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Abstract—The World Wide Web and the services it provides
are continually evolving. Even for a single time instant, it is a com-
plex task to methodologically determine the infrastructure over
which these services are provided and the corresponding effect on
user perceived performance. For such tasks, researchers typically
rely on active measurements or large numbers of volunteer users.
In this paper, we consider an alternative approach, which we refer
to as passive crowd-based monitoring. More specifically, we use
passively collected proxy logs from a global enterprise to observe
differences in the quality of service (QoS) experienced by users
on different continents. We also show how this technique can
measure properties of the underlying infrastructures of different
Web content providers. While some of these properties have
been observed using active measurements, we are the first to
show that many of these properties (such as location of servers)
can be obtained using passive measurements of actual user
activity. Passive crowd-based monitoring has the advantages that
it does not add any overhead on Web infrastructure, it does not
require any specific software on the clients, but still captures the
performance and infrastructure observed by actual Web usage.

I. INTRODUCTION

The popularity of the Web coupled with user expectations
for free and swiftly delivered content strain the economics for
content providers.1 This may motivate some content providers
to change their infrastructure; for example, Google has built
larger data centers [20] and deployed its own wide area
network (WAN) [10], which is now one of the busiest in the
world [17]. Growing global concern over climate change is an-
other reason why content providers may alter their infrastruc-
tures. Since data centers are significant contributors of carbon
emissions [7], and carefully designed delivery architectures
can improve the performance of the Web, further changes in
the design, location, and operation of data centers are expected.

While it is important to be able to capture the evolution
of the World Wide Web and the services it provides, it is a
complex task to methodologically determine the infrastructure
over which these services are provided, even for a single
time instant. A typical approach for exploring infrastructure
changes is to use active measurements (e.g., traceroute, as
used in [10]). One attractive feature of active measurements is
they can be conducted by anyone. However, two shortcomings
of active measurements are (1) they add overhead to the
infrastructure, potentially degrading user experience, and (2)
they are not measurements of actual user experience [8].

1While companies such as Google provide much more than static content,
we use the generic term “content providers” for lack of a better one.

Passive measurements can avoid these shortcomings, but they
may be more difficult to obtain. This often leads researchers
to prematurely dismiss this option.

However, a recent study by Choffnes et al. [4] reveals that
with a little creativity, large-scale passive measurements can
be acquired. In particular, they used a peer-to-peer system to
demonstrate the power of crowdsourcing (event) monitoring
for detecting network events such as service outages. A key
observation in their work is that obtaining passive measure-
ments of actual usage from a diverse set of clients can be done
by leveraging existing infrastructure; in their case, computers
running peer-to-peer client software. Rather than extending the
client application, as done by Choffnes et al. [4], we show
how crowd-based monitoring can be applied using system
logs, with no modifications to the systems. This is important,
as many organizations already collect network measurements
(e.g., proxy or intrusion detection system logs) for auditing or
security purposes, but are not likely to make changes to these
systems for research purposes.

Our work examines four billion Web transactions, collected
over a week-long period from 95 proxies located in 38
cities and 27 countries. We demonstrate how this passive
approach enables actual user and infrastructure level attributes
of the World Wide Web to be examined. Our results reveal
differences in Web user experience by geography, distinguish
content providers by their quality of service, determine differ-
ences in network throughputs, and identify services that were
provided by a common infrastructure. While some of these
properties have been observed using active measurements, we
are the first to show that these properties (such as location of
servers) can be obtained using passive measurements. A key
advantage of this passive approach is that it provides insights
on the infrastructure used to support actualWeb usage, without
placing any additional load on the measured infrastructure or
on the end users; it is completely transparent to them. Our
dataset also provides new insights into user experience and
infrastructure differences between popular content providers.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work. Section III describes our dataset
and explains our methodology. Section IV examines the user
experience. Section V discusses insights on Internet infras-
tructure gleaned from our dataset. Section VI considers the
global Web usage across services and regions. Section VII
summarizes our contributions and lists future work.



II. RELATED WORK

Passive measurements of actual application, system or net-
work usage are highly desired. Often, such measurements
are difficult to obtain. Recently, Choffnes et al. proposed
a crowdsourcing approach to network monitoring [4]. As
mentioned in Section I, our work complements their work
in several ways. Gerber et al. [8] demonstrate how to use
netflow logs to accurately assess network download speeds.
Section IV-C offers several complementary results.

Our study uses logs from a set of globally deployed Web
proxies. Web proxy logs are a rich source of information. They
have been used for purposes such as workload characteriza-
tion [3], [18] evaluating the benefits of Web caching [16], [19],
and improving cache management [13], [24]. In this work we
seek to extract additional useful information from Web proxy
logs. In particular, we leverage different file transfer measures
observed from different geographic locations.

Numerous works have examined aspects of the Internet
topology, often via active measurements. For example, Gill et
al. [10] used traceroute to reveal the size of content
provider wide-area networks. Katz-Bassett et al. developed
reverse traceroute, to improve the accuracy of path
discovery [12]. Other works consider how to quickly identify
which mirrored server a client should use [6], [11]. Stemm et
al. [23] considered how to achieve this using passive mea-
surements. Eriksson et al. [5] also used a passive technique,
extracting network structure information from packet-level
traces. Our work differs in that we investigate what informa-
tion about the infrastructure can be extracted from passively
collected, application-level data in existing system logs.

Lastly, Padmanabhan et al. used passively collected server-
based measurements to glean insights into client and in-
frastructure performance [21]. In contrast, passive crowd-
based monitoring provides similar capabilities across multiple
content providers (each with many servers).

III. METHODOLOGY

A. Dataset
To facilitate this study, we obtained transaction logs from

a set of globally distributed Web proxy caches used by an
enterprise with roughly 300,000 employees world-wide. The
logs were gathered for the same one week-long period across
95 proxies. These proxies are located in 38 cities in 27
countries on six continents; 47 proxies are from the western
hemisphere, and 48 from the eastern hemisphere. Although the
activity reflects business rather than residential use of the Web,
the data enables us to passively monitor actual Web traffic
from a “crowd” of users around the globe.

The logs we obtained were in numerous different formats.
We extracted the common fields from each log to create a
single aggregated log in a consistent format. The aggregated
log contains one record for each completed HTTP or HTTPS
transaction. Each record contains the start time, the duration,
the number of request bytes (including HTTP headers), the
number of response bytes (including HTTP headers), the

action taken by the cache, the content type, the response status,
the request method, the Host for the transaction, and an
identifier to indicate which proxy handled the transaction.

We collected the Web proxy logs from midnight (UTC)
on Sunday, September 20, 2009 until midnight on Sunday,
September 27, 2009, across all 95 proxies. During this period,
a total of 4.015 billion transactions were served by the proxies,
and 68.83 TB of response data were delivered to the clients.

Overall, the North American clients accounted for just over
half of the HTTP transactions and data transferred. Asian and
European clients each accounted for about 20% of the activity.
Clients in South America, Middle East/Africa, and Australia
together account for 7% of activity. This roughly corresponds
to the distribution of employees in the enterprise.

B. Information Extraction
In their study, Choffnes et al. instrumented a P2P client to

collect the exact information of interest to them [4]. In this
study we are using logs that were intended for a different
purpose. To obtain the information we want, we combine (in
various ways) three types of log data: the action taken by
the cache for each transaction, the amount of data transferred,
and the transfer duration. In the remainder of this section, we
describe these fields and how we used them.

Since the proxies that collected the logs cache content, it is
important to discern the different actions taken by the proxy.
Across the geographies, on average 41% of all transactions
resulted in a hit; i.e., were served from the proxy’s cache.
39% of transactions result in a no-cache miss. This means that
the requested object was labeled uncacheable by the content
provider (via an HTTP response header). 11% of transactions
resulted in a miss; this means a cacheable object was not
available in the cache when requested by a user. Each type of
action reveals some information that we can use. We elaborate
on several specific ways below.

Web transfers tend to be for small objects [2]. This char-
acteristic holds in our dataset. The median overall transfer
size is only 758 bytes. This is influenced by the large number
of transactions that return only HTTP headers (e.g., response
status 304) or small objects like graphical icons. We exploit
this characteristic to use the transfer duration of small cache
misses as a first order approximation of the network latency
between the cache and the content provider’s server. Similarly,
we use cache misses for large objects (about 1% of responses
are larger than 105 bytes) to evaluate differences in the
throughput with different providers.

The transfer duration value in each transaction record is
the elapsed time from when the client’s request is received
by the proxy until the proxy has sent the complete response
to the client. Figure 1 illustrates this. If the requested object
is found in the proxy’s cache (a hit), then the total duration
D = d1 + d2; otherwise the proxy must retrieve the object
from the content provider. In this case, the total duration D ≤

d1+d2+d3+d4. D is not strictly equal to the sum of d1, d2, d3

and d4, since the proxy attempts to hide latency when possible,
e.g., by prefetching embedded images on HTML pages.
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Fig. 1. Explanation of Transfer Durations.

IV. USER EXPERIENCE

A general topic of interest for the Web is user experience.
For example, projects such as Google’s SPDY are devoted
to making the Web faster.2 In this section, we leverage the
proxy logs to analyze the performance observed by a large
number of clients. We first consider the aggregate performance
over all services, then we explore the service provided by a
few popular providers, and examine their infrastructure and
performance differences by geography.

A. High-level Transfer Duration Differences
The primary indicator of user perceived performance in our

dataset is transfer duration. Figure 2(a) shows the CDF of the
transfer durations for all transactions in the dataset. Cache hits
tend to have very short durations, with a median of 3ms. In
general, caching improves the experience for all users. This
can be seen from the wide gap between hits and misses in
Figure 2(a). This is one indication of the importance of content
providers marking content as “cacheable”.

The overall transfer duration distribution (“All”) has a
median value of 50ms. This is significantly (and positively)
influenced by the high cache hit rate (around 40% across
geographies). Cache misses take considerably longer than
cache hits, as each such transaction must be fulfilled by an
external server. The median duration jumps to 123ms. The
median value for no-cache misses is even higher, at 154ms,
even though no-cache transactions tend to transfer less data.
This indicates the degree to which the content provider’s
server(s) rather than the (wide area) network are the cause
of the degraded user experience for these transactions.

Figure 2(b) explores how user experience differs by loca-
tion. This figure shows the CDF for the transfer durations of
cache misses by continent. This reveals what the experiences

2Google, “Let’s make the Web faster”, http://code.google.com/speed/.

of the enterprise’s users would be across geographies if no
caching were in place. Users in North America experience
the best service, with a median duration of 69ms and the
lowest durations overall. Users in Europe and South America
have similar transfer durations for cache misses, with me-
dians of 134ms and 162ms, respectively. Users in Middle
East/Africa, Asia, and Australia have the poorest service,
with median durations for cache misses of 281ms, 354ms,
and 371ms, respectively. However, from this graph alone one
cannot determine if the differences are due to the enterprise’s
network infrastructure or more general Internet infrastructure.
We investigate this further in the following sections.

B. Content Provider QoS

We next consider the quality of service (QoS) experienced
by users from different providers. For this analysis, we use
the transfer durations of small cache misses (responses less
than 1,460 bytes, including headers, which will typically fit
in one TCP packet) as a first QoS measure. Such transactions
represent the smallest exchange that we could observe between
a proxy and an external server.

One of the most popular providers in our dataset is MSN.
Figure 3(a) shows the distribution of small cache miss transfer
durations across selected landmarks. This figure reveals that
the shortest durations occur in the US, but even within the
transactions at a given landmark, there is noticeable variability.

Figure 3(b) shows the results for Google. An obvious
difference in this figure is that the durations at each landmark
are remarkably consistent. This can be seen from the almost
vertical lines through the initial 80% of the distributions. One
hypothesis is that Google’s use of its own WAN [10] enables
them to provide more consistent response times.

Figure 3(b) also shows that 10–20% of the small miss
transactions (the upper tail of the distribution) have much
longer durations at each landmark. In a study of Google’s
CDN, Krishnan et al. observed that a sizeable fraction of
clients experience higher latencies than other clients in the
same geographic region, due to routing inefficiencies and
packet queueing [15]. This is a case where the service level
event monitoring described by Choffnes et al. could identify
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Fig. 3. Small miss transfer duration distributions from landmarks to MSN and Google.

the incidents as they occur, and help find the root causes.
Another opportunity for content providers to improve the

QoS they provide is to take advantage of Web caching. Table I
provides information on the cacheability of content from
different providers as well as their observed (global) cache hit
rates. Several of the globally popular providers (MSN, BBC)
have cache hit rates above the overall average. Google, the
most popular provider in the dataset, saw only about half of its
cacheable content result in hits. All of these providers labeled
a significant fraction of their content as uncacheable.

Advertising is an important aspect of the Web from an
economic perspective. Table I shows the caching results on
the three most common advertisers seen in our workload.3

There are dramatic differences in the fraction of transactions
that resulted in cache hits (80% for 2MDN) and the fraction
of transactions labeled uncacheable by others (91% for Dou-
bleClick). The latter approach could degrade user experience
(and thus perception) of on-line advertising.

We distinguish between two types of Content Distribution
Networks (CDNs). Some large providers have deployed their
own infrastructure to deliver static content. Table I includes
three examples. These brand-specific CDNs provide mostly
static images, resulting in rather high hit rates in the enter-
prise’s caching infrastructure. The second type of CDNs are
brand-neutral. These are third-party companies that deliver
content for any provider for a fee. The only noticeable
difference seen in Table I for this group is they provide slightly
more uncacheable content than do the brand-specific CDNs.

C. Network Throughput
Next, we consider the throughput achieved on cache misses.

To calculate the throughput, we consider only the largest 1% of
transfers (i.e., cache misses for objects larger than 105 bytes).
For these connections, we divide the total size by the transfer
duration to determine the average throughput for the transfer.

Figure 4(a) shows the results for large transfers from MSN
servers. The results clearly differ across the different locations.
At the USPT proxy, 90% of the large transfers saw an average
throughput over 1 Mb/s (106 bps), while the IN proxy only

3We identified advertisers using the labels from [14].

TABLE I
CACHE PERFORMANCE BY PROVIDER.

Cache Cache No-Cache
Class Brand Hits Misses Misses

(%) (%) (%)
Providers Google 21 21 58

MSN 45 2 53
Facebook 12 3 85

BBC 50 15 35
Advertisers DoubleClick 7 2 91

2MDN 80 19 1
ATDMT 19 18 63

Brand- fbcdn 64 36 0
Specific yimg 89 10 1
CDNs ytimg 78 25 0
Brand- Limelight 80 10 10
Neutral Edgesuite 49 44 7
CDNs Akamai 73 19 8

saw 10% of large transfers at or above this rate. Figure 4(b)
shows similar results for large transfers from Google’s servers.
Figure 4(b) also shows that roughly 5% of large transfers at the
USCT and USET proxies exceeded 10 Mb/s (107 bps). These
estimates represent lower bounds, as the proxy infrastructure
may limit the speed at which a provider serves the objects.

Figure 4(c) provides the average throughput results observed
for YouTube servers. A notable observation from this graph
is that the distributions look remarkably similar across ge-
ographies. Since YouTube is streaming video over HTTP, this
seems to be an artifact of their delivery configuration, rather
than a measurement artifact. These may be one type of the
rate-limited flows discussed by Gerber et al. [8].

The median throughputs for the YouTube transfers shown
in Figure 4(c) range from 436 Kb/s to 692 Kb/s. These are
all above the median bit rate of YouTube content (328 Kb/s)
reported by Gill et al. in 2007 [9].

V. INFRASTRUCTURE CHARACTERIZATION

This section examines infrastructure differences by geogra-
phy, and investigates the underlying causes.

A. Server Location and Replication
One topic of interest is understanding where popular content

providers locate their servers (or data centers). A common
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Fig. 4. Average throughput of large transfers from MSN, Google, and YouTube.
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Fig. 6. Small miss transfer durations from
landmarks to Google services.

method to assess this is to perform active measurements from
a set of landmarks, i.e., a set of computers at known locations.
For example, this approach was used by Antoniades et al. [1]
to show that the RapidShare “one click” file sharing service
deploys all of its server infrastructure in Germany.

In this paper we are concerned with the actual infrastructure
serving our users, and how well it can be identified using
passively collected proxy logs. In contrast to Antoniades et
al.’s active measurements, our logs do not contain the round
trip times (RTTs) from a proxy to an external server, so we
must improvise. Similar to Section IV-B, we use the transfer
duration of small cache misses (less than 1,460 bytes).

To demonstrate that the information obtained by Antoni-
ades et al. [1] can be gleaned from passive proxy logs, we
also study RapidShare. Figure 5(a) shows the minimum, 5th
percentile and median durations for small no-cache misses to
RapidShare, from 20 landmark locations (proxies) across the
globe.4 Each landmark location is denoted by its country code;
the US landmarks are further divided by their timezone. Fig-
ure 5(a) shows that the shortest durations occur in Germany,
matching the conclusion in [1].

Figure 5(a) reveals that the same conclusion would be
reached by considering other values, such as the 5th percentile
or the median. Using a value other than the minimum may be
desired, as it could be more robust to data quality issues.

Figure 5(b) shows the minimum transfer durations for small
cache misses from the 20 landmarks to Google. It reveals
that some of the minimum transfer times are quite low;

4No-cache misses were used since there were few cache misses for
RapidShare. Also, please note the y-axis in Figure 5 is in log-scale.

e.g., 2ms for the USET landmark. Also, there appear to be
servers in multiple locations (i.e., decentralized placement,
unlike RapidShare). Lastly, the transfer times for Google are
generally lower than for RapidShare. This is to be expected,
due to the use of decentralized infrastructure. While such
observations for Google were expected, the results show that
our passive technique is capable of revealing them.

In this case study, our ability to pinpoint the location of
a provider’s servers is limited by the number of landmark
locations available to us. However, with a more diverse set
of landmark locations, the crowd-based monitoring technique
should be able to provide more precise location information.

B. Mapping Services to Providers
In Section V-A, we showed how the transfer durations from

a set of landmarks could locate a provider’s infrastructure.
These measurements could also serve another purpose: map-
ping a service to its infrastructure provider (and possibly its
owner). These measurements form a delay vector [22], which
is essentially a fingerprint of the infrastructure provider.

As an example of how this works, we consider three
services: Google search, YouTube, and ytimg.com, which
serves images for YouTube. As these services are all provided
by Google, we use them to demonstrate the potential of the
approach. Figure 6 reveals how nearly identical “fingerprints”
can be extracted for these services, even though Google search
has several orders of magnitude more transactions. In other
words, even with relatively few transactions at a landmark, a
reasonable fingerprint can still be obtained.

Given the large number of unique “services” in Web traffic,
a systematic method for grouping services into a smaller num-



ber of clusters (e.g., by infrastructure provider) is of interest.
Our investigation suggests delay vectors may be applicable for
this purpose. Using a more diverse “crowd” would increase
the number of landmarks, and improve the uniqueness of
provider fingerprints. This type of fingerprints could also be
used to classify the infrastructure used by different services
and providers. Tracking how these fingerprints (or the number
of fingerprints of each type) change with time could help
characterize the evolution of the World Wide Web.

VI. USAGE ACCESS PATTERNS

Lastly, we consider the global popularity of external hosts
visited by users. Host names (e.g., www.google.com) in
HTTP headers often refer to a service rather than a specific
(physical) server, so this allows us to estimate the global
popularity of services. For each unique Host name in the
aggregate log, we determined how many transactions and how
much data were transferred from it to each continent. In total,
5.4 million unique Host names were seen. Figure 7 shows that
83% of these were accessed from only one continent (note the
y-axis is in log-scale). The popularity of “services” decreases
roughly exponentially as the number of continents increases.
Less than 0.4% of the unique Host names were observed in the
activity of all continents. However, this small set of “services”
accounted for 56.4% of all transactions and 47.3% of response
data. The remaining half of the activity is split roughly equally
among “services” that were seen on one to five continents.
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VII. CONCLUSIONS

This paper examined the use of passive crowd-based mon-
itoring of the World Wide Web infrastructure and its per-
formance. The proxy logs of a large, global enterprise were
used to demonstrate how the approach allows us to reveal
geographic differences in user experience, distinguish content
providers by their quality of service, determine differences in
network throughputs, and identify services that were provided
by a common (or similar) infrastructure. In contrast to active
measurements, this passive approach allows us to monitor
and provide insights on the infrastructure used to support
actual Web usage, without placing any additional load on the
measured infrastructure or its users.

There are numerous ways to enhance our work. For ex-
ample, applying crowd-based monitoring to a more diverse
audience (possibly via multiple edge networks) could find
additional insights on the World Wide Web. Alternatively,
examining passively collected traces that cover a longer period
of time would enable a study of the evolution of the Web.
These are left for future work.
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