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Abstract. Dual Connectivity (DC) is an important lower-layer feature
accelerating the transition from 4G to 5G that also is expected to play
an important role in standalone 5G. However, even though the packet
reordering introduced by DC can significantly impact the performance
of upper-layer protocols, no prior work has studied the impact of DC on
QUIC. In this paper, we present the first such performance study. Using
a series of throughput and fairness experiments, we show how QUIC is
affected by different DC parameters, network conditions, and whether
the DC implementation aims to improve throughput or reliability. Our
findings provide insights into the impacts of splitting QUIC traffic in a
DC environment. With reasonably selected DC parameters and increased
UDP receive buffers, QUIC over DC performs similarly to TCP over DC
and achieves optimal fairness under symmetric link conditions when DC
is not used for packet duplication.

Keywords: QUIC · Dual Connectivity · Throughput · Fairness · Trans-
port Protocol · Multipath

1 Introduction

The end-to-end performance depends on the interactions between protocols in
different network layers. As new features are introduced on the lower layers, it
is therefore important to understand the impact that such features and their
parameters have on the upper layer protocols [5]. One such feature is Dual Con-
nectivity (DC). DC was introduced in 4G, gained popularity with the introduc-
tion of 5G, and currently plays an integral role in accelerating the generational
transition from 4G to 5G [7].

With DC, users can transmit and receive data from two base stations concur-
rently. This allows users to use both 4G and 5G networks in parallel, simplifying
the above-mentioned generational transition. However, it has also been argued
that DC should be a part of future 5G solutions needed to meet the requirements
of Ultra-reliable and Low-Latency Communications (URLLC) [2,17]. Combined
with its increased usage, this has made DC an important 5G feature.

Like multi-path transport protocols [8, 12, 27], DC can be used to combine
WiFi with 4G and 5G solutions. Furthermore, like these protocols, DC can be
used to achieve improved throughput (by sending different data over different
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paths), to increase reliability (by transmitting the same data over the different
paths), or both. However, in contrast to the transport-layer multipath solutions,
DC is performed within the link layer of the network stack and is therefore in
practice invisible to transport layer protocols such as TCP and QUIC. This is
an important observation since DC may introduce jitter or reordering of packets
that can significantly impact TCP and QUIC performance.

In parallel with the transitioning of different network generations, Google
recently introduced QUIC as a next generation transport-layer solution aimed
at addressing some shortcomings with TCP [16]. QUIC is implemented in the
user-space, on top of UDP, and provides much improved stream multiplexing
compared to TCP. This is important to speed up web connections in the presence
of packet losses and/or modern HTTP/2 traffic. Initial research shows that QUIC
allows performance improvements over TCP in several cases while providing
an easy way to achieve fast incremental deployment [16]. Popular services that
already today use QUIC include Google search services, Chrome, Chromium,
YouTube and Facebook [10,16].

Due to the increasing use and popularity of both QUIC and DC, combined
with the continuous rollout of 5G networks using DC, it is important to under-
stand how QUIC performs over DC under different network conditions, and the
impact that different DC parameters have on QUIC performance.

In this paper, we present the first performance evaluation of QUIC over DC.
First, a testbed is set up to simulate DC. The testbed captures QUIC and TCP
performance under a wide range of network behaviors (based on bandwidth,
delay, and loss conditions) and the impact of different DC parameters. Second,
using a series of throughput and fairness experiments, we show how QUIC is
affected by different DC parameters, network conditions, and whether the DC
implementation aims to improve throughput or reliability. For our throughput
evaluation, we primarily compare the throughput of QUIC over DC with that of
TCP over DC, and for our fairness comparisons we compare the throughput (and
calculate a fairness index) of competing flows when using QUIC over DC. We
also present results using different QUIC implementations (aioquic, ngtcp2) and
congestion control algorithms (NewReno, CUBIC). Our findings provide insights
into the impact that DC and its parameters have on QUIC performance. For
example, we show the value of increasing the UDP receive buffers when running
QUIC over DC, that QUIC over DC can achieve similar throughput as TCP
over DC, and that QUIC over DC can achieve optimal fairness under symmetric
link conditions, except if DC duplicates packets to increase reliability.

Outline: Sections 2 and 3 introduce DC and present related works, respec-
tively. The following sections present our methodology (Section 4), performance
results (Section 5), and conclusions (Section 6).

2 Dual Connectivity

DC, sometimes called inter-node radio resource aggregation, is a multi-connectivity
technique introduced in release 12 of the third-generation partnership project
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(3GPP) [1]. The aim was to increase reliability, performance, and signaling due
to frequent handovers in scenarios where macro and micro cells are connected
with a non-ideal backhaul (X2) link. DC tries to achieve this by splitting the
traffic over multiple paths.

Figure 1 shows an overview of DC in a Radio Access Network (RAN) environ-
ment. With DC, a User Equipment (UE) connects to two different Evolved Node
Bs (eNBs) [2]. One of the nodes will serve as Master eNB (MeNB), and the other
one will serve as Secondary eNB (SeNB). Each of the MeNB and SeNB contains
a separate Radio Link Control (RLC) and Media Access Control (MAC) layer,
while sharing the same Packet Data Convergence Protocol (PDCP) layer.

DC is similar to carrier aggregation [26], but is performed in the PDCP
layer instead of the MAC layer. Carrier aggregation uses the same scheduler for
the separate connections and requires an ideal X2 link. The split connections
are therefore often transmitted from the same node. In contrast, DC uses two
separate schedulers together with a non-ideal X2 link, and packets are often
originating from two different nodes.

PDCP is a sublayer located inside the link layer, just below the network layer
and above RLC and MAC. The main tasks of PDCP are header compression
and decompression, ciphering, integrity protection, transfer of data, sequence
numbering, reordering and in-order delivery [3]. The PDCP layer can be broken
out into a unit called a Packet Processor (PP), which connects to Serving Gate-
way (SGW), MeNB and SeNB using a GTPU-tunnel. SGW is connected to the
Packet Data Network Gateway (PGW), which connects to the public internet.
The PP can also be a part of MeNB. In this case, MeNB splits the traffic and
the link between MeNB and SeNB becomes the X2 link. In both scenarios, the
traffic is split in the PDCP layer.

3 Related Work

Dual connectivity: Unlike TCP, QUIC is relatively new, and there are few
studies of it in specific scenarios such as DC. As QUIC shares similarities with
TCP, we can obtain initial insights from research about DC that uses TCP as
the transport protocol. Polese et al. [22] study the performance of TCP when
using DC to perform mobile handovers for an UE and compare the performance
with different single connection mobility management solutions. They show that
DC can improve TCP goodput by quickly moving the traffic from one of the two
DC links to the other.

Other studies have focused on specializations of DC; e.g., LTE-WLAN Ag-
gregation (LWA) [14,15], which allows for network traffic over LTE and WLAN.
Jin et al. [14] show that splitting TCP over LTE and WiFi at the PDCP layer can
achieve similar throughput and better fairness than MP-TCP; demonstrating the
value of lower-layer traffic splitting. Khadraoui et al. [15] investigate the effect
of PDCP reordering when using TCP in LWA over heterogeneous links. Their
results show that PDCP reordering can have adverse effects on TCP throughput,
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Fig. 2. Testbed for throughput and fairness

and that in some cases it is better to use only one link. While some works have
looked at TCP with DC, no prior work has studied QUIC performance over DC.

Upper-layer multipathing: Multipathing is similar to DC but performed
higher up in the network stack. Most such solutions are implemented in the
transport layer, e.g., SCTP [12] and MP-TCP [27], but some are implemented
in the network layer [9]. Here, we focus on QUIC-based solutions. De Coninck
and Bonaventure [8] implement Multipath QUIC (MP-QUIC) based on quic-go
and lessons learned from MP-TCP, and show that serving QUIC over multiple
paths is beneficial. Mogensen et al. [19] expands MP-QUIC to Selective Redun-
dant MP-QUIC (SR-MPQUIC). Their solution modifies the congestion control
algorithm, the scheduler, and the stream framer. SR-MPQUIC reduces latencies
and improves reliability for priority data at a small increase in bandwidth usage
and latencies for background data. The results show the importance of proper
packet scheduling and the value of packet duplication. While additional cross-
layer communication would be required to benefit DC, QUIC also includes some
unique attributes to assist packet/flow scheduling [23].

Fairness: Fairness can be difficult to judge when there are multiple paths
with different amount of resources. Becke et al. [6] study the fairness of different
congestion control algorithms in multipath scenarios, focusing on two fairness
types: link-centric and network-centric flow fairness. Raiciu et al. [25] study how
MP-TCP can replace single connections and load balancing in data centers.
For specific topologies, MP-TCP significantly improved fairness and provided
throughput closer to optimal compared to single connectivity using random load
balancing. To judge fairness, they and many others [25, 27, 28] evaluate multi-
pathing using Jain’s fairness index (JFI) [13]. Similar to these works, we use JFI
here.
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Table 1. Hardware and operating systems

Component Client Server

OS Ubuntu 18.04.3 LTS Ubuntu 18.04.3 LTS

Kernel Linux 4.15.0-74-lowlatency Linux 5.3.0-26-generic

Processor 1 & 2 Intel(R) Xeon(R) CPU E5-2690 v3 Intel(R) Xeon(R) CPU E5-2667 v3

eno1 & eno2 82599ES 10-Gigabit SFI/SFP+ 82599ES 10-Gigabit SFI/SFP+

4 Methodology

4.1 Dual connectivity testbed

Figure 2 shows an overview of the testbed used for studying QUIC performance
over DC. We used one machine to capture client-side behavior and performance,
and one machine to capture server- and network-side effects. The two machines
were connected via two network interface pairs, each supporting 10 Gbps full
duplex. Hardware specifications are given in Table 1. We next describe the con-
figurations used for our throughput and fairness tests, respectively, and our proxy
implementation used to simulate DC and PDCP.

Throughput test configuration: For our throughput tests (Figure 2(a)),
we used one client, one server, and studied the performance impact of DC pa-
rameters and the network conditions between them. In our baseline tests, both
the QUIC server and QUIC client used aioquic [4]. When running comparison
tests with TCP, we used a Hypercorn server using HTTP/2 over TLS 1.3, and
the client used curl to make HTTP/2 requests. As baseline, both TCP and QUIC
used NewReno for congestion control.

Since traffic splitting with DC is implemented in the link layer, QUIC (and
TCP) are unaware that the traffic is sent over multiple paths, and therefore do
not need to be modified. However, as DC was introduced for radio technology,
the link layer functions differ from the Ethernet links used here. To simulate the
functionality of DC and PDCP, two proxies were implemented: one at the client
and one at the server.

The QUIC client was launched inside a network namespace. Two virtual
interfaces were created to forward data to and from the namespace. The server
side does not require a network namespace as DC is only studied on the downlink.
To simulate different network conditions, tc in Linux was used to add extra delay,
jitter, loss, and bandwidth limitations.

Fairness test configuration: For our fairness tests (Figure 2(b)), we used
three clients and three servers. One end-to-end connection was performing DC,
while the other two used single connectivity (SC) over interface eno1 and eno2,
respectively. The server with port 8000 was operating only on eno1, while the
server on port 9000 only on eno2. The QUIC server on port 4433 used DC and
operated on both interfaces. Each server and client were equipped with its own
proxy, simulating the PDCP functionality for each connection independently.

Proxy-based implementation: To capture the PDCP functionality, pack-
ets originating from the server are caught by iptables OUTPUT chain and de-
livered to a NFQUEUE, before being read by the server proxy. The server proxy
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then adds a 2-byte PDCP sequence number to each packet and routes the packets
to the client over two interfaces. When running DC, the server proxy alternates
between the two interfaces.

At the client proxy, packets are caught in the PREROUTING chain and
delivered to NFQUEUE. The client proxy can then read from the queue, perform
PDCP convergence of the two streams, do PDCP reordering, and remove the
sequence numbers that were added by the server proxy.

If a packet is received in order, it is immediately forwarded to the client. How-
ever, if a packet is out of order, it is kept until the missing packets are processed
or until a PDCP timer of 200ms is reached. If the timer is reached, all packets
before the missing packet and all consecutive packets after the missing packets
are delivered. The reordering algorithm follows the PDCP standard described
in 3GPP [3] and the testbed was developed in close consultation with Ericsson.
Our proxy adds around 1ms to the total RTT, assuming that the packets arrive
in order. Without PDCP, large reordering occurs, resulting in QUIC having a
very low throughput.

4.2 Performance testing

To understand how DC affects QUIC, a series of tests are performed that cap-
tures the impact of different DC parameters and network conditions. In our
experiments, we vary one parameter at a time, starting with a default configura-
tion, while keeping the others constant (as per the default configuration). In the
throughput tests, the client downloads a 100MB file, and in the fairness tests
each client downloads a 1GB file and we measure the clients’ performance for
the first three minutes of the download. For each test configuration, we run ten
tests and calculate both average and standard deviation values for the metrics
of interest.

DC parameters and default configurations: The primary DC param-
eters we varied were the DC batch size and DC batch split. These parameters
determine how many packets are sent over each interface before the server proxy
switches to the other interface. For example, with a DC batch size of 100 and
a DC ratio of 9:1 (90% eno1 and 10% eno2), the proxy would send 90 packets
over eno1, before switching over to send 10 packets over eno2. In our default
experiments, the default DC batch size and DC ratio was configured to 100 and
1:1, respectively.

Network emulation parameters and default configurations: To cap-
ture different network conditions, we primarily varied the bandwidths, delays,
and loss rates of the links. For both the bandwidths and delays, we present ex-
periments both where we vary the average values and where we vary the ratio
between the two links. In the case we vary one of the ratios, we keep the average
value of that metric constant. For example, a bandwidth ratio of 3:1 corresponds
to 30Mbps and 10Mbps for the downlink interfaces eno1 and eno2, respectively.
In our default experiments, each link operates at 20 Mbps and has normally
distributed per-packet delays with a mean of 10 ms and a standard deviation of
10%.
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QUIC and TCP configurations/versions: Throughput tests for QUIC
are performed both with the default UDP receive socket buffer size and a larger
receive buffer size. The larger size is used to give a fair comparison to TCP,
as the kernel performs buffer autotuning for TCP [21]. When studying fairness,
QUIC with modified buffer size is used and the fairness is calculated using JFI.

In our default scenarios we use aioquic with NewReno. However, as discussed
by McMillan and Zuck [18], the QUIC RFC is ambiguous, open for interpreta-
tion, and differences between QUIC implementations following the RFC have
been demonstrated using specification testing. We therefore repeated our exper-
iments with both another QUIC implementation (ngtcp2 [20]) and congestion
control algorithm (CUBIC).

Trace-based evaluation: Finally, experiments were repeated using a real
LTE bandwidth trace collected by Raca et al. [24]. The specific bandwidth trace
(Static A 2018.02.12 16.14.02 ) has an average throughput of 4.5 Mbps for the
first 200 seconds.

5 Evaluation Results

5.1 Dual connectivity parameters

DC batch size: When using DC, network operators must select a good DC
batch size for each connection. To illustrate the impact of this choice on QUIC
performance, Figure 3(a) shows the throughput as a function of the DC batch
size. (We omitted the standard deviations from all figures, as the they are small;
e.g., well within 1Mbps in more than 90% of the cases.) In general, large DC batch
sizes result in lower throughput. One reason for this is reduced link utilization.
For example, Figures 3(b) and 3(c) show the link utilization of the two links
when using a DC batch size of 50 and 500, respectively. With a large DC batch
size, we see significant periods during which one of the links is underutilized as
almost all packets are being forwarded over the other interface. With smaller DC
batch sizes, both links can better be used concurrently. However, there is also a
penalty to using too small batch sizes, as this increases the number of re-order
events. The best batch sizes are instead typically in the mid-range (e.g., around
100-150), with the sweet spot depending on the protocol being used. Finally, we
note that QUIC with modified buffers perform similar to TCP for much of the
parameter range.

Figure 4(a) shows summary results for our fairness tests with varying DC
batch sizes. Here, we measure fairness using Jain’s fairness index (JFI), shown
using purple text, as averaged over 10 full runs. When discussing fairness, it is
important to note that the relative throughput of the competing clients can vary
significantly over time. This is illustrated in Figure 4(b) where we show example
throughput for the three competing clients over a 3-minute long experiment with
the default settings.

Similar to the throughput, the fairness is negatively affected by large DC
batch sizes. In fact, the user using DC observe a significant throughput reduction
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with batch sizes of 150 and above. Here, SC clients can monopolize the links
during the DC client’s off periods, while DC is always sharing the link it is
currently sending to at every point of time. This allows SC clients to increase
their cwnd further than the DC client and to use a larger bandwidth share.

DC batch split: Operators also control the DC ratio. This parameter de-
termines the split over the two links. Figure 5 illustrates an unbalanced example
with a DC batch split of 9:1, in which 90% of the packets are sent over the
main interface (eno1), and Figure 6(a) shows the throughput as a function of
the percent of packets sent over eno1. As per our default case, both links have
the same network conditions. In this case, the throughput peaks when using a
50/50 split, and decreases as a convex function as the split becomes more uneven.
This decrease is caused by poor link utilization of the less loaded link (eno2 in
Figure 5), but also demonstrates the value of DC.

Figure 7(a) shows our corresponding fairness results. When the ratio is sig-
nificantly skewed (e.g., below 20% or above 80%), the throughput of the SC
with the higher throughput increase/decrease at roughly the same rate as the
DC’s throughput increase/decrease, whereas the other SC has fairly constant
throughput over these skewed splits. In this region, the DC compete (almost)
fairly only over the more utilized interface. As the DC split becomes more even,
the overall fairness improves, with optimal fairness and all connections having
roughly equal throughput when perfectly balanced.

5.2 Network conditions

Bandwidth ratio: Figures 6(b) and 6(c) show the throughput for different
bandwidth ratios. Figure 6(b) shows results for the case when the batch split is
50/50, and Figure 6(c) shows results for when the batch split is selected to match
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the bandwidth ratio. Figure 6(b) illustrates the importance of matching ratios,
as the highest throughputs are achieved with a ratio of 1:1. As the ratio increases,
a 50/50 batch split underutilizes the link with higher bandwidth. In contrast,
when the DC batch split is selected to match the bandwidth ratio (Figure 6(c)),
a much better overall throughput is achieved. With QUIC buffer modified and
TCP, the impact is very small. The reason for the worse performance of QUIC
with default buffers is the higher burstiness caused by increased reordering.
Despite PDCP mitigating reordering, it results in increasing RTTs.

The fairness results for the cases when we vary the bandwidth ratio of the
two links are shown in Figures 7(b) and 7(c). Similar to the throughput results,
higher fairness is achieved when the DC split is selected based on the capacity of
the two links. For example, even when the bandwidth ratio is 5:1, the scenario in
which the DC split matches the bandwidth ratio achieves a JFI of 0.70, compared
to 0.59 in the case a 50/50 split is used. In both cases, the bandwidth usage is
dominated by the SC user with higher bandwidth and the DC user relies heavily
on the throughput achieved via the weaker link. However, the fairness improves
as DC moves more traffic to the link with the higher bandwidth.

Delay ratio: Both the throughput and fairness are negatively affected by
increasing delays, and in the case of a high average delay, these metrics are also
negatively affected by an increasing delay ratio. This is illustrated by comparing
the throughput Figures 8(a) and 8(b) or fairness Figures 9(a) and 9(b). For both
types of experiments, the two figures show results for low-delay and high-delay
scenarios, respectively. In the low-delay scenarios, the sum of the delays over the
two links is 20ms, and in the high-delay scenario the sum is 200ms.

The throughput decrease is mostly due to increased packet reordering caused
by the higher delays. In these cases, the PDCP layer will buffer more packets
before performing a batch delivery to the QUIC client, causing packet bursts as
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Fig. 9. Fairness for different delay and loss ratios

well as a higher RTT. Furthermore, after receiving a batch delivery, the clients
will send a cumulative ACK for many packets, which will, for a short time,
largely decrease the number of packets in flight when received at the server. The
draft for QUIC [11] recommends a pacer, which helps the QUIC server recover
from an ACK-burst by sending new packets at steadier pace. The advantage of
more even pacing can be seen by the higher values observed with a delay ratio
of 1:1 in Figure 8(b).

The increasing delays and delay ratios also negatively impact fairness. For
example, in the low-delay case (Figure 9(a)), JFI reduces from 0.9996 to 0.9986
as the delay ratio increases from 1:1 to 5:1, whereas JFI drops from 0.9903 to
0.8758 for the high-delay case (Figure 9(b)). The higher throughput of SC eno2
compared to that of SC eno1 is due to its lower RTT.

Loss rates: While increased packet losses negatively impact the throughput
(Figure 8(c)), small packet losses have very limited impact on the fairness index
(Figure 9(c)).

5.3 Use of duplicate packets

Besides improving throughput, DC can also be used to increase connection relia-
bility. However, DC with packet duplication negatively effects fairness. For exam-
ple, in fairness tests with loss rates of 0-to-5% (Figure 10(b)) JFI is in the range
from 0.39 to 0.48. For DC in Figure 10(b), we show both the combined interface
throughput (B) and the goodput (X), which under an independence model with
retransmissions (after simplification) can be related as X = B(1 + p)/2, where p
is the loss rate. The low fairness stems from DC having a much higher end-to-end
packet delivery probability (i.e., 1−p2 vs 1−p under independence assumptions)
and lower end-to-end packet loss probability (i.e., p2 vs p) compared to SC. This
results in DC obtaining a larger share of the link bandwidths. These results show
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Fig. 10. DC throughput and fairness with duplicate packets
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Fig. 11. Impact of congestion control algorithm: Performance examples with ngtcp2
as QUIC version for different batch sizes

that duplication can provide much higher reliability at the cost of fairness and
goodput.

5.4 QUIC implementation and congestion control algorithm

To explore the impact of other QUIC implementations and congestion control
algorithms, experiments were repeated using ngtcp2 and CUBIC. Figure 11(a)
shows little to no differences in the results between different congestion con-
trol algorithms when varying DC batch size. However, when compared to Fig-
ure 3(a), differences can be observed between the QUIC implementations. While
the results follow the same patterns for both implementations, the considerable
throughput drop occurs at different batch sizes. Another noticeable difference is
that ngtcp2 has a slightly higher throughput than aioquic at smaller batch sizes,
exceeding the throughput for TCP.

Figures 11(b) and 11(c) show the corresponding fairness results. Again, only
small differences between the NewReno and CUBIC results are observed. For
example, the JFI differ by at most 0.02 (DC batch size of 500) between the
algorithms. DC using CUBIC is initially slightly more resilient to performance
drops occurring with a larger batch size. In contrast, NewReno allows the SC
connections to achieve slightly higher throughput at larger batch sizes while the
DC throughput is similar to CUBIC at higher batches. When comparing Fig-
ures 11(b) and 11(c) to 4(a), some differences can be seen between the QUIC
implementations. Ngtcp2 is more aggressive, leading to the DC connection hav-
ing slightly higher throughput than the SC connections at smaller batch sizes
and a drastic reduction in throughput when the batch size increases. Aioquic
has a more balanced sharing of the bandwidths at smaller batch sizes and see a
smaller reduction in throughput at larger batch sizes.
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Fig. 12. Throughput when using ngtcp2 (as QUIC implementation) with NewReno
and CUBIC for different parameters
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Fig. 13. Fairness when using ngtcp2 with NewReno for different parameters (CUBIC
results very similar)

When studying the DC batch split using ngtcp2 and different congestion con-
trol algorithms (Figure 12(a)), minimal difference in the overall throughput is
observed. Compared to aioquic in Figure 6(a), little differences are observed at
more uneven ratios. Ngtcp2 achieves a higher throughput than aioquic and TCP
at more balanced ratios. When comparing the corresponding fairness results
in Figure 13(a) to 7(a), larger differences can be seen between the QUIC imple-
mentations. While the two implementations exhibit similar behavior at the most
uneven split, the DC connection using ngtcp2 grows more aggressively than the
aioquic counterpart when the ratio becomes more balanced. This growth lead to
optimal fairness for aioquic, but results in a slightly unfair bandwidth allocation
for ngtcp2.

A significant throughput difference between the QUIC implementations can
be seen when comparing the high delay ratio experiments in Figures 12(b)
and 8(b). Ngtcp2 achieves a significantly lower throughput than aioquic through-
out the experiment. This is most likely due to differences in the pacer imple-
mentations. Differences can also be seen when comparing corresponding fairness
tests (Figures 13(b) and 9(b)). Here, the DC connection using ngtcp2 achieves
more fair throughput than the aioquic counterpart at balanced ratios and sees
a slower drop in throughput when the ratio gets skewed. However, after the 2:1
ratio point, the DC connections’ throughputs become the same for the two im-
plementations. The ngtcp2 SC connection with a higher delay has a much worse
performance than the aioquic counterpart at more skewed ratios.

Finally, when studying the impact of loss rates using ngtcp2 and CUBIC, only
small differences are observed (Figures 12(c) and 13(c) compared to Figures 8(c)
and 9(c)). However, in contrast to the other experiments, ngtcp2 using CU-
BIC shows a noticeable better performance compared to TCP CUBIC. Looking
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Fig. 14. Trace-driven bandwidth variability tests using aioquic and ngtcp2 as QUIC
implementations

closer at the 0.08% loss case, we have observed that the TCP implementation
more often stays in CUBIC’s TCP mode (used when detecting growth slower
than Reno). This also explains why TCP CUBIC, TCP NewReno, and ngtcp2
NewReno perform similarly here.

In general, ngtcp2 achieves higher throughput than aioquic, even though both
follow the same IETF recommendations. As discussed, differences can occur due
to the RFC being open for interpretation. The execution speed and resources
required by the two implementations also differ. Ngtcp2 is implemented in C and
aioquic in Python. With ngtcp2, a larger receive buffer did not impact through-
put, as the client buffer was quickly emptied. Ngtcp2 is also noted to be greedier
than aioquic over DC, often introducing some unfairness to scenarios that were
fair for aioquic. One potential reason is the difference in pacer implementation,
as the IETF only recommends a pacer but does not specify it in detail. The
difference in pacer implementation is also clearly shown in high delay ratio tests.

5.5 Bandwidth variability scenario

To capture a more realistic bandwidth user scenario, Figures 14(a) to 14(c) show
repeated experiments with aioquic for DC batch size, high delay ratio and loss
rates performed over a LTE sampled bandwidth trace. Figures 14(d) to 14(f)
show these results but using ngtcp2 with CUBIC. For DC batch size and loss
rates, similar trends are observed as when using a fixed bandwidth capability.
Similar trends are also observed in the case of delay ratio, but with the effect
of the pacer more clearly shown. Lastly, we note that ngtcp2 is more aggressive
than aioquic and that CUBIC achieves higher throughput.
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6 Conclusions

In this paper, we present the first performance study of QUIC over DC. Key
insights are given for network operators to understand how different DC param-
eters and network conditions affect QUIC performance. QUIC’s throughput is
found to be similar to that of TCP in general cases, provided that the UDP
receive buffer (when using aioquic) has been increased to similar size as the cor-
responding TCP buffer. We show that QUIC can take advantage of DC when
the links share similar properties, and the DC batch size is small. When the
properties of the links are too far apart, QUIC performance suffers to the de-
gree that the performance would be better if DC was turned off. Furthermore,
we show that QUIC can achieve system-wide fairness, provided that the link
properties are similar. We also show that packet duplication allows QUIC to
improve throughput for lossy environments at the cost of substantially increased
unfairness.

With aioquic, the QUIC throughput is considerably lower if the UDP receive
buffer remains at default values for Linux, as PDCP introduces packet bursts,
causing packet drops due to full buffers. This occurs especially often in asym-
metric link scenarios with high throughput. With the increased use of QUIC, we
emphasize the importance of studying and optimizing the resources provided by
the kernel to QUIC.
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