
Towards a Dynamic File Bundling System for
Large-scale Content Distribution

Song Zhang†, Niklas Carlsson§, Derek Eager‡, Zongpeng Li†, Anirban MahantiSS

†University of Calgary, Canada
§ Linköping, Sweden

‡ University of Saskatchewan, Canada
SS NICTA, Australia

Abstract—Peer-assisted content delivery systems can provide
scalable download service for popular files. For mildly popular
content, however, these systems are less helpful in offloading
servers as the request rate for less popular files may not enable
formation of self-sustaining torrents (where the entire content
of the file is available among the peers themselves). As there
typically is a long tail of mildly popular content, with a high
aggregate demand, a large fraction of the file requests must still
be handled by servers, and is not off-loadable to peers. Bundling
approaches have been proposed where peers are requested to
download content which they may not otherwise be interested
in order to “inflate” the popularity of less popular files. We
present the design and implementation of a dynamic bundling
system, in which a large number of files may be bundled to
form a super bundle. From this super bundle, smaller individual
bundles, consisting of a small set of files, can dynamically be
assigned to individual users. Our system has the capability to
dynamically adjust the number of downloaders of each file, thus
allowing popularity inflation to be optimized according to current
file popularities.

I. INTRODUCTION

In Internet content delivery, a highly scalable approach is
to harness the upload bandwidth of the clients to offload the
original content source. With such a peer-assisted approach,
each file is typically split into many small pieces that can be
downloaded from different peers. Such techniques are flexible,
and scalable in that they can effectively serve popular content.
However, characterization studies of file popularity [1]–[5]
have shown that there typically is a long tail of mildly popular
content, and content in the long tail can not be efficiently
served by such techniques. The request rates of the files in
the tail are not sufficient for the corresponding torrents to be
self-sustaining (e.g., [6], [7]). These contents must instead be
served primarily using server (or seed) bandwidth.

Menasche et al. [8] show that the content availability, specif-
ically the set of peers that can provide upload bandwidth to
other peers downloading the same content, can be significantly
improved using bundling. With bundling, a set of contents
are grouped (bundled) into a single file for download. Peers
download a bundle that contains both desired file(s) along
with some other files that make up the bundle. This approach
inflates the aggregated popularity of mildly popular files, and
helps increase content availability.

Bundling can be either static [8] or dynamic [7]. With static

bundling, a pre-determined set of files are grouped together by
the publisher, and every peer participates by downloading the
entire bundle. With dynamic bundling, peers may be assigned
complementary content (files or parts of files) to download at
the time they decide to download a particular file. Dynamic
bundling has the advantage that wasted downloads can be
easily avoided in cases when the content is popular and
popularity inflation is not necessary.

We present the design and implementation of a dynamic
bundling system, where a server may host a large number of
files. From this set of files, individual bundles consisting of
a subset of the files are dynamically assigned to peers. This
flexibility allows the system to dynamically adjust which files
each peer should assist with. Our system can leverage tracker
information about peer participation in the different files to
make informed decisions about which files a new peer should
serve in addition to its requested file. This set of files constitute
its individual bundle.

Our implementation of the system uses the mainline Bit-
Torrent source code, and builds upon the current BitTorrent
specifications. We discuss the challenges in using the existing
BitTorrent source code, as well as a solution that employs
incremental changes to BitTorrent. Our solution entails cre-
ation of super bundles consisting of a large fixed set of files.
This allows easy referencing within each bundle, yet enables
clients to be assigned individual bundles from within each
super bundle.

The primary modifications to the mainline client include the
addition of a bundle file selection mechanism at the trackers, a
generalized piece selection rule, and optimizations to the piece
disk writing function. In particular, we perform the following
modifications to the BitTorrent source:

• Revise the peer-to-tracker communication and how the
tracker handles incoming HTTP requests from the peers.

• Modify the piece selection rule to give priority to pieces
from the requested file and to ensure that each peer only
expresses interest in pieces from its assigned bundle.

• Change the piece writing sequence to disk, to accommo-
date for the fact that each peer only downloads pieces
from its assigned bundle, rather than the entire super
bundle.

Our system is implemented and evaluated on PlanetLab.



In future work, we will present performance results for both
steady-state and time-varying scenarios, verifying the opera-
tion of our design and examining the performance of example
policies for dynamic selection of bundles. The full version
of this work will also include a detailed description of some
important but subtle design issues encountered. Due to lack
of space many such issues are omitted from this short paper.
Our work is novel in that no previous work has developed a
working dynamic bundling system.

II. SYSTEM DESIGN OVERVIEW

We have three primary design goals. First, as with other
bundle proposals, our system should allow clients to assist
in the delivery of files that they do not themselves request.
Second, the number of changes to the BitTorrent client should
be kept at a minimum and allow for incremental deployment.
Finally, our system should be flexible such that the system can
dynamically adjust which file(s) each peer should assist with.

Our dynamic bundle system groups a large number of files
into super bundles. From within a super bundle, clients can
request to download individual files. When they do so, the
tracker also requests that they download additional files. By
keeping track of the peers currently downloading each file
within a super bundle, the tracker can dynamically assign
smaller individual bundles to each client, consisting of a small
subset of the files in the super bundle. Using information
available at the trackers, this allows our system to take into
account current content popularities and adjust the relative file
download frequencies.

To make informed decisions about which sub-contents (or
files) a new peer should download in addition to its requested
file, our system must make some modifications to the in-
formation maintained by the trackers and the information
exchanged between peers and trackers. For efficiency reasons,
we must also modify some additional BitTorrent components.
We modify the mainline BitTorrent source code, and make use
of current BitTorrent specifications. The primary modifications
carried out include communication protocol revisions, the
addition of a bundle file selection mechanism at the trackers, a
generalized piece selection rule, and optimizations to the piece
disk writing function, as outlined below:

• The communication protocol between the local1 peer
and the tracker needs to be revised, so that the tracker
can learn the initial file that the local peer is interested
in downloading and return the suggested supplementary
bundle file to the local peer according to the bundle
selection policy of the tracker.

• The tracker mechanism needs to be revised. A tracker
bundle selection policy will be applied to choose an
appropriate supplementary bundle file for the local peer.

• The piece selection policy needs to be revised as peers
now only download particular files that are part of their
assigned bundle. We refer to the new piece selection

1We use “local” peer to refer to the peer on which our BitTorrent software
is running.

policy as the greedy policy. Here ‘greedy’ refers to the
fact that a peer only requests and downloads the file
pieces that belong to its bundle.

• The piece disk writing algorithm needs to be revised as
well. In particular, we modify the piece priority in the
disk writing algorithm, so that the pieces of interest can
be written to the disk with high priority.

The general principle of the design is to utilize the current
mainline BitTorrent structure and specifications and make revi-
sions as necessary. The design supplements the current system
and does not affect the mainline BitTorrent system mechanism.
The following sections briefly discuss the aforementioned
implementation issues.

III. PEER-TO-TRACKER COMMUNICATION

There are two types of communication protocols used in
BitTorrent: peer-to-tracker and peer-to-peer. Here we consider
the peer-to-tracker communictaion. The local peer and the
tracker communicate through the HTTP protocol. The local
peer sends information such as torrent infohash and listening
ports to the tracker. The tracker updates its peer information
with the incoming message, and returns the peer set to the
local peer. The local peer periodically communicates with the
tracker so that the peer information on both sides is up-to-date.

In the HTTP communication between the local peer and the
tracker, there are four types of messages defined by the key pa-
rameter “event” in the mainline BitTorrent system: started,
no event, completed, and stopped. The client sends a
started message to the tracker when it begins to download,
a completed message when it finishes downloading the
file, and a stopped message when it is gracefully shutting
down. The no event message is simply used to periodically
update the tracker during the download. These four message
types correspond to different event processing modules on
the tracker, which respond to the messages as appropriate.
The tracker also relies on these messages for updating its
management information for the entire swarm.

Bundle negotiation: We introduce a new HTTP message
type, the bundle negotiation message, to be used by a
local peer to express interest in files, and to ask the tracker
for supplementary bundle file(s). The modified tracker uses
such information (together with information on peers currently
downloading the different parts of the bundle) to determine
which additional files the peer should download.

Figure 1 illustrates the message flow between the local peer
and the tracker in our system. In the current design, the local
peer sends a new bundlenegotiation message (message
1 in Figure 1) to the tracker before it sends the started
message. When the tracker learns the local peer’s desired
file in the bundle negotiation message, it will use the
bundle selection policy to check whether a bundle should be
formed. If a bundle can be formed, the tracker will return
the supplementary bundle file to the local peer (message 2).
The local peer will send a started message (message 3)
after receiving bundle negotiation response from the
tracker. In our system, communication begins with a new



Local Peer Tracker

1. Bundle Negotiation

2. Bundle Negotiation Response

3. HTTP started event

4. HTTP Response

5. HTTP no event (periodic)

6. HTTP Response (periodic)

7. HTTP completed event

8. HTTP stopped event

msc HTTP Message Flow

1

Fig. 1: HTTP message flow for the dynamic bundling system.

bundle negotiation message and response (messages
1 and 2) before the normal started message and response
(messages 3 and 4).

Bundle selection: A bundle selection policy is needed to
determine the constituent files of each dynamically formed
bundle. The tracker applies this policy to select the supple-
mentary bundle file(s) during the bundle negotiation stage. To
facilitate dynamic bundling, the tracker obtains the mapping
of the file names and the corresponding number of peers in the
system. A new status file is created on the tracker to record
such information. The tracker can obtain the number of peers
currently downloading a specific file from the new status file.
The new status file is updated when started messages and
stopped messages are received by the tracker.

IV. PEER-TO-PEER COMUNICATION

The local peer uses the Peer Wire Protocol (PWP) to
communicate with the peers in its peer set. First, the local
peer establishes TCP connections with each peer in its peer
set. Once a TCP connection is established to a neighbor and a
PWP handshake has occurred successfully, file pieces can be
uploaded and downloaded over the same connections.

Tit-for-tat unchoking: For efficiency reasons, at each point
in time, the local peer typically only uploads pieces to a subset
of its peer set. These peers are said to be unchoked. To provide
incentive to peers downloading other content, BitTorrent’s
rate-based tit-for-tat unchoke policy is used to determine which
connection can be used to upload data at each point in time.
More specifically, we apply the policy on the entire bundle
(rather than on peers downloading each separate file). This
ensures high piece sharing efficiency.

Piece selection policy: As each peer has an individual
bundle, and therefore is interested in pieces of different files,
we employ a piece index filter for its piece selection policy.
The peer only requests and downloads pieces belonging to
files in its bundle.

Our implementation modifies the piece selection policy,
used to determine the next piece to request for download. It
was found necessary to consider carefully the cases in which
the local peer receives a HAVE message from a remote peer
when choked or unchoked by the other peer.

V. PIECE DISK WRITING ALGORITHM

The piece disk writing algorithm is used to increase the disk
space utilization. It tries to avoid holes in the allocated disk
space. This algorithm allows BitTorrent to achieve compact file
space growth on the disk. Unfortunately, the holes structure
in BitTorrent may cause issues for the dynamic bundling
system, when a peer only requests and downloads the bundled
file pieces. The bundled file pieces will be allocated on the
spaces with the sequence of the holes list but the peer never
downloads other pieces in the torrent. The default piece disk
writing algorithm will result in slow download times for the
bundled file pieces or the pieces can never be rearranged to
their right places. Our new system design includes a modified
“holes” list, to avoid performance degradation caused by
BitTorrent’s piece disk writing algorithm.

VI. CONCLUSIONS

In this short paper, we describe the design and implemen-
tation of a dynamic bundling system. We create super bundles
of many files and let users pick which files they want and
request that they also help out in the sharing of one or more
additional files within this bundle. The files a user downloads
in addition to its file of interest are determined dynamically.
Dynamic allocation of individual bundles allows the system
to inflate swarms based on measured demand for files and the
desired tradeoff (for example between server bandwidth and
download latency). In future work we will present empirical
studies on the system’s effectiveness for solving the content
popularity problem, as well as detailed descriptions of some
of the important but subtle design issues encountered.

REFERENCES

[1] G. Dan and N. Carlsson, “Power-law Revisited: A Large Scale Measure-
ment Study of P2P Content Popularity,” in Proc. IPTPS, San Jose, CA,
Apr. 2010.

[2] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,
“Measurement, Modeling and Analysis of a Peer-to-Peer File-Sharing
Workload,” in Proc. ACM SOSP, Bolton Landing, USA, Oct. 2003.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, New York, NY, Mar 1999.

[4] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
A view from the edge,” in Proc. IMC, San Diego, CA, Oct. 2007.

[5] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing Web-based Video Sharing Workloads,” ACM Transac-
tions on the Web (to appear).

[6] D. S. Menasché, A. A. A. Rocha, E. A. de Souza e Silva, R. M. Leão,
D. Towsley, and A. Venkataramani, “Estimating self-sustainability in
peer-to-peer swarming systems,” in Proc. IFIP Performance ’10, Namur,
Belgium, Nov. 2010, pp. 1243–1258.

[7] N. Carlsson, D. L. Eager, and A. Mahanti, “Using torrent inflation to
efficiently serve the long tail in peer-assisted content delivery systems,”
in Proc. IFIP/TC6 Networking, Chennai, India, May 2010.

[8] D. S. Menasche, A. A. A. Rocha, B. Li, D. Towsley, and A. V. Taramani,
“Content availability and bundling in swarming systems,” in Proc. ACM
CoNEXT, Rome, Italy, Dec. 2009.


