
The Overhead of Confidentiality and Client-side
Encryption in Cloud Storage Systems

Eric Henziger
Linköping University
Linköping, Sweden

Niklas Carlsson
Linköping University
Linköping, Sweden

ABSTRACT

Client-side encryption (CSE) is important to ensure that only
the intended users have access to information stored in pub-
lic cloud services. However, CSE complicates file synchro-
nization methods such as deduplication and delta encoding,
important to reduce the large network bandwidth overheads
associated with cloud storage services. To investigate the
overhead penalty associated with CSE, in this paper, we
present a comprehensive overhead analysis that includes em-
pirical experiments using four popular CSE services (CSEs)
and four popular non-CSEs. Our results show that existing
CSEs are able to implement CSE together with bandwidth
saving features such as compression and deduplication with
low additional overhead compared to the non-CSEs. The
most noticeable differences between CSEs and non-CSEs are
instead related to whether they implement delta encoding
and how effectively such solutions are implemented. In par-
ticular, fewer CSEs than non-CSEs implement delta encoding,
and the bandwidth saving differences between the applica-
tions that implement delta encoding can be substantial.

1 INTRODUCTION

Since being introduced, there has been a rapid growth in the
use of cloud storage applications. Today, popular services
such as Dropbox, Google Drive, Microsoft OneDrive, and
iCloud each have hundreds of millions of active users each
month. Cloud storage services have also changed how people
store and accesses important data. Today, many users use
these services to transparently back up file data, with many
services allowing users to easily access the files using all
their devices, regardless of geographical location.
However, while these services typically provide flexible

low-cost synchronization and high accessibility of the data,
most services require users to fully trust their cloud providers
with the data and do not provide any guarantees regarding
the confidentiality and integrity of the data stored. In fact,
many services are fairly blunt regarding the lack of confiden-
tiality they provide. For example, by accepting the terms in
Dropbox’s end-user agreements, the user agrees to give them,

UCC ’19, December 2ś5, 2019, Auckland, New Zealand

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

including their affiliates and trusted third parties, the right
to access, store and scan the data [11]. Similarly, agreeing
to Google’s terms of service [16] gives Google ła worldwide
license to use, host, store, reproduce, modify, [...], publicly
display and distribute such content.ž where łsuch contentž
refers to the user’s stored content. Clearly, granting such
rights might not be acceptable for some users and content.
Moreover, with software bugs such as the ones that allowed
hackers to log in to Dropbox accounts without the correct
password [1] or implementation of government surveillance
backdoors such as the NSA Prism program [19], the need for
stronger data and privacy protection is expected to increase.
A solution to provide confidential cloud storage is to use

client-side encryption (CSE). With CSE, the user’s data is
encrypted before being transferred to the cloud provider.
This makes sure that the content is transferred and stored in
an encrypted format and helps ensure that only the clients
with the appropriate decryption keys have access to the
non-encrypted information. However, CSE complicates file
synchronization techniques, such as deduplication and delta
encoding, commonly used to reduce the traffic overheads
associated with personal cloud storage systems.
To investigate the potential overhead penalty associated

with CSE, this paper presents empirical experiments and
analysis of CSE-related overheads. Experiments are used to
compare and contrast the security and bandwidth saving
features implemented by both CSE services (CSEs) and non-
CSEs, to compare non-traffic related client-side overheads
(e.g., CPU, disk, memory), and to demonstrate some weak-
nesses in existing delta encoding solutions. To the best of our
knowledge, this is the first research paper that focuses on the
difference between CSE and non-CSE supporting services.
We next break down our contributions into three parts.

First, we present controlled experiments comparing what
security and bandwidth saving features that four popular
CSEs (Mega, Sync.com, SpiderOak, Tresorit) and four pop-
ular non-CSEs (Dropbox, iCloud, Google Drive, Microsoft
OneDrive) have implemented. Interestingly, beyond differ-
ences in the underlying server infrastructure and whether
services provide CSE, there is no clear differences in the
features implemented. Instead, we observe large variations
within both categories. In fact, only Dropbox (non-CSE) and

UCC ’19, December 2–5, 2019, Auckland, New Zealand Eric Henziger and Niklas Carlsson

SpiderOak (CSE) implement all three bandwidth saving fea-
tures considered here (i.e., compression, deduplication, and
delta encoding). Furthermore, despite effective delta encod-
ing perhaps being most important for bandwidth savings,
only three services (the two above and iCloud) implement
some form of delta encoding.
Second, to glean some insights whether there are other

resource overheads associated with CSEs, we present perfor-
mance measurements, focusing primarily on CPU, disk, and
memory usage. Again, we observed no obvious penalty asso-
ciated with the CSEs. Instead, overheads appear to depend
more on what other features are implemented. For example,
the services implementing the most traffic reducing features
in each category (Dropbox and SpiderOak) sees the highest
non-traffic related client-side resource overheads.

Finally, we use targeted experiments to illustrate the delta
encoding problem associated with CSEs, placing particu-
lar focus on synchronization between multiple devices. The
experiments show that much of the bandwidth and stor-
age overheads associated with CSEs are due to CSE cloud
providers not being able to un-encode delta encoding mes-
sages, and highlights that there are significant differences in
the effectiveness in how delta encoding is implemented and
that there is much room for improvements.
Outline: Section 2 describes the services analyzed. Sec-

tion 3 presents a head-to-head comparison of the different
state-of-the-art CSEs and non-CSEs, including an analysis
of their security features, bandwidth saving features, and
client-side performance. Section 4 presents targeted empiri-
cal experiments to look closer at the delta-encoding problem
associated with CSEs. Finally, related work and conclusions
are presented in Sections 5 and 6, respectively.

2 SERVICES EVALUATED

To allow a broad comparison, we evaluated four CSEs (Mega,
Sync.com, SpiderOak, Tresorit) against four popular non-
CSEs (Dropbox, iCloud,GoogleDrive,MicrosoftOneDrive).
The four non-CSEs provide a nice baseline as they are among
the most popular cloud services, each with hundreds of mil-
lions of users, and often are considered in the related litera-
ture (Section 5). All four non-CSEs have globally distributed
servers, providing good access from our EU-based location.
In contrast, for two of the CSEs (Sync.com, SpiderOak), the
closest servers were located in North America (Toronto,
Canada and mid-western USA, respectively). The four CSEs
were selected based on recommendations in online reviews
(e.g., [4]), claimed CSE properties, and high prevalence in
past measurements on a university campus network [20].1

1 For example, during the week Oct. 11-17, 2015, we observed tens of thou-

sands of HTTPS connection to each of the three CSEs with a web interface

(Mega, Sync.com, Tresorit). These services were all among the 2,000 do-

mains with the most connections during that week. Since SpiderOak did

In general, however, the popularity as measured by the 2018
Alexa ranks of the CSEs (201; 42,412; 123,448; 140,711; re-
spectively) are lower than the corresponding ranks of the
non-CSEs (109; 370; 83,106; 45,006). We next describe the
four CSEs and the client-side encryption they provide.
Mega is the only of the services that makes their source

code public [38] and the only that uses HTTP rather than
HTTPS. While HTTPS is an option, Mega argues (in their
settings) that since the payload is encrypted, unauthorized
access to the user’s data is prevented anyway. For encryption,
Mega uses symmetric cryptography based on AES-128 [37].

Sync.com implements a zero-knowledge policy [46] using
asymmetric encryption. For each user, a 2048 bit RSA private
encryption key is used to encrypt the user’s AES encryp-
tion keys, used to encrypt file data. The private key is itself
encrypted with 256 bit AES Galois counter mode, locked
using the user’s password, stretched with Password-Based
Key Derivation Function 2 (PBKDF2).
SpiderOak uses AES-256-CFB to encrypt user data [44].

Furthermore, every file and folder is encrypted with a unique
key, and through the use of different keys for different ver-
sions of a single file, SpiderOak implements support for ver-
sioned file retrieval. The collection of encryption keys are
secured by the user’s password, hashed and salted using
PBKDF2. During file backup, SpiderOak makes an encrypted
file copy that it temporarily writes to the local hard drive [47].
Finally, Tresorit uses AES-256 in cipher feedback mode

to encrypt user data. Other popular CSEs include pCloud
and Sugarsync. There also exist hybrid CSE-based solutions,
including cloud encryption gateways (e.g., BoxCryptor) that
encrypts all data before placing the encrypted data in the
cloud storage folder (e.g., Dropbox). Although BoxCryptor
integrates nicely with Dropbox, BoxCryptor and similar ser-
vices renders some of the cloud providers performance fea-
tures (e.g., compression and delta encoding) useless. In this
paper, we focus on pure CSEs.

3 CSE vs NON-CSE: FEATURES AND
PERFORMANCE

This section provides a high-level comparison of the features
implemented and the performance observed.

3.1 Methodology and test environment

Our experiments were performed using a Macbook Air, run-
ning macOS High Sierra version 10.13.3 on a 1.3 GHz Intel
Core i5 CPU with two physical cores, 8 GB RAM, and 128 GB
SSD. The laptop was connected to a high-speed university
network through a 10 Gb/s Thunderbolt to Ethernet adapter.

not have a web interface to its cloud service, the dataset did not capture any

traffic to/from its cloud service. Yet, we did observe 17 HTTPS connections

to its website, suggesting (at least) local interest in the service.

Overhead of Client-side Encryption in Cloud Storage Systems UCC ’19, December 2–5, 2019, Auckland, New Zealand

Client configurations: To the greatest extent possible,
all clients were run with default settings. This included al-
ways using the latest client version, and is consistent with
what a typical user would have seen during spring 2018,
when we conducted our experiments, as only Mega and
Sync.com at that time allowed clients to disable automatic up-
dates. Themain exceptions that required some (re)configurations
were some basic configurations needed for the automated
test cases and the disabling of SpiderOak’s LAN-Sync feature
(which otherwise interfered with the laptop’s firewall).

Baselinemethodology:Most experimentswere conducted
by adding files to the cloud services’ sync folders and per-
forming targeted system and network measurements during
the sync process. The methodology was based on that by
Bocchi et al. [3]. We first extended and modified the bench-
marking scripts provided by the authors to suit our test envi-
ronment. For example, since we run the scripts on the same
machine as the clients the files could simply be copied using
the function shutil.copy2(), rather than involving an FTP
server to move files between folders on different VMs.

Testing one application at a time, the network traffic was
recorded throughout the entire sync process using the Python
modules netifaces and pcapy, among others. The packet
capture was executed as a separate thread to allow concur-
rency between the packet capture process and the main test
procedure. To measure CPU, memory and network utiliza-
tion, the Python module psutil was used. These measure-
ments were executed in a dedicated thread and provided per-
process measurements at a 40 ms granularity. Some services
ran multiple processes; e.g., Dropbox ran three processes
and Tresorit two. In these cases, our scripts aggregated the
final results over the corresponding processes. To minimize
the background traffic and number of competing processes,
we closed all programs except the sync client under test.

Finally, on our macBook, iCloud is more tightly integrated
with the OS than the other applications. For this reason,
rather than starting/closing the application between each
test, for iCloud, we kept the application running throughout
a series of tests, while monitoring the three processes that
we determined were associated with the iCloud application.

3.2 Basic security properties

Our classification of cloud providers is based on their official
claims. However, since only Mega’s source code is public,
it is difficult to fully validate if and how CSE is actually
implemented. Validation is further complicated by all ser-
vices (except Mega) using Transport Layer Security (TLS) to
encrypt the end-to-end communication.
MITM-based CSE sanity checks: To check whether the

self-claimed CSEs indeed provide further data protection, we
used a man-in-the-middle (MITM) methodology. In particu-
lar, we setup the client’s traffic to go through a trusted proxy

(mitmproxy [40]), running on a Ubuntu 17.10 machine, and
then added the mitmproxy certificate as a trusted root CA
to the macOS keychain. While all applications had native
support for HTTP proxy configuration, all applications ex-
cept Mega prevented the TLS connection negotiation from
succeeding when a foreign TLS certificate is used. (Mega did
display two warning messages regarding the security risks of
trusting the mitmproxy certificate before we could connect
via the proxy.) Dropbox, Google Drive, and Tresorit all sent
a TLS alert message with code 48 (Unknown CA). OneDrive
sent an alert message with code 86 (Inappropriate Fallback).
Finally, SpiderOak and Sync.com did not send any TLS alert
messages, but (similar to the others) did not allow the TLS
negotiation to be completed. The above MITM prevention
behavior appears to be due to the use of certificate pinning
and/or similar techniques, as claimed to be implemented by
Dropbox and SpiderOak (e.g., [10, 44]).

Clearly, the use of certificate pinning prevents us from eas-
ily sanity check services’ CSE claims. However, in addition to
their native applications, all services except SpiderOak also
provide a web interface. For these services the trusted proxy
approach was therefore successful. Here, we set up a Fire-
fox browser to trust the mitmproxy and extracted all HTTP
messages delivered over TLS (using HTTPS). For our experi-
ments, we then upload text files through the web interface
of each service, identify the corresponding POST requests,
and inspect the payload.

While encryption still complicates validation, we did not
find any signs that the CSEs did not properly encrypt the
data. In contrast, within the TLS connection, Dropbox, iCloud
and OneDrive sent the data in plain text, and Google Drive
encoded it in base64. Based on these tests we were suffi-
ciently convinced that the CSEs indeed provide some further
encryption (or obfuscation) to help protect client data. We
did not try to validate the use of claimed encryption algo-
rithms and/or where different keys are stored. While bugs
or implementation artifacts that give cloud providers access
to the decryption keys would render these services useless
for users not okay giving the provider data access, we leave
such investigation for future work. Instead, in the remainder,
we compare and contrast how other features differ between
CSEs and non-CSEs.
Connection security: Not all entities along the internet

path between a client and the cloud storage may be trusted.
Combined with increasing use of HTTPS, it is therefore per-
haps not surprising that all clients considered here support
TLS. One standout, however, is Mega, who does not have
TLS enabled by default. Furthermore, with exception of Mega
and SpiderOak (both run TLS v1.0), all clients run TLS v1.2,
preventing known exploits against TLS v1.0 [12, 41].

While the focus in this paper is on the native applications,
a service is only as strong as its weakest interface. When

UCC ’19, December 2–5, 2019, Auckland, New Zealand Eric Henziger and Niklas Carlsson

Table 1: Summary of bandwidth saving features

Feature/capability

Services Compression Deduplication Delta Sync

n
o
n
-C
SE

Dropbox Yes Yes Yes

iCloud No Yes Yes

Google Drive Conditional No No

OneDrive No Sometimes No

C
SE

Mega No Yes No

Sync.com No Yes No

SpiderOak Yes Yes Yes

Tresorit Yes No No

briefly summarizing the keys and certificates used, we there-
fore consider both applications and web interfaces. First, all
services use state-of-the-art signature algorithms (SHA256
with RSA or SHA256+ECC) and typically use RSA 2048 (or
corresponding EC) together with AES 128/256 for transfer.
Second, while three out of four non-CSEs (Dropbox, iCloud,
Google Drive) delivered signed certificate timestamps with
their certificates, none of the CSEs implemented such cer-
tificate transparency functionality [27, 42] yet (Nov. 2017).
Third, Google Drive and SpiderOak use self-signed certifi-
cates for the application, while Google Drive and iCloud
use it for the web interface. While self-signed certificates
come with risks [50], Google’s and Apple’s use is perhaps not
surprising since they operate their own CAs (chaining back
to GlobalSign and GeoTrust, respectively). SpiderOak’s use
of such certificates raises some concerns. (SpiderOak does
not have a web interface but uses RapidSSL as CA, signed
by DigiCert, for its website. The iCloud application uses
Amazon certificates issued by Digicert.) Among the other
services, only Sync.com (Comodo+RapidSSL) and Tresorit
(GoDaddy+Microsoft) use a mix of CAs. Mega uses Comodo
(chaining back to AddTrust). The remaining services use the
same chain for both application and website, always chain-
ing back to Digicert (Dropbox directly and OneDrive via
Microsoft and Baltimore CyberTrust Root).

3.3 Bandwidth saving features

We next present test results determining whether each appli-
cation implements three bandwidth saving features: compres-
sion, deduplication, and delta encoding. Table 1 summarizes
these results.
Compression: Half of the non-CSEs (Dropbox, Google

Drive) and half of the CSEs (SpiderOak, Tresorit) used com-
pression. For these tests, plain text files were added to the
sync folders, while measuring the bytes uploaded to the
cloud. If the number of uploaded bytes was less than the file
size, we attributed the difference to compression. The use
of plain text allows efficient compression and provides easy
validation whether compression was used.

Figure 1 shows example results where we vary the file size
of the original files from 10 MB to 28 MB. For each data point,

5

10

15

20

25

30

10 15 20 25 30O
b

s
e

rv
e

d
 u

p
lo

a
d

 s
iz

e
 [

M
B

]

Actual file size [MB]

No compression

Google Drive

Compression

Dropbox

iCloud

GoogleDr.

OneDrive

Mega

Sync.com

SpiderOak

Tresorit

Figure 1: Bytes transferred during example uploads.

we report average values over 15 tests. Three distinct behav-
iors can be identified. First, four services (iCloud, OneDrive,
Mega, Sync.com) did not use compression at all. Second,
three services (Dropbox, SpiderOak, Tresorit) applied com-
pression with a compression ratio close to two, regardless of
file size. Finally, Google Drive used compression (with similar
compression ratio as the other services using compression)
for file sizes up to 224 bytes (or 16 MB), but no compression
for file sizes beyond this threshold. The exact threshold was
identified using binary search. In summary, we observed no
significant differences in the usage or effectiveness of the
compression used by CSEs and non-CSEs.
Deduplication: Despite seemingly easier to implement

in non-CSEs, deduplication is implemented in equally many
CSEs (Mega, SpiderOak, Sync.com) and non-CSEs (Dropbox,
iCloud, OneDrive). To test for use of deduplication, we per-
formed four scenario-based tests. In each scenario, a 20 MB
file made up of random bytes, referred to as the łoriginalž file,
was first placed in the sync folder of the application under
test. Then, a second file with identical content was uploaded.
In the first three scenarios, the second file was identical with
the exception that it (i) had a different name, (ii) was up-
loaded to a different folder, or (iii) both had a different name
and was uploaded to a different folder. Finally, in the fourth
scenario, the original file was instead deleted and then re-
uploaded. For all tests, if the second upload required as much
data to be transferred as the original upload, this indicated
that deduplication was not used. However, if the second up-
load resulted in much fewer bytes being transferred, but was
still accessible in the desired format, deduplication was used.

The deduplication results were consistent for all services
except OneDrive. For this reason, we ran our tests 15 times
per service for all services except OneDrive, for which we ran
40 tests per scenario. Table 2 summarizes our deduplication
results. We note that Dropbox, iCloud, Mega, SpiderOak, and
Sync.com all performed client-side deduplication. None of
these services upload an identical file that is already stored
in the cloud, albeit in another folder and/or with another
name. In contrast, Google Drive, OneDrive and Tresorit all re-
upload identical files. However, OneDrive stands out for the
fourth scenario (łdeletion and re-uploadž). For this scenario,
OneDrive did not re-upload the file in 12 out of 40 (30%) of
the test runs, but instead must have łundeletedž the file in

Overhead of Client-side Encryption in Cloud Storage Systems UCC ’19, December 2–5, 2019, Auckland, New Zealand

Table 2: Deduplication test results.

Deduplication Scenarios

Service Name Folder Name+Folder Delete+upload

Dropbox Yes Yes Yes Yes

Google Drive No No No No

OneDrive No No No Sometimes

iCloud Yes Yes Yes Yes

Mega Yes Yes Yes Yes

SpiderOak Yes Yes Yes Yes

Sync.com Yes Yes Yes Yes

Treosorit No No No No

the cloud storage. This was, however, the only inconsistency
found during the tests. For all other clients and scenarios,
deduplication either occurred for all tests or not at all.
Basic delta encoding: One CSE service (SpiderOak) and

two non-CSEs (Dropbox, iCloud) implement delta encoding.
To determine whether or not each service used (at least) some
form of delta encoding, all clients underwent three basic tests.
In all tests, we started with a 5 MB file, that we incrementally
increased the size of in steps of 5 MB until the size reached 25
MB. In each step, we inserted 5MB randombytes (i) at the end
(append), (ii) at the beginning (prepend), or (iii) into a random
position (random insert) of the file. For each test, we again
measured the number of uploaded bytes. For these scenarios,
in the ideal case, the number of uploaded bytes (in each
step) by a client using delta encoding would be similar to the
size of the change; i.e., 5 MB. On the other hand, for clients
that did not take advantage of delta encoding the number of
uploaded bytes is expected to be close to the file size after
each modification; i.e., 5, 10, 15, 20, 25 MB. While the results
of these tests show that CSEs (exemplified by SpiderOak)
can implement delta encoding, they say nothing about the
relative effectiveness of the delta encodings implemented by
the three services. Section 4 presents a more detailed analysis
of the clients that perform delta encoding and demonstrates
the additional delta encoding overheads inherent to CSEs.

3.4 Performance evaluation

To shed some initial light whether or not there is a significant
performance penalty of CSE, we next present basic client-
side performance results.
CPU utilization: The CPU utilization differ significantly

between the eight services, but also varies a lot over time.
This is illustrated in Figure 2, where we show the CPU utiliza-
tion and uploaded bytes as a function of time, during example
uploads for each service. For comparison, we therefore iden-
tify and report statistics for four phases: idle, pre-processing,
transfer, and cooldown. A client is classified as idle when it is
up-to-date with the cloud storage and not yet actively sync-
ing. The pre-processing phase begins when a file is copied
into the sync folder and continues until the upload starts.
The transfer phase lasts from this time until all data is fully

uploaded, after which we include a 5 second cooldown phase,
before considering the client back in idle.

For each application, we uploaded a 30 MB file containing
random data, with each experiment repeated 25 times, and
report 95% confidence intervals. Figures 3(a) and 3(b) show
the average utilizations observed during the idle/cooldown
phases and the more CPU intensive phases (pre-processing,
transfer), respectively, and Figure 3(c) shows the aggregate
non-idle CPU volumes during these CPU intensive phases.
Here, the non-idle CPU volume is defined as the time-integral
over the additional CPU utilizations during the respective
phases, and can easily be calculated by multiplying the du-
ration of the phase with the difference between the average
CPU utilization during the phase minus when idle. Ignoring
the (small) idle values, 50% utilization over 2 seconds results
in the same CPU volume as 100% over 1 second.
In general, we do not observe any significant penalty to

CSE. Instead, the CPU usage is highest for the feature-rich
services (i.e., Dropbox, SpiderOak) that support all three of
the tested capabilities (Table 1). Dropbox has the highest
CPU volume across all services, and with the exception of
SpiderOak, the CSEs typically have CPU volumes in-between
Dropbox and the less feature-rich non-CSEs (Google Drive,
OneDrive), but more similar to iCloud (who implements a
subset of the bandwidth saving features in Table 1).

A few additional things stand out. First, comparing Drop-
box and SpiderOak (only applications implementing all three
bandwidth saving features), we note that Dropbox had a sig-
nificantly higher CPU utilization during the pre-processing
phase, but that SpiderOak had by far the highest CPU vol-
ume. The reason for this is that Dropbox was much faster at
detecting the file change, and could start the processing and
file transfer almost immediately. Second, the average CPU
utilization during transfer for Dropbox and Tresorit were
significantly higher than for the other clients. The values
above 100% indicates that the clients are multithreaded and
that at least two threads of the application were heavily uti-
lizing separate CPU cores simultaneously. Finally, SpiderOak
was the only client with a lower CPU volume during trans-
fer compared to during pre-processing. This is likely due to
SpiderOak creating a temporary copy of the file, compress
the file, check for duplication, and encrypt the file before up-
loading can begin. In sharp contrast, the transfer utilization
for Mega was significantly higher than its pre-processing
utilization. A closer look at the transfer phase suggests that
Mega alternate between applying encryption and uploading
data to the cloud.
CPU volume under matching network conditions:

All services except SpiderOak and Sync.com had data centers
in Europe (where the experiments were performed). To re-
duce the impact of location differences, we used the network
link simulator tool Network Link Conditioner [36] to set

UCC ’19, December 2–5, 2019, Auckland, New Zealand Eric Henziger and Niklas Carlsson

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(a) Dropbox

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(b) iCloud

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(c) Google Drive

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(d) OneDrive

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(e) Mega

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N
Time [s]

U
pl

oa
d

[M
B

]

(f) Sync

0 10 20 30 40 50 60 70
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 10 20 30 40 50 60 70
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(g) SpiderOak

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Time [s]

C
P

U
U

ti
liz

at
io

n
[%

]

0 5 10 15 20 25 30 35
0

10

20

30

F
IL

E
IN

SE
R

T
IO

N

Time [s]

U
pl

oa
d

[M
B

]

(h) Tresorit

Figure 2: CPU utilizations during example runs. Top-row are non-CSEs and bottom row are CSEs. Also, note the

different time-scales for Mega (shorter) and SpiderOak (longer) than the rest.

0

2

4

6

8

10

Dropbox

iCloud
GoogleDr.

OneDrive

Mega
Sync.com

SpiderOak

Tresorit

C
P

U
 U

ti
liz

a
ti
o
n
 [
%

] Idle Cooldown

(a) Idle and cooldown

0

40

80

120

160

Dropbox

iCloud
GoogleDr.

OneDrive

Mega
Sync.com

SpiderOak

Tresorit

C
P

U
 U

ti
liz

a
ti
o
n
 [
%

] Pre-process

Transfer

(b) Pre-processing and transfer

0

200

400

600

800

1000

Dropbox

iCloud
GoogleDr.

OneDrive

Mega
Sync.com

SpiderOak

Tresorit

C
P

U
 V

o
lu

m
e

Pre-process

Transfer

(c) CPU volume

Figure 3: CPU utilizations for different services.

bandwidth and latencies of the network interface so that the
bandwidth bottleneck (10 Mbps) was on the client interface
and the RTTs matched the RTT (145ms) of the service with
the largest RTTs (SpiderOak).
Figure 4 shows the CPU volume results for these experi-

ments. Compared with the original results (Figure 3(c)), the
CPU volumes during the transfer phase have increased for all
services. This is due to increased RTTs and introduced band-
width limitations. Still, the relative performance between
the different clients have not changed. Dropbox still has
the highest CPU volume during transfer and Google Drive,
OneDrive and Mega have the lowest. One exception to this
was SpiderOak which surpassed Sync.com (who also has its
servers in North America) in CPU volume for the transfer
phase. Although SpiderOak was used as the original base-
line, we found that the introduced client-side bottleneck hurt
SpiderOak’s transfer times more than Sync.com.
HTTP vs HTTPS comparison: To set the above CPU

comparisons of CSE vs non-CSE services in perspective, we
looked closer at the penalty of using HTTPS (encrypted)
rather than HTTP (non-encrypted). We therefore turned to
Mega, which was the only service allowing us to switch be-
tween using HTTPS (optional) and HTTP (default). Table 3
shows comparison results based on 50 experiments. We note
a statistically significant penalty of using HTTPS (as indi-
cated by non-overlapping confidence intervals); however, the
differences are small compared to the differences observed

0

250

500

750

1000

1250

Dropbox

iCloud
GoogleDr.

OneDrive

Mega
Sync.com

SpiderOak

Tresorit

C
P

U
 V

o
lu

m
e

Pre-process

Transfer

Figure 4: CPU volumes with equalized conditions.

Table 3: HTTPS vs HTTP comparison of CPU uti-

lization for Mega. (Idle CPU utilization with/without

HTTPS is 0.10 ± 0.02%.)

CPU utilization (%) CPU volume

Pre-proc. Transfer Pre-proc. Transfer

HTTPS 2.48±0.08 63.41±1.72 5.71±0.20 107.98±1.21

HTTP 1.72±0.06 42.91±2.55 3.61±0.12 58.70±3.96

across cloud services. This shows that the CPU overheads
associated with the bandwidth saving features (that Mega
do not implement) may be substantially larger than the CPU
overheads associated with using HTTPS. Unless much more
complex algorithms are used for CSE, this also helps explain
why no noticeable CPU penalty is observed with the CSEs.

Disk usage: We have only observed per-file disk usage
for SpiderOak. Figure 5 shows the averages number of bytes
written to disk (with 95% confidence intervals) by any active
process during the syncing of a 300 MB file, as calculated
over 40 experiments per application. For thesemeasurements,
we used the psutil module, and since macOS did not have

Overhead of Client-side Encryption in Cloud Storage Systems UCC ’19, December 2–5, 2019, Auckland, New Zealand

0

100

200

300

400

Dropbox

iCloud
GoogleDr.

OneDrive

Mega
Sync.com

SpiderOak

Tresorit

W
ri
tt

e
n

 t
o

 D
is

k
 [

M
B

]

Figure 5: Byteswritten to disk during a 300MBupload.

support for per-process I/O counters, themeasurements were
performed on OS level (rather than per process). In contrast
to the other services (that do not appear to write to disk,
and if they do only write a small amount), the writes during
a SpiderOak transfer exceed the file size (300 MB) plus an
excess amount typically exceeding the writes of the other
applications (capturing SpiderOak’s longer transfer times).
Memory usage: Although significant individual differ-

ences, we have not observed any systematic differences in
the memory usage between CSEs and non-CSEs. Instead,
differences in the memory profiles (e.g., see example traces
in Figure 6) mostly appear to be due to implementation dif-
ferences and the memory footprints are relatively stable (e.g.,
comparing footprints during idle and active states).
Of the services we tested, Dropbox (2.89%) and Google

Drive (2.72%) had the largest memory usage, and none of
the services appears to keep a full copy of the files in mem-
ory. For example, when uploading five large files, each with
300 MB random data (to minimize the risk of deduplication),
with each upload separated by roughly 50 seconds, the max-
imum memory usage of any service had a memory usage of
roughly 240MB (or 3% on our 8GB system). Dropbox (2.89%)
and SpiderOak (1.99%) again stand out, as they again are
among the three applications with the largest memory foot-
prints. While Google Drive (2.72%) does not implement the
bandwidth saving features we tested for, we expect that the
larger memory footprint is due to other services that it offers.
Furthermore, compared to their respective idle levels, the
largest increase in memory utilization was small. For exam-
ple, taking the average over 12 runs per service, only four
services had an increase larger than 0.25% (or 20 MB). These
were Dropbox (0.68%), Tresorit (0.60%), Sync.com (0.58%),
and Google Drive (0.55%). Finally, while most services see
a slight drift in memory footprint over time, this drift was
only substantial for Sync.com, for which the average foot-
print (per upload) increased from 0.98% to 1.27%, and Google
Drive (2.44% to 2.72%). For the other services the average
differences between the uploads remained within 0.04%.

4 DELTA ENCODING ANALYSIS

While the CSEs that we have studied have been equally
successful as the top-four non-CSEs to achieve bandwidth
savings using compression and deduplication, it is much

harder for CSEs to implement effective delta encoding. This
is perhaps why only SpiderOak of the tested CSEs implement
delta encoding, and why, as we will show here, both Dropbox
and iCloud (the two non-CSEs performing delta encoding)
significantly outperform SpiderOak.
The delta encoding problem with CSEs: Delta encod-

ing is made difficult for CSEs mainly by the cloud provider
not having access to the non-encrypted data and delta en-
coding being extremely inefficient on encrypted file versions.
Therefore, to allow the provider to seamlessly share the file
with other devices of the client there are two main alterna-
tives: (i) the client always upload the full file whenever they
make a change, ensuring that the provider always has the lat-
est copy to deliver, or (ii) the client submit encrypted versions
of delta encodings that the provider can store and deliver
together with the original encrypted file.2 The first option
comes at significant upload overhead, since even a very small
change result in the full file (or block) being uploaded. In
contrast, the second option has low upload overhead, but
much larger storage and download bandwidth overhead,
since the provider must store and deliver the full change-log
sequence needed by the downloading device to recreate the
most recent file copy.

Referring back to Table 1, three out of the four CSEs (Mega,
Sync.com, Tresorit) do not use delta encoding, but instead
replace the full file when changes are made. We again note
that this approach (option one above) can be extremely in-
efficient when changes are small. In fact, it is possible to
show that the solution can be arbitrarily bad. For example,
consider a small file change to a file of size N that requires
a delta encoding of size ∆. In this case, a CSE replacing the
full file would require an upload bandwidth proportional to
N , whereas one that uses delta encoding would only need
to upload ∆, resulting in a relative penalty of cN−∆

∆
. This

penalty is unbounded when N→∞ and also becomes very
large when ∆ is small.
SpiderOak’s bandwidth and server-side storage over-

head: Among the CSEs, only SpiderOak performs delta en-
coding. However, their implementation is proprietary, mak-
ing it non-trivial to analyze all details of their solution. Here,
we use targeted experiments to provide initial insights into
their delta encoding and the associate overheads.

First, and most importantly, it is easy to see that SpiderOak
indeed stores a sequence of delta encoding on the server side,
and that a second device downloads both the original file
and the change-log of delta encodings. For example, consider
a basic experiment in which we start with a file of size 10MB,
consisting of random bytes, and then modify bytes 0-0.5 MB,

2While focus here is on files, it is possible to apply both the above ap-

proaches also on a per-block basis. This case typically increases complexity

significantly, may reduce confidentiality, and requires the block structure

to be passed along with block changes.

UCC ’19, December 2–5, 2019, Auckland, New Zealand Eric Henziger and Niklas Carlsson

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 100 200 300 400 500 600
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(a) Dropbox

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 50 100 150 200 250 300
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(b) Google Drive

0 100 200 300 400
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 100 200 300 400
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(c) OneDrive

0 50 100 150 200
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 50 100 150 200
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(d) iCloud

0 50 100 150 200 250 300 350
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 50 100 150 200 250 300 350
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(e) Mega

0 300 600 900 1,200 1,500
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 300 600 900 1,200 1,500
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(f) SpiderOak

0 200 400 600 800
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 200 400 600 800
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(g) Sync

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

Time [s]

M
em

or
y

U
ti

liz
at

io
n

[%
]

0 50 100 150 200 250 300 350 400
0

500

1,000

1,500

Time [s]

U
pl

oa
d

[M
B

]

(h) Tresorit

Figure 6: Memory usage during example runs: Non-CSEs (top) and CSEs (bottom). Note the different time scales.

bytes 1-1.5 MB, and so forth over 10 file changes. In this
scenario, the original upload was of size 10.049 MB, and the
10 delta encoding updates were (measured in MB): 0.531,
1.058, 1.058, 1.058, 1.058, 0.531, 0.794, 0.794, 0.794, 0.794.3 In
total, this resulted in 18.521 MB uploaded data; 3 MB more
than the theoretic bound of 15 MB (if uploading only the size
of the original file plus the changed data).When syncingwith
a second client, we could also confirm that the SpiderOak
client indeed downloaded the full (18.5 MB) change log, and
then recreated the file as seen on the first client. Again, this
download size is expected since a provider should not be
able to take advantage of the delta encodings to save server
storage or download bandwidth for the second device.

The corresponding tests with Dropbox (non-CSE) looked
quite different. While the original upload was somewhat
larger (10.578 MB), the following 10 updates were smaller
(measured inMB): 0.662, 0.540, 0.535, 0.535, 0.537, 0.535, 0.535,
0.540, 0.537, 0.535. In total, this resulted in 16.070 MB up-
loaded data. This shows that Dropbox uses more efficient
delta encoding, only requiring 1 MB extra overhead. Fur-
thermore, when syncing with a second device, we could also
confirm that the second device only had to download 10.353
MB, confirming that Dropbox efficiently applies delta encod-
ings on the servers. The above examples clearly demonstrate
some of the added delta encoding overheads required for
CSEs.
Randomchanges comparisonwithDropbox+iCloud:

Second, SpiderOak’s block-based implementation can per-
form very poorly. To illustrate this we use a simple head-
to-head comparison with Dropbox and iCloud in which we
randomly picked n bytes to change and then measured the
number of bytes uploaded by the application. Figure 7 shows

3A more detailed analysis, not included in this paper due to lack of space,

reveals that SpiderOak uses block-based delta encoding, with a block size

of 256 kB (plus a small overhead). Here, we simply note that the updates

listed here correspond to changes of 2 blocks (0.531 MB), 3 blocks (0.791

MB), or 4 blocks (10.058 MB), respectively.

0

2

4

6

8

10

0 2000 4000 6000 8000 10000
O

b
s
e

rv
e

d
 u

p
lo

a
d

 s
iz

e
 [

M
B

]

Individual bytes changed

SpiderOak

iCloud

Dropbox

0

5

10

0 50 100 150 200

Figure 7: Bytes uploaded during delta-encoding tests

with random changes.

the results of these tests, when applied on a 10 MB file. (The
insert zooms in on the low parameter range.)
These results (i) confirm that the delta encodings work

poorly on random file changes (and these techniques would
hence not be useful on encrypted file data) and (ii) show
that both Dropbox and iCloud significantly outperform Spi-
derOak. For example, consider the number of random bytes
that can be changed before each service have uploaded the
equivalent of another 10 MB file. For SpiderOak, on the order
of 100 bytes are needed. In contrast, with iCloud andDropbox
approximately 2,000 and 6,000 bytes need to change, respec-
tively. While the large differences partially may be due to
implementation differences for sparse use cases, the results
show that the room for improvements in SpiderOak’s solu-
tion is significant. For example, as long as the changes are
small, an application could simply encrypt the delta changes
that a non-CSE would make, store those changes in the cloud
(in encrypted format), and rely on the clients to later down-
load the full sequence of such changes to their other devices,
where they themselves can apply the delta changes. We are
currently investigating optimized variations of such policies.

5 RELATED WORK

Prior work has not empirically evaluated the impact that
CSE has on the performance of existing applications.

Overhead of Client-side Encryption in Cloud Storage Systems UCC ’19, December 2–5, 2019, Auckland, New Zealand

Most performance studies of personal cloud storage have
focused on Dropbox [9, 32] and other popular services [8, 17,
22]. Similar to Section 3.3, this include works that determine
whether different services (Dropbox, Google Drive, OneDrive
and Box) implement different performance features [5, 8].
Some variation in features have been observed over time
and across devices [6, 34]. However, none of these works
consider the impact of CSE on the features implemented, the
performance obtained, or even evaluated the performance
of CSEs. In contrast, we focus on CSEs and their relative
performance penalty. Having said that, the above studies
provide a nice baseline for three of the most popular non-
CSEs (Dropbox, Google Drive, OneDrive) and allows us to
contrast our results (we are also first to determine features
for these three services using macOS).

Many different types of algorithms have been proposed to
reduce cloud storage and bandwidth costs. With early works
primarily targeting storage savings, most such works have fo-
cused on deduplication [21, 39, 49]. In the context of CSE, the
most related works have demonstrated how effective and se-
cure deduplication can be achieved by combining convergent
encryption and clever key management [23, 29, 43, 45]. This
may at least partially explain why three of the four consid-
ered CSEs implement effective deduplication. Other common
techniques include delta encoding [28, 32], device-to-device
synchronization [15], compression [30], and caching [14].
Yet others have implemented middleware solutions (e.g., that
can be used in conjunction with Dropbox) to improve the
synchronization process [32, 33].
Wilson and Ateniese [50] provide an overview of CSEs

and uncovered some weaknesses when enabling data shar-
ing. Their work focuses on the issuing of certificates, and
highlights the problem when the provider acts as a CA for
itself. The founders of Tresorit, Lam and Szebeni, have pro-
posed and patented solutions (based on the TGDH protocol)
for sharing data in dynamic groups over an untrusted cloud
storage service [24ś26]. Others, like SpiderOak, revokes their
łNo Knowledgež policy for files shared through a so called
łShareRoomž [48]. Mager et al. [35] studied the now discon-
tinued CSE serviceWuala, and found that, similar to what we
find for SpiderOak, Wuala encrypted and stored files locally
before syncing the encrypted contents to the cloud.
On the topic of delta encoding, we note that aggregating

multiple delta encoding updates before propagating changes
can be an efficient way to further save bandwidth [28, 32].
Others have studied the most beneficial user behaviors to
exploit when optimizing file sync operations [18] or the
client behavior itself [9, 13, 30]. For example, Drago et al. [9]
showed that Dropbox primarily is used for small files that are
changed frequently, while Li et al. [30] have confirmed that
there is a long tail of smaller files also on other services and

that most files (84%) are changed at least once. These charac-
teristics confirm the importance of effective delta encoding.
Finally, we note that aggregating sync events can be particu-
larly valuable for capped mobile users [2, 7, 31], but also that
monitoring and access control may be more complicated in
such environments [2]. To the best of our knowledge, we are
the first to empirically evaluate the overhead costs observed
by popular CSEs.

6 CONCLUSIONS

Client-side encryption (CSE) is important to ensure that only
the intended users have access to information stored in pub-
lic cloud services, but complicates the implementation of
bandwidth saving file synchronization features. This paper
is the first to focus on the performance overhead of existing
CSE services (CSEs). Using empirical experiments with four
popular CSEs (Mega, Sync.com, SpiderOak, Tresorit) and the
four most popular non-CSEs (Dropbox, iCloud, Google Drive,
OneDrive), we characterize the current state-of-the-art and
their relative overheads. First, by comparing the security
and bandwidth saving features implemented, as well as the
performance, of the eight services, we highlight both posi-
tives and negatives. On the positive side, bandwidth saving
features such as compression and deduplication appears to
come with low additional overhead and achieve similar ef-
ficiency. Instead, the performance overheads (as measured
using CPU utilization, CPU volume, disk writes, and memory
footprint) appears to depend on the set of bandwidth saving
features implemented, and the main penalty associated with
CSE appears to be due to bandwidth, storage, and processing
overheads associated with implementing (or not implement-
ing) different forms of delta encoding together with CSE.
While helping reduce bandwidth between the client and the
servers, services implementing delta encoding typically have
significantly higher resource usage on the client. We also
observe differences between the CSE (SpiderOak) and the
two non-CSEs (Dropbox, iCloud) implementing delta encod-
ing. For example, SpiderOak comes with a higher storage
footprint both on the client and on the servers, has higher
bandwidth overhead for both uploaders and downloaders,
and implements less effective delta encoding than Dropbox
and iCloud. Future work include the development of opti-
mized delta encoding policies for CSEs, which minimize the
bandwidth and storage overhead associated with CSE, and
that close the gap seen compared to non-CSEs (e.g., gaps
between SpiderOak and Dropbox+iCloud in Figure 7).

REFERENCES
[1] Arash Ferdowsi - Dropbox Inc. 2011. Yesterday’s Authentica-

tion Bug. (2011). https://blogs.dropbox.com/dropbox/2011/06/

yesterdays-authentication-bug/

UCC ’19, December 2–5, 2019, Auckland, New Zealand Eric Henziger and Niklas Carlsson

[2] Y. Bai and Y. Zhang. 2017. StoArranger: Enabling Efficient Usage of

Cloud Storage Services on Mobile Devices. In Proc. IEEE ICDCS.

[3] E. Bocchi, I. Drago, and M. Mellia. 2017. Personal Cloud Storage

Benchmarks and Comparison. IEEE Trans. on Cloud Computing 5, 4

(2017).

[4] Cloudwards. 2018. Best Cloud Storage Providers of 2018. (2018).

https://www.cloudwards.net/comparison/

[5] Y. Cui, Z. Lai, and N. Dai. 2016. A First Look At Mobile Cloud Stor-

age Services: Architecture, Experimentation, and Challenges. IEEE

Network 30, 4 (2016).

[6] Y. Cui, Z. Lai, X. Wang, and N. Dai. 2017. QuickSync: Improving

Synchronization Efficiency for Mobile Cloud Storage Services. IEEE

Trans. on Mobile Computing 16, 12 (2017).

[7] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao. 2015. QuickSync: Improv-

ing Synchronization Efficiency for Mobile Cloud Storage Services. In

Proc. ACM MobiCom.

[8] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. 2013. Bench-

marking Personal Cloud Storage. In Proc. IMC.

[9] I. Drago, M. Mellia, M. M. Munafò, A. Sperotto, R. Sadre, and A. Pras.

2012. Inside Dropbox: Understanding Personal Cloud Storage Services.

In Proc. IMC.

[10] Dropbox. 2018. Under the hood: Architecture overview. (2018). https:

//www.dropbox.com/business/trust/security/architecture

[11] Dropbox Inc. 2019. Dropbox Terms of Service. (2019). https://www.

dropbox.com/terms

[12] Z. Durumeric et al. 2014. The Matter of Heartbleed. In Proc. IMC.

[13] G. Goncalves, I. Drago, A. da Silva, A. B. Vieira, and J. M. Almeida.

2014. Modeling the Dropbox Client Behavior. In Proc. IEEE ICC.

[14] G. Gonçalves, I. Drago, A. P. C. Da Silva, A. B. Vieira, and J. M. Almeida.

2016. The impact of content sharing on cloud storage bandwidth

consumption. IEEE Internet Computing 20, 4 (2016), 26ś35.

[15] G. Gonçalves, A. B. Vieira, I. Drago, A. P. C. Da Silva, and J. M. Almeida.

2017. Cost-Benefit Tradeoffs of Content Sharing in Personal Cloud

Storage. In Proc. IEEE MASCOTS.

[16] Google LLC. 2018. Google Terms of Service. (2018). https://www.

google.com/intl/en/policies/terms/

[17] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and

P. G. Lopez. 2013. Actively Measuring Personal Cloud Storage. In Proc.

IEEE CLOUD.

[18] R. Gracia-Tinedo, Y. Tian, J. Sampe, H. Harkous, J. Lenton, P. G. Lopez,

M. Sanchez-Artigas, and M. Vukolic. 2015. Dissecting UbuntuOne:

Autopsy of a Global-scale Personal Cloud Back-end. In Proc. IMC.

[19] G. Greenwald, E. MacAskill, L. Poitras, S. Ackerman, and D. Rushe.

2013. Microsoft handed the NSA access to encrypted messages. The

Guardian (2013). https://www.theguardian.com/world/2013/jul/11/

microsoft-nsa-collaboration-user-data

[20] J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson. 2017. A First

Look at the CT Landscape: Certificate Transparency Logs in Practice.

In Proc. PAM.

[21] D. Harnik, B. Pinkas, and A. Shulman-Peleg. 2010. Side Channels

in Cloud Services: Deduplication in Cloud Storage. IEEE Security &

Privacy 8, 6 (2010).

[22] W. Hu, T. Yang, and J. N. Matthews. 2010. The Good, the Bad and the

Ugly of Consumer Cloud Storage. ACM SIGOPS Operating Systems

Review 44, 3 (2010).

[23] J. Hur, D. Koo, Y. Shin, and K. Kang. 2016. Secure data deduplication

with dynamic ownership management in cloud storage. IEEE Trans.

on Knowledge and Data Engineering 28 (2016), 3113ś3125.

[24] I. Lam, S. Szebeni, and L. Buttyan. 2012. Invitation-oriented TGDH: Key

management for dynamic groups in an asynchronous communication

model. In Proc. IEEE ICPP Workshops.

[25] I. Lam, S. Szebeni, and L. Buttyan. 2012. Tresorium: Cryptographic

file system for dynamic groups over untrusted cloud storage. In Proc.

IEEE ICPP Workshops.

[26] I. Lam, S. Szebeni, and T. Koczka. 2015. Client-side encryption with

DRM. (2015). US Patent 9,129,095.

[27] B. Laurie, A. Langley, and E. Käsper. 2013. RFC6962: Certificate Trans-

parency. IETF.

[28] G. Lee, H. Ko, and S. Pack. 2017. An Efficient Delta Synchronization

Algorithm for Mobile Cloud Storage Applications. IEEE Trans. on

Services Computing 10, 3 (2017).

[29] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou. 2013. Secure dedupli-

cation with efficient and reliable convergent key management. IEEE

Trans. on Parallel and Distributed Systems 25, 6 (2013), 1615ś1625.

[30] Z. Li, Y. Dai, G. Chen, and Y. Liu. 2014. Towards Network-level Effi-

ciency for Cloud Storage Services. In Proc. IMC.

[31] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie, and P.

Steenkiste. 2016. An Empirical Analysis of a Large-scale Mobile Cloud

Storage Service. In Proc. IMC.

[32] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang, and Y.

Dai. 2013. Efficient Batched Synchronization in Dropbox-like Cloud

Storage Services. In Proc. ACM/IFIP/USENIX Middleware.

[33] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and J. Lenton. 2014.

StackSync: Bringing Elasticity to Dropbox-like File Synchronization.

In Proc. ACM Middleware.

[34] X. Luo, H. Zhou, L. Yu, L. Xue, and Y. Xie. 2016. Characterizing

mobile*-box applications. Computer Networks 103 (2016).

[35] T. Mager, E. Biersack, and P. Michiardi. 2012. A Measurement Study

of the Wuala On-line Storage Service. In Proc. IEEE P2P.

[36] Mattt. 2018. Network Link Conditioner. (2018). http://nshipster.com/

network-link-conditioner/

[37] MEGA. 2018. MEGA - Developers Documentation. (2018). https:

//mega.nz/doc

[38] MEGA. 2018. Mega Limited. (2018). https://github.com/meganz

[39] D. T. Meyer andW. J. Bolosky. 2012. A Study of Practical Deduplication.

ACM Trans. on Storage 7, 4 (2012).

[40] Mitmproxy. 2018. (2018). https://mitmproxy.org/

[41] B. Möller, T. Duong, and K. Kotowicz. 2014. This POODLE Bites:

Exploiting the SSL 3.0 Fallback. Security Advisory (2014).

[42] C. Nykvist, L. Sjostrom, J. Gustafsson, and N. Carlsson. 2018. Server-

side Adoption of Certificate Transparency. In Proc. PAM.

[43] P. Puzio, R. Molva, M. Önen, and S. Loureiro. 2013. ClouDedup: Secure

deduplication with encrypted data for cloud storage. In Proc. IEEE

CloudCom.

[44] SpiderOak Inc. 2018. No Knowledge, Secure-by-Default Products.

(2018). https://spideroak.com/no-knowledge/

[45] M. Storer, K. Greenan, D. Long, and E. Miller. 2008. Secure data dedu-

plication. In Proc. ACM Storage Security and Survivability workshop.

[46] Sync.com Inc. 2015. Privacy White Paper. Technical Report. https:

//www.sync.com/pdf/sync-privacy.pdf

[47] A. Tervort. 2017. Disk Space Use During File Backup - SpiderOak

Support. (2017). https://support.spideroak.com/hc/en-us/articles/

115001891163-Disk-Space-Use-During-File-Backup

[48] A. Tervort. 2018. ShareRooms and No Knowledge - SpiderOak

Support. (2018). https://support.spideroak.com/hc/en-us/articles/

115001854223-ShareRooms-and-No-Knowledge

[49] R. N. Widodo, H. Lim, and M. Atiquzzaman. 2017. A new content-

defined chunking algorithm for data deduplication in cloud storage.

Future Generation Computer Systems 71 (2017).

[50] D. C. Wilson and G. Ateniese. 2014. "To Share or not to Share" in

Client-Side Encrypted Clouds. In Proc. ISC.

	Abstract
	1 Introduction
	2 Services evaluated
	3 CSE vs non-CSE: Features and Performance
	3.1 Methodology and test environment
	3.2 Basic security properties
	3.3 Bandwidth saving features
	3.4 Performance evaluation

	4 Delta Encoding Analysis
	5 Related Work
	6 Conclusions
	References

