Contention Aware Web of Things
Emulation Testbed

Raoufeh Hashemian
rhashem@ucalgary.ca
University of Calgary, Canada

Diwakar Krishnamurthy
dkrishna@ucalgary.ca
University of Calgary, Canada

ABSTRACT

Since the advent of the Web, new Web benchmarking tools have
frequently been introduced to keep up with evolving workloads and
environments. The introduction of Web of Things (WoT) marks the
beginning of another important paradigm that requires new bench-
marking tools and testbeds. Such a WoT benchmarking testbed can
enable the comparison of different WoT application configurations
and workload scenarios under assumptions regarding WoT appli-
cation resource demands and WoT device network characteristics.
The powerful computational capabilities of modern commodity
multicore servers along with the limited resource consumption
footprints of WoT devices suggest the feasibility of a benchmarking
testbed that can emulate the application behaviour of a large num-
ber of WoT devices on just a single multicore server. However, to
obtain test results that reflect the true performance of the system
being emulated, care must be exercised to detect and consider the
impact of testbed bottlenecks on performance results. For example,
if too many WoT devices are emulated then performance metrics ob-
tained from a test run, e.g., WoT device response times, would only
reflect contention among emulated devices for shared multicore
server resources instead of providing a true indication of the per-
formance of the WoT system being emulated. We develop a testbed
that helps a user emulate a system consisting of multiple WoT de-
vices on a single multicore server by exploiting Docker containers.
Furthermore, we devise a novel mechanism for the user to check
whether shared resource contention in the testbed has impacted
the integrity of test results. Our solution allows for careful scaling
of experiments and enables resource efficient evaluation of a wide
range of WoT systems, architectures, application characteristics,
workload scenarios, and network conditions.

CCS CONCEPTS

» Networks — Network performance analysis; « Computer
systems organization — Client-server architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE °20, April 24-29, 2020, Edmonton, CA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06....$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Niklas Carlsson
niklas.carlsson@liu.se
Linkoping University, Sweden

Martin Arlitt
martin.arlitt@ucalgary.ca
University of Calgary, Canada

ACM Reference Format:

Raoufeh Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin
Arlitt. 2020. Contention Aware Web of Things Emulation Testbed. In Proceed-
ings of International Conference in Performance Engineering (ICPE °20). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, the Internet of Things (IoT) has evolved substan-
tially. One particular change has been an integration with Web
technologies. This evolution, dubbed “The Web of Things” or WoT
for short, motivates new benchmarking tools and frameworks to
facilitate performance evaluation of WoT systems. Since the advent
of the Web, new Web benchmarking tools have frequently been
introduced to keep up with evolving workloads and environments.
For example, new benchmark suites have been developed to address
changes such as Web 2.0 [57], Semantic Web [41], multicore Web
infrastructure [29] and cloud computing [47]. The introduction
of WoT marks the beginning of another important paradigm that
requires new benchmarking tools.

While real testbeds are most suitable for testing the performance
of already implemented applications on a platform close to its in-
tended hardware, testing on real testbeds is not always feasible, e.g.,
due to limited time frame and budget. Therefore, simulation and
emulation approaches are typically required when a system is in
the design and implementation stage. However, existing solutions
[22, 38, 51] do not yet provide an integrated mechanism to evaluate
how the performance of large WoT systems can change as a func-
tion of the overall system architecture, application characteristics,
workload, device characteristics, and network conditions. This gap
motivates the need for new approaches.

The powerful computational capabilities of modern commodity
multicore servers along with the limited resource consumption
footprints of WoT devices suggest the feasibility of a benchmark-
ing testbed that can emulate the application behaviour of a large
number of WoT devices on just a single multicore server. However,
benchmarking testbeds can be latency sensitive. Consequently, the
testbed needs to detect and handle the implications arising out of
contention for shared resources in the multicore server, as such
contention can have a significant adverse effect on the validity of
the performance results reported by the testbed.

The first challenge in designing a WoT benchmarking testbed
is to determine the placement of emulated WoT devices on the
multicore hardware. Specifically, a deployment plan is needed that
efficiently uses the capacity of the emulation testbed and decides

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the placement of emulated devices on the processing cores. The
second challenge is to design an approach for contention detection
to ensure the accuracy of test results. While the deployment plan
can reduce the effect of resource contention, it cannot guarantee to
avoid it. Therefore, users of the benchmarking testbed should be
aware of resource contention. Operating System (OS) level resource
utilization metrics are not always sufficient to detect all sources of
contention [46]. Furthermore, it might be infeasible to use hardware
counter data for detecting contention since collecting these metrics
often requires considerable processing resources [60]. As a result,
developing an explicit approach to detect contention can help users
of the emulation testbed by warning them about the potential effect
of resource contention on test results.

This paper addresses the following research questions related to
these challenges:

e RQ 1: How to create a scalable benchmarking testbed that
emulates the application behaviour of multiple WoT devices
having small resource footprints?

e RQ 2: How can commodity multicore hardware be used to
host the testbed?

e RQ 3: How can contention for the shared resources be iden-
tified in the testbed?

In this paper we develop and present a novel WoT benchmarking
solution: WoTbench, a Web of Things benchmarking testbed. To
answer RQ 1, WoTbench is designed and implemented using Linux
container technology. The testbed supports the emulation of a WoT
system where the Constrained Application Protocol (CoAP) [55]
is used as the application layer protocol. WoTbench employs con-
tainerized WoT device emulators that execute CoAP on Linux. The
use of containers allows one to configure the usage characteristics
of the various low level resources, e.g., sensors, network interface,
and CPU core, used by a device as well as the conditions experi-
enced by the WoT network, e.g., packet losses and delay. WoTbench
also provides a synthetic workload generator that offers control
over CoAP request arrival patterns. WoTbench allows these system
and workload characteristics to be varied systematically as part of
performance evaluation exercises.

RQ 2 is answered by enumerating and examining different con-
siderations regarding the placement of different components of
WoTbench on a multicore server. The common goal of these consid-
erations is to increase the number of devices that can be deployed
on a particular multicore hardware while reducing the possibility of
resource contention. In the paper, we also use example results from
a case-study to illustrate the value of workload and architecture
dependent considerations, including the choice whether to use CPU
affinity to bind different containers to particular cores or not.

To address RQ 3, we design and implement a Contention Detec-
tion (CD) module that flags resource contention in the underlying
platform in any given test executed on WoTbench. This lightweight
module consists of a custom emulated WoT device and a load gener-
ation application. The resource usage characteristics of the custom
device are automatically derived based on the workload character-
istics of the planned test. We show how the response time metrics
derived from the emulated device can be used to infer shared re-
source contention that can potentially influence the accuracy of
performance results reported by the test.

We make the following two main contributions with this work:

e We develop WoTbench!, a toolkit that leverages libCoAP [34]
and Docker [44] containers to enable a WoT testbed to be
quickly created on multicore servers in a LAN environment.

e We implement the CD module to detect resource contention
in the testbed, enabling more accurate assessment of the capa-
bilities of the system under test. We show that the approach
is effective in detecting contention in different scenarios.

To the best of our knowledge, other emulation frameworks are not
contention aware and no single framework supports all the features
implemented by WoTbench.

This paper is a major extension of our preliminary work, a 4-
page short paper [30], which presented a high-level architecture of
WoTbench. However, the architecture proposed in that work did
not focus on contention awareness. Furthermore, in contrast to this
paper, the prior work did not experimentally evaluate WoTbench.

The rest of this paper is organized as follows. Section 2 provides
background information on WoT and discusses related work on
WoT benchmarking. Section 3 motivates WoTbench by describing
a capacity planning use case. Section 4 presents an overview of
WoTbench and its components. Section 5 enumerates the main
considerations when deploying WoTbench. Section 6 characterizes
the impact of contention on test results and discusses how the
CD module ensures the integrity of tests in the presence of such
contention. Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 The Web of Things

It is estimated that 7 to 10 Billion IoT devices were active at the
beginning of 2019 [10] [13]. The majority of these devices (e.g.,
smart appliances, home security systems) are being monitored
and controlled by users who usually prefer simplicity of access to
these devices. Moreover, to improve usability and utility, [oT devices
require a standardized way of communicating with each other. Web-
enabling IoT devices allows for the use of existing infrastructures
and eliminates the need for new client applications (other than the
Web browser) to communicate with these devices.

There are several challenges involved in connecting IoT devices
to the Web. For example, there is a need for revisiting standards, se-
curity and performance [62]. While there is a large body of ongoing
studies focused on addressing standards and security challenges
in WoT, less work has been devoted to developing tools to assess
the performance and scalability of a network of WoT devices under
design. We focus on this aspect in our study.

2.2 Constrained Application Protocol (CoAP)

A fundamental limitation in most WoT systems is the limited pro-
cessing capability and power constraints of devices. CoAP [55],
designed by the IETF CoRE Working Group [12], considers this lim-
itation and provides a lightweight approach for connecting devices
to the Web. It is designed to operate with a RESTful [24] architec-
ture that results in a stateless nature. This allows the development
of uniform HTTP-CoAP proxies to integrate devices with CoAP
support to the Web. Similar to HTTP, in CoAP each device can have

!https://github.com/RSH2000/WOTbench

multiple resources that each have a unique Universal Resource
Identifier (URI). A URI can be used to access a resource by sending
GET, PUT, POST and DELETE requests. The resources in a WoT
environment are typically the methods for reading data or modify-
ing the settings of devices, sensors, actuators and communication
mediums in the network. In contrast to HTTP, CoAP adopts UDP as
the transport layer protocol considering the resource constrained
nature of devices.

Since the initial design of CoAP in 2011, several implementa-
tions [11] have been introduced that are intended for different OS
and hardware architectures. One of the widely used implementa-
tions is libCoAP [34]. It is written in C and can run on constrained
device OSs (i.e., Contiki [20], TinyOS [37], RIOT [15]) as well as
larger POSIX [8] OSs. Californium [33] in another popular imple-
mentation of CoAP, written in Java. It mainly targets back-end
services and server nodes communicating with constrained devices.
However, it can also be used on more powerful IoT nodes. Other ex-
amples of CoAP implementations include CoAPthon [58] in Python
and node-coap [5] in JavaScript.

2.3 WoT Performance Evaluation Frameworks

This section describes some examples of existing solutions for evalu-
ating the performance and scalability of WoT environments. The so-
lutions available depend on the type of application or devices under
test, the stage of development and the technology (e.g., protocols,
algorithms, or applications) that needs to be emulated. This section
categorizes the solutions into four different groups, namely, real
sensor node testbeds, simulation and emulation solutions, protocol
proxy and gateway applications, and synthetic traffic generators.

Real Sensor Node Testbeds: In recent years, several real exper-
imental facilities were developed to facilitate testing and scalability
analysis of a network of devices in the design and implementa-
tion [25, 54] stages. Some examples of such testbeds are IoT-lab [50],
Smartsantander [53], WISEBED [19] and WoTT [16]. The first three
testbeds are mainly developed for general IoT systems. However,
they can be used for testing WoT applications. As an example, Pa-
ganelli et al. [49] used the Smartsantander [53] testbed to test their
WoT solutions.

WOTT [16] is a testbed specifically designed for WoT applica-
tions. WoTT supports two node types, namely, constrained-IoT
with power limitations and a Single Board Computer that is a more
powerful node. WoTT supports multiple protocols, frameworks
and platforms. In particular, it supports CoAP as an application
layer protocol for constrained nodes. The testbed is part of the
IoT-Lab project and enables testing of development features, such
as service discovery, human interactions and user localization [9].
More recently, the Fiesta-IoT [35] project was established with the
goal of creating a federation of existing real IoT testbeds to provide
experimentation as a service solutions.

Using real hardware may result in more accurate evaluation
of application performance. However, users can potentially face
problems such as a limited number of nodes, lack of realistic net-
work characteristics and the need for external workload generation
tools. The high cost, limited scale, and lack of flexibility of real IoT
setups motivate the need for alternative simulation or emulation
techniques such as WoTbench.

Simulators and Emulators: A large number of frameworks
have been developed to simulate IoT [2, 22, 36, 48] and in particular
WoT [18, 21, 42] environments. Simulators such as Cooja [48] and
TOSSIM [36] are specifically used for simulating the behaviour of

IoT applications running on constrained device OSs. Cooja/MSPSim [22]

further extends the features of Cooja and combines it with a hard-
ware simulator (i.e., MSPSim) to enable white-box performance
testing of IoT applications on their intended simulated hardware.
Brambilla et al. [18] proposed a simulation methodology focused
on urban IoT environments with an application layer perspective.
Their approach provides support for simulating CoAP.

D’Angelo et al. [21] studied a multi-layer approach to simulate
large scale IoT systems. Their approach is based on a coarse grained
agent-based simulation followed by a fine-grained approach to
simulate wireless communication links. Although their approach
supports multiple communication strategies, it does not support
simulation of RESTful application layer protocols such as COAP.
Younan et al. [61] proposed a WoT-specific testbed architecture that
focuses on smart home applications.

Simulation approaches can suffer from a lack of representative-
ness compared to real deployments. Moreover, simulation solutions
typically have limited support to simulate sensor nodes with hetero-
geneity in features and communication protocols [32]. Emulation
frameworks address some of these limitations. Specifically, emu-
lation approaches can potentially allow the execution of parts of
actual applications and protocols. Several IoT-specific emulation
frameworks have been developed recently [27, 38, 43, 51] as we
describe next.

MAMMOoTH [38] is a large scale IoT emulator with support for
emulating mobile device, wireless sensor networks and constrained
devices. It reuses existing network simulation solutions (e.g., ns3 [6])
to simulate the behaviour of IoT networks and can execute CoAP as
an application layer protocol. EmuFog [43] is an emulation frame-
work for Fog computing [17] environments. It supports the use of
existing network topology generators to emulate the environment.
Similar to WoTbench, EmuFog uses Docker to enable evaluation of
Fog nodes in the emulated network environment. However, it does
not support CoAP.

Protocol Proxy and Gateway Applications: The third group
of tools used for performance evaluation studies of IoT and WoT
environments are gateway and proxy applications. These tools do
not provide a comprehensive testbed to test a protocol or an ap-
plication. However, they can facilitate the performance evaluation
process. For example, Ponte [7] is a multi-transport IoT broker tool
developed as part of the the Eclipse project. The tool functions as a
proxy that supports messages from multiple IoT application layer
protocols (CoAP, MQTT, HTTP) and can be used by developers
to implement a multi-protocol transport module for their appli-
cation. Ludovici et al. [40] designed an HTTP-CoAP proxy that
facilitates the integration of a CoAP-based WoT environment with
existing Web services. Their tool can be coupled with existing Web
benchmarks to enable performance evaluation of WoT applications.

Workload Characterization and Synthetic Traffic Genera-
tors: IoT and in particular WoT use cases are relatively new. More-
over, due to the heterogeneity of systems and use cases, and privacy
issues that limit data sharing, there are very few real, reusable work-
load traces. Therefore, synthetic traffic generators are needed to

facilitate performance evaluation. As an example, IoTAbBench [14]
is a synthetic workload generation tool based on Markov-chains to
emulate the behaviour of smart meters. Another example of such a
tool is RIoTBench [56], a benchmark suite for evaluating distributed
stream processing systems for IoT applications. It uses a combina-
tion of a set of micro benchmarks and four real-world data streams
to build a set of four representative stream processing applications
for IoT environments. More specific to WoT environments, CoAP-
bench is a load generator tool which is part of the Californium [33]
framework. It mimics the features of Apachebench [1] for the CoAP
protocol. However, unlike WoTbench, it does not have support for
generating traces with specified distribution of workload charac-
teristics (e.g., request type and resource distribution).

Despite these advances, existing emulation approaches do not yet
provide an integrated mechanism to evaluate how the performance
of CoAP-based systems can change as a function of the overall
system architecture, e.g., device and gateway topology, applica-
tion characteristics, CoAP request arrival patterns, device resource
demand distributions, and network conditions. Furthermore, in con-
trast to WoTbench, they do not consider the effect of test platform
resource contention on the integrity of test results.

3 USE CASE SCENARIO

A WoT environment consists of several devices, typically with
power constraints. These WoT devices communicate with one or
more (typically more powerful) gateway nodes that connects them
with the outside world. One approach to benchmark a WoT system
is to deploy the gateway and devices in a real testbed. As discussed
previously, real testbeds consisting of actual WoT sensor nodes may
result in a more representative benchmarking experience and enable
testing of already implemented applications prior to deployment.
However, they are costly and may not be always available at the
desired scale [32]. Emulation testbeds facilitate the benchmarking
process in the design phase and defer the use of real hardware to
after implementation. This section further explains the use case for
a CoAP enabled emulation testbed.

CoAP/HTTP proxies allow Web users to access Web services
provided by constrained devices through Web browsers. In these
cases, the CoAP part of this communication may remain transpar-
ent from the users’ perspective [59]. Figure 1 shows a simplified
architecture of such a service. In this case, the CoAP devices can be
temperature or air quality sensors in different locations. The user
request may involve reading one or more sensors for a single point
or a historical trend.

Similar to conventional Web services, capacity planning exer-
cises are needed to ensure that these WoT applications provide
acceptable experience to an end user, e.g., fast responses to sen-
sor data requests. Typically, capacity planning is required for the
gateway, proxy, and the device tiers. A common capacity planning
approach is to answer what-if questions such as the following:

(1) For a given number of devices, an expected user behaviour,
i.e., workload, and specific set of resources, e.g., sensors
and their read service times, what is the maximum rate at
which the gateway can read the sensor data while satisfying
a desired response time?

(2) How do alternative implementations of application level pro-
tocols, e.g., congestion control and packet recovery protocols,
layered on top of CoAP compare in terms of performance?

(3) What is the impact of having heterogeneous devices with
varying computational capabilities?

(4) What is the effect of network characteristics such as individ-
ual device bandwidths, WoT network packet loss, delay and
jitter on the maximum sensor read rate?

CoAP device

|---Sensor-1

[... "‘I?
|---Sensor-N <7 |
\ Gateway "//A:
CoAP/HTTP |
|- CoAP device Proxy
---Sensor-1 I/

---Sensor-M

Figure 1: An example architecture of Web services in WoT
environments.

WoTbench provides a testbed to facilitate experiments to answer
these type of questions. It uses a Docker container to emulate a WoT-
device. A WoT-device can exchange messages with the gateway
using the actual CoAP protocol executing on Linux. Furthermore,
WoTbench can emulate synthetic resources, e.g., sensors, attached
to the WoT-device. It allows control over the resource demand
distributions of these synthetic resources as well as the fraction of
the testbed’s computational and networking resources allocated to
each device. The testbed also supports control over the pattern of
CoAP request arrivals from the gateway to any given WoT-device.

The ability to specify request arrival patterns and resource de-
mand distributions allows one to answer the first question in the
sample capacity planning study. The ability to execute CoAP allows
the evaluation of alternative application layer protocols as part of
the second question. To answer the third question, the heterogene-
ity of the devices can be reflected by appropriately configuring the
distribution of resource demands per WoT-device and by using the
CPU and network sharing mechanisms supported by Docker [3].
For example, a device with high computation capability can be
emulated by assigning to it a large fraction of the testbed’s CPU
resources. Finally, to answer the last question, WoTbench supports
integration of an existing network emulator [23] to systematically
perturb characteristics such as packet loss and delay on a per WoT-
device basis.

4 WOTBENCH ARCHITECTURE
4.1 Overview

An overview of the WoTbench architecture is presented in Fig-
ure 2. WoTbench consists of four main components, namely, the
WoTbench core, the Gateway Emulator (GE), WoT-device and the
Contention Detection (CD) module. In addition to those compo-
nents, the WoTbench environment can accommodate an existing
network emulation tool called Pumba [23] to apply the expected
network characteristics of the deployment environment. Except
for the WoTbench core that is a process running on the platform’s

08, all of the other components consist of one or more Docker [44]
containers connected through a virtual bridge network.

Host: Multicore Linux Machine ’—>Connect to other machines hosting devices

i *Test harness N

i *Synthetic trace generator Pumba Docker
i
i
\

. *Resource monitoring module Network emulator

container

Device # 1 |

i ; .
i~ CD Gateway Emulator |1 | i

! [*_WoT-device '

: The CD node i o |

e]

---------------- 12 : o ° ;
!]

!]

!]

!]

! !

Contention Detection
Module

Figure 2: The WoTbench architecture.

WoTbench reports the per request response time measured at the
GE as the main performance metric collected during an experiment.
The response time is measured by subtracting the request sent
timestamp from the response received timestamp. As a result, the
reported response time includes the network transfer time.

4.2 The WoTbench Core

The core component of WoTbench consists of several processes that
run in offline or online mode when conducting a test. Specifically,
the WoTbench core consists of the following components:

o Test harness: This is the main process that controls other
components and processes of WoTbench. This process is a
shell script that performs multiple tests with specific char-
acteristics. The test harness creates the environment (e.g.,
starts the Dockers) based on the test specifications, initiates
the test, waits for the test to finish and finally collects the
results and cleans the environment (e.g., stopping Dockers).

o Synthetic trace generator: This is an optional component,
used to create synthetic workloads with specific service time
distributions for the synthetic device resources and Request
Inter-arrival Time (RIT) distributions for devices. These dis-
tributions can match service times and arrival patterns ob-
served in an actual deployment or can be varied as part of a
sensitivity analysis. The process runs in offline mode prior to
the start of each test to generate a trace of requests for each
device. The generated workload consists of a set of trace files
and a group of resource files describing the set of synthetic
resources and their service times for each device.The traces
are then combined and fed to the GE to submit the workload.
In contrast with most synthetic Web workload generators
that use a probabilistic Finite State Machine (FSM) to rep-
resent user behaviour, WoTbench’s trace generator selects
the resources to access in a device with the goal to satisfy a
desired distribution of service times for each device.

e Resource monitor: This module is a wrapper script around
the Collectl [52] performance monitoring tool. It runs in

online mode to collect resource usage metrics (e.g., CPU uti-
lization, memory usage) of the underlying hardware. The
information can be used in conjunction with the CD mod-
ule to investigate possible root causes of contention in the
benchmark setup.

e Reporting module: This module generates a summary of
test results and visualizes the relationship between the work-
load characteristics and the collected performance metrics.

4.3 Gateway Emulator

The Gateway Emulator (GE) plays the role of a workload genera-
tor [28] for the WoT devices, similar to tools such as httperf [45]
or Apache JMeter [26] in a traditional Web benchmarking setup. It
sends requests to each of the devices based on the input workload
trace and measures each device’s response time. Figure 3 depicts the
process of submitting the workload to the devices by the GE. The
GE is an asynchronous but single threaded process. It consists of a
single busy loop for sending requests based on the send timestamps,
specified by the workload trace. As a result, it requires a dedicated
CPU core. WoTbench’s test harness uses Docker’s core affinity [39]
feature to pin the GE process to a single core. Furthermore, it en-
sures that no device is emulated on the core that is running the
GE.

The GE reads the workload trace from a csv file provided as input.
The following is an example of a request in the workload file:

0, 1000, GET, coap://172.18.0.60/resource123

In this case, 0 is the device id, 1000 is the timestamp (representing
microseconds from the start of the test) for sending that request,
GET is the request type and coap://172.18.0.60/resource123 is the
URI that is to be accessed by this request. The workload can be
specified based on traces collected from a real deployment or using a
synthetic trace generated by the synthetic trace generator. The latter
has the additional feature of generating a custom set of synthetic
resources to satisfy a desired device service time distribution, as
discussed previously.

The GE currently only supports CoAP. In real deployments, cer-
tain devices might have the capability to support HTTP. However,
adding HTTP support is deferred to future work. The GE lever-
ages libCoAP [34] to communicate via CoAP. libCoAP supports
constrained OSs such as Contiki [20] and TinyOS [37], and also
supports POSIX environments, where the emulated devices of WoT-
bench are expected to be deployed.

The overall process of sending a request and receiving the re-
sponse works as follows. The GE first reads a workload trace from
a file and initializes a timer to track the request send time. In each
loop iteration, the timer’s elapsed time is compared with the next
request’s send timestamp. If the next send timestamp is reached,
the GE sends the next request; otherwise, it checks if any reply has
arrived from the device via the non-blocking Unix Select() function.
If no reply is waiting and there are more requests left, the loop
continues; otherwise, the reply is processed. The GE then contin-
ues from the beginning of the loop to send the next request. The
scalability and accuracy of the GE is further discussed in Section 6.

read_workload_from_file() ‘

start_timer()
elapsed_time >
next_send_timestamp

yes no

send_request(

reply_waiting?()

yes
read_reply()

Figure 3: Gateway Emulator request generation process.

4.4 Devices

The devices are emulated as Docker containers. As introduced pre-
viously, WoTbench provides a specific implementation of a CoAP
device, referred to as the WoT-device. The WoT-device is a multi-
threaded version of libCoAP server [34] running in a Docker con-
tainer. The number of server threads, the emulated device resources
and their attributes along with the expected service time distribu-
tion of the resources is configurable for each WoT-device in the test
environment. The service time specifications can be gathered from
initial prototypes or constructed based on sensor spec sheets.

The WoT-device emulates the service time in either the sleep or
busy mode. The sleep mode uses the Unix nanosleep() [4] to emulate
the service time, while the busy mode is a controlled CPU intensive
loop that runs for the length of the service time. The two modes
are used to emulate non CPU-intensive, i.e., sensor-intensive, and
CPU-intensive CoAP requests, respectively.

4.5 The Contention Detection Module

The main role of the CD module is to monitor the testbed while a
test is running and report if contention for the shared resources
in the underlying multicore platform may have influenced the test
results. The CD consists of two main components, an extra GE
instance,? referred to as the Contention Detection GE (CD-GE)
and an extra WoT-device node, referred to as the CD node. The
CD-GE submits a sequential workload with a deterministic service
time to the CD node and measures the response time. The CD
then reports any response times that deviate from the deterministic
service time, which may be an indicator of resource contention
in WoTbench’s multicore platform. Section 6.2 elaborates on the
effect of contention on test results and describes the design and
evaluation of the CD module in greater detail.

ZNote that this is a separate instance from the GE used to submit the workload to
the devices under test. The CD is an entirely independent part of the WoTbench
infrastructure.

5 DEPLOYMENT PROCESS AND
CONSIDERATIONS

The first step in creating a WoTbench deployment is to select the
hardware platform. For instance, for this example, and as the de-
ployment used in the experiments of the following sections, a single
server is used with two processors, each having four cores. While
WoTbench can be deployed on multiple machines, this evaluation
focuses on a single machine deployment. This single machine plat-
form was sufficient to run the chosen use case. The deployment
process with multiple machines is left as future work.

Once the platform is selected, the next step is to design and apply
the benchmark configuration. The benchmark configuration speci-
fies the number of devices of different types and how the devices
are positioned on the hardware platform. An ideal benchmark con-
figuration should utilize the resources of the underlying platform
as much as possible. Meanwhile, it should minimize the impact of
contention for resources in the underlying hardware on the test
results, which can adversely impact the integrity of test results.
There are several design decisions that can help this process.

Figure 4 shows a carefully crafted example benchmark config-
uration with 10 devices for the above described platform. This
benchmark configuration is created based on the following set of
design considerations.

One example consideration is a desire to avoid contention be-
tween the OS processes and the WoTbench processes. Since core 0
normally is used to run OS processes [29], one should avoid sched-
uling the GE and device nodes on core 0. Instead, core 0 is used to
run the test harness process which is not latency-critical. There are
two GEs in this setup; one is used as the main workload generator
for the test and a second is used by the CD module. The GEs each
require a complete processing core. For this reason, as shown in
Figure 4, no other container is scheduled on cores 2 and 4. Note
that each complete WoTbench deployment requires at least a four
core machine as the test platform. In the case of the eight core
server used for this study, the other five cores are used to run the
WoT-device nodes alongside the CD node.

Core2 Core 1

({ WoT-device 3 U

Harness

WoT-device 4

CD node

[WoT-device 7 U

[WoT-device 9 U)

WoT-device 8 WoT-devicel0

CPU Core (::) Process

CPU Core running server nodes O Container @

Figure 4: Benchmark configuration.

Another consideration is regarding the scheduling mechanism
of devices on CPU cores. In particular, one needs to decide about
whether to bind each container to a single core using CPU affin-
ity [39], or alternatively, leave the container scheduling decisions
to the Linux scheduler. Optimizing this decision has the advantage

of using the hardware resources more efficiently. The decision to
use affinity depends on the workload and the types of devices under
test. Therefore, the answer can be determined experimentally for
each specific combination of device types and workload.

Next, an example of such an experimental process is presented
for the above described platform. The goal is to measure the ef-
fect of CPU affinity on the capacity of a multicore server hosting
WoTbench. The idea is to create a CPU intensive workload and
determine which of the CPU scheduling choices can accommo-
date a larger number of devices without contention. The example
workload considered for this study has exponentially distributed
request inter-arrival and service times. The mean Request Inter-
arrival Time (RIT) is set to 100 milliseconds per device while the
mean service time is set to 16 milliseconds. The number of devices
running on a single CPU core is then increased to measure the ca-
pacity of the multicore server for benchmarking, with and without
core affinity.

Figures 5(a) and 5(b) show the measured mean response time
and CPU utilization, respectively, as a function of the number of
devices. Figure 5(a) shows that the use of CPU affinity had less
than a 5% impact on the measured response time when less than 15
WoT devices (3 devices per core) are used. However, the measured
response time increases for the tests with more than 3 devices per
core. The total CPU utilization of the five cores as a function of
the number of devices is depicted in Figure 5(b). This graph shows
that the overall CPU utilization is less than 5% higher for the case
without affinity. While the use of CPU affinity resulted in a slightly
lower CPU utilization, it had an adverse effect on the response time,
therefore, using affinity is not helpful in this case.

While for this particular scenario the use of CPU affinity was not
helpful, the configuration can be beneficial in other cases such as
deployments with one device per core or cases with heterogeneous
devices. As a result, the initial decision around container place-
ment and the use of affinity in those scenarios will be workload
dependent. Moreover, despite the workload-based optimization of
container placement, the effect of the communication channel and
caching hierarchy, the position of the cores hosting the devices on
the two processors can potentially affect the test results [29]. We
currently ignore such effects at the deployment phase since the CD
component is designed to detect them, as discussed in Section 6.2.

6 RESULT INTEGRITY

An important consideration when using any benchmarking system
is to examine the integrity of the test results [31]. Specifically, a
comprehensive benchmarking system should provide feedback to
the benchmark user in case of deviations between the expected test
configuration and the executed test. One example of such deviations
happens when a bottleneck in the load generation system of an
interactive benchmark results in the request inter-arrival times of
the submitted workloads being inflated beyond what is specified
for the input, i.e., the expected workload [28]. WoTbench addresses
this scenario by reporting the timestamp of the sent requests and
statistical characteristics of the submitted workload. Section 6.1
presents an example that elaborates on how the user can interpret
this report to ensure the integrity of the generated workload.

Another source of deviations, more specific to WoTbench, is
the resource contention in the platform hosting the benchmark.
Resource contention is typically negligible in low load scenarios.
However, at higher load levels, contention for shared resources of
the underlying multicore hardware can adversely affect the results
of tests running on WoTbench. The CD module helps identify if
and at what loads such problems start to occur for a particular
architecture and test setup. Section 6.2 describes and evaluates the
effectiveness of this module, and discusses how the module can
help WoTbench users safely scale their experiments.

6.1 Gateway Emulator Bottleneck

As mentioned in Section 5, each instance of the GE runs on a
separate processing core of the underlying platform. The scalability
of the GE depends on the specification of the hardware platform.
The capacity of the GE on a specific platform is determined by
the minimum time it takes for the GE to submit two consecutive
requests. This limits the minimum Request Inter-arrival Time (RIT)
that the GE can emulate.

To elaborate on this limitation, the WoTbench deployment de-
scribed in Section 5 is used to run a test with a sample workload in
which the RIT from the GE perspective is exponentially distributed
with mean of 300 microseconds (or 3,333 requests per second on
average). The test is run twice; once when there is a single device
and again with ten devices under test. Note that the expected RIT
distribution from the GE perspective is the same for the two scenar-
ios. This means that the average RIT per device is ten times higher
for the test with ten devices. Figure 6 visualizes the Cumulative
Distribution Function (CDF) of RIT for the submitted and input
(expected) workload for the single device case, which has the higher
per-device request load (i.e., small average per-device RITs). Note
that the zoomed in area of the graph shows a clear separation be-
tween the 10% of requests with the smallest RITs. In particular, for
the submitted workload, this subset of low-RIT values all have RITs
of approximately 30 microseconds, whereas the expected workload
includes much lower RITs. This confirms that the GE was not able
to submit the requests with an inter-arrival time of less than 30
microseconds. The effect of this limitation on the integrity of the
results depends on the per-device workload and is determined by
comparing the statistical characteristics of expected and submitted
workloads, as reported by the GE.

Table 1 shows the reported values for mean and 5!” percentiles
of the RIT for the two tests with one and ten devices, respectively.
These parameters are selected to show the effect of the minimum
RIT on the lower percentile and the mean. The results show that
the RIT distribution diverges more when the emulator is submitting
its workload to a single device. The GE’s limitation changed the
mean RIT by 0.5% and 0.05% for the tests with 1 and 10 devices,
respectively. The differences are even more clear when looking at
the 5" percentile. For example, while the 5th percentile is doubled
for the single device case, it remained unchanged for the ten device
scenario. The data provided by the WoTbench GE can be used in
this manner for evaluating the correctness of tests with arbitrarily
specified RIT distributions.

3
§2 e o @
ERS VS T Y vy oy
(5]
g
o
21
o .
g @ Affinty
¥ No Affinity
0
0 20 40
Number of devices
(a)

CPU utilization (%)

80
60 b4
v
v
40 Y
b
Y
20 ¥ Affinity
¥ ¥ No Affinity
0 w
0 20 40
Number of devices
(b)

Figure 5: Examining CPU affinity: (a) Response time and (b) CPU utilization.

- [
1 —

" [—submitted Workload
i / Input Workload
0.8 ;‘;
?0.6 i ;” 06
1 N
;: 0.4/ 0.4
= i
|
[/ 0.2
0.2 !
0
i 50 100 150 200
O L L L '
0 1000 2000 3000 4000

Request Inter-arrival Time, X (us)

Figure 6: Cumulative Distribution Function of RIT for test
with high request load (i.e., small RITs) and a single device.

Table 1: Submitted vs. Expected workload.

Number of devices RIT values (us)
Input Workload | Submitted Workload
Mean ‘ 5th gile | Mean ‘ 5th gile
1 300 15 286 32
10 3,019 150 3,005 150

In summary, WoTbench provides a tool for users to extract and
compare reported RIT values, and to determine an appropriate num-
ber of GE instances. In particular, if the WoTbench user finds that
the mean or percentile deviations are not acceptable, one or more
additional GE instances have to be used to submit the workload.

6.2 Contention Detection Module

A threat to the integrity of tests running on WoTbench is contention
for shared resources. As discussed in Section 5, while a well de-
signed benchmark configuration can reduce the probability of such
contention, it does not guarantee its absence.

The contention problem: To understand the implications of
contention, three benchmark configurations are examined in which
1, 5 and 20 homogeneous WoT-device nodes each subjected to
the same workload are deployed using the platform described in
Section 5. In all cases, the device’s service time distribution is expo-
nential with a mean of 5 milliseconds. Moreover, the WoT-devices
are running in busy mode to emulate a CPU-intensive workload. If
there were no contention in the platform, the response time char-
acteristics at any given per-device throughput should be the same
across these three configurations.

Figure 7(a) shows the response times, as a function of per device
request throughput. Note that the response time is similar for the
three scenarios up to the per device throughput of 40 requests per
second. For higher throughputs, the measured response times are
higher for the 20 device scenario compared to the 1 and 5 device
cases. Considering that the device service time distributions and
the RIT distributions are identical for the three test scenarios, the
inflated response time in the 20 devices case can be an indicator of
resource contention at the platform level. The results suggest that
the testbed does not have the capacity of hosting 20 devices under
this specific workload.

While the existence of resource contention is clearly observable
in this controlled experiment, this effect cannot be easily detected in
areal test scenario. In testbeds with multiple heterogeneous devices
and variable workload conditions, testing such controlled scenarios
typically requires running a large number of experiments and a
lengthy benchmarking process. Furthermore, resource utilization
and OS level metrics are not always sufficient to detect all sources
of contention. For example, if the contention happens in parts of
the CPU or memory subsystem (e.g., cache hierarchy), hardware
level metrics are required to analyze the contention scenario. How-
ever, collecting and analyzing these metrics is costly and requires

ae]
o

%‘ —®—1 device
] o .
215 =-5 devpes
~ 20 devices I
Y .
E 10 Zl
= 7
& ,1/
: ot
% 5 pe T
~
0

0 20 40 60 80
Throughput (Requests/second)

Figure 7: Effect of platform resource contention on mea-
sured response time

considerable processing resources and is therefore not feasible in
most use cases. As a result, an alternative approach is required to
ensure the correctness of test results while eliminating the need
for running multiple experiments.

Our CD module solution: The proposed solution within WoT-
bench is the CD module. The method adds a single WoT-device, i.e.,
CD node, and an extra Gateway Emulator container, i.e., Contention
Detector GE (CD-GE), to the WoTbench deployment. During the
experiment, the CD-GE submits a controlled workload to the CD
node and measures its response time. The basic idea is that when
there is no contention in the underlying hardware, the CD node’s
response time is close to its configured service time. However, when
the device nodes suffer contention for a shared resource, the CD
node will experience this contention as well. Consequently, the
measured response time of the CD node will deviate from the con-
figured service time, i.e., the wait time for the congested shared
resources is added to the service time.

There are two main characteristics for the CD workload. First,
requests should arrive sequentially with deterministic inter-arrival
times to ensure that the requests are not queued for the software
resources of the CD node. Second, the CD node’s resources should
have deterministic service times. These two conditions ensure that
any deviation between response time and configured CD node
service time can be attributed to resource contention.

Returning to the contention example above, we now explain
how the CD module can help detect resource contention. Figure 8
shows the CD node’s average response time as a function of per
device throughput for the same experiments described above. For
these experiments, the CD node requests are sent with the constant
inter-arrival time of 1 second and the service time of 5 milliseconds,
which is the same as that used by the devices. From the figure,
the average response time reported by the CD node was almost
constant for the 1 device and 5 devices experiments. However, for
the case with 20 devices, the average response time of the CD node
increases from 5 milliseconds, i.e., the configured service time, to 8
milliseconds for the tests with a per device throughput of higher
than 40 requests per second. Recall from Figure 7 that the response
time inflation was observed for the same range of throughputs for
the devices. This indicates that the CD node response time follows

’8\ —®— 1 device
§10 — = =5 devices
~ 20 devices
Q
£
=
g 5 Attt ———-8
=1
o
Q
w
]
~

0

0 20 40 60 80
Throughput (Requests/second)

Figure 8: CD node’s average response time for contention
scenario.

the same pattern observed for device nodes and can potentially
thus detect such contention scenario in uncontrolled setups.

To quantify the extent of contention, WoTbench reports the
normalized response time deviations Ry = %, where R is the re-
sponse time and S is the service time. In practice, the response time
also includes the network transfer time. Therefore, Ry is slightly
greater than 0 even under no contention.

In the above contention example, the CD node was tuned based
on the knowledge about the workload and the devices under test.
In particular, the service time of the CD node requests are chosen
to be the same as the average service time of the devices. Since tests
use synthetic WoT-devices, the mean service time of the devices
can be calculated from the service times specified as input. The CD
node can then be configured with the estimated service time.

Next, additional experiments are presented to show the effec-
tiveness of the CD module in detecting contention under different
load conditions. First, WoT-devices are configured to have a mean
service time of 25 milliseconds and operate in busy mode to create
a CPU intensive workload. In the second case, the WoT-devices
have the same service time but operate in sleep mode to emulate
a non-CPU intensive workload. The mean service time of the CD
node is set to be the same as the service time of the devices.

Figures 9(a) and 9(b) show the normalized response time devia-
tions (Ry) values as a function of the number of devices for both the
WoT-devices and the CD node for the CPU intensive and non-CPU
intensive workloads, respectively. Figure 9(a) shows that the Ry of
the device is constant and around 0.05 from 1 to 20 devices for the
CPU intensive case. With 25 devices, R increases to 0.07 and with
30 devices it is measured as 0.09. Similarly, the R; for the CD node
is constant for up to 20 devices and starts to increases from the test
with 25 devices. This result shows that the CD node could detect
the emergence of contention while emulating 25 devices.

Figure 9(b) shows a similar trend for the non-CPU intensive
workload. In this case, the device nodes’ normalized response time
deviation, R, is constant and below 0.055 for up to 90 devices. For
the experiment with 100 devices, Ry increases to 0.07 and with 130
devices, the R; is measured at 0.125. The CD node is able to follow
the devices’ response times and detect the contention for the case
of 100 devices.

0.2

—+—WoT-device
—-#-—CD node

0.15

0.05

5 20 35

Number of Devices

(@)

0.2

—+— WoT-device

O 15 —-#-—CD node

= 0.1

0.05

0
60 80 100
Number of Devices

(b)

120 140

Figure 9: Normalized response time deviation (R;) for WoT-devices and CD node : (a) CPU intensive workload, (b) Non-CPU

intensive workload.

7 CONCLUSIONS

This paper describes WoTbench, an emulation testbed to facilitate
benchmarking studies in WoT environments. WoTbench is designed
to be deployed on commodity multicore hardware. It allows users to
conduct capacity planning studies and examine behaviour of WoT
systems under different system architectures, application charac-
teristics, workload scenarios and network conditions. WoTbench’s
Contention Detection (CD) module also enables the users to care-
fully scale their experiments, through the monitoring and detection
of potential resource contentions that can affect the test results.

Future work will focus on automating the deployment process
described in Section 5. We will also expand the gateway emulator
to support HTTP. Other interesting future work directions include
the integration of real devices and applications and the ability to
emulate power and energy usage characteristics of specific devices
of interest.

REFERENCES

[1] [n.d.]. ab - Apache HTTP server benchmarking tool - Apache HTTP Server
Version 2.4. https://httpd.apache.org/docs/2.4/programs/ab.html. Last accessed:
[2019-08-22].

[2] [n.d.]. IoT Analytics - ThingSpeak Internet of Things. https://thingspeak.com/.
Last accessed: [2019-08-22].

[3

=

Last accessed: [2019-08-22].

[4] [nd]. nanosleep(2) - Linux manual page. http://man7.org/linux/man-
pages/man2/nanosleep.2.html. Last accessed: [2019-08-22].

[5] [n.d.]. node-coap. https://github.com/mcollina/node-coap. Last accessed: [2019-
08-22].

[6] [nd]. ns-3 | a discrete-event network simulator for internet systems.
https://www.nsnam.org/. Last accessed: [2019-08-22].

[7] [n.d.]. Ponte: Connecting Things to Developers. http://www.eclipse.org/ponte/.
Last accessed: [2019-08-22].

[8] [n.d.]. Posix Standard - Linux Hint. https://linuxhint.com/posix-standard/. Last
accessed: [2019-08-22].

[9] [n.d.]. WoTT - Internet of Things Laboratory. http://iotlab.unipr.it/wott/. Last
accessed: [2019-08-22].

[10] 2018. State of the IoT 2018: Number of [oT devices now at 7B, Market accelerat-
ing. https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-
devices-now-7b/. Last accessed: [2019-08-22].

[11] 2019. CoAP: Constrained Application Protocol, Implementations.
http://coap.technology/impls.html. Last accessed: [2019-08-22].

[12] 2019. Constrained RESTful Environments
https://datatracker.ietf.org/wg/core/charter/. Last accessed: [2019-08-22].
[13] 2019. Internet of Things Report: Technology Trends and Market Growth in 2019
- Business Insider. https://www.businessinsider.com/internet-of-things-report.
Last accessed: [2019-08-22].
Martin Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah, Jeff Healey, and
Ben Vandiver. 2015. IoTAbench: an internet of things analytics benchmark. In
Proc. of the 6th ACM/SPEC International Conference on Performance Engineering.
ACM, 133-144.
[15] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and
Thomas C Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things.
In 2013 IEEE conference on computer communications workshops (INFOCOM WK-
SHPS). IEEE, 79-80.
Laura Belli, Simone Cirani, Luca Davoli, Andrea Gorrieri, Mirko Mancin, Marco
Picone, and Gianluigi Ferrari. 2015. Design and Deployment of an IoT Application-
Oriented Testbed. Computer 48 (09 2015), 32-40. https://doi.org/10.1109/MC.
2015.253
[17] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog
computing: A platform for internet of things and analytics. In Big data and
internet of things: A roadmap for smart environments. Springer, 169-186.
Giacomo Brambilla, Marco Picone, Simone Cirani, Michele Amoretti, and
Francesco Zanichelli. 2014. A simulation platform for large-scale internet of
things scenarios in urban environments. In Proceedings of the First International
Conference on IoT in Urban Space. ICST (Institute for Computer Sciences, Social-
Informatics and ..., 50-55.
Toannis Chatzigiannakis, Stefan Fischer, Ch. Koninis, G. Mylonas, and D. Pfis-
terer. 2009. WISEBED: an open large-scale wireless sensor network testbed. In
International Conference on Sensor Applications, Experimentation and Logistics.
Springer, 68-87.
[20] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In 29th annual IEEE
international conference on local computer networks. IEEE, 455-462.

(core).

[14

16

[18

[19

[n.d.]. Limit container resources. http://docs.docker.com/config/containers/resource_constj2ifit€sabriele D’Angelo, Stefano Ferretti, and Vittorio Ghini. 2017. Multi-level simula-

tion of internet of things on smart territories. Simulation Modelling Practice and
Theory 73 (2017), 3-21.
[22] Joakim Eriksson, Fredrik Osterlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels,
Thiemo Voigt, Robert Sauter, and Pedro José Marrén. 2009. COOJA/MSPSim:
Interoperability Testing for Wireless Sensor Networks. In Proceedings of the 2Nd
International Conference on Simulation Tools and Techniques (Simutools *09). ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium, Article 27, 7 pages. https:
//doi.org/10.4108/ICST.SIMUTOOLS2009.5637
Alexei Ledenev et. al. [n.d.]. Pumba: Chaos testing tool for Docker.
https://github.com/alexei-led/pumba. Last accessed: [2019-08-22].
Roy T Fielding and Richard N Taylor. 2000. Architectural styles and the design
of network-based software architectures. Vol. 7. University of California, Irvine
Doctoral dissertation.
Alexander Gluhak, Srdjan Krco, Michele Nati, Dennis Pfisterer, Nathalie Mitton,
and Tahiry Razafindralambo. 2011. A survey on facilities for experimental internet
of things research. (2011).

[23

[24

[25

https://doi.org/10.1109/MC.2015.253
https://doi.org/10.1109/MC.2015.253
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5637
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5637

Emily H Halili. 2008. Apache JMeter: A practical beginner’s guide to automated
testing and performance measurement for your websites. Packt Publishing Ltd.
Martin Grambow Elias Griinewald Sascha Huk Hasenburg, Jonathan and David
Bermbach. 2019. MockFog: Emulating Fog Computing Infrastructure in the Cloud.
In Proc. of the First IEEE International Conference on Fog Computing.
Raoufehsadat Hashemian, Diwakar Krishnamurthy, and Martin Arlitt. 2012. Web
Workload Generation Challenges - an Empirical Investigation. Softw. Pract. Exper.
42, 5 (May 2012), 629-647. https://doi.org/10.1002/spe.1093

Raoufeh Hashemian, Diwakar Krishnamurthy, Martin Arlitt, and Niklas Carlsson.
2013. Improving the scalability of a multi-core web server. In Proc. of the 4th
ACMY/SPEC International Conference on Performance Engineering. ACM, 161-172.
Raoufeh Hashemian, Diwakar Krishnamurthy, Niklas Carlsson, and Martin Arlitt.
2019. WoTbench: A Benchmarking Framework for the Web of Things. In Proc. of
the 9th ACM International Conference on the Internet of Things. ACM, 1-4.

R. Jain. 1991. The Art of Computer Systems Performance Analysis. Wiley & sons.
Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and Rajiv
Ranjan. 2017. Modelling and simulation challenges in internet of things. IEEE
cloud computing 4, 1 (2017), 62-69.

Matthias Kovatsch, Martin Lanter, and Zach Shelby. 2014. Californium: Scalable
cloud services for the internet of things with coap. In 2014 International Conference
on the Internet of Things (IOT). IEEE, 1-6.

Koojana Kuladinithi, Olaf Bergmann, Thomas Pétsch, Markus Becker, and
Carmelita Gorg. 2011. Implementation of coap and its application in transport
logistics. Proc. IP+ SN, Chicago, IL, USA (2011).

[35] Jorge Lanza, Luis Sanchez, Juan Ramon Santana, Rachit Agarwal, Nikolaos Ke-

falakis, Paul Grace, Tarek Elsaleh, Mengxuan Zhao, Elias Tragos, Hung Nguyen,
et al. 2018. Experimentation as a service over semantically interoperable Internet
of Things testbeds. IEEE Access 6 (2018), 51607-51625.

Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: Accurate
and scalable simulation of entire TinyOS applications. In Proceedings of the 1st
international conference on Embedded networked sensor systems. ACM, 126-137.
Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. 2005. TinyOS:
An operating system for sensor networks. In Ambient intelligence. Springer,
115-148.

Vilen Looga, Zhonghong Ou, Yang Deng, and Antti Yla-Jadski. 2012. Mammoth:
A massive-scale emulation platform for internet of things. In 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligence Systems, Vol. 3.
IEEE, 1235-1239.

R. Love. [n.d.]. CPU Affinity. http://www.linuxjournal.com/article/6799. Last
accessed: [2019-08-22].

Alessandro Ludovici and Anna Calveras. 2015. A proxy design to leverage the
interconnection of coap wireless sensor networks with web applications. Sensors
15,1 (2015), 1217-1244.

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu.
2006. Towards a complete OWL ontology benchmark. In European Semantic Web
Conference. Springer, 125-139.

Cristyan Manta-Caro and Juan M. Fernandez-Luna. 2018. Modeling and Sim-
ulating the Web of Things from an Information Retrieval Perspective. ACM
Transactions on the Web (TWEB) 12, 1 (2018), 6.

Ruben Mayer, Graser Leon, Gupta Harshit, Saurez Enrique, and Ramachandran
Umakishore. 2017. Emufog: Extensible and scalable emulation of large-scale fog
computing infrastructures. In 2017 IEEE Fog World Congress (FWC). IEEE, 1-6.
D. Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239, Article 2 (March 2014). http:
//dl.acm.org/citation.cfm?id=2600239.2600241

D. Mosberger and T. Jin. 1998. httperf: a tool for measuring web server perfor-
mance. SIGMETRICS Perform. Eval. Rev. 26 (Dec. 1998), 31-37. Issue 3.

Joydeep Mukherjee, Diwakar Krishnamurthy, Jerry Rolia, and Chris Hyser. 2013.
Resource contention detection and management for consolidated workloads. In
2013 IFIP/IEEE International Symposium on Integrated Network Management (IM
2013). IEEE, 294-302.

Joydeep Mukherjee, Diwakar Krishnamurthy, and Mea Wang. 2016. Subscriber-
driven interference detection for cloud-based web services. IEEE Transactions on
Network and Service Management 14, 1 (2016), 48-62.

Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. 2006. Cross-level sensor network simulation with cooja. In First IEEE
International Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp 2006).

Federica Paganelli, Stefano Turchi, and Dino Giuli. 2014. A web of things frame-
work for restful applications and its experimentation in a smart city. IEEE Systems
Journal 10, 4 (2014), 1412-1423.

Georgios Z Papadopoulos, Julien Beaudaux, Antoine Gallais, Thomas Noel, and
Guillaume Schreiner. 2013. Adding value to WSN simulation using the IoT-LAB
experimental platform. In 2013 IEEE 9th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). IEEE, 485-490.
Brian Ramprasad, Joydeep Mukherjee, and Marin Litoiu. 2018. A Smart Testing
Framework for IoT Applications. In 2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC Companion). IEEE, 252-257.
Mark S. [n.d.]. collectl. http://collectl.sourceforge.net/Documentation.html. Last
accessed: [2019-08-22].

Luis Sanchez, José Antonio Galache, Veronica Gutierrez, Jose Manuel Hernandez,
Jests Bernat, Alex Gluhak, and Tomas Garcia. 2011. Smartsantander: The meeting
point between future internet research and experimentation and the smart cities.
In 2011 Future Network & Mobile Summit. IEEE, 1-8.

Luis Sanchez, Jorge Lanza, Juan Santana, Rachit Agarwal, Pierre Raverdy, Tarek
Elsaleh, Yasmin Fathy, SeungMyeong Jeong, Aris Dadoukis, Thanasis Korakis,
et al. 2018. Federation of Internet of Things testbeds for the realization of a
semantically-enabled multi-domain data marketplace. Sensors 18, 10 (2018),
3375.

Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). RFC 7252.

Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An
IoT benchmark for distributed stream processing systems. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4257.

Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
2008. Cloudstone: Multi-platform, multi-language benchmark and measurement
tools for web 2.0. In Proc. of CCA, Vol. 8. 228.

Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi. 2015. CoAPthon: Easy
development of CoAP-based IoT applications with Python. In 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). IEEE, 63-68.

Floris Van den Abeele, Enri Dalipi, Ingrid Moerman, Piet Demeester, and Jeroen
Hoebeke. 2016. Improving user interactions with constrained devices in the web
of things. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE,
153-158.

Vincent M Weaver. 2015. Self-monitoring overhead of the Linux perf event per-
formance counter interface. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 102-111.

Sherif Khattab Younan, Mina and Reem Bahgat. 2015. An Integrated Testbed
Environment for the Web of Things. ICNS 2015 (2015), 83.

Deze Zeng, Song Guo, and Zixue Cheng. 2011. The web of things: A survey. JCM
6, 6 (2011), 424-438.

https://doi.org/10.1002/spe.1093
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Web of Things
	2.2 Constrained Application Protocol (CoAP)
	2.3 WoT Performance Evaluation Frameworks

	3 Use Case Scenario
	4 WoTbench Architecture
	4.1 Overview
	4.2 The WoTbench Core
	4.3 Gateway Emulator
	4.4 Devices
	4.5 The Contention Detection Module

	5 Deployment Process and Considerations
	6 Result Integrity
	6.1 Gateway Emulator Bottleneck
	6.2 Contention Detection Module

	7 Conclusions
	References

