
Identifying User Actions from HTTP(S) Traffic

Georgios Rizothanasis†, Niklas Carlsson†, and Aniket Mahanti‡

† Linköping University, Sweden
‡ University of Auckland, New Zealand

Abstract—When understanding modern web usage and pro-
viding optimized personalized service, it is important to identify
the HTTP(S) requests directly caused by user actions like
clicks and typing web addresses. With a majority of HTTP(S)
requests being due to content that has not been explicitly
requested by a user, the problem of identifying user actions
at proxies or middleboxes becomes non-trivial. We present an
automated evaluation framework for identifying user actions
while also automatically providing a “ground truth” of the user
actions. We utilize the framework to compare the performance
of timing-based and HTTP-aware request classifiers, including
timing-based classifiers operating on both per-request and per-
connection basis to identify user actions. We emphasize the value
of diverse information used by the classifiers when comparing
identification accuracy both among classifiers and relative to
the browser-based ground truth. Our classifiers can be useful to
better understand users’ web usage and connection prioritization.

I. INTRODUCTION

Much effort has been devoted to use passive measurements

to analyze and characterize Internet traffic [1], [8], [10] and the

services providing web content [7] from a network operator’s

viewpoint. However, these works typically do not distinguish

the content that the user originally requested (e.g., by entering

a new URL into the browser or clicking a link) from all

other objects downloaded in the background, but instead weigh

all web requests the same. The results of these studies are

therefore not representative of users’ website usage.

Due to the complexity of the modern web [4], it is a non-

trivial problem to identify the requests associated with actual

user actions from among the large number of downloaded

objects. For example, a single request for the Huffington Post

website results in the download of 408 objects from 113

unique domains. A similar analysis by Butkiewicz et al. [4], of

1,700 popular websites showed that the median landing page

consists of at least 40 objects, requested from 10 or more

servers, most of which are operated by third-party services. In

this work, we refer to objects not explicitly requested by users

as drag-along content.

While researchers have proposed multiple techniques [1],

[14], [17] to identify user actions from network data such as

proxy traces, these studies are typically limited by two things.

First, they focus only on HTTP traffic and do not consider

HTTPS traffic. Due to the increasing use of HTTPS this may

render many of these techniques useless in the future. Second,

they typically either do not properly evaluate the accuracy of

the model or require manual labeling of some training and/or

evaluation data [13]. With large volumes of drag-along content

(e.g., images, scripts, and ads) associated with the originally

requested web page or other domains, manual labeling is time

consuming, difficult, and error-prone.

This paper makes two contributions. First, we develop and

evaluate a novel evaluation framework for generic request

classifiers for user action identification. Here, we use the term

“classifier” to refer to a set of rules used by the operator

to automatically identify and label user actions. Our frame-

work provides flexibility in applying several classifiers on the

same traces (thus, allowing fair head-to-head comparisons of

classifiers) as well as automated labeling of HTTP traces.

It includes a browser instrumentation to label the true user

actions (referred to as the ground truth), a Squid proxy that

records all HTTP requests (referred to as the proxy logs),

and a custom-built Selenium-based crawler (implemented as

a browser extension) that can emulate different client click

streams and user behaviors.

Second, we extend the framework to capture both per-

request and per-connection information, and provide the first

evaluation of classifiers for user action identification in HTTPS

traffic. Such classifiers are important since proxies and mid-

dleboxes typically let HTTPS traffic pass through, and there-

fore do not have access to the individual HTTP requests

carried over each TCP or TLS/SSL connection. Instead, we

focus on classifiers that use the timing of new connection

establishments or TCP/IP packet information to identify user

actions. The accuracy of the classifiers is tested and evaluated

against our ground-truth datasets. To understand the tradeoff

between accuracy and the available information, we present a

comparison of different (combinations of) classifiers as well

as against a naive baseline approach (using the referer field).

Despite connections typically carrying many requests and

our connection-based classifiers only associating a single re-

quest with each connection (i.e., the first over the connection),

our analysis shows that our timing-based identification is still

able to achieve surprisingly good accuracy. In fact, the per-

connection based classifiers outperform our baseline classifier

using the referer field. Even more encouraging are the results

of the timing-based classifiers, which achieve most of the

benefits of the advanced HTTP-aware classifiers.

II. EVALUATION FRAMEWORK

This paper presents results for a Firefox-based implementa-

tion and a simple browsing model. We have also implemented

a framework in Chrome and tested more advanced browsing

models. For a complete description of our methodology and

results we refer to our full paper [16]. Code and scripts will

be published with the full paper.

This is the authors’ version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The definitive version is published in IEEE LCN, Dubai, Nov. 2016, and is available at IEEE Xplore Digital Library.



To allow automated ground-truth labeling and accurate

evaluation of different user action identification classifiers, our

testbed includes both client and proxy instrumentation. First,

at the client side we collect ground-truth traces, which label

each HTTP request based on whether it is due to a user action

or not. We instrument both a Firefox and a Chrome client, to

collect ground-truth traces of the user actions. At a high level,

our trace collectors are implemented as browser extensions and

record all HTTP requests made from the browser. Furthermore,

event listeners are used to identify user actions and group

requests.

Second, we use Squid proxy to collect information about all

HTTP requests and their connection information (port numbers

and IP addresses) as seen at the proxy. The Squid software1 is

installed on a proxy server between the client machine and the

Internet. We disable caching, but set up the proxy to record

information about all requests and responses, including timing

information, server name, URL, content type, and other HTTP

header fields. To allow connection-based analysis, we also

capture port numbers and IP addresses.

Third, different request classifiers for user action identi-

fication (Section III) are applied on the proxy logs, so as

to generate labeled traces based on each classifier’s request

classification rules, and the accuracy of each classifier is eval-

uated by comparing the labeled traces with the ground-truth

trace. For this analysis, the primary evaluation measures are

(i) precision, (ii) recall, and (iii) the F1-score. The precision

is equal to the percentage of labeled user actions that in fact

are user actions (in the ground truth). The recall is equal to

the percentage of the total user actions (in the ground truth)

that are correctly labeled (by the classifier) as user actions.

Finally, the F1-score incorporates both precision p and recall

r according to the equation F1 =
2pr

p+r
.

Finally, for further automation, we include an automatic web

navigation tool that implements tunable user models that allow

automatically generated ground-truth traces. Our automation

script simulates a user’s behavior while browsing the web

according to a first-order continuous-time Markov process.

After requesting an initial webpage, this model assumes ex-

ponentially distributed think times (i.e., the time until the

next user action), after which the user probabilistically decides

either to click on a link or request a new webpage. Controlling

the think times and click probabilities (e.g., 0.85 as per the

damping factor used in PageRank [3]) we can emulate different

client behaviors: from impatient users with short average think

times to users with longer think times.

III. USER ACTION IDENTIFICATION

This section first describes three timing-based classifiers that

use the timing of HTTP requests to identify user actions. We

then show how these classifiers can be applied to HTTPS

traffic. Finally, to better understand the potential limitations

of user action identification in HTTPS logs, we also present

HTTP-aware classifier extensions.

1Squid, www.squid-cache.org, May 2015.

A. Timing-based Classifiers

Previous (P): An HTTP request is considered a user action

if the time since the most recent HTTP request is greater than

a threshold Tprev . This classifier has been used by others

(e.g., Liu et al. [13]) and is motivated by the observation

that the time interval between two consecutive user actions

typically is much greater than the time between consecutive

HTTP requests for objects associated with a single page load.

Repetition (R): Many webpages periodically update their

content, resulting in HTTP requests well after the page was

originally loaded. To avoid misclassifying these requests, the

repetition classifier filters out repeated requests if the same

URL path has been requested more than Krep times within

time window Trep.

Next (N): As the second HTTP request for a website does

not occur until after the response of the first has been processed

(and embedded objects have been identified within the data

provided in the response), there is typically a time gap after

the first (user action) request. The next classifier filters away

HTTP requests that are followed by another HTTP request

within a short time window ∆next. This classifier attempts

to aggregate user actions, while filtering bursts of requests

associated with drag-along content.

Figure 1 shows a simple example scenario, illustrating the

improvements of applying each of the three timing-based

classifiers in successive combinations.

B. HTTPS Traffic and Connection-based Extensions

We consider two approaches to apply the above timing-

based classifiers on HTTPS traffic. First, both Previous and

Next can be applied directly on a per-connection basis. We use

the time that a new connection is established as an estimate

of the “lead” (object) request on that connection. Since this

timing will be very similar to the timing of the (lead) HTTP

requests themselves (tunneled within SSL/TLS, in the case

of HTTPS) we can use similar thresholds as with the original

Previous and Next classifiers. We do not consider any variation

of the repetition classifier here. It should also be noted that

user actions to a new webpage typically result in a new

connection, while the majority of the (later) requests over

an already open connection are due to non-user actions, and

connections typically close before a website is re-visited again

(e.g., the default keep alive timeout value of Apache servers

is 5 seconds).

Second, more detailed packet inspection can be used to iden-

tify the timing of the later requests made over an already es-

tablished (HTTPS) connection. In particular, we have observed

that it is possible to extract the timing of most HTTP requests

sent over the secure SSL/TLS connection by identifying the

packets going from the client to the server that are larger than

the packet size of a regular TCP acknowledgement (ACK) that

does not include any payload. This allows us to distinguish

packets that include HTTP requests from pure ACK packets.

Again, without access to URLs, the best timing-based HTTPS

classifier considered is Previous+Next.



Fig. 1. User action identification and request grouping. Here, the “labeled” user-action requests are shown in red, and the “true” user actions A (circles) and
B (diamonds) are shown using longer pin markers. Dotted markers represent repeated requests.

C. HTTP-aware Classifiers

To understand the value of HTTP-specific header informa-

tion, we also consider additional filters.

URL (U): With our URL-based extension, requests are fil-

tered out if the URL includes terms associated with frequently

observed drag-along content [11].

Content (C): This classifier extension only keeps requests

with content-type text/html. While the majority of user

actions is of this type, the classifier works poorly on its own

as much of the drag-along content also is of type text/html.

Referer: We have also considered the use of the referer

field; both alone and in combination with other classifiers.

However, we have found that referer-based classifiers in gen-

eral perform poorly. For example, experiments with the referer

classifier alone resulted in a precision of 0.27, a recall of 0.71,

and an F1-score of 0.39. Some reasons for this are that the

referer field often is left empty, is altered by the browsers, and

the embedded elements themselves may generate requests.

IV. CLASSIFIER EVALUATION

For the evaluation presented here, we collected five example

traces. Each trace has 500 simulated user actions based on

the simple browser model (Section II) and is generated with

an average think time of 20s. Here, the pool of starting

pages is randomly selected from the top-1,000 most popular

webpages according to alexa.com, excluding HTTPS pages

and Chinese websites (using non-Roman script). HTTPS pages

were omitted to allow fair head-to-head comparison.

On average, each trace of 500 page requests resulted in

29,506 HTTP requests, distributed over 14,168 connections.

Using our default thresholds (Tprev = 2s, Nrep = 5, and

∆next = 20ms), all timing-based classifiers (P, R, N) and

their URL (U) and content (C) based extensions identify

approximately 400 of the 500 user actions (matches), while

only resulting in relatively few false positives (misses).

Figure 2 shows a breakdown of the matches and misses for

all classifiers. Here, Previous (P) alone results in on average

404 matches and 276 misses, compared to the best classifier

(P+R+N+C) that on average has 415 matches and only 35

misses. We can also see that the other two timing-based

classifiers, Repetition (R) and Next (N), result in additional

improvements when combined with Previous (P), and that the

combined timing-based classifier (P+R+N) performs closer to

the best classifier than Previous (P) alone.

Since the connection-based classifiers (P and P+N) are not

able to identify HTTP requests over already open connections,

it is not surprising that these classifiers identify fewer user

actions (221 and 219, respectively). However, it is important

to note that on average only 254 of the 14,168 connections

were initiated due to user actions. The other connections

were opened due to drag-along content. This shows that the

connection-based classifiers do an excellent job identifying

user actions, using only timing-based information, while keep-

ing the false positives (misses) at a reasonably low level. In

fact, all classifiers, including the connection-based classifiers,

filter out (i.e., avoid to mislabel) 97% of the 29,506 HTTP

requests (or 14,168 connections).

These results are very encouraging. First, the relatively

simple connection-based classifiers achieve relatively good ac-

curacy on their own. For example, the P+N classifier achieves

an F1-score of 0.48 (calculated over requests), outperforming

the referer classifier (F1=0.39), which has access to the

HTTP header information of all requests. Second, the P+N

classifier that identifies requests based on packet sizes (but

does not try to identify repeat requests) leaves limited room

for improvements, as it performs close to the classifiers that

take into account content type and URLs, for example.

A. Classification Accuracy

The accuracy of the classifiers is relatively insensitive to

the repetition (Nrep) and next window (∆next) threshold, but

depends more on the previous window threshold (Tprev).

Figure 3 shows the relative tradeoff between precision and

recall for the different classifiers. (Figure 4 shows Chrome

results.) Here, Tprev is varied from 500ms to 10,000ms,

Tprev = 500ms corresponds to the right-most point, and

statistics are calculated over all requests, including requests

invisible to the connection-based classifiers. Even though the

threshold affects the classifiers differently, there is a clear

ordering of the classifiers’ identification abilities. For example,

focusing on a fixed recall rate, each classifier improves the

precision of the prior classifier.

Figure 5 shows the F1-score as a function of Tprev . For any

threshold between 0.5-10s (the range used for Figure 5) the

F1-scores for the timing-based classifiers are good (above 0.6

and 0.4, respectively) when using the timing of HTTP requests

and the connection establishment. The non-overlapping 95%

confidence intervals confirm that there are significant accuracy

differences between the classifiers.

V. RELATED WORK

Most research on user action identification relies on client-

side or server-based techniques [5], [6], [9], [12], [18], [20].

Proxies and middlebox-based techniques, such as the classi-

fiers discussed here provide a scalable alternative. However,

because of their location, such techniques do not have ex-

plicit knowledge of user actions [1], [2], [14], [17]. Recent



Fig. 2. Classification of requests labeled as “user
actions”, under default scenario. HTTP results (solid) on
the left and per-connection results (shaded) on the right.

(a) Request based (b) Connection based

Fig. 3. Precision-recall tradeoffs with previous window threshold as hidden variable.

Fig. 4. Precision-recall tradeoffs with Chrome. (a) Request based (b) Connection based

Fig. 5. F1-score as a function of previous window threshold (Tprev) for the timing-based classifiers
using the timing of HTTP requests and connection establishment, respectively.

works [8], [10], [19] utilize timing, content, and referer based

heuristics. To evaluate these techniques, researchers have re-

lied on manual classification for their ground truth.

Our work is orthogonal to these prior works. We present an

automatic user action identification framework using browser

extensions and automated browsing. We argue that manual

labeling is time consuming, difficult, and extremely error-

prone because of the large volumes of third-party drag-along

content [4], [11], [15]. Prior work has also exclusively focused

on user action identification of HTTP traffic. In contrast, we

develop an automated evaluation framework, which includes

automated ground-truth labeling, and show how the framework

can be applied on both HTTP and HTTPS traffic. We are the

first to evaluate user-action labeling of HTTPS data.

VI. CONCLUSIONS

This paper presents an automated evaluation framework for

request classifiers for user action identification. The framework

includes client ground-truth measurements through both Fire-

fox and Chrome-based implementations, network-side proxy

logs, and automatic tunable web navigation. The ground-truth

traces can be used for head-to-head comparison of generic

classifiers for user action identification, thus revealing the

classifiers’ accuracy. We also present the first evaluation of

user-action labeling of HTTPS data. The results are encourag-

ing, with connection-based classifiers identifying a significant

portion of the user actions. Perhaps most encouraging is that

the timing of HTTP requests can be approximated through

careful packet size monitoring of HTTPS sessions and that

our previous+next (P+N) classifier (that only use timing in-

formation) can achieve most of the benefits of the advanced

HTTP-aware classifiers.

REFERENCES

[1] A. Balachandran et al. Modeling web quality-of-experience on cellular
networks. In Proc. ACM MobiCom, 2014.

[2] P. Barford and M. Crovella. Generating representative web workloads
for network and server performance evaluation. In Proc. ACM SIGMET-

RICS, 1998.
[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks and ISDN Systems, Apr. 1998.
[4] M. Butkiewicz et al. Characterizing web page complexity and its impact.

IEEE/ACM Trans. on Networking, Jun. 2014.
[5] F. Chierichetti et al. Stochastic models for tabbed browsing. In Proc.

WWW, 2010.
[6] P. Dubroy and R. Balakrishnan. A study of tabbed browsing among

Mozilla Firefox users. In Proc. CHI, 2010.
[7] P. Gill et al. Characterizing organizational use of web-based services:

Methodology, challenges, observations and insights. ACM Trans. on the

Web, Oct. 2011.
[8] Z. B. Houidi et al. Gold mining in a river of internet content traffic. In

Proc. TMA, 2014.
[9] J. Huang and R. W. White. Parallel browsing behavior on the web. In

Proc. ACM HT, 2010.
[10] S. Ihm and V. S. Pai. Towards understanding modern web traffic. In

Proc. ACM IMC, 2011.
[11] B. Krishnamurthy and C. Wills. Privacy diffusion on the web: A

longitudinal perspective. In Proc. WWW, 2009.
[12] C. Liu et al. Understanding web browsing behaviors through Weibull

analysis of dwell time. In Proc. ACM SIGIR, 2010.
[13] J. Liu et al. Identifying user clicks based on dependency graph. In Proc.

WOCC, 2014.
[14] B. A. Mah. An empirical model of HTTP network traffic. In Proc.

IEEE INFOCOM, 1997.
[15] J. Purra and N. Carlsson. Third-party tracking on the web: A Swedish

perspective. In Proc. IEEE LCN, 2016.
[16] G. Rizothanasis et al. Identifying user actions from HTTP(S) traffic.

Technical report, 2016.
[17] F. D. Smith et al. What TCP/IP protocol headers can tell us about the

web. In Proc. ACM SIGMETRICS, 2001.
[18] R. W. White and S. M. Drucker. Investigating behavioral variability in

web search. In Proc. WWW, 2007.
[19] G. Xie et al. Resurf: Reconstructing web-surfing activity from network

traffic. In Proc. IFIP Networking, 2013.
[20] H. Zhang and S. Zhao. Measuring web page revisitation in tabbed

browsing. In Proc. CHI, 2011.


