.27 0.35

Synthetic trace with B∗ = 5 0.43 0.52 0.47

Synthetic trace with B∗ = 10 0.55 0.47 0.51

Synthetic trace with B∗ = 20 0.75 0.63 0.69

Synthetic trace with B∗ = 40 0.68 0.90 0.78

Real trace with B∗ = 0 0.10 0.31 0.07

Real trace with B∗ = 5 0.17 0.39 0.24

Real trace with B∗ = 10 0.52 0.53 0.52

Real trace with B∗ = 20 0.86 0.61 0.71

Real trace with B∗ = 40 0.82 0.82 0.82

noticeably over the simple threshold-based classiiers for the cases

when we use intermediate-to-large B∗ values (e.g., 20 or 40), but

performs much worse with small B∗ values (e.g., when B
∗
= 0).

One reason for the low accuracy when B
∗
= 0 is an imbalance

between stall and non-stall instances. For example, with B
∗
= 0

the ratio of stall instances to playback instances was only 0.071

for the synthetic traces and 0.016 for the real traces. Furthermore,

although there are several stall instances, when compared to the

entire playback length, the duration of stalls is small.

Fortunately, as discussed above, the low-to-intermediate bufer

cases (e.g., using B∗ = 20) are likely of more interest for real-time

optimization techniques. The better accuracy for these cases can be

explained by richer and more balanced training data. For example,

the ratio of instances where the bufer size was less than or equal

to B∗ = 20 was 0.441 for the synthetic trace and 0.358 for the real

trace. With B
∗
= 40 the corresponding ratios were 0.694 and 0.826.

Finally, we look closer at the actual bufer conditions at the

instances when the boosted decision tree classiier predict low

bufer conditions. Figure 9 shows the CDF of bufer conditions

when the boosted decision tree classiier uses diferent B∗ values.

Interestingly, although the classiier had a poor F1 score for the

synthetic cases with B
∗
= 0, we note that a signiicant amount of

the instances identiied are cases where the bufer size is less than

20 seconds. This suggests that this classiier can be used to identify

low bufer conditions even with B
∗
= 0. For other values of B∗, the

classiier again performs better owing to the richer training data

and more relaxed constraints.

Overall, these results show that the boosted decision tree clas-

siier provides a good tool to predict instances with low bufer

conditions. By careful selection of B∗ we can also achieve a good

tradeof between the number of lagged low bufer instances and the

accuracy with which these are reported. While the machine learn-

ing classiiers in general do not provide the same intuition as the

threshold-based classiiers, we note that the boosted decision tree

classiier typically has higher F1 scores (for intermediate-to-large

B
∗ thresholds) and is easy to implement as a real-time classiier

using existing software packages.

We have also evaluated other machine learning techniques, such

as SVMs on our dataset. The boosted decision tree classiier outper-

forms the SVM classiier when looking across performance scores

for diferent values of B∗, especially for B∗ = 0, B∗ = 5 and B∗ = 10.

For larger thresholds, the SVM classiier delivers very similar re-

sults, and in general, when compared to the boosted decision tree,

has a slightly lower sensitivity and higher precision.

6.4 Discussion and limitations

While we only evaluate classiiers using two services, and acknowl-

edge that the implementations and adaptation algorithms may

change over time even for an individual service, we note that the

general BUFFEST framework is easily extendable for other services

and classiiers continually can be retrained. The ease of applying

the framework to other services was demonstrated and validated

when applying the emulation framework for the second commer-

cial service. In this case, we simply changed the sources of data in

the API. The retraining is simpliied by the use of a separate train-

ing module and the use of the trusted proxy makes it applicable

regardless of HTTP or HTTPS being used for the transfer.

For training purposes encoding rates and chunk boundaries need

to be known. While the emulation module (used for training) cur-

rently works with decrypted manifest iles, which were downloaded

using youtube-dl, other services might not allow access to manifest

iles through external programs. However, this information can still

be extracted from payload using the trusted proxy design.

The current experiments are done by collecting network traces

on the client. Although the network can increase the variability

and diferences observed between the player and the emulator if

located further away from the client, we expect these increases

to be relatively small compared to the OS-related delays we have

observed here. For example, most routers maintain reasonably-sized

bufers (e.g., using the bandwidth-delay product rule) and the bufer

bloat phenomenon is relatively rare in practice, typically resulting

in luctuating queues, rather than large-scale persistent queues [5].

It appears more important that both the packet-level traces and

proxy-based HTTP traces are collected at the same location.

BUFFEST: Predicting Bufer Conditions and Real-time Requirements of HAS Clients MMSys’17, June 20-23, 2017, Taipei, Taiwan

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Buffer size (s)

B
*
= 0

B
*
= 5

B
*
= 10

B
*
= 20

B
*
= 40

Buffer size distribution

(a) Synthetic trace

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Buffer size (s)

B
*
= 0

B
*
= 5

B
*
= 10

B
*
= 20

B
*
= 40

Buffer size distribution

(b) Real trace

Figure 9: CDF of emulated bufer sizes and bufer conditions when using the boosted decision tree classiier.

7 RELATED WORK

Online low classiication has been used extensively in the past.

While Deep-Packet Inspection (DPI) typically is considered too

slow for online classiication [43], eicient online performance has

been demonstrated using supervised techniques based on Naïve

Bayes [29], automated and semi-automated clustering techniques [7,

19, 45], blind traic classiication based on simple low-based met-

rics [25], and statistical analysis based on speciic properties [44].

To the best of our knowledge, our paper is the irst to provide auto-

mated re-classiication of encrypted streaming lows based on the

expected bufer conditions and urgency of diferent clients.

Closest to ours is very recent work by Dimopoulos et al. [15] and

Orsolic et al. [31]. Dimopoulos et al., present a framework to discern

streaming video’s QoE based on network traces. However, we difer

signiicantly in our focus and ground truth evaluation. For example,

they only consider per-session classiication based on high-level

statistics, do not capture the bufer dynamics, and some of their key

indicators (e.g., sudden change in the requested quality) are only

noticeable after a stall. In contrast, our framework identiies low

bufer conditions in real-time, thereby facilitating the possibility of

intervention so to avoid potential future stalls. We also difer signif-

icantly in how we collect and use ground truth measurements. In

their case they rely on legacy HTTP traic (which is diminishing),

whereas we create a general training framework also for services

relying fully on HTTPS and collect player-side ground truth mea-

surements (e.g., using the JavaScript API, statistical reports, and

screenshot measurements) for our validation.

Orsolic et al. [31] present a machine learning based approach

to map playback sessions to QoE classes based on network traces.

They use the YouTube player API to generate training and test

datasets, however, critically difer in estimating only the QoE of

the sessions and do not consider identifying low bufer conditions.

Others have designed stall monitoring tools or considered stall

prediction, but only in the context of HTTP. For example, Casas

et al. [13] design online monitoring of YouTube clients’ stalls us-

ing DPI and packet-level monitoring, but do not take into account

that YouTube has shifted to use HAS (with quality adaptation) and

HTTPS. Similarly, Wu et al. [41] uses CDN logs and information

shared from clients to create a machine-learning-based stall detec-

tion technique for non-encrypted HTTP traic, which they evaluate

on Apple HTTP Live Streaming video sessions obtained from a CDN

and controlled lab experiments using Microsoft Smooth Streaming.

Others have used packet-level and video information to reconstruct

client-side bufer conditions [37], used information about the maxi-

mum bufer size, chunk size, and startup times to reconstruct VoD

sessions [23]. Again, none of these works are applicable to HTTPS.

Other closely related works have also looked at measuring video

Mean Opinion Scores (vMOS) [32] and estimating the encoding rate

and playback duration of chunks that are being downloaded [17]

by looking at HTTPS traces.

Schatz et al. [37] use YouTube’s statistical reports to characterize

client rebufering and abandonment. However, similar to the work

by Dimopoulos et al. [15], this approach facilitates identiication

of events such as stalls only after they have occurred and does not

identify or facilitate low-bufer conditions in real-time. Several other

works have characterized the YouTube service itself [11, 12, 20],

including the quality adaptation and redundant downloads [28, 39].

Finally, it should be noted that many techniques have been pro-

posed for client-driven or server-assisted quality adaptation [4,

24], and for network-assisted prioritization of lows [6, 26] using

SDN-based technologies such as OpenFlow [33]. Others have pro-

posed network-assisted quality selection for HAS clients based on

network-based monitoring [8], or used measurements to model and

characterize user satisfaction when using online services [38].

Standardization eforts have also focused on establishing frame-

works for clients to directly report QoE metrics to network ele-

ments [1]. However, these approaches are not yet widely deployed,

and place restrictions on using HTTPS and video formats that

can be used. Complementary to these, our approach leverages the

information encoded in the traic to understand clients’ bufer con-

ditions through emulation and packet-level classiication. While

we do not consider prioritization here, future work could include

the design of such optimization schemes that leverage BUFFEST to

assess the urgency of diferent lows.

8 CONCLUSION

We have presented the BUFFEST classiication framework that in-

cludes both an event-based bufer emulator module and training

modules for online classiiers. Motivated by increasing usage of

HAS over HTTPS, the emulator module leverages a trusted proxy

method to extract required information about the video lows de-

livered to the clients, allowing us to identify chunk boundaries

and track bufer conditions, as seen on the NIC of the proxy. We

compare our solution against the player’s ground truth using an in-

strumented YouTube client, synchronized screen captures of videos

sessions using a diferent commercial streaming service, as well

MMSys’17, June 20-23, 2017, Taipei, Taiwan Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and Eric Petajan

as YouTube’s statistical reports. Although using an instrumented

client is unfeasible in practice for real-time classiication and screen

captures only are possible in a lab environment, these validation

results are useful to show that our emulator module relatively ac-

curately captures and tracks the client’s bufer conditions. Using

the emulator for automated labeling of network traces provides

an efective training framework for simpler online classiiers that

only use TCP/IP packet-level information. While more advanced

machine learning techniques easily can be used in the framework,

our results show that relatively simple threshold-based and ma-

chine learning classiiers (e.g., the boosted decision tree classiier)

can allow network operators to distinguish a signiicant fraction

of low bufer instances even when the traic is encrypted using

HTTPS. The lexible design also allows the framework to be used

for characterizing and understanding clients’ QoE, and to identify

early signs of stalls or insuicient QoE. Future work includes the

design of low management solutions based on these classiiers.

ACKNOWLEDGEMENTS

The authors are thankful to our shepherd Hermann Hellwagner

and the anonymous reviewers for their feedback. This work was

funded in part by the Swedish Research Council (VR) and the the

Swedish National Graduate School in Computer Science (CUGS) at

Linköping University.

REFERENCES
[1] 2012. ETSI TS 126 247 V10.1.0. Technical speciication. European Telecommuni-

cations Standards Institute. (2012).
[2] 2015. Sandvine Global Internet Phenomena- Africa, Middle East and North

America- Technical Report. (2015).
[3] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. 2012. What

happens when HTTP adaptive streaming players compete for bandwidth?. In
Proc. ACM NOSSDAV.

[4] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. 2013. Server-based
Traic Shaping for Stabilizing Oscillating Adaptive Streaming Players. In Proc.
ACM NOSSDAV.

[5] M. Allman. 2013. Comments on Buferbloat. ACM CCR 43 (2013), 30ś37. Issue 1.
[6] S. Benno, J. O. Esteban, and I. Rimac. 2011. Adaptive Streaming: The Network

HAS to Help. Bell Lab. Tech. Journal (2011).
[7] L. Bernaille, R. Teixeira, and K. Salamatian. 2006. Early Application Identiication.

In Proc. ACM CoNEXT.
[8] N. Bouten, R. de Schmidt, J. Famaey, S. Latre, A. Pras, and F. De Turck. 2015.

QoE-driven in-network optimization for Adaptive Video Streaming based on
packet sampling measurements. Computer Networks 81 (2015), 96ś115. Issue C.

[9] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo. 2014. A survey on encrypted traic
classiication. In Proc. ATIS.

[10] R. Caruana and A. Niculescu-Mizil. 2006. An Empirical Comparison of Supervised
Learning Algorithms Using Diferent Performance Metrics. In Proc. ICML.

[11] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, A. Finamore, and T. Zseby. 2014. When
YouTube Does not Work: Analysis of QoE-Relevant Degradation in Google CDN
Traic. IEEE Trans. Network and Service Management 11 (2014), 441ś457. Issue 4.

[12] P. Casas, P. Fiadino, A. Sackl, and A. D’Alconzo. 2014. YouTube in the move:
Understanding the performance of YouTube in cellular networks. In Proc. IFIP
WD.

[13] P. Casas, M. Seufert, and R. Schatz. 2013. YOUQMON: A System for On-line
Monitoring of YouTube QoE in Operational 3G Networks. SIGMETRICS Perform.
Eval. Rev. 41 (2013), 44ś46. Issue 2.

[14] L. Chen, Y.P. Zhou, and D.M. Chiu. 2014. A Study of User Behavior in Online
VoD services. Computer Communications (2014).

[15] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki. 2016. Measuring
Video QoE from Encrypted Traic. In Proc. IMC.

[16] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H.
Zhang. 2011. Understanding the Impact of Video Quality on User Engagement.
In Proc. ACM SIGCOMM.

[17] R. Dubin, A. Dvir, O. Pele, O. Hadar, I. Richman, and O. Trabelsi. 2016. Real Time
Video Quality Representation Classiication of Encrypted HTTP Adaptive Video
Streaming - the Case of Safari. arXiv preprint (2016).

[18] J. Erman, A.Mahanti, M. Arlitt, and C. Williamson. 2007. Identifying and Dis-
criminating Between Web and Peer-to-peer Traic in the Network Core. In Proc.
ACM WWW.

[19] J. Erman, M. Arlitt, and A. Mahanti. 2006. Traic Classiication Using Clustering
Algorithms. In Proc. ACM SIGCOMMWorkshop on Mining Network Data.

[20] A. Finamore, M. Mellia, M. Munafò, R. Torres, and S. Rao. 2011. YouTube Every-
where: Impact of Device and Infrastructure Synergies on User Experience. In
Proc. ACM IMC.

[21] J. H. Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2001), 1189ś1232. Issue 5.

[22] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz. 2011.
Quantiication of YouTube QoE via crowdsourcing. In Proc. IEEE Symp. on Multi-
media.

[23] R. Huysegems, B. De Vleeschauwer, K. De Schepper, C. Hawinkel, T. Wu, K.
Laevens, andW. Van Leekwijck. 2012. Session Reconstruction for HTTPAdaptive
Streaming: Laying the Foundation for Network-based QoE Monitoring. In Proc.
IWQoS.

[24] J. Jiang, V. Sekar, and H. Zhang. 2012. Improving Fairness, Eiciency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. ACM CoNEXT.

[25] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. 2005. BLINC: Multilevel
Traic Classiication in the Dark. In Proc. ACM SIGCOMM.

[26] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri. 2013.
Helping hand or hidden hurdle: Proxy-assisted HTTP-based adaptive streaming
performance. In Proc. IEEE MASCOTS.

[27] S. Krishnan and R. Sitaraman. 2012. Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-experimental Designs. In Proc. IMC.

[28] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth. 2013. Characterizing
Client Behavior of Commercial Mobile Video Streaming Services. In Proc. MoVID.

[29] A. Moore and D. Zuev. 2005. Internet Traic Classiication Using Bayesian
Analysis Techniques. In Proc. ACM SIGMETRICS.

[30] H. Nam, K. Kim, D. Calin, and H. Schulzrinne. 2014. YouSlow: A Performance
Analysis Tool for Adaptive Bitrate Video Streaming. ACM CCR 44 (2014), 111ś
112.

[31] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov. 2016. YouTube QoE
Estimation Based on the Analysis of Encrypted Network Traic Using Machine
Learning. In Proc. IEEE Globecom Workshops.

[32] W. Pan, G. Cheng, H. Wu, and Y. Tang. 2016. Towards QoE assessment of
encrypted YouTube adaptive video streaming inmobile networks. In Proc. IWQoS.

[33] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck. 2016.
Software-deined network-based prioritization to avoid video freezes in HTTP
adaptive streaming. Int. Journal of Network Management 26 (2016), 248ś268.

[34] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. 2016. Optimizing 360 Video Delivery
over Cellular Networks. In Proc. ACM All Things Cellular.

[35] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz. 2012.
A comparison of quality scheduling in commercial adaptive HTTP streaming
solutions on a 3G network.. In Proc. MoVID.

[36] Luigi Rizzo. 1997. Dummynet: A Simple Approach to the Evaluation of Network
Protocols. ACM CCR 27 (1997), 31ś41.

[37] R. Schatz, Hoßfeld T, and P. Casas. 2012. Passive YouTube QoE monitoring for
ISPs. In Proc. IEEE IMIS.

[38] M. Shaiq, J. Erman, L. Ji, A. Liu, J. Pang, and J. Wang. 2014. Understanding the
impact of network dynamics on mobile video user engagement. In Proc. ACM
SIGMETRICS.

[39] C. Sieber, P. Heegaard, T. Hoßfeld, andW. Kellerer. 2016. Sacriicing Eiciency for
Quality of Experience: YouTube’s Redundant Traic Behavior. In Proc. IFIP/IEEE
Networking.

[40] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and T. Hossfeld. 2016.
Modeling the YouTube stack: From packets to quality of experience. Computer
Networks 109 (2016), 211ś224.

[41] T. Wu, S. Petrangeli, R. Huysegems, T. Bostoen, and F. De Turck. 2017. Network-
based video freeze detection and prediction in HTTP adaptive streaming. Comp.
Comm. 99 (2017), 37ś47.

[42] X. Xu, J. Jiang, T. Flach, E. Katz-Bassett, D. Chofnes, and R. Govindan. 2015.
Investigating transparent web proxies in cellular networks. In Proc. PAM.

[43] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. Katz. 2006. Fast andMemory-eicient
Regular Expression Matching for Deep Packet Inspection. In Proc. ACM/IEEE
ANCS.

[44] S. Zander, T. Nguyen, and G. Armitage. 2005. Automated traic classiication
and application identiication using machine learning. In Proc. IEEE LCN.

[45] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu. 2015. Robust Network Traic
Classiication. IEEE/ACM Trans. Netw. 23 (2015), 1257ś1270. Issue 4.

	Abstract
	1 Introduction
	2 Buffer Condition Estimation
	2.1 Candidate approaches
	2.2 Classification framework overview

	3 YouTube streaming service
	4 Buffer emulation module
	4.1 Proxy measurements
	4.2 Emulating the buffer at the NIC

	5 Emulator validation
	5.1 Videos and bandwidth profiles
	5.2 Player-instrumented validation
	5.3 Coarse-grained classification
	5.4 Startup delays and OS-related delays/inertia
	5.5 Stalls compared with statistical reports
	5.6 Fast-forward operations
	5.7 Third-party validation

	6 Online classification
	6.1 Calculating metrics online
	6.2 Classifiers
	6.3 Prediction evaluation
	6.4 Discussion and limitations

	7 Related work
	8 Conclusion
	References

