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• Web of Things

• HTTP , CoAP (Constrained Application Protocol - RFC 7252)

• Real testbeds are not always available

• Emulation tools:

• Use multicore systems to emulate large number of WoT devices 

• Consider effect of resource contention on test results
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Developing a scalable WoT emulation testbed while monitoring 

impact of resource contention on the test results
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Objectives
A Web of Things environment with CoAP enabled devices

1. Emulate a large number of devices

2. Evaluate impact of request arrival pattern

3. Compare application layer configurations

4. Consider network characteristics

|--------------
|--- Sensor-11
|--- Actor -11
|--- . . .

CoAP device 

Gateway
CoAP/HTTP proxyCoAP device |--------------

|--- Sensor-21
|--- Actor -21
|--- . . .



Contention Aware Web of Things Emulation Testbed 4

Solution
• WoTbench:  Web of Things benchmark 
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Emulated WoT-Device

• Uses libCoAP library ( https://libcoap.net/ )

• List of resources (sensors/actors)

• Configurable service time specification

• Running on Docker containers

• Lightweight 

• WoT-device can be replaced by custom applications that support 

CoAP

Resource name service time (distribution) Busy/Sleep

LED Switch 20 msec - e S

Temp Sensor 5 msec - d S

https://libcoap.net/
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Gateway Emulator

• Use realistic access traces or a trace 

generated by synthetic trace generator

• Async/single threaded but can use 

multiple instances

• Role of a load generator in conventional Web benchmarking tools



Contention Aware Web of Things Emulation Testbed 7

Gateway Emulator
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Deployment

• Example of deployment decisions: use of processor affinity

• Device capability can be emulated by CPU share

Container 

CPU Core Process 

Core 1

Core 5

CPU Core running server nodes 

WoT-device 5

WoT-device 6

Core 3

Core 7

Processor 1

Wo-device 11

WoT-device12

WoT-device 3

WoT-device 4

WoT-device 9

WoT-device 10

Core2

Core 6

Processor 0

WoT-device 7

WoT-device8

Pumba

Test 
Harness

Core 0

Core 4

WoT-device 1

WoT-device 2
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Contention Issue
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• Effect of contention for shared resources on test results

• Test infrastructure lacks capacity to emulate this scenario.
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Contention Detection Module
• An instrumented, lightweight WoT-device à CD node

• An extra Gateway Emulator 

• A controlled workload

Deployment with CD module
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Contention Detection Module
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• CD workload:
• Deterministic inter-arrival time
• Deterministic service time

• CD-node response time starts to increase at the same throughput that 
the response time of actual devices increase.
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Contention Detection Module
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Response Time Deviations =  Response time  - Service time
Service time

• CD-node can follow the response time of WoT-devices for both CPU and 
non-CPU intensive workloads

CPU intensive workload Non-CPU intensive workload
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Summary
• WoTbench is designed to be deployed on commodity multicore hardware

• Use cases are capacity planning, testing protocol configuration and effect 

of network characteristics

• Contention in shared resources of multicore machine can impact 

emulation results

• Contention Detection module is designed to detect such effect and 

approve/reject test results 

• Future work will focus on auto deployment techniques for WoTbench
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