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Abstract
BitTorrent is a very scalable file sharing protocol that uti-
lizes the upload bandwidth of peers to offload the origi-
nal content source. With BitTorrent, each file is split into
many small pieces, each of which may be downloaded
from different peers. While BitTorrent allows peers to
effectively share pieces in systems with sufficient partic-
ipating peers, the performance can degrade if participa-
tion decreases. Using measurements of over 700 track-
ers, which collectively maintain state information of a
combined total of 2.8 million unique torrents, we identify
many torrents for which the system performance can be
significantly improved by re-allocating peers among the
trackers. We propose a light-weight distributed swarm
management algorithm that manages the peer torrents
while ensuring load fairness among the trackers. The al-
gorithm achieves much of its performance improvements
by identifying and merging small swarms, for which the
performance is more sensitive to fluctuations in the peer
participation, and allows load sharing for large torrents.

1 Introduction
BitTorrent is a popular peer-to-peer file-sharing protocol
that has been shown to scale well to very large peer pop-
ulations [9]. With BitTorrent, content (e.g., a set of files)
is split into many small pieces, each of which may be
downloaded from different peers. The content and the set
of peers distributing it is usually called a torrent. A peer
that only uploads content is called a seed, while a peer
that uploads and downloads at the same time is called a
leecher. The connected set of peers participating in the
piece exchanges of a torrent is referred to as a swarm.

A client that wants to download a file can learn about
other peers that share the same content by contacting a
tracker at its announce URL. Each tracker maintains a
list with state information of known peers that currently
are downloading and/or uploading pieces of the file, and
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provides a peer with a subset of the known peers upon
request. Upon requesting the list of peers, the peer has
to provide the tracker with information about its down-
load progress. Additionally, the peers must inform the
tracker about changes in their status (i.e., when they join,
leave, or finish downloading the file). To avoid overload-
ing trackers, the BitTorrent protocol only allows a peer
to associate with one tracker per file that it is download-
ing (unless the tracker is no longer available and a new
tracker must be contacted). Naturally, torrents may there-
fore have multiple parallel swarms.

While BitTorrent allows peers to effectively share
pieces of popular torrents with many peers in a swarm,
the performance of small torrents and swarms is sensi-
tive to fluctuations in peer participation. Measurement
data suggests that peers in small swarms achieve lower
throughput on average (e.g., Figure 9 in [9]). Most
swarms are unfortunately small; several sources confirm
that the popularity distribution of p2p content follows a
power-law form, with a “long tail” of moderately popu-
lar files (see Figure 1(a) and, e.g., [1, 3, 4, 5]). At the
same time, the measurement data we present in this pa-
per shows that many torrents consist of several swarms
(see Figure 1(b)). Potentially, if one could dynamically
re-allocate peers among the trackers such that multiple
small swarms of a torrent are merged into a single swarm,
then one could improve the file sharing performance of
the peers belonging to these torrents.

Motivated by these observations, the goal of our work
is to evaluate the feasibility and the potential gains of
dynamic swarm management for BitTorrent trackers. To
support our evaluation, we performed measurements of
721 trackers, which collectively maintain state informa-
tion of a combined total of 2.8 million unique torrents.
We propose a light-weight distributed swarm manage-
ment algorithm, called DISM, that also ensures load fair-
ness among the trackers. Based on our measurement data
and using DISM we argue that dynamic swarm balancing
could lead to a significant performance improvement in



terms of peer throughput. We also briefly discuss alter-
natives for swarm management that could lead to similar
performance improvements.

The remainder of the paper is organized as follows.
Section 2 describes our design objectives and a light-
weight distributed swarm management algorithm. Sec-
tion 3 presents validation and performance results. Re-
lated work is discussed in Section 4. Finally, Section 5
concludes the paper.

2 Distributed Swarm Management
Ignoring the seed-to-leecher ratio, small swarms typi-
cally perform worse than larger swarms. However, for
load sharing and reliability purposes it may be advanta-
geous to split the responsibility of maintaining per-peer
state information across multiple trackers, i.e., to allow
several swarms to coexist.

Consequently, dynamic swarm management should
make it possible to (i) merge swarms belonging to a tor-
rent if they become too “small”, and to (ii) split a swarm
or to re-balance swarms if the swarms become suffi-
ciently “large”. In general, it is hard to define when a
swarm should be considered “small” or “large”, but for
simplicity, we assume that a swarm can be considered
“large” if it has at least x̃ participating peers, for some
threshold x̃. “Large” swarms are likely to have high piece
diversity and are more resilient to fluctuations in peer
participation.

Apart from these two properties, one would like to
minimize the effect of swarm balancing on the traffic
load of the trackers by (iii) avoiding a significant in-
crease in the number of peers for any individual tracker
(load conservation), and by (iv) minimizing the number
of peers that are shifted from one tracker to another (min-
imum overhead, especially shifts associated with torrents
being re-balanced).

The distributed swarm management (DISM) algorithm
we describe in the following was designed with these
four properties in mind. Our algorithm allows swarms to
be merged and to be split: swarms are merged whenever
a swarm has less than x̃ participating peers, and a swarm
is split (or re-balanced) over multiple trackers only if
splitting the peers does not cause any swarm to drop be-
low x̃ peers. The algorithm ensures that no tracker will
see an increase of more than x̃ peers in total (across all
torrents) and typically much less, and it does not balance
swarms that have at least x̃ peers each.

The DISM algorithm is composed of two algorithms.
It relies on a distributed negotiation algorithm to deter-
mine the order in which trackers should perform pair-
wise load balancing. On a pairwise basis, trackers then
exchange information about the number of active peers
associated with each torrent they have in common (e.g.,

Table 1: Notation
Parameter Definition
R Set of trackers
T Set of torrents
R (t) Set of trackers that track torrent t
T (r) Set of torrents tracked by tracker r
Mr Number of peers tracked by tracker r
xt Number of peers in torrent t
xt,r Number of peers of torrent t that are

tracked by tracker r
x̃ Threshold parameter

by performing a scrape), and determine which tracker
should be responsible for which peers.

2.1 System Model
Table 1 defines our notation. In the following, we con-
sider a system with a set of trackers R , with a combined
set of torrents T . We will denote by R (t) the set of track-
ers that track torrent t ∈T , and by T (r) the set of torrents
that are tracked by tracker r ∈R . Every torrent is tracked
by at least one tracker (i.e., T =

S

r∈R T (r)), but the sub-
sets T (r) are not necessarily pairwise disjoint. Finally,
let us denote the number of peers tracked by tracker r
for torrent t by xt,r , the total number of peers tracked by
tracker r by Mr, and the total number of peers associated
with torrent t by xt .

2.2 Distributed Negotiation
The distributed negotiation algorithm assumes that each
tracker r knows the set of torrents T (r,r′) = T (r)∩T (r′)
that r has in common with each other tracker r′ ∈ R
for which the trackers’ torrents are not disjoint (i.e., for
which T (r,r′) 6= 0). Note that this information should
be available through the torrent file, which should have
been uploaded to the tracker when the torrent was regis-
tered with the tracker.

The algorithm works as follows. Tracker r invites for
pairwise balancing the trackers r′ for which the overlap
in tracked torrents, T (r,r′) is maximal among the track-
ers with which it has not yet performed the pairwise bal-
ancing. A tracker r′ accepts the invitation if its over-
lap with tracker r is maximal. Otherwise, tracker r′ asks
tracker r to wait until their overlap becomes maximal for
r′ as well. The distributed algorithm guarantees that all
pairs of trackers with an overlap in torrents will perform a
pairwise balancing once and only once during the execu-
tion of the algorithm. If tracker r′ accepts the invitation,
tracker r queries xt,r′ for t ∈ T (r,r′) from r′, executes
the pairwise balancing algorithm described below, and
finally tells the results to tracker r′.



2.3 Pairwise Approximation Algorithm
Rather than applying optimization techniques, we pro-
pose a much simpler three-step greedy-style algorithm.
First, peers are tentatively shifted based only on infor-
mation local to each individual torrent. For all torrents
t that require merging (i.e., for which xt,r + xt,r′ < 2x̃),
all peers are tentatively shifted to the tracker that al-
ready maintains information about more peers for that
torrent. For all torrents that should be re-balanced (i.e.,
for which min[xt,r,xt,r′ ] < x̃ and xt,r +xt,r′ ≥ 2x̃), the min-
imum number of peers (x̃−min[xt,r,xt,r′ ]) needed to en-
sure that both trackers have at least x̃ peers are tentatively
shifted to the tracker with fewer peers.

Second, towards achieving load conservation of Mr,
the peer responsibility of some torrents may have to be
adjusted. Using a greedy algorithm, the tentative alloca-
tions are shifted from the tracker that saw an increase in
peer responsibility (if any) towards the tracker that saw a
decrease in overall peer responsibility. To avoid increas-
ing the number of peers associated with partial shifts, pri-
ority is given to shifting responsibilities of the torrents
that are being merged. Among these torrents, the algo-
rithm selects the torrent that results in the largest load
adjustment and that does not cause the imbalance in over-
all load to shift to the other tracker. By sorting torrents
based on their relative shift, this step can be completed
in O(|T (r,r′)|log|T (r,r′)|) steps.

Finally, if overall load conservation is not yet fully
achieved, additional load adjustments can be achieved
by flipping the peer responsibilities of the pair of tor-
rents that (if flipped) would result in the load split clos-
est to achieving perfect load conservation (across all tor-
rents), with ties broken in favor of choices that mini-
mize the total shift of peers. Of course, considering
all possible combinations can scale as O(|T (r,r′)|2).
However, by noticing that only the torrents with the
smallest shift for each load shift are candidate solutions,
many combinations can be pruned. By sorting the tor-
rents appropriately, our current implementation achieves
O(|T (r,r′)|log|T (r,r′)|) whenever x̃ is finite.

We have also considered an alternative version in
which priority (in step two) is given to allocations of the
torrents that are being re-balanced. For these torrents,
we (greedily) balance the load of the torrent with the
largest imbalance first, until load conservation has been
achieved or all such torrents have reached their balanc-
ing point. Results using this algorithm are very similar
to those of our baseline algorithm and are hence omitted.

2.4 Implementation and Overhead
The proposed DISM algorithm could be implemented
with a minor extension to the BitTorrent protocol. The

only new protocol message required is a tracker redirect
message that could be used by a tracker to signal to a peer
that the peer should contact an alternative tracker for the
torrent. The message would be used by a tracker r for
a torrent t for which xt,r decreases due to the execution
of DISM. Peers that recieve the message should contact
another tracker they know about from the tracker file.

The communication overhead of DISM is dominated
by the exchange of torrent popularity information be-
tween the trackers and by the redirection messages sent
to the peers. Distributed negotiatation involves one
tracker scrape before every pairwise balancing, and the
corresponding exchange of the results of the balancing.
The amount of data exchanged between trackers r and
r′ is hence O(T (r,r′)). The amount of redirection mes-
sages is proportional to the number of peers shifted be-
tween swarms, and is bounded by ∑t∈T (r,r′) xt .

3 Protocol Validation

3.1 Empirical Data Set
We used two kinds of measurements to obtain our data
set. First, we performed a screen-scrape of the torrent
search engine www.mininova.org. In addition to claim-
ing to be the largest torrent search engine, mininova
was the most popular torrent search engine according to
www.alexa.com during our measurement period (Alexa-
rank of 75, August 1, 2008). From the screen-scrapes we
obtained the sizes of about 330,000 files shared using
BitTorrent, and the addresses of 1,690 trackers.

Second, we scraped all the 1,690 trackers for peer
and download information of all the torrents they main-
tain. (Apart from interacting and helping peers, a tracker
also answers scrape requests at its scrape URL.) For
the tracker-scrapes we developed a Java application that
scrapes the scrape URL of each tracker. By not speci-
fying any infohash, the tracker returns the scrape infor-
mation for all torrents that it tracks. This allowed us
to efficiently obtain the number of leechers, seeds, and
completed downloads as seen by all trackers that we de-
termined via the screen-scrape of mininova.

We performed the tracker-scrapes daily from October
10, 2008, to October 17, 2008. All scrapes were per-
formed at 8pm GMT. We removed redundant tracker in-
formation for trackers that share information about the
same swarms of peers, and identified 721 independent
trackers. Table 2 summarizes the data set obtained on
October 10, 2008.

Figure 1 summarizes some of the main characteris-
tics of the world of trackers and torrents captured by
our measurements. Figure 1(a) shows the size of tor-
rents and swarms against their rank. Similar to previous
content popularity studies (e.g., [1, 3, 4, 5]), we find that
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Figure 1: Basic properties of the multi-torrent, multi-swarm system.
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Figure 2: The average coefficient of variation (CoV) as a function of (a) peers, (b) leechers, and (c) seeds.

Table 2: Summary of a snapshot (Oct. 10, 2008).
Item Value

Total trackers 1,690
Unique trackers 721
Unique torrents 2,864,073
Unique swarms 3,309,874
Total leechers 21,088,533

Total seeds 16,985,796
Total downloads 4.52 ·109

the torrent rank distribution is heavy tailed, with Zipf-
like characteristics, and a substantial number of torrents
have moderate popularity. Based on our screen-scrapes,
we found no correlation between content size and torrent
popularity (the correlation coefficient is approximately
0.01).

Figure 1(b) shows the number of torrents with a given
number of unique swarms (after removing duplicates).
Clearly, there are a substantial number of torrents that
are served independently by multiple trackers. To as-
sess the fraction of small swarms that would benefit from
being merged, Figure 1(c) shows the normalized coeffi-
cient of variation (CoV) of the swarm sizes versus the
torrent size, of each observed torrent. A value of 0 of
the normalized CoV shows that swarm sizes are equal; a
value of 1 shows that all swarms are empty except for
one. For small torrents (e.g., smaller than 200 peers)
we would like the normalized CoV to be close to one.
While the normalized CoV only can take a finite number
of values (hence the distinguishable patterns), this fig-
ures show that there are many small torrents that could
benefit from being merged.

3.2 Protocol Convergence/Complexity
Before analyzing the performance benefits of dynamic
swarm management, we note that DISM executes
quickly, with low overhead for the trackers. Using the
data obtained on October 10, 2008, there are 550 trackers
that have to participate in the algorithm (the rest do not
have overlap in torrents). The average overlap between
these 550 trackers is 1,800 torrents. In total, 1,255 pair-
wise balancings were performed; i.e., slightly more than
two per tracker on average. We argue that this overhead
is negligible compared to the load due to scraping and
announce traffic caused by the peers.

3.3 Peer Allocation using DISM
To analyze the performance benefits of dynamic swarm
management, we used the DISM algorithm to re-allocate
the peers between swarms belonging to the same tor-
rent. Figure 2 shows the average normalized CoV as a
function of the number of peers for October 10, 2008.
Figure 2(a) shows results in which the full torrent size
is considered. Figures 2(b) and (c) show the same re-
sults, but for leechers and seeds, respectively. All fig-
ures show results for both the original peer allocation,
as well as for the distributed algorithm using three dif-
ferent threshold values (i.e., x̃ = 50,100,200). We note
that the distributed algorithm pushes the CoV for torrents
smaller than the threshold values (and even a bit beyond)
to roughly one. As previously discussed, this is exactly
what we want.

Finally, to further analyze the re-balancing achieved of
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Figure 3: Normalized CoV after applying DISM.
torrents, Figure 3 shows the normalized CoV for all tor-
rents. Comparing Figure 3 with Figure 1(c) we note that
the distributed algorithm significantly reduces the num-
ber of torrents operating in the lower left corner. While
there still are some torrents that do, we note that Figure 2
suggests that this number is very small.

3.4 Throughput Analysis
Thus far our analysis has been based on the assumption
that small torrents are more likely to perform poorly. To
validate this assumption and allow us to obtain estimates
of the potential performance gains small torrents can ob-
tain using our distributed algorithm we need to estimate
the throughput of different sized swarms.

To estimate the throughput of any particular swarm we
measured the number of seeds, leechers, and cumulative
number of downloads for two consecutive days. Using
these values we estimated the throughput per leecher as
the file size L divided by estimated download (service)
time S, which using Little’s law can be expressed as
S = l/λ, where l is the average number of leechers cur-
rently being served in the system and λ the current arrival
rate, which due to flow conservation can be estimated as
the overall throughput (equal to the number of download
completions D during that day, times the file size L, and
divided by the time T between two consecutive measure-
ments). To summarize, we have an estimated throughput
of LD

lT . Finally, throughput estimates for any particular
swarm type were obtained by taking the average over all
swarms of that particular size.

Figure 4 shows our throughput estimation results.
Here, swarms are classified based on the total number
of peers in the swarm (s+ l) and the seed-to-leecher ratio
s
l ; 60 bins are used for the swarm sizes and three curves
are used for the different seed-to-leecher ratios. We note
that the results for swarms up to just over 1,000 peers
are consistent with intuition and previous measurement
results [9]. For larger swarm sizes we believe that the
above estimation is less accurate. Estimation errors may
be due to inaccurate estimation of the average number
of leechers l over the measurement period, for exam-
ple. Furthermore, we note that the popularity of these
type of workloads typically follows a diurnal pattern and

our measurements are done at peak hours. Therefore, the
throughput estimations are pessimistic.

Using these throughput estimations we can estimate
the speedup achieved by the distributed algorithm. Fig-
ure 5 shows the relative throughput improvement for
leechers as a function of the torrent size. The results
show a good match with our objectives: the smallest tor-
rents experience throughput gains up to 70 percent on
average, while torrents above approximately 200 peers
are not affected by our algorithm.

Figure 6 shows the relative estimated throughput im-
provement for leechers in torrents smaller than 300 peers
over a week. The figure shows the estimated increase
of the throughput per leecher averaged over the torrents
for three different values of the threshold x̃. The curves
marked with × show results weighted with the torrent
size; the curves without markers show the non-weighted
gain. The throughput gains are rather steady in both
cases, and show that dynamic swarm managenemt could
improve peer throughput significantly.

4 Related Work

Much research has been done to understand BitTorrent
and BitTorrent-like [6, 11] systems. While most of these
efforts have been towards understanding the performance
of single torrent systems, there have been some recent
papers that consider multi-torrent environments [7, 10].
Guo et al. [7] provide measurements results that show
that more than 85% of torrent users simultaneously par-
ticipate in multiple torrents. The authors also illustrate
that the “life-time” of torrents can be extended if a node
that acts as a downloader in one torrent also acts as a seed
in another torrent. Yang et al. [10] propose incentives
that motivate users to act as seeds in such systems. In
particular, Yang et al. propose a cross-torrent tit-for-tat
scheme in which unchocking is done based on the aggre-
gate download rates of a peer across all torrents (instead
of only based on the download rate for a single torrent).

Rather than increasing seed capacity through coopera-
tion among peers downloading different files, this paper
focuses on how multiple swarms of the same file can be
merged to improve the performance of small swarms. To
the best of our knowledge, no prior work has considered
the performance benefits from adaptively merging and/or
re-distributing peer information among trackers.

Other related works have considered the effective-
ness of BitTorrent’s tit-for-tat and rarest-first mecha-
nism [2, 8]. BitTorrent-like systems have also been
considered for streaming [11]. Finally, we note that
long-tailed popularity distributions have been observed
in many other contexts, including Web workloads [1, 3]
and user generated content [4, 5].
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5 Conclusions

Using an extensive measurement study we have observed
that there exist many moderately popular torrents that
could significantly benefit from the re-balancing of peer
information available on the trackers. In this paper, we
consider a light-weight distributed swarm management
algorithm that manages the peer information at the track-
ers while ensuring load conservation among the trackers.
The algorithm is relatively simple and achieves much of
its performance improvements by identifying and merg-
ing peer information of small swarms. Apart from im-
proving the average throughput, merging small swarms
also facilitates locality-aware peer selection.

Finally, we note that there are at least two alterna-
tives to DISM to avoid forming small swarms. One al-
ternative is for peers to perform a scrape of all respon-
sible trackers before joining a torrent, and to pick the
largest swarm. The disadvantage of this solution is that
it does not allow load balancing for large torrents. The
other alternative is based on random tracker hopping and
the peer exchange protocol (PEX). A peer would change
tracker (i.e., swarm) with a probability proportional to
1/xt,r, and would use PEX to distribute the addresses of
the peers it knows about from the previous swarm. The
disadvantage of this alternative is that not all BitTorrent
clients support PEX.

While DISM is not the only way to improve the
throughput of small swarms, the potential benefits of the
other solutions would be similar to those of DISM, dis-
cussed in this paper. Future work will compare alterna-
tive approaches.
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