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ABSTRACT

The demand and usage of 360° video services are expected to in-

crease. However, despite these services being highly bandwidth

intensive, not much is known about the potential value that basic

bandwidth saving techniques such as server or edge-network on-

demand caching (e.g., in a CDN) could have when used for delivery

of such services. This problem is both important and complicated

as client-side solutions have been developed that split the full 360°

view into multiple tiles, and adapt the quality of the downloaded

tiles based on the user’s expected viewing direction and bandwidth

conditions. To better understand the potential bandwidth savings

that caching-based techniques may offer for this context, this paper

presents the first characterization of the similarities in the viewing

directions of users watching the same 360° video, the overlap in

viewports of these users (the area of the full 360° view they actually

see), and the potential cache hit rates for different video categories

and network conditions. The results provide substantial insight

into the conditions under which overlap can be considerable and

caching effective, and can inform the design of new caching system

policies tailored for 360° video.
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1 INTRODUCTION

Interactive streaming [1, 5, 10, 12, 21, 29, 34] such as 360° video

put the users in control of their viewing direction and have the

opportunity to revolutionize what users expect from their viewing

experiences. Already today, popular services such as Facebook and
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YouTube offer large catalogues of 360° content. With rapidly in-

creasing 360° content catalogues and the introduction of relatively

inexpensive user interfaces (ranging from smartphone-based so-

lutions to dedicated head mounted displays), the demand for 360°

streaming services can only be expected to increase.

With 360° streaming services being highly bandwidth intensive,

identifying and understanding bandwidth saving opportunities in

the wide-area delivery of 360° video is therefore becoming an in-

creasingly important problem. Perhaps the most popular bandwidth

saving opportunity studied in the research literature is based on

the observation that, with 360° video, only a limited fraction of the

full view (called the viewport) is displayed at each point in time.

Motivated by this observation, to reduce the bandwidth usage and

to improve the expected playback quality given a fixed bandwidth,

different streaming delivery techniques have been studied that al-

low alternative playback qualities to be delivered for each candidate

viewing direction [2, 6, 12, 20, 29, 30].

With video delivery systems usingHTTP-basedAdaptive Stream-

ing (HAS), a video is split into chunks (e.g., 2-5 seconds in duration)

that are each encoded at multiple quality levels, allowing clients to

adapt their playback quality based on current network conditions,

for example, and to build up a buffer to protect against stalls that

may be caused by future bandwidth variations. With 360° video,

each chunk can further be split into multiple tiles, each correspond-

ing to a portion of the 360° view. This division into tiles complicates

prefetching, since now, when prefetching data from a future chunk,

the client player needs to determine which tiles from the chunk

to prefetch and a quality level for each. The prefetching policy

must address a prefetch-aggressiveness tradeoff [1] and balance

the use of a larger buffer (to protect against stalls) against making

prefetching decisions closer to the time of playback (improving

predictions of future viewing directions). To address this problem

various head-movement prediction techniques have been proposed

and evaluated [2, 26, 35]. However, prior work has not considered

the implications of tiling and associated quality-adaptive prefetch-

ing techniques for 360° video on the performance of content caches.

Content caches will be more effective the greater the overlaps in

the data requested by clients. In this paper we carry out the first

analysis, to the best of our knowledge, on the similarities in the

viewing directions and viewports (i.e., the area of the full 360° view

that each user sees) of users watching the same 360° video, and

then analyze and discuss the implications these findings may have

on caching performance.

The paper has three main parts, with the second and third parts

building on the prior parts. First, we present a general analysis of

the similarities in viewing direction among different users when

at identical playback points within the same 360° video; e.g., as

measured by angular differences of the viewing directions, overlap

in viewports, and how the viewport’s overlap with the aggregate
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view cover from prior user views increases with the number of

such users. This analysis provides insight into inherent similarities

in viewing behavior, using measures that are not affected by the

details of how video data is delivered to users.

Second, we extend the analysis to evaluate the impact of chunk

granularity on the insights from the first part of the paper. This

analysis is important to understand how similarities in viewing

direction would impact caching performance. For example, consider

the case where two users have significantly different viewing direc-

tions at a particular time instant, and yet over the time duration of

a chunk have essentially the same viewport cover.

Finally, we present a trace-based analysis in which we simulate a

proxy cache and evaluate the cache hit rates observed when using

prefetching algorithms that attempt to adaptively select which tiles

to download and the quality of each to optimize the user’s quality

of experience. The observed cache hit rates reflect not only viewing

direction similarities, both at identical time instants (as analyzed in

the first part of the paper) and over the time duration of a chunk

(as analyzed in the second part of the paper), but also differences

in chunk quality selections caused by bandwidth variations and

uncertainties in viewing direction prediction.

Throughout our analysis we use head-movement traces collected

for different categories of 360° video [1], allowing us to provide in-

sights into how viewing direction similarities and potential caching

performance depend on the nature of the 360° video content. For

evaluation of cache performance, we combine our traces with pre-

viously collected network measurements capturing a wide range of

network conditions [18, 28].

The results provide substantial insight into the conditions under

which overlap can be considerable and caching effective. Particu-

larly noteworthy perhaps are the substantial differences observed

between different video categories and, in some cases, playback

positions within the video. For example, the category of videos

for which łthe main focus of attention is deemed to always be at

the same location in the videož [1] appears to provide the greatest

opportunities, among the categories we consider. However, this is

not the case until 20-30 seconds into these videos, as viewers of

these videos often have an initial exploratory phase during which

viewing similarities are smaller compared to the łmoving focusž

category of videos or the łridesž category.

Our measurement and analysis results can inform the design

of new caching system policies tailored for 360° video. Our results

may also have implications for other policies. For example, cache

hit rate may benefit from cap-based network solutions that stabilize

the bandwidth seen by individual clients (e.g., [14]). With respect

to prefetching policies, our results show how the value of using

the viewing directions of previous users for viewport prediction

varies among different 360° video categories and, in some cases,

also depends on the playback position.

The remainder of the paper is organized as follows. Section 2

presents background and introduces the head-movement dataset

used here. Section 3 presents our analysis of viewing direction

similarities between pairs of users at identical playback points,

pairwise viewport overlaps, and viewport overlaps with aggregate

view covers from different numbers of prior users. Section 4 extends

this analysis to take into account the chunk granularities used,

before Section 5 presents our trace-based simulations of cache

Figure 1: Head-movement coordinates: Yaw, pitch, and roll.

performance under different network bandwidth conditions and

uncertainties in viewing direction prediction accuracies. Finally,

Section 6 presents related work and Section 7 concludes the paper.

2 BACKGROUND AND DATASET

360° videos capture the view in all directions and allow users to look

in any direction at each point during playback; e.g., by moving their

head while wearing a head mounted display (HMD). While 360°

videos also can be viewed in the browser on PCs, on smartphones,

or on tablets, for the work presented here we assume use of an

HMD. Figure 1 shows an example user wearing an HMD and defines

the viewing angles (i.e., yaw, pitch, and roll) used in our work.

All angles are measured in degrees and normalized so that two

users will have the same recorded viewing direction at a given point

during their viewing of the same video whenever their viewports

completely overlap, regardless of original head positioning. Here,

yaw (±180°) measures sideways rotations (relative to a 0° line cor-

responding to the initial viewing direction as set in the video), the

pitch (±90°) vertical head rotations (relative to a horizontal plane),

and the roll (±90°) rotations of the head (relative to holding the

head straight).

For our analysis we use a dataset collected by Almquist et al. [1].

The dataset consists of fine grained head-movement data collected

when 32 people watched 360° videos from a set of 30 such videos.

The videos were downloaded and played in 4K resolution, were 1-5

minutes long (3 min. on average), and were (by the authors) split

across five categories [1, p. 260]: exploration (łno particular object

or direction of special interest and the users are expected to explore

the entire sphere throughout the video durationž), static focus (łthe

main focus of attention is deemed to always be at the same location

in the videož), moving focus (łstory-driven videos where there is

an object of special interest that is moving across the 360° spherež),

rides (łthe users take a virtual ride in which the camera is moving

forward at a high speed, making users feel that they too are moving

forward quicklyž), and miscellaneous (łincludes videos that were

deemed to have a mix of the characteristics of the other categories

or had a hard-to-classify, unique feel, to themž).

In total, the dataset includes head movements from 439 unique

viewings (totaling 21 hrs and 40 min). The łsemi-randomž design of

the user study ensured that all 32 users watched one łrepresentativež

video from each category, while the other videos got between 8-13

views each. In this paper, we focus on the representative videos for

the first four (more well-defined) categories, as these allow for a

richer head-to-head comparison of the similarities and differences

in viewing direction, and hence also of the caching opportunities,

whenmultiple viewers watch the same video. Additional results are

presented in [4]. Since Almquist et al. found that yaw movements

dominate, followed by pitch, with only small roll movements, we

focus only on yaw and pitch.
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Figure 2: CDFs of pairwise viewing direction differences;

representative videos.

3 SIMILARITY CHARACTERIZATION

In this section we present an initial characterization of the viewing

similarities and differences between users watching the same video.

For each video, we calculate and report summary statistics based

on the viewing directions observed every 50ms. To account for the

timestamps not always aligning perfectly between the traces, we

use interpolation and note that good accuracy is ensured by the

use of a measurement granularity of 10ms (i.e., 100 measurements

per second) in the data collection.

3.1 Pairwise viewing differences

First, we consider the difference in viewing direction of two users

at identical playback points within the same video, as measured

by the angle between these directions. Figure 2 shows cumulative

distribution functions (CDFs) of the pairwise differences, when

combining the differences in both yaw and pitch, for all pairs of

viewing sessions of each of the representative videos. (For each of

these videos we have 32 user traces and therefore 496 pairs.) In

particular, Figure 2(a) shows CDFs for the differences, as measured

every 50 ms throughout the viewing sessions, and Figure 2(b) shows

CDFs for the average of these differences for each session pair.

As expected, the pairwise differences are substantially larger

for the explore category than for the other categories (i.e., static,

moving, and rides). For example, the close-to-straight explore line in

Figure 2(a) suggests that the viewing directions of users watching

explore videos are close to independent. In contrast, for the other

categories the view angle differences are less than 45° for 80% of the

time instances, showing that viewers of these three video categories

often are looking at the same parts of the video.

These significant differences among the categories are also clearly

visible when considering the viewing direction difference averaged

over the entire playback duration (Figure 2(b)) and when consider-

ing the average differences also for the other videos in the dataset.

While the above results are based on the total directional differ-

ences across both yaw and pitch, the observations (and values) are

very similar when focusing on yaw only.

3.2 Pairwise viewport overlap

Similarities in what content clients download and what they actu-

ally watch depend not only on the users’ viewing directions, but

more importantly on their viewports. Here, we consider two types

of viewports. First, we consider the 2D area of the viewing field

being displayed. Second, motivated by most head movements be-

ing along the yaw angle, we consider a sliced version, in which we

ignore the pitch and only consider the yaw angle. In both cases,

we report overlaps normalized by the total viewport size. Figure 3

illustrates the metrics.

(a) Yaw + pitch (b) Yaw only
Figure 3: Definition of the pairwise viewport overlap metric.

(Handling of wraparound effects are described in [4].)
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Figure 5: Average normalized pairwise overlap for represen-

tative videos, when using different viewports.

Figure 4 shows CDFs of the normalized pairwise overlap for the

representative videos when using a 120×67.5 viewport. Here, Fig-

ure 4(a) shows CDFs for the pairwise overlap at identical playback

points (as measured every 50 ms) and Figure 4(b) shows CDFs for

the average of these overlaps for each session pair. As before we ob-

serve significant differences when comparing the explore category

with the other categories. For example, with the explore video, more

than 35% of the time there is no pairwise overlap, whereas for the

other categories there is at least a 50% overlap in more than 80% of

the instances. (See Figure 4(a).) Considering the average normalized

pairwise viewport overlap (Figure 4(b)), no pair of explore sessions

had an average overlap of more than 40%, while less than 6.5% of

themoving session pairs, less than 1% of the rides session pairs, and

none of the static session pairs had an average overlap that did not

exceed 40%. In fact, for these three categories, more than 70% of

the sessions see an average overlap of at least 60%.

Impact of viewport: Figure 5 shows summary statistics for five

alternative viewports (the last two ignoring differences in pitch).

For each class we show the minimum over all pairs of sessions of the

average viewing direction difference (bottommarker), 25-percentile

(bottom of box), median (middle colored marker), 75-percentile (top

of box), maximum (top marker), and average (black marker). We

note that as the viewports become larger, the overlaps increase.

Longitudinal playpoint dependencies: Note that pairwise

overlaps vary over the playback duration. For example, all clients

start with the same viewing direction and prior work [1] has shown

that with static videos there is often an initial exploration phase.

Figures 6(a) and 6(b) show the overlap averaged over all session

pairs as a function of the time from the start of the video, for two
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Figure 6: Time-line plot of the normalized pairwise overlap.
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Figure 7: Average normalized viewport overlap as function

of time. (Viewport sizeW = 90.)

example viewports; the first (120×67.5) taking pitch into considera-

tion and the second (90 full) ignoring pitch. In addition to smaller

initial average overlaps for the static video, resulting from initial

exploration, we also observe a somewhat smaller average overlap

at the beginning of the videos in the rides and moving categories

than towards the end of those videos. This suggests that cache hit

rates may improve over the duration of many video sessions.

3.3 Viewing sequence analysis

To gain insight into how the potential cache performance may

be impacted by the number of users having watched a video, we

now look beyond pairwise viewport overlaps and consider over-

laps among larger sets of users. Specifically, we evaluate how the

viewport overlap with the aggregate view cover from prior user

views increases with the number N of such users.

For each representative video, we created 1,000 random order-

ings of the 32 viewing sessions recorded in the dataset for that

video, and for each sequence and viewing session, evaluated the

overlap at identical playback points between the respective user’s

viewport and the aggregate viewing area covered by all prior users

in that viewing sequence. For this analysis, we ignore pitch (i.e.,

use vertically sliced viewports) and for each time instance and ses-

sion sequence, we first merge the viewport coverage of all N prior

users into a number of non-overlapping (merged) viewport areas.

Then, we calculate the overlap of these non-overlapping (merged)

viewport intervals with the current user’s viewport, before adding

this user’s viewport to the merged intervals and repeating the cal-

culations for the next user in the sequence.

Figure 7 shows timeline plots of the average (over the 1,000 ran-

dom orderings of viewing sessions) normalized viewport overlap.

Note that the benefits of more prior video viewings increase when

there is more variability in where users are looking (e.g., explore
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Figure 8: Median normalized viewport overlap as function

of time. (Viewport sizeW = 90.)

videos or the beginning of the static video). Interestingly, the im-

provements are even larger for median overlap, as seen in Figure 8.

The larger median improvements show that the majority of the

sessions quickly see significant benefits from each additional prior

client. For example, with just four prior clients, in the case of the

static video, the majority of clients have 100% overlap from roughly

the 15 second mark.

4 CHUNK GRANULARITY ANALYSIS

It is important to remember that caching (and video delivery itself)

typically is done on a per-chunk basis. The viewport may change

during the playback duration of a chunk, resulting in a larger per-

chunk viewport cover than the viewport at an individual playback

point. The overlaps between per-chunk viewport covers and those

of prior clients are important in caching. We next study and report

on per-chunk statistics.

4.1 Changes in viewing direction

Figure 9 shows CDFs of a bound on the maximum viewing direction

change over a chunk duration, as calculated using the fine-grained

measurements in our dataset [4], for the representative videos and

a range of chunk durations (200ms-10s). As before, the explore cate-

gory stands out, with much larger head movements. However, note

that for intermediate chunk durations (e.g., 2s), the headmovements

still only cover a small fraction of the view field. For example, for

the representative videos the maximum viewing direction changes

for 80% of the chunks are upper bounded by 57.7°, 34.5°, 36.3°, and

38.7°, respectively.

4.2 Per-chunk viewport cover

To measure the total viewing area that is included within a user’s

viewport for at least some portion of a chunk’s playback period,

we calculate a bounding box of the head movements during this

time period, which we term the per-chunk viewport cover. In the

following, we report per-chunk viewport covers normalized by the

total size of the viewport.

Figure 10 presents CDFs of the normalized per-chunk viewport

cover size for each of the four representative videos, for 2 second

chunks, and two viewport sizes (120×67.5 and 90 full) with maxi-

mum theoretic normalized cover sizes of 8 and 4, respectively. Note

that the coverage is typically much smaller than the theoretic max-

imum. For example, with the sliced 90 full viewport, 80% of the

chunks have a normalized cover size of at most 1.57, 1.28, 1.35, and

1.38, respectively, for the four representative videos. These small

cover sizes suggest that tiles could fruitfully be prioritized on a

per-chunk basis since a significant portion of the potential viewing

area is not viewed during the playback of a chunk.
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Figure 9: Impact of chunk duration on the change in viewing

angle for the representative videos.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4

C
D

F

Per-chunk viewport cover

Explore
Static

Moving
Rides

(a) 120×67.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4

C
D

F

Per-chunk viewport cover

Explore
Static

Moving
Rides

(b) 90 full

Figure 10: Normalized per-chunk viewport cover size. (2s

chunks.)

1

1.25

1.5

1.75

2

2.25

2.5

P
e
r-

c
h
u
n
k
 v

ie
w

p
o
rt

 c
o
v
e
r

Viewport format

120 x 67.5 90 x 67.5 90 x 50.625 120 (full) 90 (full)

Explore

Static

Moving

Rides

Figure 11: Impact of viewport format on the normalized per-

chunk viewport cover size. (Chunk duration of 2s.)

1

1.25

1.5

1.75

2

2.25

2.5

P
e
r-

c
h
u
n
k
 v

ie
w

p
o
rt

 c
o
v
e
r

Chunk size
200ms 500ms 2s 5s 10s

Explore

Static

Moving

Rides

Figure 12: Impact of chunk duration on the normalized per-

chunk viewport cover size. (Viewport size 120×67.5.)

Figure 12 shows the impact of the chunk duration on the normal-

ized per-chunk viewport cover size for the representative videos.

Focusing on the 75-percentile values, except for the cases of (i) ex-

plore using a chunk duration of 5 or more seconds, and (ii) extremely

long duration chunks of 10 seconds, the normalized per-chunk view-

port cover size is again consistently below 2. In general, for static,

moving, and rides this cover size is substantially smaller.

4.3 Pairwise cover overlap

We next combine our techniques for analysis of pairwise viewport

overlap and for determining per-chunk viewport covers, to measure

the pairwise overlap in per-chunk viewport cover.
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Figure 13: Pairwise overlap in per-chunk viewport cover.

The first two sub-figures in Figure 13 show the pairwise overlap

in per-chunk viewport cover normalized relative to the size of the

user’s bounding box and relative to the viewport size, respectively,

when using a 120×67.5 viewport, and the third sub-figure shows

summary statistics (of the first kind) also for other viewports. We

note that the explore category stands out even more than we have

seen before, when considering the overlap normalized relative to the

bounding box size (Figures 13(a) and 13(c)). For example, referring

to Figure 13(a), while there is at least a 60% overlap in cover for 79-

83% of the chunks for the static, moving, and rides videos (83%, 79%,

and 83%, respectively), the corresponding fraction of chunks is only

23% for the explore video. This reflects the fact that the videos in the

explore category typically have both larger head movements during

a chunk duration, and larger pairwise viewing direction differences

(including during the chunk playback period). Furthermore, the

variations in the absolute overlap (e.g., as normalized relative to the

viewport size, as in Figure 13(b)) are much greater for the explore

video, and conversely, the variations are smallest for the static video.

4.4 Request sequence analysis

We next extend our analysis of the overlap with the aggregate view

cover from N prior user viewings of the same video to account

for chunk boundaries. Throughout this section we use 2 second

chunks, a sliced 90° viewport, and normalize the reported cover

overlap relative to the size of the cover of the user of consideration.

Figure 14 shows the overlaps across the playback durations of the

example videos. Note the larger overlaps compared to those in

Figure 7, although the qualitative differences among the results for

the representative videos are quite similar. In fact, during the first

120 seconds of the explore video and the initial explore phase of the

static video the average overlaps when there are N=8 and N=16

prior users are close to one. In general, however, the overlaps when

there are fewer prior users (e.g., N=1, N=2, and N=4 curves) are

greater when users are less exploratory (e.g., with moving, rides,

and after the initial exploratory phase of the static video). These

chunk-level results again highlight important differences in the

caching opportunities that different video categories present, and

that videos of some categories (e.g., static) may require different



 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

A
v
e
ra

g
e
 o

v
e
rl
a
p

Time in video (seconds)

16 8 4 2 1

(a) Explore

 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

A
v
e
ra

g
e
 o

v
e
rl
a
p

Time in video (seconds)

16 8 4 2 1

(b) Static

 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

A
v
e
ra

g
e
 o

v
e
rl
a
p

Time in video (seconds)

16 8 4 2 1

(c) Moving

 0

 0.2

 0.4

 0.6

 0.8

 1

0 30 60 90 120 150 180

A
v
e
ra

g
e
 o

v
e
rl
a
p

Time in video (seconds)

16 8 4 2 1

(d) Rides
Figure 14: Chunk-based time plot of the average normalized

cover overlap. (Viewport sizeW = 90.)

optimizations for the initial (exploratory) phase than the later parts

of the videos.

5 CACHE PERFORMANCE SIMULATIONS

Our trace-driven cache simulations take into account multiple

sources of uncertainty that impact prefetching and caching per-

formance. First, network bandwidth varies over time and clients

do not know their future bandwidth. Second, with different scenes

requiring different encodings, for example, chunk sizes typically

vary from chunk-to-chunk and across different parts of the same

video. These first two uncertainties result in variable download

times and buffer sizes, as clients adapt the requested encodings so

as to try to maintain a relatively stable buffer and to avoid stalls.

Third, as seen here, with 360° video there is a lot of variability and

uncertainty in how users move their heads. The client player can

try to predict head movements and prefetch high quality tiles only

for some directions, but prediction accuracy will vary across videos

as well as over time during video playback.

5.1 Simulation model

To better understand the impact that download speed variability

(caused by the first two uncertainties) and the view direction predic-

tion accuracy have on the cache efficiency under different quality

selection algorithms, we use a simple simulation model where we

use probability distributions to capture each of the uncertainties.

In our model [4], we assume that client player i makes its tile

selection for each chunkk based on a quality of experience (QoE) op-

timization problem taking into account (i) the capacity Ci,k drawn

from a distribution PC (C ), and (ii) the probability Pn (n) that a spe-

cific tile n will be viewed (where the probability Pn (n) depends on

the class of videos considered and how far in advance of playback

the client must make its tile selection for the chunk).

Finally, to account for the third uncertainty, the predicted view-

ing direction used when solving the optimization is offset from the

actual viewing direction at playback time by an angleψ ϵ
i,k

chosen

by sampling from a probability distribution Pψ (ψ ).

To obtain a hit rate estimate for a particular video and number

of previous clients, we average results from 1,000 simulations, each

with 32 randomly-ordered users sequentially viewing the video.

Each client uses the user head movements recorded in our trace

dataset for that user when viewing the respective video. We assume

that the system always starts with an empty cache and measure

how the hit rate (both in terms of tile objects and bytes delivered)

changes as more and more users view the same video.

5.2 Parameters and example distributions

For the distribution PC (C ) we use distributions obtained by drawing

random samples from two real-world datasets, and two synthetic

distributions. The real-world datasets are: (i) 10,000 download band-

width measurements collected by mobile 3G and 4G users of a

dominant national speed testing service [18] over a 19 hour win-

dow on Feb. 15-16, 2015, and (ii) 10,000 sample points from łbusž

commuter traces collected in Norway by Riiser et al. [28] between

Aug. 28, 2010, and Jan. 31, 2011. The synthetic distributions we

use are: (i) a distribution in which the bandwidth capacity C varies

across three different levels such thatC is equal to the average band-

width 40% of the time, twice the average bandwidth 20% of the time,

and half the average bandwidth 40% of the time, and (ii) a constant

bandwidth capacity. To account for the fact that bandwidths have

increased substantially since the traces in the real-world datasets

were collected (2010-2011 and 2015, respectively) and to ensure

a more fair head-to-head comparison across the different distri-

butions, we scale the bandwidths in the real-world datasets and

choose parameters for the synthetic distributions so that the av-

erage bandwidth in each case is the same. Furthermore, we use

normalized units so that a normalized bandwidth of 1 corresponds

to the bandwidth needed to deliver all tiles at the maximum quality.

To determine choices for the Pψ (ψ ) and Pn (n) distributions, we

used the yaw angle changes in the traces from the head-movement

dataset over different time intervals and for different video cate-

gories [4].

Finally, for the example simulation results presented here, we

consider a sliced 360° video with each 2-second chunk split into

6 tiles, each covering 60 degrees, and for which the tile encoding

rates are each proportional to one of seven quality levels (found in

an example YouTube video): 0, 144, 268, 625, 1124, 2217, 4198 (in

normalized units).

5.3 Example results

Figure 15 shows a baseline comparison of the tile object hit rates for

the representative videos. This figure clearly illustrates that better

cache performance is achieved with the static, rides and moving

videos compared to with the explore video. This observation is not

surprising given the results reported in previous sections, and is also

consistently seen with other distribution and parameter settings.

For example, with four prior clients (i.e., N = 4), the object hit

rate for the static, rides, and moving videos ranges between 0.75-

0.80, while for the explore video it is only 0.64. Note also that these

differences can have a large impact on bandwidth requirements and

cache write costs, for example, as the object miss rate for explore

is 80% higher (a factor of 0.36/0.20) than for the static video. In the

reminder of this section we present results only for the two extreme

cases of static and explore videos, but note that the results for rides

and moving are relatively similar to those of static.

Object vs byte hit rates: Figure 16 compares the byte and object

hit rates for the static and explore videos. The higher byte hit rates

suggest even better cache benefits than suggested by the object
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Figure 15: Object hit rate for trace-based simulations with

fixed bandwidth.

hit rate results. The observed differences in byte hit rate (between

classes) can have a large impact on bandwidth requirements. For

example, with four prior clients, the byte hit rate for the explore

video is 0.73 while that for the static video is 0.85, implying an 80%

higher byte miss rate for the explore video.

Impact of client’s bandwidth variability: As seen in Fig-

ure 17, hit rates typically reduce the greater the bandwidth variabil-

ity. Note however that the relative impact of bandwidth variability

is smaller for the explore video than the static video, showing that

higher uncertainty in viewing direction and bandwidth do not con-

tribute independently to reduced hit rates.

Impact of average bandwidth: In Figure 18 we show addi-

tional object hit rate results for the two extreme cases of (a) constant

bandwidth (identical for all clients) and (b) the bandwidth distri-

bution obtained by drawing random samples from measurements

collected by mobile 3G and 4G users of a dominant national speed

testing service [18]. In practice, we expect clients sharing the same

cache to see bandwidth variation between these two extremes, with

operators likely to strive towards providing increasingly stable net-

work conditions for streaming clients [14]. When interpreting these

results, it is important to note that clients sharing an edge-cache

(e.g., operated by a CDN or in cooperation with a CDN) might be

expected to experience more similar bandwidth conditions than

in the speed testing data. Also, with the introduction of cap-based

solutions [14], and other streaming-aware network solutions, used

by different operators to stabilize HAS performance, improve QoE,

and to reduce unnecessary bandwidth usage, it seems likely that

many networks in the future will provide fairly stable conditions for

their streaming clients. Therefore, we believe that likely bandwidth

variations fall between these two extremes.

Figure 18 shows that our default case of a normalized bandwidth

of 0.476 results in close to the worst-case hit rates, suggesting that

the hit rates with tiled 360° video could be greater than suggested by

Figure 15. Also, when comparing Figures 18(a) and 18(b) it should be

noted that owing to our choice of normalized units for bandwidth,

the hit rate is always one when all clients have the same (constant)

bandwidth above one (Figure 18(a)), whereas bandwidth variations

in the national speedtest dataset result in significant periods of

bandwidth below one even for average values substantially larger

than one.

6 RELATED WORK

Broadly, the related work can be split into works that consider the

head movements during viewing of 360° videos, and caching of

HAS videos. While some recent works have considered optimized

cache management policies for 360° videos [19, 22, 24], none of

these works provide a data-driven characterization of the caching
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Figure 17: Object hit rate for trace-based simulations using

different network bandwidth profiles.
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opportunities that would be observed with traditional caching poli-

cies that simply cache the requested tiles when the clients apply

adaptive prefetching techniques.

Head-movement characterization: Some recent works have

collected datasets and characterized the 360° viewer behavior [1, 2,

7ś9, 20, 25]. However, most of these datasets use relatively short

video segments and do not capture changes in behavior over time or

across classes of videos. The primary exception, and the work most

closely related to ours, is the work by Almquist et al. [1], as we use

their dataset. In their work, they present a category-based character-

ization of the head movements over time, and analyze how changes

in viewing behavior depend on the time window considered, but

do not consider overlapping viewports of users watching the same

video or other similarity metrics of users’ viewing directions.

Caching for HAS: Prior works have characterized the caching

opportunities for HAS content in mobile networks [11], evaluated

the impact that cross traffic has on cache performance [3], identi-

fied HAS specific instabilities and other tradeoffs associated with

the use of caches combined with HAS [13, 15], and proposed HAS-

aware solutions to improve the client performance in such scenar-

ios [13, 15, 17, 23, 31, 32]. Other works have considered various

cache management problems in the context of HAS [16, 36] and

optimized replication for interactive multiview streaming [27, 33].

Most closely related to our work are perhaps recent works that

present optimized cache management solutions for 360° video [19,

22, 24]. These works formulate optimization problems related to

the caching of tiled 360° videos [19, 24] or try to learn probabilistic



models of users FoV for each video so to improve cache perfor-

mance [22]. However, none of the papers presents a data-driven

characterization of the users’ viewport overlaps and the bandwidth

saving opportunities this provides basic caching policies. Here, we

present the first such data-driven analysis of similarities in head

movements between users watching the same video, the users’

viewport overlaps, and their implications on caching of tiled 360°

videos belonging to different categories.

7 CONCLUSIONS

This paper uses head-movement traces for different categories of

360° videos, including explore, static, moving, rides, to characterize

similarities in the viewing directions and viewports of users watch-

ing the same video, how these example metrics differ between the

different video categories, and to analyze and discuss how such

similarities and differences impact the effectiveness of caching tiled

360° videos. To the best of our knowledge, this is the first paper to

provide such analysis.

Our results consistently highlight substantial differences be-

tween different video categories in the pairwise viewport overlaps

observed and their impact on the potential bandwidth savings from

caching. For example, with the exception of the initial 20-30 sec-

ond exploration phase of static videos, the static videos provide

the greatest caching opportunities. However, during this initial

phase, their pairwise viewport overlaps are almost as small as for

the explore videos, which have the smallest overlaps among the

categories considered here. In contrast, moving and rides videos

have a less pronounced exploration phase, and overall often pro-

vide similar caching opportunities and performance as the static

videos. Our results also show that improved viewport prediction

techniques [35] may not only help improve user QoE, through the

use of more accurate prefetching, but may also help increase cache

hit rates and reduce bandwidth requirements.

More generally, our results can inform the design of new caching

system policies tailored for 360° video, and may also have impli-

cations for other contexts than caching. For example, our novel

category-based characterization clearly highlights that there are

substantial differences among the video categories in the value of

using the viewing directions of previous users for viewport pre-

diction. The results also clearly show that cache performance, and

hence also likely user QoE, benefit from stable network conditions,

motivating the use of cap-based network/server-side solutions or

less greedy client-side solutions.
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