
Dynamic File-selection Policies
for Bundling in BitTorrent-like Systems

Nissan Lev-tov, Niklas Carlsson, Zongpeng Li, Carey Williamson, Song Zhang
Department of Computer Science, University of Calgary

{nlevtov, ncarlsso, zongpeng, carey, sozhang}@cpsc.ucalgary.ca

Abstract—BitTorrent-like swarming technologies are very ef-
fective for popular content, but less so for the ‘long tail’ of files
with disparate popularities, which do not have sufficiently many
peers to enable efficient collaboration. Performance degradations
are especially pronounced in swarms with reduced file availabil-
ity. Static bundling groups files into a single data content. It
requires no modification to the BitTorrent client, and has been
shown to improve availability of unpopular files in BitTorrent
swarms. However, as peers are forced to download undesired file
pieces, download times increase, especially for peers downloading
popular files.

We propose to use Stochastic Games and Markov Decision
Process (MDP) to model and analyze optimal peer strategies, in
a selfish and a cooperative setting respectively, for a BitTorrent-
like system with multiple files. Each peer wishes to download
a subset of the files, and we allow peers to dynamically decide
whether to collaborate with peers targeting a different set of
files or not, given the current system state. The Stochastic
Game and MPD models take into account both piece availability
and average download times, and allow us to study if and
when downloading unwanted content can be beneficial. We use
dynamic programming to solve the two models, contrast the
level of collaboration observed in the selfish and the cooperative
settings, and propose an enhanced piece selection mechanism for
BitTorrent-like systems with dynamic download decision making.
We demonstrate the effectiveness of dynamic file piece selection
through both simulations and experiments using a modified
BitTorrent client.

I. INTRODUCTION

In swarming technologies, such as BitTorrent, files or con-
tent (a fixed set of files) are typically split into many smaller
blocks/pieces. A user interested in a particular file can join
a swarm of users downloading the same file, and exchange
blocks with them. The peer-to-peer design of BitTorrent allows
the system capacity to grow with the swarm size, yielding
high scalability and tolerance to flash crowds. To encourage
cooperation, BitTorrent uses a simple, yet robust, rate-based
Tit-for-Tat incentive mechanism, in which peers prioritize
helping others that provide them the best download rates. Such
reciprocation ensures that cooperating peers typically achieve
better download performance than selfish peers.

Despite all the advantages, BitTorrent-like swarming tech-
nologies are not beneficial for unpopular content, which lacks
sufficiently many peers to enable efficient collaboration [1],
[2]. With the original seeder (or publisher of the content)
typically not staying in the system during the whole lifetime of
the torrent, a peer attempting to download unpopular content
may therefore find it unavailable [3].

One option available to a content provider is to bundle/group
unpopular files into a single content. Higher aggregate popu-
larity of the bundle leads to increased content availability. The
idea of using bundling to promote unpopular content can be
traced back to at least decades ago, when in the literature of
economics, bundling had been proposed as a mechanism for
increasing sales, extending monopoly power and smoothing
demands across multiple goods. In swarming systems, the
effectiveness of bundling for improving the availability of
unpopular content was also verified [4].

Bundling can be done either statically or dynamically. With
pure static bundling [1], a static set of files is grouped together
by the publisher, and every peer participates by downloading
the entire set. Although requiring no modifications to existing
BitTorrent software, pure static bundling forces peers to down-
load more than they want, resulting in increased download
times. In mixed static bundling, peers select a subset of the
bundled files to participate in their swarming. Such freedom
of choice, however, is not always supported by the publishers.
Both static methods do not adjust the bundling decision during
the lifetime of the swarm. In dynamic bundling [5], peers may
be assigned complimentary content (files or part of files) to
download at the time they decide to download a particular file.

This work is orthogonal to the distinction of static versus
dynamic bundling. Rather than determining which files should
be bundled, the primary focus of this work is on determining
which download rules the peers should use, in systems with a
mix of desired and undesired files. A natural question here is if
and when peers benefit from downloading content they do not
want, but may be leveraged in cross-torrent cooperation. Of
particular interest are policies with which peers dynamically
select whether to collaborate with peers targeting different
files. In the bundling context, the set of complimentary files
that a peer voluntarily participates in distributing does not have
to be assigned to the peer as part of a bundle.

We use Stochastic Games [6] and a Markov Decision
Process (MDP) [7] to analyze desirable peer strategies in
a BitTorrent-like system with multiple files, in which peers
makes upload and download decisions based on the current
system-state information. Stochastic Games are a classic tool
for evaluating the dynamics of repeated games, in which the
players select actions for maximizing their respective benefit
and the system state transition is non-deterministic. Similarly,
MDPs have been used to model decision making for social
benefits, in systems where the outcomes are partly under the

control of a decision maker and partly random. We use the
a Stochastic Game to analyze dynamic piece selection among
selfish peers, and use an MDP for cooperating peers. The two
approaches share a unified, probabilistic system model that
accounts for piece availability, the Tit-for-Tat mechanism, and
average download times.

We present detailed system modelling using the Stochastic
Game and MDP models, including designing system states
and computing state transition probabilities. Dynamic pro-
gramming techniques are then employed to solve the Nash
Equilibrium and the social optimal solutions. Our analysis
reveal that collaboration are rather unlikely to happen in a
selfish environment, although they might be beneficial. This
suggests that, the Tit-for-Tat scheme, a practical incentive
engineering solution for single content systems, are no longer
effective in dynamic multi-file systems. In the social optimum,
we observe a number of instances when the system benefits
from peers downloading content they do not want themselves.
These cases include, in particular: (i) when the uploader is at
the end of its download, (ii) when the downloader is at the
beginning of its download, and (iii) when the downloader is
at the end of its download. We provide intuitive explanations
on why collaboration can be beneficial in these scenarios.

Based on the analysis results, we conclude that future work
on cross-torrent collaboration incentives is important to fully
achieve the capacity of a P2P swarming system, by enabling
necessary inter-file peer collaboration. We further propose
a new, enhanced piece selection algorithm that dynamically
selects which file content to download, from a peer’s per-
spective. This enhancement allows peers in BitTorrent-like
systems to decide, based on its own download interest and the
current system state information, which file pieces to download
and distribute. We conduct both simulations and experiments
using a modified BitTorrent client to evaluate and verify the
effectiveness of such dynamic piece selection policies.

In the rest of the paper, Sec. II reviews background infor-
mation on Stochastic Games and MDP; Sec. III and Sec. IV
establish and solve the system models, and analyze the results.
Sec. V proposes a corresponding enhancement to BitTorrent;
Sec. VI presents performance evaluation, Sec. VII discusses
related research and Sec. VIII concludes the paper.

II. MODELING PRELIMINARIES

We first present preliminaries on the modeling tools to be
used, including Stochastic Games for modeling file swarming
among selfish peers, and the Markov Decision Process for
modeling coopeartive piece selection strategies.

A. Stochastic Games

Introduced by Lloyd Shapley in the early 1950s, a Stochastic
Game is a dynamic game with probabilistic state transitions.
The game is played in a sequence of stages, each with an
initial state. Each player selects an action, and receives an
instantaneous reward based on the current state and the set
of actions chosen by all players. The game then moves to
a random new state whose distribution also depends on the

previous state and the chosen actions. Such a stage is repeated
for a finite or infinite number of rounds. The total payoff to
a player is taken as the discounted sum of the stage rewards,
or the limit inferior of the averages of the stage rewards [6].

Formally, a Stochastic Game consists of a set of players
N, a state space S, an action set Ai for each player i ∈ N, a
transition probability P from A×S to S , where A = ∏i∈N Ai,
and P(s | a,s′) is the probability that the next state is s given
the current state s′ and the current action profile a. A reward
function R is from A×S to ℜN , and its i-th coordinate, Ri, is
the payoff to player i as a function of s and a. The game starts
at an initial state s0. During each stage t, players first observe
the state st , and simultaneously choose actions at

i ∈ Ai. The
new state st=1 is then revealed according to the probability
P(· | st ,a) .

A (pure) policy or strategy for a player is a choice of which
action to take in each state in S. A mixed policy is a probability
distribution over the policy profile. A Nash equilibrium policy
contains a policy for each player, such that no player can
benefit from unilaterally deviating from its current policy.

When all the dimensions of the game (number of players,
set of actions, set of states, number of stages) are finite,
a Stochastic Game always has a (mixed) Nash equilibrium.
The same is true for a game with infinitely many stages if
the total payoff is a discounted sum. Stochastic Games are
generalizations of MDPs, which correspond to the case of a
single player only.

B. Markov Decision Process

Markov Decision Processes (MDPs) provide a natural
framework for modeling decision-making, when outcomes are
partly under the control of a decision maker yet partly random.
In BitTorrent, peer unchoking and file piece selection can
exhibit such a probabilistic nature.

More precisely, an MDP is a discrete time stochastic control
process, a special case of a Stochastic Game. In an MDP,
there is only one centralized decision made during each stage.
In the context of BitTorrent systems, this corresponds to
centralized optimization of block exchange decisions among
all peers. Given the current system state s and an action a,
the process responds by randomly moving into a new state
s′, and giving the decision maker a reward Ra(s,s′). New
state selection is governed by the state transition function
Pa(s,s′) = P(st+1 = s | st = s,at = a). Such a function possesses
the Markov property, i.e., it is conditionally independent of
previous states and actions.

The core problem of MDPs is finding a policy for the
decision maker, i.e., a function π(s) that specifies the action
to take in state s, with a goal of maximizing a cumulative
function of the rewards, e.g., the average over a finite horizon
or the expected discounted sum over an infinite horizon. In
Sec. IV-A, we employ backward induction coupled with dy-
namic programming for solving the MDP model in BitTorrent-
like systems.

III. P2P SWARM SYSTEM MODELING

A. Motivation and Assumptions

We use Stochastic Games and MDPs to model the system
behavior in multi-file systems with heterogenous file popular-
ity, for selfish and cooperative peers, respectively. We describe
the model for two files f1, f2, for ease of presentation; the
model can be easily generalized to more than two files. Each
file is divided into k blocks. There are three types of players
u1,u2,u3, interested in f1, f2, and both files, respectively. A
type becomes active upon entering the system, and becomes
inactive at the time it finishes downloading the desired file(s).
A seed is initially present, ensuring piece availability, but
leaves the system at a later time point.

The heterogenous file popularity is captured by nt
u, which

means that the system behaves as though there are nt
u peers of

type u at time t, where all these peers are in the same state as
u and take the same actions. For simplicity, we first consider
the case of time-invariant popularity, i.e., nt

u = nu, and the total
number of peers n = nu1 +nu2 +nu3 . This assumption is more
relevant for flash crowd scenarios, and can be extended to any
fixed number of peer sets arriving at any point in time, where
each set consists of peers of a certain file type. We also relax
this time-invariant assumption in empirical studies in Sec. VI.

In our model, an action for each type is defined as a
download file selection rule. We assume that peers have similar
upload capacities and unbounded download capacity. The
blocks of each file are assumed to be uniformly distributed.
More specifically, if a type u has m blocks, then each subset
of size m of 1, . . . ,k, has the same likelihood to appear.
Furthermore, since peers have a limited degree of patience,
we assume the game is of a finite horizon, i.e., the number of
stages/steps is a fixed parameter T .

We next provide details on each element of the system
model, including states, rewards, actions and state transition
probabilities.

B. System States

A system state s in our model consists of three sub-states:
• Type state: A binary vector recording which types are

active and which inactive.
• Seed state: A binary variable indicating whether the

system is currently with or without a seed.
• File state: A 2D array storing the number of blocks of

each file that each player has downloaded.
For the type state, let isActive(u,s) be 1 if u has not

finished downloading its file, and 0 otherwise. For example,
isActive(u1,s) = 1 iff s1(u1) < k. For the file state, let s f (u)
denote the local state of u, i.e., the number of blocks of file
f that type u has. The state of the system can be represented
by the position of the three players in a (k+1)× (k+1) grid,
where the rows and columns correspond to the number of
blocks of file f1 and of file f2, respectively. Figure 1 depicts
an example state of the system.

The seed state helps decide whether reward can be issued to
the players or not. In the case where the seed has left, and the

0 1 2 3 4 5

0

1

2

3

4

5

player1

player2

player3#
 b

lo
c
k
s
 o

f
fi
le

 1

blocks of file 2

Fig. 1. Example file state.

system does not have sufficient aggregate piece availability to
recover the files, stage rewards will be zero.

C. The Reward Function

When a Nash Equilibrium of the Stochastic ame is seeked,
each type optimizes its own reward; for the social optimum in
MDP, the types act as a single agent optimizing the aggregated
reward for all types. We consider three reward functions R for
the players, modeling different performance measures.

• Discounted average download rates. The average rate
a player receives at time t is multiplied by a discount
factor γ t . The players seek to maximize the discounted
average number of received blocks of desired files during
a specified time T .

• Average bounded download time. The players seek
to minimize the average download time of desired files
during the specified time T . If a type u has not finished
downloading its desired file by time T , then its download
time is taken as T ×nu in the average calculation.

• Average availability. The reward R for a type u is either
1× nu if u has finished downloading by time T , or 0
otherwise.

D. Type Actions

At each time step, each type u chooses a download action
d(u,v) against each type v, among the following:

• d(u,v) = d1: u downloads only blocks of f1 from v
(expected behavior of type u1)

• d(u,v) = d2: u downloads only blocks of file f2 from v
(expected behavior of type u2).

• d(u,v) = d3: u treats f1 and f2 as a single combined file,
and downloads a block independent of its file origin (fixed
bundling/expected behavior of type u3).

• d(u,v) = d4: u downloads unwanted blocks from v only
if v does not have blocks u needs. In contrast to the
first three rules, this rule is conditional and implies
downloading blocks of the two files while giving priority
to the file it wants.

E. State Transition Probabilities

We now describe the state transitions probabilities that
define the laws of motion of the model. Essentially, we need to
compute the probability distribution for the number of blocks
of each file that a type u receives from a type v, during a
given round. We wish to capture the Tit-for-Tat unchoking
mechanism implemented in BitTorrent. The overall compu-
tation happens in five successive steps: (i) compute p(u,v),
probability that a type v has blocks that u wants, (ii) compute
b(u,v), probability of bidirectional interest between types u
and v, (iii) compute the number of nodes with bidirectional
interest with type v, (iv) compute the probability that v selects
u to upload a block in fi, and (v), compute the number of
blocks in fi that u obtain. We next present details for each
step.

(i) Compute p(u,v).
Consider a system state s, and recall that the file state of a

player type u is defined as (s1(u),s2(u)). We first present two
lemmas.

Lemma 1: The probability that v has a block of file fi that
u does not have is

pi(u,v) =

{
1 if si(u) < si(v) and
1−

(si(u)
si(v)

)
/
(k

si(v)

)
otherwise

Proof: Consider player u and the file fi (containing k blocks).
If si(u) < si(v), v has a block to share with u with probability
1. If si(u) ≥ si(v), the probability that v will have a piece of
the file f that u does not have is one minus the probability
that one of the subsets of size si(v) of the blocks that u has,
is exactly the set of blocks that v has. Due to the uniformity
assumption, this probability is 1−

(si(u))
si(v)

)
/
(k

si(v)

)
. ut

Lemma 2: The probability that v has a block (of any file)
that u does not have is

p(u,v) = p1(u,v)+ p2(u,v)− p1(u,v)p2(u,v)

(ii) Compute b(u,v).
Using probabilities pi(u,v) and p(u,v), we next calculate

the probabilities of bidirectional interest between types u and
v, assuming current system state s and the download action
profile d chosen by the peers. For instance, assume u and v
both take download action d1 (only download blocks of file
f1). If neither v or u possesses blocks of f1, then b(u,v) = 0.
If exactly one of u and v has zero blocks of f1, then we take
b(u,v) to be 1

5n , to model the optimistic unchoke mechanism
that applies for choosing to upload to peers which are in the be-
ginning of their download process. (See [8] for a description of
the optimistic unchoke mechanism in BitTorrent). Otherwise,
if s1(u) > s1(v) > 0, then with probability 1 u has a block of f1
that v does not have, and thus the probability of bidirectional
interest b(u,v) is p1(u,v). Similarly, if s1(v) > s1(u) > 0,
b(u,v) = p1(v,u). If s1(u) = s1(v) > 0, then either u and v
have the same set of blocks, or each has a block that the other
does not have. That is, if u has a block of f1 that v does
not have, then with probability 1 v also has a block that u

does not have. Therefore in this equality case, the probability
of bidirectional interest b(u,v) = p1(u,v). We summarize the
calculation for several representative action profiles in Table I.
Computing b(u,v) for other profiles can be done in a similar
fashion.

TABLE I
BIDIRECTIONAL INTEREST PROBABILITY b(u,v)

Conditions (if-else in order applied)
d(u,v) d(v,u) s(u,v),s(v,u) b(u,v)
d1 d1 s1(u) = 0∧ s1(v) = 0 0

s1(u) = 0∨ s1(v) = 0 1
5n

s1(u)≥ s1(v) p1(u,v)
s1(u) < s1(v) p1(v,u)

d1 d2 s2(u) = 0∧ s1(v) = 0 0
s2(u) = 0∨ s1(v) = 0 1

5n
s2(u) > s2(v) p1(u,v)
s1(v) > s1(u) p2(v,u)
s2(u)≤ s2(v)∧s1(v)≤ s1(u) p1(u,v)p2(v,u)

d1 d3,d4 s1(u) = 0 ∧ s2(u) = 0 ∧
s1(v) = 0

0

s1(u) = 0 ∧ s2(u) = 0 ∨
s1(v) = 0

1
5n

s1(u)≥ s1(v)∨s2(u) > s2(v) p1(u,v)
s1(v) > s1(u) p(v,u)

d3,d4 d3,d4 s1(u) = 0 ∧ s2(u) = 0 ∧
s1(v) = 0∧ s2(v) = 0

0

s1(u) = 0 ∧ s2(u) = 0 ∨
s1(v) = 0∧ s2(v) = 0

1
5n

s1(v) > s1(u)∨s2(v) > s2(u) p(v,u)
otherwise p(u,v)

(iii) Compute the number of nodes with bidirectional
interest with type v.

In order to calculate the probability that a peer of type v
will choose a peer of type u (given S and d), in step (iv),
we will compute how many nodes have bidirectional interest
with v and therefore compete with u. To model the Tit-for-Tat
mechanism, we assume that with j peers having bidirectional
interests with v, the probability v will choose u is 5/ j. (The
BitTorrent unchoking method usually assumes that about 5
peers are unchoked at the same time). The average number of
peers in u having bidirectional interest with the peer in v is
λB(u,v) = nub(v,u). The total average number of peers having
bidirectional interest with the peer in v is

λB(v) = λB(u1,v)+λB(u2,v)+λB(u3,v).

The probability that exactly j peers have bidirectional
interest with the peer in v can be approximated using a Poisson
distribution with average rate λB(v). Consequently, we have
the following probability that v will choose to upload to u,
assuming bidirectional interest between them:

Pr(Choose(v,u) | s,d) =
n

∑
i=0

5
(i+1)!

λB(v)ie−λB(v)

≈ 5
λB(v)

(1− e−λB(v))b(u,v).

TABLE II
PROBABILITY OF v UPLOADS fi TO u, Pr(U pload(v,u, i))

Conditions
d(u,v) type(u) Pr(U pload(v,u, i))
d1 all Pr(Choose(v,u) | s,d)p1(u,v)
d2 all Pr(Choose(v,u) | s,d)p2(u,v)
d3 all Pr(Choose(v,u) | s,d) si(u)(k−si(u))

s1(v)(k−s1(u))+s2(v)(k−s2(u))
d4 ui Pr(Choose(v,u) | s,d)pi(u,v)

u j , j 6= i Pr(Choose(v,u) | s,d)p j(u,v)(1− pi(u,v)

(iv) Compute the probability that v selects u to upload a
block in fi.

We can now calculate the probability that v will upload a
block of file fi to u by multiplying the above probability with
the probability pi that the uploaded block will be of file fi.
In case u chooses download rule d3, this probability can be
calculated using Bayes Rule,

pi =
1
2

si(v)
k

k−si(u)
k

1
2

s1(v)
k

k−s1(u)
k + 1

2
s2(v)

k
k−s2(u)

k

=
si(u)(k− si(u))

s1(v)(k− s1(u))+ s2(v)(k− s2(u))

If u chooses download rule d4 this probability is pi = pi(u,v)
in case u = ui, and pi = p j(u,v)(1− pi(u,v)) in case u = u j
for j 6= i. Table II summarizes the probability that v uploads a
block of file fi to u , assuming the current state s and download
action profile d.

(v) Compute the number of blocks in fi that u obtains.
The number of blocks of file fi that u receives from v in a

round is approximated by the Poisson distribution with average
rate λv(u, i) = nvPr(U pload(v,u, i) | s,d), and the total number
of blocks of file fi that u receives in a round is approximated
by the Poisson probability distribution with average rate

λ (u, i) = λu1(u, i)+λu2(u, i)+λu3(u, i),

and the probability that type u will gain m blocks of file fi
in this round is

Pr(Gain(u, i,m) | s,d)≈ 1
(m)!

λ (u, i)me−λ (u,i).

Finally, the system state transition probabilities are obtained
by multiplying the above probabilities for all types and files.

All details of our BitTorrent-like system model are now
obtained. The next step is to solve the model, including finding
and analyzing Nash Equilibriums for the Stochastic Game, and
computing and analyzing the socially-optimal piece selection
rules for the MDP. We discuss such solutions and results in
Sec. IV.

IV. OPTIMAL STRATEGIES FOR COOPERATIVE AND
SELFISH PEERS

We first describe a dynamic programming method for solv-
ing the model established in Sec. III, then analyze the optimal
cooperative behavior found for the MDP model, and the selfish
behavior observed in the Stochastic Game model.

A. Solving The MDP Model with Dynamic Programming

Given the state transition function P and the reward function
R of an MDP, standard algorithms [9] for calculating the
optimal policy iteratively refine two arrays indexed by states.
Each state has a value V for reward, and a policy π . When the
algorithm converges, π contains the solution and V (s) stores
the reward for following that solution from state s.

Such an algorithm is based on the following two recursive
equations, iteratively computed for all the states, until no
further changes occur. Here γ ∈ (0,1] is the discount factor.

π(s) = argmax
a
{Ra(s,s′)+ γ ∑

s′
Pa(s,s′)V (s′)}

V (s) = Rπ(s)(s)+ γ ∑
s′

Pπ(s)(s,s
′)V (s′)

In backward induction [9], π(s) is not stored, but calculated
whenever needed, using the Bellman Equation:

V t(s) = max
a

(Ra(s)+ γ ∑
s′

Pa(s,s′)V t−1(s′)).

A dynamic programming approach can be employed to
solve the above equation, where t decreases from T to 0.
Below we provide details for each of the three objectives:

Reward Ra(s) = discounted average download rates.
We have that

V t(s) = max
a

γ ∑
s′

Pa(s,s′)(R(s,s′)+V t−1(s′)),

where V T (s) = 0, and R(s,s′) is the sum of the increments for
the requested files, namely,

R(s,s′) = nu1(s
′
1(u1)− s1(u1))+nu2(s

′
2(u2)− s2(u2))

+nu3((s
′
1(u3)− s1(u3))+(s′2(u3)− s2(u3))).

Reward Ra(s) = bounded average download times.
We have that

V t(s) = min
a

(Ra(s)+∑
s′

Pa(s,s′)V t+1(s′)),

where V T (s) = 0, and

Ra(s) = ∑
i=1,2,3

isActive(ui,s)nui .

Reward Ra(s) = bounded average availability.
We have that

V t(s) = max
a

(∑
s′

Pa(s,s′)V t+1(s′)),

where

V T (s) = ∑
i=1,2,3

(1− isActive(ui,s))nui .

B. Social-Optimal Piece Selection

We have analyzed the results obtain for the Markov Deci-
sion Process in order to obtain insights regarding the social
optimum, that will enable us to enhance the piece selection
method in BitTorrent-like file swarming systems. In the ma-
jority of the cases we examined, about 90% of the download
decisions are to download only the desired files, e.g., d1 for
type u1. However, we further identified a number of scenarios
in which collaboration does occur.

(a) When the seed exits the system at an early time and the
first type u1 has very low popularity (nu1 < k), then while the
seed is active the more popular type u2 frequently collaborates
by choosing download rule d1, d3 or d4 against u1.

(b) When the total number of blocks of file fi in the system is
low (taking into account the popularity of the types as well as
their number of blocks of fi), then type u j, (j 6= i) sometimes
collaborates with ui. Especially (around 80% of the incidents
of collaboration), collaboration occurs when:
b1. The other type (ui) is at the end of its file download. (This

can be explained by u j “saving” blocks of ui before ui
exits the system.)

b2. u j is at the beginning of its file download, then it
frequently uses download rule d3 or d2. (This can be
explained by u j increasing its probability of getting the
first blocks.)

b3. u j is at the end of its download but has blocks of fi. (This
can be explained by u j delaying its finish so that ui can
download its rare blocks.)

b4. The number of blocks of file f j in the system is not low.
The results suggest that the types tend to be “socially active”

when their own performance is guaranteed (blocks of desired
files are dense) but blocks of the other file are rare, and turn
to “selfish behavior” (asking only for blocks of the file they
are interested in), when their file becomes rare or is likely
to become rare in the near future, or when there is no rarity
problem with the other file. Furthermore, collaboration occurs
mostly in the end states of either the download process of the
downloader or the uploader.

C. The Stochastic Game Model and Selfish Behaviors

For the Stochastic Game model, we used a dynamic pro-
gramming approach similar to that in Sec. IV-A to find an
approximate Nash Equilibrium, for which the total gain is
optimized. Note that if both types u1 and u2 follow the
strategy of downloading only the files they want, then this
strategy profile is in equilibrium since no type will benefit
from deviating from it unilaterally. Although this is not the best
equilibrium for social benefit, the best is not much different.

In the socially optimal approximate Nash Equilibrium ob-
served, for up to 99.9% of the time each type downloads its
desired file(s) only. The other rare cases occur in scenarios
similar to the scenarios stated in Sec. IV-B.

In conclusion, we observe that collaboration among the
peers, in the form of downloading unwanted data to help other
peers, can indeed be beneficial. However, when peers are all

selfish and focus on their own download performance only,
such collaboration is much less likely to occur. This contrast
confirms the necessity of incentive engineering in multi-file
data swarming.

In the next section, we describe the enhancement to the
piece selection method based on the observations just made.
The proposed enhancement applies to bundles containing any
fixed number of files, not just two files as assumed in the
simplifying model.

V. PIECE SELECTION METHOD MODIFICATION

BitTorrent traditionally relies heavily on a rarest first policy
for piece selection. With this policy, unchoked peers request
with highest priority the piece that the least number of
neighbors have, among blocks it desire. This section describes
our modified piece selection algorithm. The algorithm is new
in that it takes into account not only pieces that are desired, but
also pieces the peer is not directly interested in. For simplicity,
we assume that a peer is downloading a bundle with a set
of pieces B, from which it wants a subset F ⊂ B (and does
not want the remaining subset G = B \F). Furthermore, it is
assumed that the piece IDs in the bundle are known and each
subset can be identified.

Let nRare(S) denote the number of pieces in a subset S⊂ B
that is considered rare among the neighbors of the downloader.
For the purpose of our simulations, we assume a piece is rare
when there are no more than one copy of the piece in the set
of neighbors. Let U and D denote the set of pieces that the
uploader and downloader has, respectively.

Our modified piece selection algorithm is described in
Algorithm 1. While the peer primarily download pieces from
the desired subset F , there are cases in which the downloader
asks for blocks of undesired files. Based on our modeling
results using the MDP (Sec. IV-B), these cases corresponds
to the following:
• The uploader is at the end of its download. Here, the

condition of how far the uploader must be in its download
for this condition to trigger is dynamically set according
to the number of rare blocks observed by the downloader.
In particular, if the downloader observes many rare blocks
of the uploader’s file, then it will start replicating them
earlier, before the uploader exits the system. In this case
it is also necessary that the downloader is not at the end
of its own download.

• The downloader is at the beginning of its download.
To reduce the time until a peer can start exchange
pieces using the rate-based Tit-for-Tat technique, a new
downloader may benefit from quickly getting rare pieces
to share.

• The downloader is at the end of its download. Here,
the threshold determining how far the downloader must be
from finishing its download is dynamically set according
to the number of rare blocks that the downloader has.
With the current rule, a downloader that has many rare
blocks will try to defer its departure from the system,
helping replicate rare pieces.

Algorithm 1 SelectPiece(F,G,D,U)
mF,¬D← nRare(F ∩ (B\D))
{# rare pieces in F that the downloader does not have}
mG,¬D← nRare(G∩ (B\D))
{# rare pieces in G that the downloader does not have}
mF,D← nRare(F ∩D)
{# rare pieces in F that the downloader has}
mG,D← nRare(G∩D)
{# rare pieces in G that the downloader has}
if mF,¬D = 0 and mG,¬D ≥ 1 then
{downloader is missing rare pieces in G, but not in F}
if |U | ≥ (|G|−mG,¬D) and |D|< (|F |−mG,¬D)−1 then
{uploader is almost finished downloading G}
return Rarest piece

if |D| ≤ 1 then
{downloader is at the beginning of downloading F}
return Rarest (or random) piece with priority to the
pieces in F

if |D|> |F |−max(mF,D,mG,D)+1 then
{downloader is almost finished downloading F and has
rare pieces}
return Rarest piece in G.

return Rarest piece that belongs to F

Note that our algorithm is relatively easy to implement, does
not require drastic changes of the current BitTorrent client, and
does not require any changes to the communication between
peers. For the purpose of our experiments in Sec. VI, we
only changed the pieces selection used at the time of unchoke
messages. Nonetheless, simulations results and experiments
show that these slight modifications are indeed capable of
improving performance of the entire system.

VI. PERFORMANCE EVALUATION

A. Simulation Results

To study the performance advantages of the modified piece
selection policy, we used a discrete event simulator of a
BitTorrent system. Our simulations assume that peers have
uniform upload capacities, can upload one piece per second,
and have unlimited download capacities. Identical scenarios
were simulated both with and without our modification, to
compare their performance . We present example results for
three scenarios. In all scenarios there is a single seeder with
upload capacity of one or two pieces per second, which
remains in the system for the majority of the simulation time,
but leaves before all peers have completed their download.
Peers are interested in f1, f2, or both, and 30% of the peers
interested in the less popular file are interested in both files.

In Scenario 1, there are a total of 200 peers arriving, 80%
of which arrive (uniformly) to the system within the first
700 seconds, and the remaining 20% of peers arrive at an
exponentially decreasing rate. The seed enters the system at
time 0 and exits 1,600 seconds later. Both files have 400
pieces. Figure 2 depicts a comparison between the download

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

20
0

40
0

60
0

80
0

10
00

12
00

F2/F1 popularity ratio

do
w

nl
oa

d
tim

e

F1 modified
F1 only
F2 modified
F2 only

Fig. 2. Average download times for various popularity ratios in Scenario 1.

●
●

●

●●

●

●

●

●
●

modified file only pure

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

do
w

nl
oa

d
tim

e

Fig. 3. Download time statistics for Scenario 2.

times using our proposed dynamic piece selection versus
downloading desired files only (and then exit the system).
The upper lines show the average download times for the less
popular file and the lower lines show the average download
times for the more popular file. The ratio between the low and
high popularity varies from 0 to 1 (x-axis). We observe that
the download times for the popular files (as well as the overall
average) are similar, but the reduction in download times of
the less popular file is evident.

In Scenarios 2 and 3, all peers arrive during the initial flash
crowd. In Scenario 2, 200 peers arrive (at uniform rate) within
the first 700 seconds, and the seed leaves the system after 800
seconds. Similar to Scenario 1, each file has 400 pieces. Here
the ratio between the low and high popularity files is fixed to
0.1. In Scenario 3, on the other hand, the seed stays much
longer, and does not leave until after 1,500 seconds. Here,
we assume that there are 250 peers, all of which arrive (at a
constant rate) within the first 800 seconds. Each file has 500
pieces, and the ratio between the low and high popularity files
is set to 0.05.

Figure 3 depicts the median, lower and upper quartiles
and extreme observations for the download times of peers

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

modified file only pure

40
0

60
0

80
0

10
00

12
00

do
w

nl
oa

d
tim

e

Fig. 4. Download time statistics for Scenario 3.

in Scenario 2. Figure 4 depicts the corresponding statistics
for Scenario 3. The leftmost box refers to the results using
our proposed piece selection. The center box refers to the
case where peers download only pieces from desired files,
and the rightmost box refers to pure bundling, where peers
exit the system after downloading the desired files. In these
scenarios there is a slight gain in the median and quartiles,
and a more considerable gain for the maximum values, when
using our modification. In summary, these results show that the
modification is effective in reducing the higher download times
without giving up much in terms of average performance,
especially when unpopular files present.

B. Experimental Results

Our implementation of the piece selection algorithm is
based on the mainline BitTorrent version 3.3. We deploy
one seed and a total of nine lechers (non-seed peers): eight
distributed across the University of Calgary campus, and one
remote peer in Toronto (two time zones away). Two files, each
at approximately 130MB, are swarmed.

For the purpose of comparison, we have one implementa-
tion based on the piece selection algorithm in Sec. V, one
implementation (“greedy”) in which the peers only request
pieces from desired files, and a third implementation in which
the peers download all pieces in the bundle (static bundling).
As previously noted, we only changed the piece selection
module at the time of unchoke messages. Piece requests made
due to an incoming have messages were initiated if the have
message included a piece of F that the peer does not have.
In all experiments, each peer requests the whole bundle (with
metafile) at the beginning of the download; the policies only
differ by the piece requests they make.

With the exception of the pure static bundling policy, the
peers will leave the swarm as soon as they finish downloading
their desired file(s). For static bundling, the peers leave when
they have obtained both files, independent of their original
interest. To emulate the under provisioning of the seed, we
modify the source code and cap the seed’s upload capacity dy-
namically from 400kB/s to 25kB/s: 400kB/s at the beginning,

Static

Modified

Greedy

 0 1000 2000 3000 4000 5000

450

300

150

0

S
ee

d
ba

nd
w

id
th

Time

Seed bandwidth

Fig. 5. Download times for experimental scenario.

decreases to 200kB/s after 650 seconds, and decrease to half
again in every other 300 seconds, until reaching 25kB/s. The
leechers’ upload throughput is fixed at 200kB/s all the time
(small variations might occur due to external network traffic
though). We do not put any additional caps to the download
capacity of peers.

In our experiments, six lechers arrive at time 0 and another
three 600 seconds later (just before the seed bandwidth starts
to reduce). Here we are interested in a scenario of a fading
torrent, where the original seeder has lost interest in seeding
the content, yet we still wish to achieve graceful termination,
with the ”final” downloaders receiving reasonable service. Two
peers from the first group and one from the second group
want file 1 (red lines in Fig. 5), the same for file 2 (green)
and for both files (blue). The left-most point of each line
corresponds to the time of the peer’s arrival and the right-most
point corresponds to download completion. The purple line
shows the seed bandwidth over time. We can observe that, the
download times of the later arriving peers can be reduced by
almost 80%, using our modified piece selection policy. There
is a significant advantage using the modified dynamic piece
selection policy as torrents are (inevitably) moving towards
the end of their life span and fading.

VII. PREVIOUS RESEARCH

While most research efforts towards understanding Bit-
Torrent have focused on single-torrent systems, some recent
studies consider multi-torrent environments [1], [3], [5], [10],
[11]. For example, measurements have shown that more than
85% of torrent users simultaneously participate in multiple
torrents [10], [12]. Techniques have been proposed that extend
the “life-time” of torrents by having peers downloading one
torrent also act as seeders in other torrents (of files that
they may previously have downloaded) [12]. Yang et al. [11]
propose a cross-torrent Tit-for-Tat scheme, based on peers
aggregate download rates (across all torrents), which provide
incentives for such behavior. Other related studies on incen-
tives in inter-swarm exchanges include ones that propagate

peer reputation [13], as well as incentive-based token [14] and
credit [15] schemes.

Perhaps most related to our work is that of Menasche et
al. [1]. They use queuing models to show that “bundling”
multiple files into a larger file may increase the file availability.
While bundling is proposed for the purpose of improved file
availability, in some cases, they also show that bundling can
reduce the download times even for clients that only are
interested in downloading part of a larger bundle. Dynamic
bundling approaches have also been proposed in which peers
are dynamically assigned secondary swarms, based on current
state information, which they should help [5]. In contrast to
such research on bundling, we consider a system in which
peers can select which part of a bundle they wants to down-
load, and focuses on the incentives (and games) that such peers
are exposed to. In particular, we are interested in determining
what the optimal strategies such peers may have. We consider
strategies from both a selfish and a social perspective.

Other related work have considered swarm manage-
ment [16], [2]. For example, Peterson et al. [16] proposed a
swarm coordination system that directs bandwidth allocation
at each peer, such that the peers allocate upload capacities
between different torrents in order to optimize download
performance. Dan and Carlsson [2] investigated the advantages
offered by dynamically merging small swarms of the same
torrent (rather than different torrents).

For single torrent systems, a stochastic differential equation
model has been used to capture the peer behavior and file avail-
ability issues in BitTorrent [17]. In contrast with that work,
we consider multi-file torrents and use controlled stochastic
models, where the agents or players choose their actions to
optimize their performance.

VIII. CONCLUSIONS

We consider peer strategies in the context of BitTorrent
systems using file bundling, where a peer may only be
interested in downloading a subset of the bundled files. Using
a single unifying probabilistic model which takes into account
factors including piece availability, Tit-for-Tat and average
download times, we allow peers to dynamically select whether
to collaborate with peers targeting different files, depending
on the realtime state of the system. Using this framework,
we apply both Stochastic Games and a Markov Decision
Process (MDP) to analyze desirable peer strategies from a
selfish and a social perspective, respectively. While selfish
peers typically do not download any other content than what
they truly want, our analysis identifies and characterizes cases
where downloading unwanted content is socially beneficial,
suggesting that future research on the topic of more advanced
cross-torrent incentive schemes is not only important, but
necessary if we want to achieve the social optimum. Based
on these characterizations, we propose a new, enhanced piece
selection method that dynamically selects which file content to
download. Both simulations and experiments using a modified
BitTorrent client are used to verify the effectiveness of the
policy.

REFERENCES

[1] D. S. Menasche, A. A. A. Rocha, B. Li, D. Towsley, and A. Venkatara-
mani, “ Content Availability and Bundling in Swarming Systems ,” in
Proc. of CoNext, Rome, Italy, Dec. 2009.

[2] G. Dán and N. Carlsson, “Dynamic Swarm Management for Improved
BitTorrent Performance,” in Proc. of IPTPS, Boston, MA, Apr. 2009.

[3] G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and
J. Danaher, “Availability in BitTorrent Systems,” in Proc. of IEEE
INFOCOM, Anchorage, AK, May 2007.

[4] D. Menasche, G.Neglia, D.Towsly, and S.Zilberstein, “Strategic rea-
soning about bundling in swarming systems,” in Proc. of GameNets,
Istanbul,Turkey, May 2009.

[5] N. Carlsson, D. Eager, and A. Mahanti, “Using Torrent Inflation to Effi-
ciently Serve the Long Tail in Peer-assisted Content Delivery Systems,”
in Proc. of IFIP/TC6 Networking, Chennai, India, May 2010.

[6] A.Neyman and S.Sorin, “Stochastic Games and Applications,” in Kluwer
Academic Press, 2003.

[7] R.Bellman, “ A Markovian Decision Process ,” Journal of Mathematics
and Mechanics, vol. 6, 1957.

[8] A.Legout, G.Urvoy-Keller, and P.Michiardi, “Rarest first and choke
algorithms are enough,” in Proc. of the 6th ACM SIGCOMM conference
on Internet measurement. New York, NY, USA: ACM, 2006, pp. 203–
216.

[9] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton
University Press, 1957. Republished 2003 by Dover.

[10] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ment, Analysis, and Modeling of BitTorrent-like Systems,” in Proc. of
ACM IMC, Berkeley, CA, Oct. 2005.

[11] Y. Yang, A. L. H. Chow, and L. Golubchik, “Multi-Torrent: A Perfor-
mance Study,” in Proc. of MASCOTS, Baltimore, MD, Sept. 2008.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “ A
Performance Study of BitTorrent-like Peer-to-Peer Systems ,” JSAC,
vol. 25, no. 1, pp. 155–169, 2007.

[13] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “ One Hop
Reputations for Peer to Peer File Sharing Workloads ,” in Proc. of NSDI,
San Francisco, CA, April 2008.

[14] A. Ramachandran, A. das Sarma, and N. Feamster, “ Bitstore: An
Incentive Compatible Solution for Blocked Downloads in BitTorrent ,”
in Proc. of NetEcon, San Diego, CA, June 2007.

[15] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “ Free-riding in
BitTorrent Networks with the Large View Exploit,” in Proc. of IPTPS,
Bellevue, WA, Feb. 2007.

[16] R. S. Peterson and E. G. Sirer, “Antfarm: Efficient content distribution
with managed swarms,” in Proc. of NSDI, Boston, MA, May 2009.

[17] B.Fan, D. Chiu, and J. Lui, “Stochastic analysis and file availability
enhancement of bt-like file sharing systems,” in Proc. of IEEE IWQoS,
New Haven, CT, June 2006.

