
Raoufeh Hashemian | Software Engineer at Cisco Systems | rahashem@cisco.com

• This work was done as part of my PhD research at University of Calgary

D. Krishnamurthy
University of Calgary

N. Carlsson
LinkÖpeng University

M. Arlitt
University of Calgary

R. Hashemian
University of Calgary

11th ACM/SPEC International Conference on Performance Engineering
ICPE2020

April 24, 2020

http://cisco.com

• Web of Things

• HTTP , CoAP (Constrained Application Protocol - RFC 7252)

• Real testbeds are not always available

• Emulation tools:

• Use multicore systems to emulate large number of WoT devices

• Consider effect of resource contention on test results

Contention Aware Web of Things Emulation Testbed 2

Developing a scalable WoT emulation testbed while monitoring

impact of resource contention on the test results

Contention Aware Web of Things Emulation Testbed 3

Objectives
A Web of Things environment with CoAP enabled devices

1. Emulate a large number of devices

2. Evaluate impact of request arrival pattern

3. Compare application layer configurations

4. Consider network characteristics

|--------------
|--- Sensor-11
|--- Actor -11
|--- . . .

CoAP device

Gateway
CoAP/HTTP proxyCoAP device |--------------

|--- Sensor-21
|--- Actor -21
|--- . . .

Contention Aware Web of Things Emulation Testbed 4

Solution
• WoTbench: Web of Things benchmark

Contention Aware Web of Things Emulation Testbed 5

Emulated WoT-Device

• Uses libCoAP library (https://libcoap.net/)

• List of resources (sensors/actors)

• Configurable service time specification

• Running on Docker containers

• Lightweight

• WoT-device can be replaced by custom applications that support

CoAP

Resource name service time (distribution) Busy/Sleep

LED Switch 20 msec - e S

Temp Sensor 5 msec - d S

https://libcoap.net/

Contention Aware Web of Things Emulation Testbed 6

Gateway Emulator

• Use realistic access traces or a trace

generated by synthetic trace generator

• Async/single threaded but can use

multiple instances

• Role of a load generator in conventional Web benchmarking tools

Contention Aware Web of Things Emulation Testbed 7

Gateway Emulator
Workload Accuracy

Request Inter Arrival Time (usec)

P[
X<

x]

Contention Aware Web of Things Emulation Testbed 8

Deployment

• Example of deployment decisions: use of processor affinity

• Device capability can be emulated by CPU share

Container

CPU Core Process

Core 1

Core 5

CPU Core running server nodes

WoT-device 5

WoT-device 6

Core 3

Core 7

Processor 1

Wo-device 11

WoT-device12

WoT-device 3

WoT-device 4

WoT-device 9

WoT-device 10

Core2

Core 6

Processor 0

WoT-device 7

WoT-device8

Pumba

Test
Harness

Core 0

Core 4

WoT-device 1

WoT-device 2

GE

Contention Aware Web of Things Emulation Testbed 9

Contention Issue

Re
sp

on
se

 ti
m

e
(m

s)

Throughput (req/sec)

• Effect of contention for shared resources on test results

• Test infrastructure lacks capacity to emulate this scenario.

Contention Aware Web of Things Emulation Testbed 10

Contention Detection Module
• An instrumented, lightweight WoT-device à CD node

• An extra Gateway Emulator

• A controlled workload

Deployment with CD module

Contention Aware Web of Things Emulation Testbed 11

Contention Detection Module

CD
-n

od
e`

s
Re

sp
on

se
 ti

m
e

(m
s)

Throughput (req/sec)

• CD workload:
• Deterministic inter-arrival time
• Deterministic service time

• CD-node response time starts to increase at the same throughput that
the response time of actual devices increase.

Contention Aware Web of Things Emulation Testbed 12

Contention Detection Module

Re
sp

on
se

 ti
m

e
de

vi
at

io
n

Number of Emulated DevicesNumber of Emulated Devices

Re
sp

on
se

 ti
m

e
de

vi
at

io
n

Response Time Deviations = Response time - Service time
Service time

• CD-node can follow the response time of WoT-devices for both CPU and
non-CPU intensive workloads

CPU intensive workload Non-CPU intensive workload

Contention Aware Web of Things Emulation Testbed 13

Summary
• WoTbench is designed to be deployed on commodity multicore hardware

• Use cases are capacity planning, testing protocol configuration and effect

of network characteristics

• Contention in shared resources of multicore machine can impact

emulation results

• Contention Detection module is designed to detect such effect and

approve/reject test results

• Future work will focus on auto deployment techniques for WoTbench

Thank you!

Raoufeh Hashemian rahashem@cisco.com

Diwakar Krishnamurthy dkrishna@ucalgary.ca

• This work was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

http://cisco.com
http://ucalgary.ca

