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Abstract—Motivated by improved models for content workload
prediction, in this paper we consider the problem of dynamic
content allocation for a hybrid content delivery system that
combines cloud-based storage with low cost dedicated servers
that have limited storage and unmetered upload bandwidth. We
formulate the problem of allocating contents to the dedicated
storage as a finite horizon dynamic decision problem, and show
that a discrete time decision problem is a good approximation for
piecewise stationary workloads. We provide an exact solution to
the discrete time decision problem in the form of a mixed integer
linear programming problem, propose computationally feasible
approximations, and give bounds on their approximation ratios.
Finally, we evaluate the algorithms using synthetic and measured
traces from a commercial music on-demand service and give
insight into their performance as a function of the workload
characteristics.

I. I NTRODUCTION

The past decade witnessed the migration of content delivery
systems from dedicated servers to shared infrastructures,to
content distribution networks (CDNs) and to cloud-based
content delivery platforms. CDN and cloud-based content
delivery offers a number of advantages to content providers. It
facilitates the fast expansion of the content catalogue without
infrastructure investments. On-demand computational power
can be used for scaling the content indexing, user management,
and accounting workloads. Finally, bandwidth is available
on-demand and can be used to serve fast varying content
workloads with reduced need for an understanding of the
characteristics of the system’s workload.

Flexibility comes, however, at extra cost. For example,
a back-of-the-envelope calculation reveals that the cost of
100Mbps dedicated upload bandwidth (sufficient to upload
over 30TB of data in a month) is only a fraction of the
equivalent CDN or cloud bandwidth cost. With current prices
the difference exceeds an order of magnitude; e.g., $100USD
per month vs. $3,000USD, at a CDN or cloud bandwidth
price of $0.1 USD/GB. Furthermore, as the online content
market matures, content providers strive for higher quality
of experience (QoE) for retaining their customers, which has
proven difficult with CDN and cloud-based delivery [1].

Motivated by the traffic generated by over-the-top multime-
dia services and by the growing emphasis on QoE, content
providers like Netflix and network operators have started to
deploy dedicated servers closer to the customers. By relying
on dedicated servers, owned or rented, for serving part of the
content catalogue, the emerging hybrid content delivery plat-
forms combine cloud and CDN based storage with dedicated

servers and upload bandwidth. This hybrid solution provides
the convenience of scalable storage for maintaining a possibly
large content catalogue in the cloud or CDN, but it can also
leverage the low cost and customer proximity of dedicated
unmetered network bandwidth.

The traditional approach to managing the storage and band-
width resources of dedicated in-network servers is to cache
popular content. There is a wide range of cache eviction
policies, from simple least recently (LRU) or least frequently
used (LFU) to more sophisticated policies [2]. Improved
workload models do, however, allow operators to predict
content popularity [3], [4], [5], [6]. Popularity predictions in
turn enable the use of prefetching instead of caching, which
allows the operators to schedule the move of data to the in-
network storage. Prefetching the most popular contents could
also reduce the amount of data downloaded to the cache
compared to LRU and LFU [7], but it cannot leverage the
fluctuations of the popularity of different contents over time.

Given the availability of workload predictions, prefetching
could be dynamically adapted to changing predicted popular-
ities. Nevertheless, it is unclear whether and when dynamic
content allocation could provide benefits compared to a static,
average demand based prefetching scheme or compared to
caching. Compared to static prefetching and to caching, the
challenge lies in balancing (i) the cost of moving contents into
dedicated storage, from which it can be served at a low cost,
(ii) the high costs associated with the demands that cannot be
served from the dedicated storage, and (iii) the opportunity
loss associated with not fully using the dedicated bandwidth.

In this paper we make three important contributions to
address this challenge. First, we formulate the problem of
dynamically allocating contents to the dedicated storage as
a finite horizon dynamic decision process, and we show that
a discrete time decision process is a good approximation for
piecewise stationary workloads. Second, we provide an exact
solution to the discrete time decision problem in the form
of a mixed integer linear programming problem. We provide
computationally feasible approximations to the exact solution
and provide results on their approximation ratios. Third, we
validate the model and the algorithms using measured traces
from a commercial on-demand music streaming system, and
show how the efficiency of content allocation depends on the
level of understanding of the content workload and on the
amount of information available about its statistical behavior.
To the best of our knowledge this is the first work that presents
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an analysis and optimization of the delivery costs of a content
provider using a hybrid system that combines dedicated and
on-demand bandwidth to serve periodic workloads.

The rest of the paper is organized as follows. Section II
describes the system model and optimization problem. Sec-
tion III introduces the discrete time approximation for piece-
wise stationary demands. Section IV presents an exact solution
and computationally feasible approximations with provable
approximation ratios. Section V evaluates the performance
of the proposed approximation policies. Section VI reviews
related work, and Section VII concludes the paper.

II. SYSTEM MODEL

We consider a content provider that serves a large popula-
tion of users from a catalogueF of F(≡ |F |) files. We denote
the size of file f ∈ F by L f , and consider that the provider
aims to achieve an average file delivery timeτ f . The user
requests for filef generate bandwidth demandBf (t) at time
t. We modelBf (t) as a continuous time piecewise stationary
stochastic process with finite mean and variance; that is, the
mean and variance are a function of time. The piecewise
stationary assumption is motivated by the observed diurnal
fluctuations of content workloads [8], [9]. We consider that
for every stationary interval[ti , ti+1] the content provider has a
prediction of the average bandwidth demandB

i
f of every file f .

This is a reasonable assumption, as fairly accurate predictions
can be obtained based on past content popularity, as we will
see later. For a set of filesX we use the shorthand notation
B

i
X = ∑ f∈X B

i
f .

A. Traffic Cost Model

User requests can be served from the cloud using cloud
bandwidth, which is charged by volume. Alternatively, if a
requested file is available in thededicated storage, it can
be served usingunmetered dedicated upload bandwidth. We
denote byS the amount of dedicated storage and byU the
amount of unmetered dedicated bandwidth.

Given the amount of storage and unmetered bandwidth, the
content provider has to choose the set of files to be stored
in the dedicated storage. We denote byX (t) the set of files
stored in the dedicated storage at timet, which in order to be
feasible has to satisfy the storage constraint

∑
f∈X (t)

L f ≤ S, ∀t. (1)

Given the set of feasible storage allocations, a storage alloca-
tion policyπ definesX π(t) as a function of the system’s history
up to timet and the predicted future bandwidth demands. We
denote the set of all feasible allocation policies byΠ.

Let us consider now the amount of cloud traffic during a
time interval T = [t0, tB]. Let us denote bytπ

i , i = 1, . . . , Iπ

the ith time instant when the content provider changes the
allocation, t0 ≤ tπ

1 < .. . < tπ
Iπ < tB, and letX π

i be the set of
stored files right aftertπ

i ; i.e., as a result of the decision. We
use the notationX π

0 =X π(t0), definetπ
Iπ+1 = tB, and denote the

set of files fetched upon theith decision byAπ
i = X π

i \X π
i−1.
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Fig. 1. The total demand for bandwidth is served from the dedicated server
with bandwidth limitU and from the cloud. In interval[ti , ti+1), Γπ

s(i) is the
data served from the cloud for filesX π

i stored on the server due to bandwidth
spillover, Γπ

c(i) is the data served from the cloud for files not stored on the
server.Γπ

d(A
π
i ) is the data served from the cloud to store files on the server.

The expected cloud traffic needed to satisfy the bandwidth
demand of the files not stored on the servers under policyπ
between two decision instants can be expressed as

Γπ
c(i) = E





∫ tπ
i+1

tπ
i

∑
f 6∈X π

i

Bf (t)



 , (2)

where the expectation is taken over the future demands.
The instantaneous aggregate bandwidth demand for the files

stored on the dedicated servers may exceed the dedicated
bandwidth, in which case the excess demand has to be served
using cloud bandwidth. We refer to this traffic asspillover
traffic. The expected spillover traffic between two decision
instants can be expressed as

Γπ
s(i) = E





∫ tπ
i+1

tπ
i



 ∑
f∈X π

i

Bf (t)−U





+

dt



 . (3)

Finally, every decision of the content provider to change the
set of allocated files generates cloud traffic. The cloud traffic
induced by theith decision can be expressed as

Γπ
d(A

π
i ) = ∑

f∈Aπ
i

L f , (4)

and we defineΓπ
d(A

π
0) = 0. Fig. 1 illustrates the three kinds of

traffic for three consecutive intervals and the bandwidth limit.
We consider that cloud traffic is charged by volume, which

is the case for all major cloud providers, and denote the unit
price by γ. The cloud traffic cost during an interval is then
modeled as a linear function of the data served from the cloud

Jπ(T,X0) = γ×
Iπ

∑
i=0

{Γπ
d(A

π
i )+Γπ

c(i)+Γπ
s(i)}. (5)

In practice, the traffic cost is often a concave non-decreasing
piecewise linear function of the amount of uploaded data. Our
results for a linear cost function can easily be generalizedto
concave, piecewise linear functions.

B. Problem Formulation

While it would be natural to formulate the objective of the
content provider as the minimization ofJπ(T,X0), a more in-
sightful formulation can be obtained by converting the problem
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Fig. 2. For bandwidth limitU file A should be stored instead ofB some
time betweent2 andt4 if areaA is greater thanLA. Without bandwidth limit,
the decision should be made at timet3, if areaA∪A+ is greater thanLA.

into an equivalent utility maximization problem. To see how,
consider the total cost under cloud-only content delivery and
subtract the actual cost for policyπ. The cloud traffic savings
(i.e., the traffic served from the dedicated servers betweentwo
decision instants) can be expressed as

Γπ
s(i) = E





∫ tπ
i+1

tπ
i

min



U, ∑
f∈X π

i

Bf (t)



dt



 . (6)

The cost savings over intervalT can then be expressed as

Uπ(T,X0) = γ×
Iπ

∑
i=0

{

Γπ
s(i)−Γπ

d(A
π
i )
}

, (7)

and the objective of the content provider is to find

π∗ = argmax
π

Uπ(T,X0). (8)

The policy π∗ defines the decision instantstπ∗
i and the set

of files X π∗
i to be stored at the dedicated storage upon time

instant i, which definesAπ∗
i .

Example:To help build an intuition for the utility maxi-
mization problem, consider the example in Fig 2. There are
two files,A andB, with bandwidth demandsBA(t) andBB(t).
The dedicated storage is enough for one file only, and fileA
is originally in storage. The expected bandwidth demand of
file B exceeds that of fileA between timet1 and t3. Thus,
at t1 we must decide if we should replaceA with B. For
a bandwidth limit ofU , making this switch would at most
save the cloud traffic associated with the area between the two
bandwidth curves marked “B” in the figure, minus the cloud
traffic LB associated with downloading fileB to storage. (If
there was no bandwidth limit, the cloud traffic saving would
be the sum of the areas marked “B” and “B+”, minus LB.)
At time t1, the optimal policy would be to replaceA with
B only if

∫ t2
t1
(min[U,BB(t)]− BA(t))dt − LB > 0. Similarly,

assuming that this switch is made, an optimal policy would
select to switch back toA at some point betweent3 and t4 if∫ t5

t4
(min[U,BA(t)]−BB(t))dt−LA > 0.
The above example helps illustrate the power of the mod-

ified formulation for identifying an optimal policy. In the
following we address the question what policy should the
content provider use to allocate files to the dedicated storage
to maximize its cost saving defined in (7).

III. D ISCRETE-TIME APPROXIMATION FORPIECEWISE

STATIONARY DEMANDS

The solution of the traffic cost saving maximization (8) in
the framework of continuous time decision processes faces
two major challenges. First, the bandwidth demands are non-
stationary. Thus, even though a stationary policy would exist,
it would only depend on the current system state, and would
not be able to leverage predictions of the future system state.
Second, as shown by equation (6), the amount of traffic served
from the dedicated servers depends on the distribution of the
sum of random variables, and thus an exact maximization of
Γπ

s(i) can be infeasible.
In the following, we show that by decomposing the band-

width demand process into consecutive steady state intervals
we can use the mean bandwidth demands for optimization
at the price of minimal loss in accuracy. Motivated by this
observation, in Section IV, we then show that a discrete time
decision problem can provide the optimal solution.

A. Mean-value Approximation in Steady State

Let us consider a system in steady state. Users that want
to download file f arrive according to a Poisson process with
rate λ f , and thus, the bandwidth demandsBf (t) of the files
are stationary stochastic processes. Since the average service
time of file f is τ f , the number of users that are downloading
file f can be modeled by an M/G/∞ queue. The probability
that there arei users downloading filef at timet is the steady
state distribution of the number of users in the queue

pi( f ) =
(λ f τ f )

i

i!
e−λ f τ f . (9)

The instantaneous bandwidth demandBf (t) depends on the
instantaneous number of users. Thus, even if the expected
aggregate bandwidth demand∑ f∈X E[Bf (t)] of the files stored
on the server is less than the unmetered bandwidthU , in
a system in steady state the spillover trafficΓπ

s(i,b) can be
positive; effectively depending on the tail probability ofthe
stationary bandwidth demands. Similarly, the aggregate band-
width demand of the files stored on the dedicated servers can
be less than the unmetered bandwidthU . While for a single
file the bandwidth demandBf (t) can be far from its expected
value E[Bf (t)], in the following we show how the individual
bandwidth demand distributions can be used to bound the tail
and the head probability of the aggregate bandwidth demand
∑ f∈X Bf (t) for an arbitrary setX of files under two scenarios.
The bounds of the head and tail probability in turn bound
the potential (typically small) error using mean-value-based
dimensioning for a time-interval during which the bandwidth
demand is in steady state.

1) Server-only Data Delivery:We first consider the sce-
nario when the users download all data from the servers
managed by the content provider. In this case, the total
bandwidth demand is proportional to the total number of users
in the system. If the dynamics are fast compared to the rate at
which decisions are made, the number of users downloading
the different files can be well modeled by independent random
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variables. Under this independence assumption between re-
quest rates, the total number of instantaneous users is Poisson
distributed with parameterρ = λτ = ∑ f∈X λ f τ f .

Given that the number of users is Poisson distributed
with parameterρ = λτ, the probability that the instantaneous
aggregate bandwidth demand for the setX of files stored on
the dedicated servers is less than the unmetered bandwidthU
can be calculated as

P( ∑
f∈X

Bf (t)≤U) = P(n≤ n∗) =
n∗

∑
i=0

eλτ (λτ)i

i!
, (10)

where we have used that the unmetered bandwidthU allows
at mostn∗ clients to be served simultaneously by the servers.

The tail behavior of this distribution can easily be bounded
using standard techniques. For example, Michel [10] have
shown that the error of approximating equation (10) with
the cumulative standard normal distributionΦ(β) is inversely
proportional to the average number of simultaneous clientsλτ
in the system; i.e.,

|P(n≤ n∗)−Φ(β)| ≤ 0.8√
λτ

, (11)

where β = (n∗ − λτ)/
√

λτ. Tighter bounds, such as those
recently proposed by Janssen et al. [11], do not alter the
general shape of the tail behavior; only the accuracy of the
estimations that the bounds provide.

An important observation here is that the probability
P(∑ f∈X Bf (t) ≤ U) of under-utilizing the unmetered band-
width at the dedicated servers decreases exponentially with
the amount of unmetered bandwidthU (or equivalently, the
maximum number of clientsn∗ that can be served simul-
taneously), given a fixed average fraction of the bandwidth
demand U

∑ f∈X Bf (t)
(or fraction of clientsn∗

λτ ) that potentially

could be served. To see this, note thatβ = (n∗−λτ)/
√

λτ =
√

n∗
λτ (1 − λτ

n∗ )
√

n∗. Hence, β scales as
√

n∗, for a fixed
n∗
λτ ratio. With Φ(β) ∼ ∫

eβ2/2dβ, for a fixed n∗
λτ ratio, the

probability P(∑ f∈X Bf (t) ≤ U) therefore decreases exponen-
tially wheneverU < ∑ f∈X E[Bf (t)]. (Similarly, the probability
P(∑ f∈X Bf (t) ≥ U) decreases exponentially wheneverU >

∑ f∈X E[Bf (t)].)
To summarize, the key insight from this discussion is that

already for small number of files the instantaneous steady state
bandwidth demand is fairly stable, and as the number of files
increases, the allocation problem gets close to deterministic.
Thus, if the overall request rate (or the number of files with
reasonable request rates) that can be served on the dedicated
server is sufficiently large, mean-value-based dimensioning
provides a good (and increasingly accurate) approximation.

2) Peer-assisted Data Delivery:As an alternative, we con-
sider a peer-assisted system in which the content provider
also leverages the users’ (peers’) bandwidth for distributing
the content. In an ideal peer-assisted system, for each file,the
bandwidth demand is1τ whenever there arei ≥ 1 users down-
loading simultaneously, and 0 otherwise. More efficient server-
bandwidth allocation policies for peer-assisted content delivery

can be used when swarms become self-sustaining [12], [13],
without affecting our conclusions. Now, for every file, the
probability that there is at least one active user download-
ing file f can be modeled as a Bernoulli distribution with
probability pf = 1−e−λ f τ f , the expected bandwidth demand
for a single file isE[Bf (t)] = 1

τ f
(1− e−λ f τ f ), and the total

instantaneous bandwidth demand for the system is equal to the
number of files with at least one active user. The bandwidth
demand can thus be modeled as the sum of independent,
non-identically distributed Bernoulli random variables.For
the purpose of our analysis, we denote the (complementary)
probability that there are no downloaders in the system by
qf = 1− pf = e−λ f τ f .

We can again provide a bound on the probability that the
instantaneous demand for the setX of files stored on the
dedicated servers is less than the unmetered bandwidthU . For
this bound we rely on a result by Siegel [14], which states that
the probability that the sumY = ∑ f∈X yf of |X | independent
Bernoulli trials with probabilitiesqf can be expressed as

P(Y ≥ |X |(q̄+a))≤ (
q̂

q̂+a
)(a+q̂)|X |(

1− q̄
1− q̄−a

)(1−q̄−a)|X |, (12)

whereq̄= E[Y]
|X | , σ2 = E[Y2]−E[Y]2

|X | , q̂= σ2

1− σ2
1−q̄

, anda> 0.

Consider again the case whenU < ∑ f∈X E[Bf (t)], and let
us calculate the probability thatP(∑ f∈X Bf (t)≤U). Note that
this probability is equal to the probability thatP(Y≥ |X |−n∗).
By equating this expression to our previously defined proba-
bility P(Y ≥ |X |(q̄+ a)), we can expressa in terms of our
original variables as

a= 1− n∗

|X | − q̄. (13)

Similarly as for the server-only case, we note that for a given
n∗
|X | ratio, the probability thatP(∑ f∈X Bf (t) ≤ U) decreases
exponentially with |X | wheneverU < ∑ f∈X E[Bf (t)], and
hence (also in this case), mean-value-based dimensioning is
a good (and increasingly accurate) approximation when the
number of files is sufficiently large.

IV. STORAGE ALLOCATION POLICIES

A. Optimality of Discrete-time Decision Problem

Given the piecewise stationary behavior of the bandwidth
demands and the mean value approximation, we can now
define an equivalent discrete-time decision problem for (8).
The following proposition shows that if the mean value
approximation is accurate then there is an optimal policy
that makes updates only upon transitions between stationary
regimes.

Proposition 1: Consider the continuous time decision prob-
lem (8). If the aggregate bandwidth demand∑ f∈X (t)Bf (t)

can be approximated by∑ f∈Xi
B

i
f for time ti ≤ t < ti+1, then

there is an optimal policyπ∗ such that tπ
∗

i = ti ; that is, the
set of stored files isonly changed upon transitions between
stationary regimes of the bandwidth demands.
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Proof: Consider the continuous time decision problem
(8), and assume that there is an optimal policyπ′ for which
t j = tπ′

i < .. . < tπ′
i+k = t j+1 for somek≥ 2, andX π′

i′ 6= X π′
i′−1 for

i < i′ < i+k. For a setX of files denote the aggregate average
demand byB

j
X = ∑ f∈X B

j
f , and letB

j
U (X ) = min

(

U,B
j
X

)

. If

B
j
U (X

π′
i′ ) < B

j
U (X

π′
i′−1), then the policyπ′′ with X π′′

i′ = X π′
i′−1

performs strictly better, and thusπ′ is not optimal. Similarly,
if B

j
U (X

π′
i′ )> B

j
U (X

π′
i′−1), then policyπ′′ with X π′′

i′−1 = X π′
i′ per-

forms strictly better, and thusπ′ is not optimal. IfB
j
U (X

π′
i′ ) =

B
j
U (X

π′
i′−1), then policyπ′′ with X π′′

i′ = X π′
i′−1 would perform at

least as good asπ′. Thus, there is an optimal policyπ∗ such
that tπ∗

i = ti .
We can hence choose the decision instants such thattπ

i = ti ,
and formulate the optimal allocation problem as a finite
horizon dynamic decision problem in which the decisions
are taken at the beginning of every stationary interval. The
Bellman equation for the decision at the beginning of theith

interval, at timeti , 1≤ i ≤ I , can be formulated as

Uπ∗([ti , tI+1],Xi−1)=max
Xi

{Γs(i)−Γd(Ai)+Uπ∗([ti+1, tI+1],Xi)}.
(14)

The standard way to solve the Bellman equation is via back-
ward induction, but since the predicted demands are known,
we can provide an alternative solution.

Theorem 1: Denote by∆i = ti+1− ti the length of interval
i. Then every solution of the following Mixed Integer Linear
Programming (MILP) problem:

max
I

∑
i=1

{

∆i

(

∑
f∈F

B
i
f xi, f −si

)

− ∑
f∈F

L f bi, f

}

(15)

s.t.

∑
f∈F

B
i
f xi, f −si ≤ U, ∀1≤ i ≤ I (16)

xi, f −xi−1, f −bi, f ≤ 0, ∀1≤ i ≤ I , f ∈ F (17)

∑
f∈F

L f xi, f ≤ S, ∀1≤ i ≤ I (18)

bi, f ≥ 0, xi, f ∈ {0,1}, ∀1≤ i ≤ I , f ∈ F (19)

si ≥ 0, ∀1≤ i ≤ I , (20)

is an optimal policyπ∗ for (14).
Proof: The decision variablesxi, f correspond tof ∈ Xi .

The auxiliary decision variablessi in the bandwidth constraint
(16) are the spillover bandwidth in intervali and are used to
subtract the spillover cloud traffic from the objective func-
tion (15). The auxiliary variablebi, f in content replication
constraint (17) is used to include in the objective function
(15) the traffic due to storing filef on the dedicated server
in interval i if it was not stored there in intervali −1. Thus,
maximizing (15) under constraints (16) and (17) corresponds
to maximizing the traffic cost savings (originally defined in
equation (7) in discrete-time domain. Constraint (18) ensures
that only feasible file allocations are considered at each time
step when solving for the optimal allocation policy.

The problem contains|F |I binary decision variables and
(|F |+ 1)I continuous decision variables, which allows the
MILP to be solved for hundreds of thousands of files and
several tens of intervals using state-of-the-art optimization
tools.
As the following lemma shows, computational complexity can
be reduced by not changing the set of allocated files upon
certain intervals without jeopardizing optimality.

Lemma 1: LetX π∗ = (X π∗
1 , . . . ,X π∗

I ) be a solution to the
optimization problem in Theorem 1. If an allocationX π∗

i for
an interval 0≤ i < I −1 is such thatB

i+1
Xi

= ∑ f∈Xi
B

i+1
f ≥U,

then there is a solutionX π∗′ that differs fromX π∗ only in that
Aπ∗′

i+1 = /0 and Aπ∗′
i+2 = Aπ∗

i+1∪Aπ∗
i+2, that is,X π∗′

i+1 = X π∗
i .

Proof: The total cloud traffic induced by the decisions
over intervalsi +1 and i +2 under policyπ∗′ satisfies

Γd(A
π∗
i+1)+Γd(A

π∗
i+2)≤ Γd(A

π∗′
i+1)+Γd(A

π∗′
i+2).

Furthermore, since by assumptionB
i+1
Xi

≥U , the traffic savings

is not negatively affected, i.e.,Γπ∗′
s (i + 1) ≤ Γπ∗

s (i + 1) and

Γπ∗′
s (i +2)≤ Γπ∗

s (i +2).
Corollary 1: If an allocationX π∗

i for an interval0≤ i < I −
j and some j> 0 is such thatB

i′
Xi
≥U for every i< i′ ≤ i+ j,

then there is a solutionX π∗′ that differs fromX π∗ only in that
Aπ∗′

i′ = /0 and Aπ∗′
i+ j+1 = ∪i+ j+1

i′=i+1Aπ∗
i′ . Consequently,X π∗′

i′ = X π∗
i .

As a consequence, an (optimal) on-line algorithm with a
perfect prediction of the future demands for some periodI
would only need to update the allocation of files in the storage
when it reaches a time slot when the current allocation would
no longer be able to fully utilize the bandwidthU . Even
with this optimization, the computational complexity makes
the solution of the MILP infeasible for millions of files and
hundreds of intervals. In the following, we therefore consider
two approximate solutions.

B. No Download Cost (NDC) Policy

Given the current setXi−1 of stored files, theNDC policy
considers only the bandwidth demands during the subsequent
time interval to perform the maximization. That is, at every
decision instanceNDC solves

X
NDC
i = argmax

Xi
Γπ

s(i). (21)

A solution to this maximization problem can be obtained by
solving a 0−1 knapsack problem in which the value of every
file is B

i
f ×(ti+1− ti), and the value of the knapsack is at most

U × (ti+1− ti). Since the weightsL f are integers, the solution
can be obtained inO(|F |S) time using dynamic programming.
The NDC policy can perform arbitrarily bad, however.

Proposition 2: The approximation ratioJ
NDC

Jπ∗ of the NDC
policy is unbounded.

Proof: Consider a dedicated server with storageS= 1
and bandwidthU = 1, two filesF = {1,2}, initial stateX0 =
{1}, and letti+1− ti = 1, i = 0, . . .. The expected bandwidth
demandsB

i
f areε and 2ε for files 1 and 2, respectively, for pair

numbered intervals, and vice versa for odd numbered intervals,
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for some 0< ε < 0.5. The optimal solution is to keep file 1 in
the storage, in which case the average cost per interval is 1.5ε.
The NDC policy is to insert the file with higher bandwidth
demand in the storage, in which case the average cost per
interval is 1+ε. Thus, the approximation ratio isJ

NDC

Jπ∗ = 1+ε
1.5ε ,

and limε→0
JNDC

Jπ∗ = ∞.

Proposition 3: The approximation ratio of NDC isJ
NDC

Jπ∗ ≤
1+ IS/Jπ∗ .

Proof: In iteration i NDC allocates the filesX that
maximizeB

i
U (X ) = min

(

U,B
j
X

)

, thusB
i
U (X

i
NDC)≥ B

i
U (Xπ∗).

In the worst case,NDC replaces every file upon every decision
unnecessarily, and thus the average per-interval cost of the
NDC policy is within S of the optimal cost.

Thus, if the amount of data that can be served from the
dedicated servers during an interval is significantly higher than
the amount of dedicated storage, i.e.,B

i
U (X

i
NDC)×E[ti+1 −

ti ]≫ S, then theNDC policy can be close to optimal.

C. k-Step Look Ahead (k-SLA) Policy

The k-SLA approximation uses a receding horizon ofk >
0 intervals [15]. At the beginning of intervali it solves the
MILP (15) to (20) for intervals[i, . . . , i+k−1] given the initial
stateXi−1. The set of allocated files in intervali becomes
f ∈ Xi ⇐⇒ x1, f = 1, and the MILP is solved again at the
beginning of the subsequent interval.

It is interesting to consider the case ofk= 1. Given the set
Xi−1 of stored files, the 1-SLApolicy considers the bandwidth
demands and the cost of the allocation during the subsequent
time intervali for the maximization. That is, at every decision
instance 1-SLAsolves

X
1−SLA
i = argmax

Xi

{

Γπ
s(i)−Γπ

d(Ai)
}

. (22)

As in the case ofNDC, if ∑ f∈Xi−1
B

i
f ≥U thenX 1−SLA

i = Xi−1

is 1-SLA optimal, and thusA1−SLA
i = /0. Unfortunately, the 1-

SLApolicy is, similar toNDC, suboptimal even for very simple
problems, as the following shows.

Proposition 4: The approximation ratioJ
1−SLA

Jπ∗ of the1-SLA
policy is unbounded.

Proof: To prove the proposition, we construct an example
with unbounded approximation ratio. Consider a dedicated
server with storageS= 1 and bandwidthU = 1, two files
F = {1,2}, initial stateX0 = {1}, and letti+1−ti = 1, i = 1, . . ..
The expected bandwidth demandsB

i
f are 2ε and 1+ε for file

1 and for file 2, respectively, for every intervali for some
0< ε < 0.5. The optimal solution isXi = {2}, i ≥ 1, in which
case the average cost per interval is 3ε. The 1-SLApolicy is to
keep file 1 in the storage, in which case the average cost per
interval is 1+ε. Thus, the approximation ratio isJ

1−SLA

Jπ∗ = 1+ε
3ε ,

and limε→0
J1−SLA

Jπ∗ = ∞.
Unlike NDC, in the worst case, 1-SLA failsto replace every

file upon every decision. It fails to replace a filef only if
the per interval cost of the file is withinL f of its long term
average cost. This observation allows us to obtain a bound on

the approximation ratio ofk-SLA if the average demands are
bounded.

Proposition 5: Consider a system in which the average
demand of each file inserted into the dedicated storage by
an optimal policyπ∗ is lower bounded by a factorρ > 0 such
that the demand of each such file satisfiesρ 1

I ∑I
i=0B

i
f ∆i ≥ L f .

Then, for k> ρI
I−ρ the approximation ratio of k-SLA is

Jk−SLA

Jπ∗ ≤ 1

1− ρ
k (1+

k
I )
. (23)

For I → ∞ the approximation ratio is bounded by a geometric
series with ratioρ/k.

Proof: Consider an initial allocationX0, and letX π∗ =
(X π∗

0 , . . .) be the allocation under an optimal policyπ∗. The
worst case appproximation ratio ofk-SLA is achieved in a
scenario (i) whenπ∗ involves replacing all files in storage in
the first interval, after which it does not change the set of
allocated files, (ii) there is no spillover traffic, and (iii)k-SLA
always allocates the set of files complementary toX π∗ , i.e.,
it fails to introduce the same files as the optimal policy. The
cost under the optimal policyπ∗ for such a scenario is

Jπ∗ =
I

∑
i=1

∑
f 6∈X π∗

i

B
i
f ∆i + ∑

f∈X π∗
i

L f ≥
I

∑
i=1

∑
f 6∈X π∗

i

B
i
f ∆i , (24)

becauseX π∗
i ∩X π∗

0 = /0. Consider now the cost underk-SLA,
which fails to introduce the filesX π∗

i . By the definition of
k-SLAthis happens if for every 0< i0 ≤ I −k

i0+k−1

∑
i=i0

∑
f∈X π∗

i

B
i
f ∆i − ∑

f∈X π∗
i

L f ≤
i0+k−1

∑
i=i0

∑
f 6∈X π∗

i

B
i
f ∆i . (25)

Using the above expressions we can bound the cost fork-SLA

Jk−SLA =
I

∑
i=1

∑
f∈X π∗

i

B
i
f ∆i (26)

≤
I

∑
i=1

∑
f 6∈X π∗

i

B
i
f ∆i +

⌈

I
k

⌉

∑
f∈X π∗

i

L f (27)

<
I

∑
i=1

∑
f 6∈X π∗

i

B
i
f ∆i +

I +k
k

ρ
1
I

I

∑
i=0

∑
f∈X π∗

i

B
i
f ∆i (28)

≤ Jπ∗ +
I +k

k
ρ
I

Jk−SLA. (29)

Rearranging and solving for the ratioJk−SLA/Jπ∗ completes
the proof of the proposition.

Consequently, ifk >> ρ then k-SLA is close to optimal.
Furthermore, if the amount of data that can be served from
the dedicated servers during an interval is high (i.e.,ρ is low),
thenk-SLA is close to optimal for low values ofk.

V. PERFORMANCEEVALUATION

A. Synthetic trace-based evaluation

We first evaluate the proposed algorithms on synthetic traces
motivated by the measured traces used in Section V-B. Each
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Fig. 4. CDF of the instantaneous aggregate demand of approximately
2000 allocated files normalized by the average aggregate demand during
12 stationary intervals of 30 minutes each, forPA, SOandSONCscenarios.

synthetic trace is one week-long, and consists of 3 sets of
1000 files each. The bandwidth demand of each file follows a
sinusoidal with a daily period; the minimum/maximum ratio
over a day is normally distributed with mean and standard
deviation of 0.075 and 0.075, respectively. The average time-
of-day peak times of the 3 file sets are offset by on average
8 hours. Within each file set, the time-of-day peak times are
normally distributed with a standard deviation of 2 hours.

The file sizes are distributed uniformly with meanL f on
[L f /2,3L f /2]. The peak bandwidth demand of every file
was drawn from a bounded Pareto distribution with lower
boundBmin

peak, upper boundBmax
peak= 2 ·103 KB/sec, and shape

parameterα. For givenα we choseBmin
peak such that the Pareto

distributions have the same average of 2.5 KB/sec per file.
Fig. 3 shows the traffic savings ofNDC andk-SLAnormal-

ized by the traffic savings under the policy that allocates the
files that have the highest average bandwidth demand over the
entire period for six shape parameterα and file sizeL f combi-
nations,U = 10Mbps andS= 100L f . We used three different
shape parameter-lower bound combinations. First,α = 1.01,
Bmin

peak= 300, which results in a Zipf-like rank-popularity plot
with tail exponentγ = 1, as the tail exponentγ of the Zipf
distribution isγ = 1/α. Second,α = 10, Bmin

peak= 2,299, which
results in almost uniformly distributed demands. Third,α = 2,
Bmin

peak= 1,278, which resembles the rank-popularity of the
measured traces discussed in Section V-B.

The results show that dynamic allocation can outperform the
static (non-causal) allocation by up to 50%. Highest gains are
achieved for high shape parameterα (nearly uniform demand
distribution) and low average file sizes.NDC performs com-
parable tok-SLAfor low average file sizes (i.e., when moving
files to storage involves little penalty), but it fails otherwise.
It is noteworthy that albeitk-SLA is computatationally more
intensive, for sufficiently largek it performs consistently better
thanNDC for all average file sizes.

B. Measured trace-based evaluation

For the second evaluation, we use a trace collected from a
commercial audio on-demand streaming system called Spo-
tify [16], [17]. The system has over 24 million active (in
the last month) users in 28 countries, among them the U.S.,
and a catalogue of over 20 million tracks, with new tracks
added continuously. The trace we use was collected during a
week in March 2011, and contains the bandwidth demands
from a single country for 1 million tracks chosen uniformly at

random. Tracks are encoded at 160kbps and/or 320kbps and
the average track size is approximately 5MB.

Clients obtain the data for a track, in order of preference,
from the local cache, from other clients’ caches, and from
the content server. The trace allows us to distinguish between
the data requested by each client from the three sources, we
can thus create three demand scenarios: the actual demands
at the servers in the peer-assisted system (PA), the demands
including data downloaded from other clients which resembles
a server-only system (SO), and the demands including data
downloaded from other clients and the local cache which
resembles a server-only system with no cache (SONC).

1) Mean-value and Rank-parameter Validation:Fig. 4
shows the instantaneous aggregate bandwidth demand
∑Xi

Bi
f (t) of allocated files normalized by the average aggre-

gate demandB
i
Xi

during 12 stationary intervals of 30 minutes
each, for thePA, SOand theSONCscenarios. The set of files
is obtained usingNDC with 8 GB of storage and 30Mbps
unmetered bandwidth for each interval, and thus|Xi | ≈ 1000 in
each interval. The instantaneous aggregate bandwidth demand
is within 20% of the average for about 80% of the intervals for
all scenarios and intervals, but for one outlier. This showsthat
the mean value approximation over relatively short intervals
is reasonable despite the large (an order of magnitude) diurnal
fluctuations of the aggregate bandwidth demands.

Fig. 5 shows the ranked average bandwidth demands of the
tracks calculated for 12 intervals of 30 minutes each, for the
PA, SO and theSONCscenarios, that is, in total 36 curves.
The curves are normalized by the highest average demand
overall. We observe three important characteristics. First, for
a particular scenario the rank-demand curve for each interval
follows Zipf’s law but with slightly different shape parameters.
Second, the bandwidth demand of the most popular file for a
particular scenario can differ by approximately an order of
magnitude between the different intervals. Third, the band-
width demands between intervals differ most under theSONC
scenario, while they differ least under thePA scenario.

We fitted a Zipf curve to the rank statistics of the average
bandwidth demand in every 30 minutes long interval to esti-
mate the exponentα of the Zipf curve. Fig. 6 shows the Zipf
exponentα averaged for the same 30 minutes long interval
of every day for thePA, SO and theSONC scenarios, and
their 95% confidence intervals. It is important to note that
the confidence intervals are small, which shows that the Zipf
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exponents are similar at the same hour of the day over different
days. The figure also shows that the Zipf exponent depends
heavily on the hour of the day for theSO and for theSONC
scenarios. While there have been several measurement studies
that showed that the popularity of content workloads tends to
follow Zipf’s law [8], [18], we are not aware of any work
that shows that the popularity-rank distribution of contents
evolves with time according to a periodic pattern. The Zipf
exponent also depends on the scenario. Under thePA scenario,
which corresponds to the peer-assisted system with cache, the
exponent is fairly steady and low, because the most popular
files are typically downloaded from peers rather than from the
server. This means, however, that the actual server bandwidth
demand distribution is closer to uniform under thePA scenario
than under theSO and theSONCscenarios, which based on
the results in Section V-A makes dynamic allocation for the
PA scenario more beneficial.

2) Gain of Dynamic Content Allocation:We consider three
predictions of the average bandwidth demands in order to
investigate the sensitivity of the policies to the accuracyof
the bandwidth demand predictions and to the average demand
per file. Theoracleprediction is the actual average bandwidth
demand, and is thus the case of perfect prediction. The24h
prediction usesB

i
f = B

i−48
f , that is, the average bandwidth

demand 24 hours before the actual interval. TheIntvlAvg
prediction uses the weekly average demand of the intervals
at the same hour of the day, except for the interval to be
predicted, that is,B

i
f =

1
6 ∑ j%48=i%48, j 6=i B

j
f . As a baseline we

use the policy that allocates the files that have the highest
average bandwidth demand over the entire period, i.e., astatic
oracle allocation. We also simulated an LRU cache with and
without (U = ∞) bandwidth limit.

Fig. 7 shows the traffic savings for a configuration with
S= 8GB andU = 30Mbps normalized by the traffic savings
under the static oracle allocation. The figure shows thatNDC
performs poorly even for theoracle prediction. Although the
actual amount of data served from the server is highest for
NDC, it changes the allocation too frequently, which leads to
many files being downloaded from the cloud to the servers.
k-SLAoutperforms the static allocation for a horizon ofk= 3
for the oracle prediction, and performs almost as well for the
IntvlAvgprediction. This shows that (i) theIntvlAvgprediction
is rather accurate, and (ii) with a good prediction of the average
bandwidth demandsk-SLA can actually lead to higher cost
saving than the static allocation. This is in contrast to thepoor
performance observed using the24h prediction, which is too
noisy. A comparison of the results fork-SLA with different
horizon lengths also shows that a horizon ofk= 3 gives little
benefit over a horizon ofk= 2. The result forLRU was−6.07
(not shown), which shows that caching is far worse than the
simplest dynamic allocation policy because (i) it does not
account for spillover traffic and (ii) moves rarely accessedfiles
to cache. EvenLRU-∞ performs poorly compared tok-SLA.

Fig. 8 shows corresponding results for storageS= 1GB.
Since the dedicated storage is smaller, the average bandwidth
demand per file is higher, and thus bothNDC and k-SLA
perform significantly better than forS= 8GB. The relative
savings forLRU (not shown) was below−6 due to spillover
and excessive evictions, and evenLRU without the bandwidth
limit performs almost as bad as the simplest allocation policy.
This confirms that if the aggregate bandwidth demand per file
is high compared to the storage size, the approximate dynamic
allocation policies perform well. For low average aggregate
bandwidth demand the cloud traffic due to allocating a file to
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storage cancels most of the gains, and thus a static allocation is
close to optimal. Importantly, in both scenarios the allocation
policies by far outperform traditional caching.

VI. RELATED WORK

Frameworks for cloud-assisted P2P streaming to accommo-
date time varying demands have been considered for both
live streaming [19] and VoD [20]. In VoD and live streaming
systems chunk delivery needs to be approximately in-order,
unlike in the case of the content distribution systems we
address in this paper, where the delivery order is unrestricted.
Apart from this difference, the consideration of a hybrid cloud
system with both dedicated/unmetered and elastic bandwidth
costs distinguish our work from the above papers. We show
that by leveraging the benefits of both types, a content provider
can significantly lower its delivery cost, compared to only
using one or the other, and then evaluate candidate policies
for how to best use these resources.

Niu et al. [21] makes a case for bigger content providers ne-
gotiating reservations for bandwidth guarantees from the cloud
to support continuous media streaming. Within this context
they argue that it is beneficial to multiplex such bandwidth
reservations, and show that (within their framework) the mar-
ket would have a unique Nash equilibrium, with the bandwidth
reservation price critically depending on the market demand.
In related work, the same authors present a social welfare
optimization formulation, for which they present distributed
solution methods [6]. Qui et al. [22] present an optimization
framework for the migration process of a content provider
moving its content distribution to the cloud. In contrast to
these works, our focus is on how to allocate and best utilize
the available server and cloud resources. We build our model
based on two complementing and existing pricing and service
models; one on-demand and one fixed. Recent work has con-
sidered prediction methods for on-demand service workloads
(e.g., [4], [5], [6]). Our work is orthogonal to these works,as
our focus is on the performance of the allocation policies, and
the performance of all prediction methods is bounded by the
cost savings of the oracle policy we consider.

Finally, the MILP formulation can be considered a variant
of the 0-1 Knapsack problem [23]. In contrast to the traditional
multiple-knapsack problem with identical capacities (MKP-I),
one knapsack for each time interval [23], we allow for the
same file to be present in consecutive intervals and introduce a
penalty for each time something is introduced in the knapsack
that was not present in the previous knapsack, as well as a
cap on the maximum possible profit. We are not aware of any
treatment of such a coupled multiple-knapsack problem.

VII. C ONCLUSION

We considered the problem of dynamic content allocation
for a hybrid content distribution system that combines cloud-
based storage with dedicated servers and upload bandwidth.
We formulated the problem of allocating contents to the ded-
icated storage as a finite horizon dynamic decision problem,
provided the exact solution to the discrete time approximation

as a MILP, and provided computationally efficient approx-
imations with provable approximation ratios. Using traces
from a commercial content distribution system we showed
that when upload bandwidth is abundant (highU/S ratio),
the simple NDC approximation works well, but a look-ahead
policy is needed otherwise. Dynamic allocation can provide
up to 50% gain compared to static allocation, and outperforms
LRU caching by far.
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