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Abstract

Scalable on-demand content delivery systems, designed to effettarelle increasing
request rates, typically use service aggregation or contentatemh techniques.
Service aggregation relies on one-to-many communication techniqueh, &s
multicast, to efficiently deliver content from a single sertdemnultiple receivers. With
replication, multiple geographically distributed replicas of tee/ise or content share
the load of processing client requests and enable delivery from a nearby serve

Previous scalable protocols for downloading large, popular files freamge
server include batching and cyclic multicast. Analytic loweunds developed in this
thesis show that neither of these protocols consistently yieldsrip@ance close to
optimal. New hybrid protocols are proposed that achieve within 20% diptwmal
delay in homogeneous systems, as well as within 25% of the optien@mum client
delay in all heterogeneous scenarios considered.

In systems utilizing both service aggregation and replication,-desiigned
policies determining which replica serves each request must balaembjectives of
achieving high locality of service, and high efficiency of servaggregation. By
comparing classes of policies, using both analysis and simulathésis shows that
there are significant performance advantages in using cugsteins state information
(rather than only proximities and average loads) and in defesetertion decisions
when possible. Most of these performance gains can be achievgdongn“local”
(rather than global) request information.

Finally, this thesis proposes adaptations of already proposedagmsted
download techniques to support a streaming (rather than downloadesewabling
playback to begin well before the entire media file is rmki These protocols split
each file into pieces, which can be downloaded from multiple soura#sding other
clients downloading the same file. Using simulations, a candiatecol is presented
and evaluated. The protocol includes both a piece selection technedefféctively
mediates the conflict between achieving high piece diversity &ed in-order
requirements of media file playback, as well as a simplenenrlile for deciding when
playback can safely commence.
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List of Common Notation

This table summarizes the most commonly used notation in this thesis.

Symbol Page Definition
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B 40,81 | Average rate at which service cost is incurred (equtidcaverage
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b 40, 119 Maximum sustainable client reception rate (equal to download
bandwidth capacity of a client/peer)
b™ 119 Maximum sustainable download rate for any j&f download
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C 81 Total service delivery cost
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n 41,108 Batching delay parameter (threshold value on the number of
requests)
o 81 Average fraction of its service that a grouplient receives from
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Glossary

Batching protocol
A type of service aggregation protocol, in which clients having requiestie,
wait to begin receiving the file until the beginning of a nualst (or broadcast)
transmission, which collectively serves a set of waiting clients.

BitTorrent
A peer-assisted download protocol, in which a file is split intollempieces
that can be downloaded in parallel from different peers.

Bulk data
Data or files for which there is no advantageous order in whichstiaad be
retrieved.

Choke algorithm
Algorithm used, by BitTorrent, to determine which peers to uplaad (ot to
upload) pieces of a file to.

Client reception rate
The rate at which data is received by the client.

Content Distribution Network (CDN)
Interconnected servers distributed across the network, whichsaltevcontent
to be effectively replicated, clients to be served by neagplicas, and the
content distributor to maintain control over the content.

Continuous media files
Media files, such as audio and video, that continuously must be rendered at
specified rates.

Cyclic multicast protocol
A type of service aggregation protocol, in which the file dataydlically
transmitted on a multicast channel, which clients begin listetongit an
arbitrary point in time, and continue listening to until all of the data has been
received.

Digital fountain
A cyclic multicast protocol, in which the file data is erascoded such that a
client listening to the channel can recreate the original comtiéet having
retrieved an arbitrary set of data equal (or slightly largesize as the original
file.

Download bandwidth capacity
The maximum sustainable rate at which data can be received by the client.

Download protocol
Protocol used to transfer bulk data to clients. The main mettieeseé protocols
is the time until the entire file is fully downloaded.

Erasure coding
Coding technique used to accommodate packet losses.

Leecher
BitTorrent peer which does not have a complete copy of a filecamdntly is
downloading pieces of the file.

xii



Multicast
Family of techniques used to set up forwarding trees and to fbtvarcontent
(through these distribution trees), from one or more source to multiple receivers.
Multicast channel
The server and network resources used to deliver each multiczesttt member
of a multicast group.
Multicast group
A collection of nodes interested in receiving the same multicast trangmissi
Upload bandwidth capacity
The maximum sustainable rate at which data can be transferred bettte cli
Peer-assisted protocol
Protocol in which peers contribute to the collective power of theesyby
making (part of) their resources available.
Peer-to-peer system
Systems consisting of peers.
Piece selection policy
Policy used by BitTorrent peer to determine the next pieceetpest for
download.
Proxy caches
Content caches located at servers embedded between clehthea origin
server, which intercept client requests and (in the case theyahsteeed copy)
serves them on behalf of the origin server.
Poisson arrival process
A memoryless arrival process with constant arrival rateedurivalently, an
arrival process with inter-arrival times that are independedtexponentially
distributed.
Replica
A server which has a copy of the replicated file (or service).
Replica selection policy
Policy used to determine which replica should serve a given client request.
Seeder
A BitTorrent peer which has a complete copy of a file (hencereguiring
additional data to be downloaded), yet uploading pieces of the file to other peers.
Server bandwidth
The rate at which data is transferred by a server.
Service aggregation technique
Technique that allows multiple client requests to be servestitegin a manner
that is more efficient than individual service.
Streaming protocol
File transfer protocol for continuous media files that allows @elkto begin
before a file is completely retrieved.
Tit-for-tat policy
Policy used by BitTorrent, giving upload preference to peers tlaida the
highest download rates.
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Chapter 1
Introduction

With tremendous improvements in network bandwidth and computer capabilities
many new high-bandwidth applications have emerged in the entertajnibusitiess,
and scientific communities. In contrast to traditional contentiloigion systems, such
as TV and radio channels, many of these new applications operate @ndemand
basis and only serve clients when explicit requests for service are made.

As on-demand applications are becoming more popular, content providers ar
faced with the problem of distributing enormous amounts of data toowingy
population of client requests. For example, the size of a full length movieenay the
order of gigabytes. On-demand dissemination of such files to wiffeyent clients,
potentially widely distributed across the Internet, requiresfsignit server and network
resources. Therefore, the rate at which a system cae skent requests is often
limited by the server (and/or network) bandwidth available for disssion, where
bandwidth refers to the amount of data that can be transferredneeurit by the server
(and/or across some network connection).

Two basic service models commonly used for on-demand delivery ofl state
are downloadand streaming With download, clients download the entire file before
making use of it. In this context the main performance mettied time until the entire
file is downloaded. Streaming, on the other hand, utilizes the in-qidgback
characteristics of media files, such as video, to allow pl&ybtabegin well before all
of the file data is retrieved. To increase the likelihood thett gart of the media file is
retrieved before its playback time, streaming techniques gbneegjuire that some
initial portion of the file is retrieved, and stored into a bufferplestarting playback.
Maintaining a buffer of file data is especially important in emwments with widely
varying (playback and/or retrieval) rates. With streaming,primary metric of interest

is the startup delay until playback can safely begin.



For content delivery systems to handle high request ratesjnitpisrtant that
protocols are designed such that either the resource requirammeEse sub-linearly
with increasing request rate, or the resources available forntotédévery increase
linearly with request rate. Using scalable techniques daw @ content distributor
with limited resources to provide its customers with better agenhandle a higher
request rate, and/or reduce its resource requirements (and hemds dklivery costs).
Throughout this thesis the scalability and resource requiremerdsferent delivery
protocols and architectures are considered. Of particular interdee best achievable
delivery service, given some available resources.

The remainder of this chapter is organized as follows. Sectioprdvides an
overview of existing scalable content delivery approaches. Settibrefines the
objectives of the thesis. The primary contributions are outline@ctidh 1.3. Section

1.4 gives the organization of the remainder of the thesis.

1.1 Scalable Content Delivery

Before discussing scalable delivery architectures and protooofsider the
limitations of the basic client-server model, in which a conteaviger hosts all its
content at a single server, and client requests are served indwid@ach systems,
independently of the scheduling algorithm used, require resource usegglydi
proportional to the number of requests. With limited resourcesahniseasily result in
unbounded client delays or dropped requests. Further, both the senveandiséhe
network connectivity to the server will be potential bottlenecks ahdsasingle points
of failure.

Scalability can be achieved using senacgregation(e.g., [2, 6, 10, 12, 26, 31,
57, 146, 150, 176, 180, 182]) mplication (e.g., [93, 94, 96, 133]) techniques. With
aggregation, multiple client requests for the same file aleatively served. These
techniques often rely on one-to-many delivery multicast techniqwbgh build
efficient dissemination trees from a single sender to multigleeivers. With
replication, multiple geographically distributed replicas of tbetent share the load of
processing client requests, offload the origin content servereraiole delivery from

nearby replica servers. For example, replicas may be prelgctiushed out to replica



servers across a Content Distribution Network (CDN) or reagtieglicated at proxy
caches in response to client requests. Replication is alspedtiln peer-assisted
systems, in which other clients having obtained, or are currently obtaining,cament

are willing to serve as additional replica servers.

1.1.1 Service Aggregation

Rather than serving each request individually, service aggoagegchniques
attempt to serve multiple requests simultaneously, in a mahaeist more efficient
than individual service. These techniques often utilize multicast, in whichrtlez san
use a single send operation to deliver content to all of the requebénts. Multicast
service employs a multicast delivery tree to disseminatedheent. This tree can be
constructed either by network routers (e.g., [178, 123, 19, 18, 60, 61, 87, 138]) or b
application-level software (e.g., [45, 42, 95, 193, 153, 39, 139, 40]). When serving
multiple requests simultaneously, multicast can significantlyedse the bandwidth
requirements at the server, as well as the total bandwidth réqtreughout the
network.

Multicast-based service aggregation techniques have been proposed Ieth in t
context of download and streaming. Previous scalable protocols forabmimg large,
popular files from a single server include batching [66, 182] andcayullticast [146,

10, 26, 176, 31, 150, 27]. With batching, clients wait to begin receiving a redjfitste
until the beginning of its next multicast transmission, which ctilely serves all of the
waiting clients that have accumulated up to that point. With cyulilticast, the file

data is continually being multicast. Clients can begin listetonthe multicast at an
arbitrary point in time, and continue listening until all of the file data has beewadc

In the context of streaming, scalable service aggregation prstacdude
periodic broadcast protocols [5, 177, 90, 119, 88] and immediate service pr¢i@ols
36, 89, 67, 68, 69, 76]. To allow playback to begin quickly, with immediate eervic
protocols, a new stream is started for each client request, rigdivbe beginning of the
file. To allow later clients to catch up with earliereclis, with respect to the portion of
the file that has been received, clients may also listenrlierestreams. At the point a
stream is no longer needed (since the clients listeninghavié already received the

data it is delivering, by listening to earlier streamgpaih be terminated. With periodic



broadcast protocols, segments of files are periodically mult@esording to some
schedule. Clients are provided with a schedule for listening teaheus multicasts
that ensures that all data is received in time.

To accommodate packet losses many service aggregation techmgqlieding
some cyclic multicast and periodic broadcast protocols, utliasure codes [148, 31,
164, 121]. With erasure coding, a file of sidédlocks is encoded intbl blocks M >
N) such that reception of only a subset of khélocks (of total numbeN or slightly
larger) is sufficient to allow recreation of the file. Foample, a client listening to a
cyclic multicast can recover from a packet loss by continwrigsten until a sufficient
amount of erasure-coded data has been received [146, 31]. Erasuralsodasplify
content delivery in systems utilizing replication [30]. A nptigs able to download
erasure coded blocks from multiple servers with minimal dupliclatek receptions, as

long asM >>N. The ratioM/N is called the stretch factor of the coding scheme.

1.1.2 Replication

The first and simplest replication approach is forabetent distributorto invest
in aserver farmconsisting of a set of mirror servers among which an intelligentent
switch can direct requests. However, without service aggreghtgoapproach requires
server and network resources to scale linearly with the nuofbexquests and may
result in a single point of failure if all replicas aredted in the same sub-network or
behind a common network bottleneck. Three alternative replicatioegestare (i)
proxy caching (ii) Content Distribution Network§CDNsg, and (iii) peer-to-peer

networks

1.1.2.1 Proxy Caching

Internet Service Providers (ISPs) or user communities (such ase$sss or
universities) often embed proxy servers or organization levélesaat the boundary of
their networks. By redirecting client requests through a proxyesethat caches
previously requested files, these architectures allow requests served by a nearby
proxy server, rather than the origin content source. Specifighlthe proxy has a
cached copy of the requested content, the proxy can serve thetrigsgi€ otherwise
the proxy first retrieves a copy from the server. Proxyhicaccan reduce network

bandwidth usage as well as improve the perceived client performance.



To determine which files a proxy cache should retain copies ofpugri
replacement policies have been developed [147, 1, 34]. Such policiexpiaiy @)
the highly variable popularities of web objects, (ii) short-téemporal locality in the
object request stream, whereby an object may experienceakelesely spaced
requests, and (iii) the correlations among requests for diffetgatts. However, with
relatively cheap storage, disk caches can be made large enoogtkeoreplacement
policies less pertinent. The effectiveness of proxy cachiteygely determined by the
proportion of cacheable objects, and the rate these objects are updatechparison
with the request rate of each object [181]. To increase the propahdt a copy of the
requested file can be found close to the requesting client, matgnsy have been
proposed that use cooperative caching, whereby proxy caches clessch other
cooperate in serving client requests [71, 181].

Common for all caching techniques is that they work best if the miststatic;
however, as data is pulled from the origin server and stored at indipidug caches
the content provider loses control over the content and can not provideeservic
guarantees. Therefore, the origin server may include a direttilvedata that it sends
to the proxy cache, requesting a short maximum cache lifetime, forcingsctcrefresh

their content relatively frequently, and thus reducing their effectiveness

1.1.2.2 Content Distribution Networks
Content Distribution Networks (CDNs) [62, 166] are provisioned by content

brokers. By distributing servers across the network and interconnebéng at the
application-level the content broker can create a distributed ayvenfrastructure,
which it can use to provide content distribution services for contentdamsvi Selling
their services to content providers, these networks are ggndesigned to provide
attractive services such as reliable and high quality deliscethie content provider’'s
customers. These systems relieve content providers from invastifgastructure and
offload the origin content servers. With control over the edetarery architecture the
content broker is able to allow the content provider to maintain fullra@oof its
content. This added control also allows CDNs to be used to deimantc content

and streaming media [62]



In practice, CDNs use both reactive and proactive replicationcomtrast to
reactive approaches, used by proxy caches, proactive repliagatremely beneficial
for networks that may suffer from substantial network delays, lavdwalth, or even
unidirectional links. For example, in a network with a unidirecticagtllite link and
no uplink, data may be pushed to a local server, from which localsctantretrieve the
data; or a movie that is about to be released can be proactydigated to multiple
servers (avoiding a single server to become overloaded at éase®l This approach
can be further improved by disseminating content to servers & wmen the network
is less utilized.

Akamat' is the largest and best known CDN. In August 2006 it deploys 20,000
servers, spread over 1,000 networks, located in 71 different countriesevetouhere
are other commercial CDNs deployed that use many fewerrserydso, some larger
corporations choose to set up private CDNs over which they providengathstribute
tools, information and software, as well as provide an infrastrutuarefficient wide-
area meetings, while saving considerable network resources [166jn attempt to
scale beyond the limitations set by individual content brokers, witingp&cting the
privacy of each CDN, some research efforts have investigatiedconnection of
independent CDNs [58, 80].

A common goal for all CDNs is to provide an architecture that ongrthe
overall client experience. When redirecting requests ithéefore important that
content brokers provide an infrastructure and mechanism that isaransgor the end
user. In particular, client requests should be transparenthecesti to an appropriate
server. Optimally, the clients should benefit from being redideetkile interacting
with the system in exactly the same way as if thereevoaly a single server. Many
redirection techniques have been proposed for CDNs [21]; however, moskeotaim
systems use some form of Domain Name System (DNS) rédiefl03]. For

example, Akamai implements its own DNS service using a twd &&mrger hierarchy

[71

! Akamai, http://www.akamai.com/, August 2006.



1.1.2.3 Peer-to-Peer and Peer-assisted Systems

In peer-to-peer and peer-assisted systems peers distrilrtss$ dhe network
contribute to the collective resources of the system. Even thibegbriginal Internet
was designed on peer-to-peer principles, it is not until theféastyears that peer-
assisted systems have been considered for content distributionorAgeers choose to
share their content and resources, the capacity of theseeearates grows. With
appropriate techniques to discover nearby replicas, these sydtenismve the potential
to reduce network bandwidth usage.

The main application of current peer-to-peer systems is file sharioggapeers.
This application is not only the most widespread application, but &lsontost
controversial application. Systems such as Napster [124], GAutekeenet [47, 188],
Kazad, and many of the sites providing support for the BitTorrent [48] download
protocol have gained a multitude of attention from authorities, copyrotectors, and
media due to the enormous amount of copyrighted music and moviese&hstaaed
among users across these systems. Other applications incluthei@ddtcomputation,
computer gaming, and other collaboration applications.

Measurement studies have observed that peer-to-peer tratispgnsible for a
large portion of the bytes transferred across the Internet [E5F]). With increasing
peer-to-peer traffic locality aware mechanisms, which allow contdre tetrieved from
nearby rather than far-away peers becomes more important [145, 98].

Peer-assisted content distribution systems and algorithms haveplmgmsed
for both live streaming [39, 45, 95, 102] and for on-demand streaming of steid
files [24, 53, 161]. To achieve streaming, these protocols typicstiplesh relatively
long-duration streams from the content source and between peergjaagen into
some form of overlay topology. In contrast, with BitTorrent [48] andlar download
protocols (e.g., [78, 162]) a client may download a file from a largechanging set of
peers, using connections of heterogeneous and time-varying bandwidthss T
flexibility is achieved by breaking the file into many shpaéces, each of which may be

2 Gnutella,http://www.gnutella.com/August 2006.
% Kazaa http://www.kazaa.comAugust 2006.



downloaded from different peers. This approach has also been foneficla in the
context of live streaming [86, 191, 190, 112].

Other work has proposed mechanisms to replicate content [116, 51, 55, 152],
search for content (or information) [116, 184, 49, 50, 117, 105, 17, 172], as well as route

data (or queries) [38, 39, 193, 168] in various types of overlay peer-to-peer structures

1.2 Problem Description

This thesis considers the scalability and performance of downloadcpi®,
used to effectively disseminate data to a large number of remgedients. In
particular, new protocols and policies are designed and evaluatedréer different
contexts, each achieving scalability through service aggregation and/oatiepli

First, this thesis considers the problem of devising singleesg@motocols that
minimize the average or maximum client delay for downloadirgngle file, as a
function of the average server bandwidth used for delivery of tleat An equivalent
problem is to minimize the average server bandwidth required Hievac a given
average or maximum client delay. This equivalent perspectivemetsnes adopted.
Although delivery of multiple files is not explicitly considered, nabat use of a
download protocol that minimizes the average server bandwidth feegebf each file
will minimize the average total required server bandwidth for deliveringesl dis well.

Secondly, this thesis considers the problem of devising policissléot which
replica should serve each request, in systems exploiting bothesagygregation and
replication. Such policies must take into consideration the basiecfifabetween
locality of service (maximized by selecting the neareglica), and efficiency of use of
server resources (maximized by selecting the replicahéth service can be shared
among the largest number of clients).

Finally, a peer-assisted environment is considered in whichctiméent is
replicated but peers do not utilize service aggregation techniques.this context,
scalable download protocols, such as BitTorrent [48] have alreagly peposed,
successfully deployed, and have shown to provide good performance [111, 133}]. Thi
thesis considers the problem of using adaptations of these download prdtocols

provide on-demand streaming of stored media.



1.3 Contributions

The main contributions of this thesis are as follows.

* New scalable download protocols are designed for download of a large
file from a single server, using a multicast based approachiheid
performance evaluated against new analytic bounds on the best
achievable performance.

* The relative performance of classes of replica selection ipsliof
varying complexities, are compared in a context where a fdegmay
be downloaded from multiple replica sites, each using multicast.

* A peer-assisted protocol is designed that splits a large nfiélignto
small pieces, uses a piece selection policy to determine igch to be
downloaded next from multiple content server(s) and/or other clients
having retrieved part of the file, in an order that allows stiegnas well
as a rule to determine when playback can safely begin.

For each of the above contexts a number of abstractions are develithed,
which protocols and policies are evaluated. The following secttatsorate on the

contributions made in each context.

1.3.1 Scalable Download from a Single Server

To evaluate the performance of existing and new protocols lower bounbe on t
average and maximum client delay for completely downloading ,aafildunctions of
the average server bandwidth used to serve requests for thardéleleveloped for
systems with homogeneous clients. The results show that ngptivaized versions of
cyclic multicast nor batching consistently yield performan@selto optimal. New,
relatively simple, scalable download protocols are proposed that aetitbve 15% of
the optimal maximum delay and 20% of the optimal average del&apmogeneous
systems. Similar to cyclic multicast, these protocols alitients to start listening to
on-going multicasts at the time of their arrival, but limitveertransmissions to time
periods in which (probabilistically) there are more clients listening.

For heterogeneous systems in which clients have widely-varghgge\eable

reception rates, an additional design question concerns the use ofateigh-r



transmissions, which can decrease delay for clients that caiveeat such rates, in
addition to use of low-rate transmissions that can be receivedl bljeats. A new
scalable download protocol for such systems is proposed, and its perernsa
compared to that of alternative protocols as well as to new lbawgrds on maximum
client delay. The new protocol achieves within 25% of the optimairman client
delay in all scenarios considered.

Throughout this analysis it is assumed that each requesting r@dmves the
entire file (i.e., clients never abort their request whiletimgifor service to begin or
after having received only a portion of the file). The analgi$ protocols presented
are compatible with erasure-coded data. Each client is adstanteave successfully
received the file once it has listened to multicasts of an anaiuttal (termed the
“file size”, although with packet loss and erasure codingnay exceed the true file
size). Poisson request arrivals are typically assumed, althcergradjzations are
discussed in some cases. Note that Poisson arrivals can béedxfpeandependent
requests from large numbers of clients (during time periods witktant arrival rates).
Furthermore, multicast delivery protocols that have high perfoceaor Poisson
arrivals, have even better performance under the more burstsl grocesses that are

typically found in contexts where client requests are not independent [68].

1.3.2 Scalable Download from Multiple Servers

In large distributed systems implementing both replication and servic
aggregation, a basic tradeoff is between locality of serviexifmzed by selecting the
nearest replica), and efficiency of use of server resourcednfizad by selecting the
replica at which service can be shared among the largest number oj.cliRatiser than
propose a specific policy to mediate this tradeoff, classes afigmlof differing
complexities are compared within the context of a simple costlimzageuring both the
service requirements of the individual replica servers, and theadditiost associated
with retrieving service at remote replicas.

A large popular file is assumed to be replicated at multipleeseracross the
network, from which the file can be downloaded. The set of servdrsaweplica may
be determined based on expectations of future demands, availabilépn other

system requirements. Here, the set of servers with aaeglithe file is assumed to be
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predetermined. It is further assumed that each server implesmmnesform of service
aggregation technique allowing multiple client requests to be seogedher, rather
than individually.

Within each class of policies, limits on the best achievabl&meance are
determined (or representatives defined) for both batching and cyuliticast
aggregation approaches. When using cyclic multicast the filesisraed to be erasure
encoded. Similar to the analysis used for the single servey ttés analysis assumes
that requests arrive according to a Poisson process, and no bloets their request
while waiting for service to begin or after having received only a portiomedfile.

It is concluded that (i) selection using current system stdbemation (rather
than only proximities and average loads) can yield large improvenmep&sformance,
(i) when it is possible to defer selection decisions (e.g., whguests are delayed and
served in batches), deferring decisions as late as possiblgiatddnadditional large
improvements, and (iii) relatively simple policies using only “lb¢eather than global)

request information are able to achieve most of the potential performance gains

1.3.3 On-demand Streaming using Scalable Download

Based on the design of the relatively simple and flexibl&drent download
protocol, this thesis proposes a peer-assisted BitTorrent-like aagppto media file
delivery which is able to achieve a form of “streaming” deliyan the sense that
playback can begin well before the entire media file is vedei Achieving this goal
requires: (i) a piece selection strategy that effectivedyliates the conflict between the
goals of high piece diversity (achieved in BitTorrent using astdiest policy), and the
in-order requirements of media file playback, and (ii) an on-like fior deciding when
playback can safely commence.

Candidate protocols including both of these components are presented and
evaluated using event-based simulations, in which each peer is dssamiee
bottlenecked by either its upload or download rate. Locality is os$idered in this
part of the thesis. It is further (very conservatively) agsithat no peer, except the
origin content source, shares pieces once it has received the ihole f real system,
peers are likely to continue serving other peers as long asteestill playing out the

media file, while other peers may (graciously) choose to uploath&r peers beyond
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that time. With the higher availability of rare pieces and dowhlmandwidth in such
systems, the benefits of more aggressive piece selection techifgivieg priority to
earlier pieces rather than rare pieces) are likely to be evermgtiean presented here.
It is found that simple probabilistic piece selection policiegngipreference to
earlier pieces, allow peers to begin playback well beforertieedile is downloaded.
Further, whereas no on-line strategy for selecting startup delaysested to give close
to optimal startup delays (without significant chance of playbatdkerruption),
promising results are obtained using a simple startup rule. BstBoteng playback, the
rule requires the retrieved number of pieces to exceed som#) (gmeshold, and the
rate at which in-order pieces are being accumulated to @xcealue sufficient to allow

continuous playback without interruption, if that rate was to be maintained.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chap&vi@ws related
work, outlining the current state of scalable download protocols andgsettisting
solutions into context. Chapter 3 develops lower bounds and new scalable downloa
protocols that achieve close to optimal performance when downloadgeyfiles from
a single server. Chapter 4 considers the problem of reptection in systems
exploiting both replication and service aggregation. Chapter 5 propdapstions of
existing scalable peer-assisted download protocols, in a way |[ibats aon-demand

streaming. Conclusions and directions for future work are presented in Chapter 6.
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Chapter 2
Background

Rather than attempting to provide a complete survey of all egiscalable
content delivery protocols and architectures, this chapter focuses t@thinégues most
relevant for the three contexts considered in this thesis. o8e2tiL presents an
overview of various approaches to implement multicast. Section 2/8ysuprevious
work on scalable single server download protocols that use mtilbassd service
aggregation.  Section 2.3 discusses replica placement and selestiomqties
applicable for the context of scalable download from multiple servensally, related

work on peer-assisted content delivery protocols is surveyed in Section 2.4.

2.1 Multicast

When distributing content to multiple clients across the Internetecbservers
have traditionally used multiple concurrent unicast connections. Thisagbpsuffers
from highly redundant usage of network resources and high server alerihedh
multicast, in contrast, a single transmission of the contenbeameceived by multiple
receivers. A collection of nodes interested in receiving the saniticast transmission
Is called a multicast group, and the server and network resaisedso transmit each
multicast to each member of the group is called a multidestrel. Throughout this
thesis, “listening to a channel” refers to listening to a galdr on-going or intermittent
multicast transmission. Content is disseminated using a multielgery tree, and in
contrast to replication strategies, multicast does not requiyeparsistent storage
capacity in the network. Multicast significantly decreaseskandwidth requirements
at the server, and decreases the total bandwidth required throughout the network.

Despite first being implemented as an overlay system imgieed at the
application-level [70], multicast was originally envisioned as etwaork-level
functionality (“IP multicast”) supported by the network routers].[59n theory this
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would give shorter paths and use less total network bandwidth; howewveyrherous
reasons IP multicast has seen slow commercial deployment [[64TBi8 has prompted
much research on implementing multicast at the application levVkis section will

discuss both IP multicast and application-level multicast.

2.1.1 IP Multicast

This section discusses how the current multicast solution has evainked a
concludes with a discussion of current deployment issues and altemetwork-level
solutions that have been proposed.

In the traditional IP multicast service model, a multicast gisdprmed by a set
of clients that have all expressed interest in receiving nressons sent to some
particular multicast address (used as the group identifier)hileVonly the nodes
currently in the group receive data sent to the multicast addregsnode, including
nodes that are not members of the group, can send data to the group dssiagdr
transmissions to the multicast address. Implemented at terkdevel, the content is
delivered without guarantees of in-order or loss-free delivery.

The Internet Group Membership Protocol (IGMP) [32] provides the functionality
to handle group membership. It operates between clients and theitydatached
routers. Group members use this protocol to inform their nearest ahdut multicast
groups which they wish to join or leave. Note that IGMP is only dsedyroup
membership, and other protocols called multicast routing protocolseaced to build
and maintain delivery trees for each group.

To achieve scale and administrative autonomy the Internet is oegamito
domains or regions, each called an Autonomous System (AS). Routing matoeol
generally categorized as eith@tradomainrouting protocols, responsible for routing
within a domain, orinterdomainrouting protocols, responsible for routing between
different domains.

Many different intradomain protocols have been proposed for multicagtgout
within an AS. The main differences among these protocols aohoev they build and
maintain the multicast tree structure. These routing protecelsiormally categorized
as eitherdense-moderotocols orsparse-moderotocols. Dense-mode protocols are

designed to perform best when multicast transmissions must pasgtthmost of the
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network routers and normally use some form of “broadcast and proaehanism.
Sparse-mode protocols are designed to perform best when muli#reshissions need
to pass through only a small fraction of the network routers andorelyeceivers
explicitly sending requests to join the multicast group. Densg@emintradomain
multicast protocols include Distance Vector Multicast Routing deait (DVMRP)
[178] and Multicast Open Shortest Path First (MOSPF) [123], wipkrsse-mode
protocols include Core-Based Trees (CBT) [19, 18] and Protocol Indepdvidé#icast
Sparse Mode (PIM-SM) [60, 61]. PIM-SM is also an integral compmioofkthe current
interdomain multicast architectutePIM-SM forms a reverse shortest path tree, rooted
at a rendezvous point (RP) associated with a multicast groupettigg up routing
states at routers when propagating the explicit join messagasdtothe RP. The tree
Is a reverse shortest path tree in the sense that the patadobnneceiver to the RP uses
the “shortest” IP path; however, with the asymmetry of patgthex; these paths are not
necessarily the shortest paths from the RP to each recéiveovel feature of PIM-SM
Is its ability to let receivers switch from group-sharecedré¢in which all content is
forwarded through the RP) to source-specific trees (in which thicast tree is rooted
at the content source). This ability can improve performancdiémts and offload the
RP.

While all routers in a specific AS generally deploy thensamulticast routing
protocol, routers in different domains may use different protocols. refdre,
interdomain routing protocols are generally required to achieve intatulily among
domains using different routing protocols. Up until the beginning of 1999, DMR
was almost exclusively the only protocol deployed for interdomainnghutHowever,
as a dense-mode protocol (using a broadcast and prune approach) isustettfor
sparse sets of participating routers, and as observed by Rajeaadyalmeroth [137],
DVMRP was almost entirely replaced in March 2000. In the ceptent multicast
architecture, PIM-SM is used for routing and the Multiprotocol BearGateway
Protocol (MBGP) [22], which extends the Boarder Gateway Prot®®P] [144], is

1 PIM-SM is currently the only multicast routing poool used for interdomain routing and it (or other
PIM versions) is also typically used for intradomeduting [160].
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used to exchange routing information among multicast-enabled domMBSP allows
domains to learn of paths to reachable multicast-enabled networks.

The Multicast Source Discovery Protocol (MSDP) is currentledusn
conjunction with MBGP and PIM-SM, although it is viewed as a sham solution.
MSDP uses flooding among RPs of different domains to distributemiatoyn about
new sources that have started transmitting to a multicastsaddifea RP has received a
join message from within its domain for a multicast group to wlacnew external
source is transmitting, the RP sends a join message to the.sdungelata received by
the RP will then be forwarded on the local multicast tree. Wdiitbwledge of the
source, source-specific trees can be established using PIMABMeroth discusses the
MBGP/PIM-SM/MSDP solution and some of its drawbacks [11], whilerotlegk has
proposed interdomain solutions to overcome MSDPs scaling problems [106].

While quantifying the bandwidth savings at the server from useuttfcast is
relatively easy, quantifying the bandwidth savings throughout the netiworkore
difficult. For example, each network link may have a different froxction associated
with it and costs may be associated with many differenarorgtions. Chuang and
Sirbu [46] define a cost measure, originally aimed at pricing multicaghearatio of the
total number of multicast links in a distribution tree and the aeepath length between
two arbitrary nodes in the network. Through extensive simulationfi@test path
multicast trees using both real and generated network topoldgigddund this ratio
follows a power law, scaling as a power of the number of receivEhe same power
law was also found using analysis of k-ary trees [128]. Van iiexet al [175]
perform a more thorough analysis, finding that the exponent in ther p@mwéncreases
with the number of nodes in the system. Chalmers and Almeroth [ddateathis later
model using data obtained from measurements of real multicast &ed explain it by
the underlying network connectivity putting a constraint on the pessbapes of
interdomain multicast trees. While previous studies [46, 128] suggestver law
exponent of about 0.8, Chalmers and Almeroth [41] indicate that it mbgtlheeen 0.7
and 0.8 for real networks. They also observe a bandwidth reducti®s 9% from

using multicast, with multicast groups as small as 20-40 receivers.
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Despite considerable potential bandwidth reduction, IP multicast haseeat
widely deployed outside individual organization-based networks [155]. Wigte are
many difficulties with implementing wide-area multicasttla¢ network level [64, 87,
11], most of which are due to the highly heterogeneous nature dhtér@et (with
many domains deploying different routers, protocols, etc.), one ofntia reasons
often used to explain this fact is the inherent complexity gflementing the IP
multicast service model, in which both multiple senders and recaverallowed. By
restricting the model to a single sender (or source), as ininigée SSource Multicast,
deployment may be made much easier [87, 63]. Here, the root tkéhes placed at
the sender and each receiver specifies both an IP multicast addpegifying the
group) and a regular IP-address (specifying the source). @#searchers have
proposed leveraging from existing unicast solutions [170, 52, 138]. Fonpéxa
Ratnhasamyt al [138] propose an approach in which routers use BGP routing tables to
compute dissemination trees, consisting of the union of all unicast fmathsow
receivers, and forward data only to the next set of routers imlifsemination tree
[138].

IP multicast has also been deployed using short-term solutiond) sdilisfies
short-term demand, but makes re-deployment difficult. For exarf®MP did not
support Single Source Multicast until late 2002 [32], and this new I@&&lon is still
constrained by backwards compatibility with previous versions.h \Wiservations of
successful bandwidth savings [155], improved stability of the currenticamilt
infrastructure [137], and increasing demands for the original semiodel (e.g.,
distributed network games), the feasibility of wide-area multic®aeployment of IP

multicast is currently being revisited [138].

2.1.2 Application-level Multicast

The end-to-end principle [154] states that complexity should be pushée to t
end systems, keeping the core of the network simple. This is dapplcation-level
multicast. In this approach, network-level routers play no rolemplémenting
multicast. Instead, multicast is implemented by applicdgent software that
establishes conventional unicast connections among a collection of nodedingc

those that wish to receive the multicast transmissions, the ¢syraed possibly other
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nodes as well. Data transmitted by a source is relayetidsg participating nodes,
across unicast connections, until reaching all receivers. Thextoll of nodes and the
connections (“links”) between them is commonly called a “virtuat, “overlay”
network. Some of the main advantages of application-level mulacas(i) billing can
be done on participants in the virtual network, (ii) group managemeitechandled at
the application-level, (iii) higher level services can berigdin well understood unicast
solutions, (iv) multicast address allocation can be done in a simrglal domain, (v)
existing unicast tools can be used to monitor the overlay networkygndtérdomain
routing is avoided by routing in a single virtual domain. Since icgn-level
multicast can be implemented by any willing collection of nodethomt requiring
additional infrastructure, it is also relatively easy to deploy.

Depending on the construction of the routing overlay, for the contrbldata
distribution, application-level multicast protocols can be categdriato three classes:
() mesh-first approaches, (ii)tree-first approaches, and (iiilkey-based routing
approaches in which the multicast tree is created on top of structured overlays.

Mesh-first protocols, such as Gossamer [42] and Narada [45], peafdmo-
step process in which a mesh of connections is created befordubkedativery tress.
Both Gossamer and Narada use delay measurements and threshdalhadgtor create
and maintain a sparse mesh with limited out-degree at eachigetitig node. The
redundancy of the mesh provides for better reliability than a\ikere the breakage of
a single link partitions the network) and mesh maintenance can ehstirthe mesh
links in use have relatively low end to end delays and high-barfdwi@i® form their
respective delivery trees using the mesh network links, both protosels distance
vector protocol, in which nodes periodically exchange with their neighthoms
established network distance over the mesh to each destination, thvisgaktach node
to determine their best next hop (and correct estimates of ketligiances) to each
destination. By building their delivery trees on top of a mesh theyiirihe attractive
properties of the mesh, while permitting use of a relatively simple treermujpdotocol.
While Narada is tailored for smaller end-system groups [44], Gussachieves

scalability by adding a two-level hierarchy to its design.
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For the purpose of robustness tree-first protocols may also caeatesh;
however, central to this approach is that protocols begin byirggemtgroup-shared or
source-specific tree. ALMI [127] is a tree-first protocolai@ed towards multicast
groups of small sizes using group shared trees, Yoid [74] and Mualsicast Tree
Protocol (HMTP) [189] are more scalable protocols using group-shezed, while
Overcast [95] is a scalable single source protocol using sepegsfic trees. In ALMI,
a central session controller uses the relative distances difteeent nodes to form a
minimum spanning delivery tree. With the more scalable protocals) eode is
responsible for finding an appropriate parent on the tree. A potemntaltsoould have
sufficient resources to support an additional child, and the addition iok aol the
potential parent should not result in a routing loop. Other imgdraitocols structure
themselves into a hierarchy which implicitly defines the dejiveee. For example,
NICE [20] structures itself into a hierarchical overlay of tdus, where each cluster has
a cluster leader that is also a member of a higher léwslec. This structure allows
NICE to efficiently route messages to all nodes in the ovegldyalsing each node send
the messages to all nodes in all the clusters in which it participates.

Key-based approaches build multicast trees on top of structuredysvirdd use
key-based routing [56, 192, 151, 37, 169, 141, 131], wherein all nodes are given
identifiers in a numerical key space, and routing proceeds using team@que that
guarantees movement closer in the key space to the destination nedehahop.
Examples of such protocols are Bayeux [193], Scribe [153, 38], SplitS{&%, and
CAN-multicast [139]. These protocols all take advantage of the lyimdgkey-based
routing (KBR) [56] mechanism, when forming their distribution trees.

Much of the work on application-level multicast considers a scemantich a
different overlay network is formed for each multicast group, ctingionly of the
sender and receivers (e.g., client work stations) for that growphasl also been
suggested that application-level multicast could be offered asfrastructure service,
using an overlay network constructed using servers distributed throaighténnet in a
manner of a CDN [42, 43].

Despite numerous advantages, application-level multicast uses mverk

bandwidth than IP multicast. This is primarily since differankd in an overlay
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network may share links in the underlying physical network, heroqpgériieg multiple
copies of the same content to traverse the same network linkset @hu[45] define a
metric they call Normalized Resource Usage (NRU), asdtie of the network usage
for a content delivery scheme of interest relative to that PFomulticast. Assuming
symmetric links and in light of the previously discussed findingShafang and Sirbu’s
[46], the expected NRU for sequential unicasO@’?), whereN is the number of
receivers in the distribution network. Unfortunately, not many rebees use this
metric when evaluating their protocols. For application-levelinagdt to save network
resources, compared to sequential unicast, it should have an NRU bettétthatote,
however, that even when application-level multicast does not rexilnstantially the
network bandwidth usage, compared to unicast, it still offers substhatiawidth
savings at the server.

Other measures that have been used to evaluate application-leveashul
protocols are the stress and stretch metrics. These meteasure the number of
identical packets sent over the same physical link, and the ratie path length along
the delivery tree and the length for the unicast path, respectively. Notbdlsttess for
IP multicast is always 1 but is generally higher for appbcakevel multicast.
Assuming symmetric routes in the physical network (i.e., the rioote A to B is the
reverse of the path from B to A), IP multicast will delivetadalong the unicast paths,
resulting in a stretch of 1. This property is not necessaulg if the routes are
asymmetric since the direct unicast path may not be the aarttee reverse shortest
path, used to create many multicast trees (e.g., PIM-SM)thdfuresearch suggests
that a substantial portion of IP-routes on the Internet are non-opéinthlefficient
routing choices over a virtual overlay can achieve a stretch be[@®8]1 159, 13, 14].
Because of asymmetries and non-optimal IP-routes, applicationaeNgtast certainly

has room to achieve a lower stretch than IP multicast.

2.2 Multicast-based Single Server Scalable Download Pracols

This section discusses the main multicast-based download protocol$oused
content delivery from a single server. It is important to nloé¢ the multicast-based

protocols considered here are beneficial even for systems in sbitke form of
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multicast-like operation has been implemented only at the sanenot in the network
itself. In this case, server resource use (such as diskssabeadwidth, CPU and
memory use) can be reduced by replicating the data at (obgfste reaching) the
network interface [150]. Although this may result in the network fater becoming a
bottleneck it can significantly improve the performance of downlgatems in which
some other server resource is the bottleneck.

Existing multicast-based approaches for scalable download of pdibegairom
a single server includeatching[66, 182] anctyclic multicas{10, 150]. With batching,
clients wait to begin receiving a requested file until therbegg of its next multicast
(or broadcast) transmission, which collectively serves all olvigng clients that have
accumulated up to that point. With cyclic multicast, the fileadst cyclically
transmitted on a multicast channel that clients begin listetongt times of their
choosing, and continue listening to until all of the file data has Emived. Section
2.2.1 and 2.2.2 discuss batching protocols and cyclic multicast protocpisctresly.
Hybrid protocols are discussed in Section 2.2.3. The accommodation afgesieity
in multicast-based protocols is considered in Section 2.2.4.

2.2.1 Batching Protocols

Considerable prior work has concerned scheduling one or more broadcast
channels that serve a collection of small, fixed length objeatg asbatching approach
[66, 182]. The main problem considered is that of determining whichtaheald be
transmitted on the channel (or channels) at each point in time, teonaigimize the
average client delay. With batching protocols scheduling smedl, fihe average client
delay is often defined as the time that a client waits i from its arrival until it
first starts receiving service. This delay is oftenmefé to as the access delay. Both
push-based [12, 83, 2] and pull-based [66, 182, 8] protocols have been proposed. Push-
based protocols determine a transmission schedule based only on algeag@ccess
frequencies. Pull-based protocols assume knowledge of the cuoatgtanding client
requests. Hybrid approaches that combine push and pull are also pf&sibtd].
Other work has investigated batching protocols for streaming rtaerdownload [6,
57, 173].
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2.2.1.1 Push-based Protocols

In asymmetric environments, where clients have little or no uplinkviadtta
directly communicating requests may not be feasible. For soglionments push-
based protocols are commonly used. Push-based protocols determinarassians
schedule based only on average object access frequencies, obtainedmsirajfne
method, model, or other estimation of the expected demands. Given knoofexdye
the average access frequencies, a periodic delivery schedule is optimé&ridating a
natural relaxation of the problem, where scheduling conflictsga@ed, the optimal
spacing between transmissions, as well as a lower bound, can\mxdddameed and
Vaidya [83, 84, 174] generalize these results to consider diffdilentsizes and
transmission errors. They further suggest a simple but closgtimal scheduling
algorithm, inspired by packet fair queuing. The scheduling tintki®flgorithm scales
logarithmically with the number of files and is extended to handle multiple channels

Various other approximation algorithms have been proposed that provide
performance guarantees. For example, Kergtaa [100] propose a polynomial-time
approximation scheme (PTAS), which separates files into thitegarées and places
them in a fairly intuitive manner. Transmissions of the mosjuiatly requested files
are first scheduled in a near optimal fashion over the schedule ppavided for the
two first categories. Secondly, transmissions of the filesnigahg to the largest group
of files are scheduled in a round robin fashion, before the scheduleally stretched to
give room for the leftover files with the lower cost.

Another approach proposed in this context isktfe@adcast disksechnique [2],
in which files are partitioned into groups with similar accesguencies. Placing files
with similar access frequencies on a single disk minimikesrequired storage, and
allows each individual disk to operate using a round robin schedule. Antsasien
schedule for the channel is created by separating eachndiislsmaller chunks and
multiplexing among transmitting chunks from each disk, based onr#ieiive access
frequencies. Since the times of future transmissions agd, fthis scheme also has the

added benefit of simplifying client operation.
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Push-based protocols do not utilize potential information about outstanding
requests, and are therefore not suitable for content delivery innoandesystems with

explicit knowledge of outstanding requests.

2.2.1.2 Pull-based Protocols

Pull-based protocols employ a queue of client requests, and a policy f
determining which request(s) in the queue to serve next by tréingnitie requested
object. Early papers by Dykemanhal [66] and Wong [182] consider policies such as:
First Come First Serve (FCFS) — broadcasts the file tisathgarequest with the longest
individual wait time; Most Request First (MRF) — broadcastditbavith the maximum
number of pending requests; Most Request First Lowest (MRFLine s& MRF but
breaks ties in favor of the file with the lowest access probglaihd Longest Wait First
(LWF) — broadcasts the file with the largest cumulative ingitime over all pending
requests for that file. Among these policies, LWF results inaest average access
times (when averaged over batches), MRF in the lowest adoess for popular files,
and FCFS in the most fair access times. The criteria ugdeCltFS and MRF are
combined in the RxW policy, proposed by Aksoy and Franklin [8]. Wherdideci
which object to transmit next, this policy weighs the number of perrdimgests (R) for
each file and the associated longest waiting time of the pergjugsts (W). RxW has
been shown to provide a relatively good tradeoff between the famhé<3FS and the
bias towards popular requests in MRF.

Acharya and Muthukrishnan [4] consider the case of varying fiessind allow
for preemption. Focusing on the completion time of requests, ratherttibaaccess
time, they argue that the user-perceived performance decleaseger time unit for
clients downloading large files than for clients downloading smdiles, as their
expected download time is larger and the perceptual differecoees smaller. Based
on this observation they define the stretch factor as the ratie aioimpletion time of a
request and its required service time (if the request wasdsemweediately without any
preemption). By minimizing the total stretch, rather than the cefiopl times, it is
suggested that fairness among all jobs can be maintained, wimimining some
“perceived” client delay. It is proposed that each file agkbn into smaller segments so

that transmissions of larger files can be interrupted, allosmagller files to keep their

23



stretch factor low, and improving both the overall stretch and theg&eompletion
times.

Batching protocols do not typically allow clients to join an on-gamulticast,
instead clients are required to wait until the beginning of thet meulticast
transmission; clearly, when considering delivery of large erasuceded files this is
sub-optimal. Further, previous work on batching protocols assumes thagsteen s
devotes a fixed set of server resources to file delivery, ansl mimteconsider the case
where the server bandwidth devoted to this task may be somewhtt ¢tand the

system may adjust its resources usage based on current demands).

2.2.2 Cyclic Multicast Protocols

Prior work on scalable download of large files from a singlwes has focused
on cyclic multicast, in which a file's data is cyclicallyjransmitted on a
multicast/broadcast channel [146, 10, 26, 176, 31, 150, 27]. Each requestingasiient
begin listening to the channel at an arbitrary point in time,cantinues listening until
all of the file data has been received.

Now, consider a simple cyclic multicast protocol using only one channel and one
object. As the data is cyclically transmitted on the channel a clienticannt and listen
until it receives the whole object. Assuming there are no lp#isissscheme is very
efficient since each client is served immediately and onlydhasit for the duration of
one broadcast, no matter when the client arrives. Unfortunatelys #assunreasonable
assumption on some networks. Packet losses do occur and clients raigscget
would either have to listen to the channel until the missing paeitstretransmitted in a
later cycle or rely on some additional mechanisms to retrieve the missing da

Erasure codes have been proposed to accommodate packet losseSed®m
1.1.1, letN be the number of blocks in the original file avdthe number of encoded
blocks. With the simplest form of erasure codes, one additional b\ck l+1) is
created using the exclusive-or (XOR) operation om\tlegiginal blocks. This operation
Is performed on a bit-by-bit basis. Having received Bingut of theseN+1 blocks
ensures that theN¢-1)™ block can be retrieved as well, thus allowing the originelté

be reconstructed. This approach can be extended in a number ofhwasver, the

24



stretch factoM/N of these simple schemes is typically small, and for matgnsions
receivingN distinct blocks does not ensure that the original blocks can be reconstructed.

By multiplying the original source blocks with a transformatiortrmaof size
MxN, consisting of linearly independent rows, Reed-Solomon codes canabedcfer
any arbitrary stretch factdvl/N [148]. Given a set oN distinct blocks, the original
source blocks can be obtained by multiplying the inverse caresformation matrix
(created by a subset of the rows in the original transformatairixnwith the received
blocks. Unfortunately, matrix inversion is costly and this approaétersufrom a
serious scalability problem, as the objects become biggeX anolws large.

Tornado codes [114], LT codes [115], and Raptor codes [164] allow for faster
decoding. These coding techniques require the receiver to receiverage (1€)N
distinct blocks before decoding is possible, whers a small number. For example,
with Tornado codes whekeeis typically in the range 0.05 to 0.1. Similar to some of the
basic schemes discussed earlier, both encoding and decoding ientyfiperformed
using only XOR operations. However, here each encoded block is creiaiga linear
combination of original source blocks. Similarly, given a seerafoded blocks, the
original source blocks can be decoded (or reconstructed) by congigech block as
an equation and solving these equations in an order based on the number ofnunknow
source blocks in each equation.

In comparison to Reed-Solomon codes, Tornado codes have far superior
decoding speeds. However, they require a large amount of coding aodindec
information to be communicated to both servers and clients. In additioantioeing
and decoding memory requirements at both the server and the dleepteortional to
the object size multiplied by the stretch factor [115]. Byngstandom number
generators, rather than locally stored transformation infoomakiT codes can achieve
a dynamically expandable stretch factor, and significantlyedser the memory and
storage requirements on the clients and servers. Raptor codesrfl&4] extension of
LT-codes, which achieve linear time encoding and decoding.

Using the erasure codes described above, Bstead [31] envision a content
distribution system (termed a digital fountain) in which the conpeowider provides

clients with an unbounded stream of distinct encoded data blocks th wll@nts can
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tune in until it has received enough data to reconstruct thelfiléghe ideal case each
block is of full value to the receiver. Having received some arbitrary set of dattheri
combined size equal to the size of the original data the clientdshwith minimal
effort, recover the original data; i.e., obtaining the samefaetiisn as if the original
content was delivered directly to the client. Based on dieial icase, the perfect erasure
code should (i) have an infinite stretch factor, (ii) have an infimital encoding and
decoding cost, and (iii) allow any receiver to decode the datarafteiving exactliN
unique blocks. As discussed above there are no known erasure codebesgh t
properties. However, due to their superior decoding efficienRstor codes are
considered to be the codes that are most efficient with todsgfisology. In fact, these

codes are used in Digital Fountain’s commercial sysfems.

2.2.3 Hybrid Protocols

There has been some prior work on hybrid protocols that combine batcling a
cyclic multicast, specifically the work by Wodft al [180]. The focus in the work by
Wolf et al is on delivery of digital products using spare bandwidth in a breadca
television system, and thus their algorithms assume a fixedlidehef broadcast
channel availability and fixed delivery deadlines with associated delpagnyents.

Client requests for a particular file are allowed to be agtgdgssing techniques
similar to those used in cyclic multicast protocol. However, @& size-based
approaches [4], files are split into subtasks. The subtasks parteular file are
scheduled in cyclic order, allowing requests waiting for traesfile to be served as a
single batch. The next subtask to be scheduled is reevaluatesl ampletion of a
subtask. Rather than using FCFS, or some other common techniques, tondecide
subtask to schedule next, the authors design scheduling techniquesteimgtdt d@o
maximize revenue.

They assume that each request is associated with deliveryingsadind
corresponding delivery payments. This defines a revenue functiontinditiae profit
as a function of the completion time. Transmissions (of cygli@umerated subtasks

for each requested file) are scheduled in such a wayhbattal revenue of an on-

2 Digital Fountain Inc.http://www.digitalfountain.com/August 2006.
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demand delivery system is maximized. After demonstrating timat scheduling
problem is NP-hard they propose three heuristics to determineh veuibtask to
schedule next. The most complex of these heuristics weighs rtteenmeg delivery

time of the file, the time until the different delivery deadlinasd the cost of missing
each deadline. The second heuristic relaxes this approach bgomsiglering the cost

of missing the next deadline that is feasible for each objeuwe third heuristic greedily
maximizes the profit per time unit of each possible schedulingth€3e heuristics, the

first performs the best and the greedy approach the worst.eowall three heuristics

are shown to outperform a non-hybrid protocol based on a transportation problem
formulation, which does not split the file into subtasks.

Similar to this work, Chapter 3 of this thesis designs hybrid potgothat
combine elements from both cyclic multicast and batching protocalshieve superior
performance. However, in contrast to this work, this thesismass complete flexibility
in when transmissions occur, and develops protocols that achieve neaal@serage

or maximum client delay as a function of the average required server bandwidth.

2.2.4 Client Heterogeneity

Real deployable delivery systems generally serve clidwas are spread over
many domains with highly diverse characteristics. For exampile available
bandwidth, round trip times and loss rates may be very different &etddferent
clients. Various multicast-based protocols have been proposed fderagemeous
client population, using one of two main approaches. The first, and stigbgroach
is to categorize the client population into a set of groups. &adr group a different
version of the content is encoded and delivered over the network. Clients shogéec
to receive the version that best fits their respective chanaehaeristics. Although it
is possible to allow clients to switch between versions duringedgli this may create
delivery interruptions and/or redundant data being received.

A second approach is to deliver a single version of the file, but with
transmissions spread over multiple channels. Each client listerte subset of
channels appropriate to its achievable reception rate [122, 176, 29, 107, B{3].
careful selection of the order in which data blocks are transhotieeach channel [26,

27], or use of erasure codes with long stretch factors i.e> N) [164], receptions of
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the same data block on different channels can be reduceoharagéd. A client can

adjust to current network conditions by changing the set of channels itngnigste.

2.3 Server Placement and Selection

By strategically placing replica servers, the scalabditg efficiency of CDNs
and other content delivery systems using replication can be impresedcially if
combined with an efficient replica selection strategy. Thitiae overviews prior work
concerning where to place replica servers, what content to store at eazhgepler, as
well as how to select the appropriate replica server to segh elient request.
Although these questions can be considered separately the desige ohoime
component will generally affect the other choices. Note thaetbbasices also are
affected by many other factors, such as the specific cliemttent and network
characteristics. Throughout this thesis, a “replica” refiera replica server that has a
copy of the replicated file. Note that a replica serverbeaa replica for many different

files.

2.3.1 Replica Placement

Depending on the CDN, the relationship between placement of regglicars
and content is different. A large content broker, such as Akanthifems of thousands
of servers distributed over the Internet generally only stores fda (to be replicated)
at a smaller subset of its servers [62]. In contrast, a smaller CDNplgasssitom made
for a particular client population, may replicate the content to all its servers

Although two different tasks, both placement of servers and content can
generally be abstracted in the same way. Both consider thepratbldeciding where
to place service resources to satisfy a given demand. Indbheota@ontent placement,
demand is for the particular content replicated. In the caserwdrsglacement, the
demand that must be satisfied is the cumulative demand over alhteateed by the
system. However, server placement is more costly as itresguaivesting in additional
infrastructure. Therefore, server placement is generally decrementally, while
content placement is done with more freedom as replicas cay l@asiistributed to any
subset of servers provided by the CDN.
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Simple iterative greedy approaches that place one servéde @t fa time have
proven to achieve similar network costs as optimal servereopldcement [133, 104,
94, 135]. For both server and content placement, increasing the nunsgseverts (or
replicas) only results in significant reduction of server load omtiead times when the
number of servers (or replicas) is relatively small [94].ithwihcreasing number of
servers, diminishing returns are observed. However, with increasing loadhoseeasr
more replicas may be required to offload current replicas, and avoid congestion.

By minimizing the overall network delay suffered by the clipopulation
Cameronet al [33] investigate the relationship among demand, delay, and optimal
server/replica placement. Analytic expressions and simpleithlger are derived to
determine the number of replicas to allocate to each filegisag/where these replicas
should be placed. Wargf al [179] do not consider where to place the replicas but
observe significant improvements in system capacity by dynéyiadjusting the
number of replicas according to server load and demand.

Reliable application-level multicast protocols, or some otherrilgligion
mechanism, can be used to distribute the content to the replicass@\e, [43, 95,
108]). Recent research efforts include specialized protocolsliablesreplication and
content distribution of large files from a central server to mleltieplica servers [126,
75]. For example, SPIDER [75] uses multiple dynamic delivesstand an end-to-end
flow control algorithm relying on TCP connections between neighboring overlay.nodes

2.3.2 Replica Selection

Most previous work on replica selection concerns selection amongaseftiat
do not implement service aggregation techniques. In general, sucla regléection
techniques may attempt to minimize network delays, maximize dtenload
bandwidth, accomplish load balancing among the servers, or achieve sbeme ot
objective (e.g., Akamai direct requests to closeby replicashthee available resources
and are likely to have a copy of the content [62]). However,usecsome of the above
design goals may be conflicting they will have to be weighgainst each other. Most

current systems give precedence to keeping the network delayrdther than
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maintaining high bandwidth between the replica and the clienith the introduction

of more and more high-bandwidth applications, such as video streammdopadhs is
likely to shift? To achieve a good compromise between various objectives a CPN ma
use some simple heuristics that weigh the importance of variac®rd when
determining to which replica to direct each client’s request.thdRathan directing
clients to some optimal replica, Johnsemal [96] observe that Akantaand Digital
Islanc?, two of the largest CDNs, primarily attempt to avoid directitignts to bad
servers.

Various replica selection techniques have been proposed to sedgiica that
is “close” to a given client, in terms of delay, hop count, or sorheranhetric. In the
simplest solution each client is given a list of all senaard uses probes to determine
which replica is the closest. This method is not desirable gimekes on the client to
perform tasks it normally would not do, and does not scale to adargber of clients
and servers. The IDMaps architecture [93] consists of third pastyumentation
boxes, called Tracers, which actively measure distances arhengélves to form a
distance map. This map can then be used to provide a servicingliwhich server is
the closest. Other approaches cluster clients into groups, bashdirdistances to
different servers [15], use distances to different landmarks [14G@jproe other set of
virtual coordinates (e.g., [54]) to determine which server mathéeclosest. At this
point it should be noted that dynamic replica selection techniquesigaificantly
outperform static replica selection techniques [35]. Anycastparticularly promising
approach, in which a client requesting service sends an anyeasage to an anycast
address, shared by a set of servers. While the request iediteall servers with this
address, the idea with anycast is that the request is servads{@ered) by the “best”
replica, specified by some predetermined criteria [186].

The best replica to serve a request may change during thdodalof a large

file. Switching replicas during a download can be costly but it mayany cases be

% Note that the round trip time of an end-to-enchpid the achieved download rate on that path reay b
highly correlated. In particular, studies of th€F protocol have shown that the throughput of long
duration TCP flows varies between the inverse ardrtverse square of the round trip times [109, 73]

* Unfortunately, more advanced tools or techniques raquired to measure the available end-to-end
bandwidth or capacity (e.g., [92, 65]).

® Akamai, http://www.akamai.comAugust 2006.
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desirable. For example, the advantage of a faster serven basweighed against the
added delay experienced for a client when setting up a new conné&djonHowever,
a sometimes more efficient technique is to allow clientstteeve data in parallel from
different replicas. Parallel download simplifies replicaesgbn and improves the
download rates of individual clients [30, 129, 149, 187]. Clients utilizingliphra
download naturally adapt to changing network conditions, and improve disdiemce
to congestion and network failures. However, as each connectiosoisiaded with
some overhead, the advantages of parallel download may decredmse @stion of
clients using parallel download increases [77, 101, 165].

In addition to the above work, assuming each request is served indiyidual
some work has considered replica selection in systems utilizirig rbptication and
aggregation [9, 72, 81]. All these papers consider the specific cootextedia
streaming and corresponding streaming-based service aggregatimigties. Among
these studies, Fet al [72] consider systems in which a long-lived multimedia stream is
being multicast concurrently by replicated servers and the olgestto direct clients to
servers so as to minimize the total network bandwidth usage. They show thatitiae repl
selection problem in this scenario is NP-complete, and compare a mafrteuristic
policies. Gucet al [81] design and evaluate replica selection techniques for rgglica
video-on-demand servers, each with a fixed number of channels.raSkeeristic
techniques are proposed and shown to outperform a basic policylwlags airects
requests to the closest replica.

Unlike all of the above replica selection techniques, both the onesarsinie
ones not using service aggregation, but similar to the work presentéad ithesis,
Almeida et al [9] assume that each replica server devetying resources, on-
demand, to the service of interest, rather than staticallyasithacfixed resources. They
consider the problem of replica placement and selection/routing wirtiglnted sum of
network and replica server bandwidth usage as the objective funztimn minimized,
and show that, in the assumed on-demand media streaming contexi, seevice
aggregation can result in optimal solutions that are very diffémemtthose for systems

without service aggregation.

® Digital Island was acquired by Cable & WirelesgpH/www.cw.com/, August 2006) in June 2001.
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2.4 Peer-assisted Content Delivery

A highly scalable approach to content delivery is to utilize rdsources of
clients. In peer-assisted content distribution systems, clientslaute to the collective
power of the system by making (part of) their upload bandwidth (and/or other regource
available. Many scalable peer-assisted content distribution pitstdave been

proposed, for both the download and streaming contexts.

2.4.1 Peer-assisted Download

Rather than using application-layer multicast, existing scaldblenloading
techniques, such as BitTorrent [48], allow each peer to download corterariy peer
that has content that it does not have, and do not require any organizentydel
structure. These techniques are flexible, and can easipt adanvironments where
peer connections are typically heterogeneous with time-vabangwidths and/or peers
frequently join or leave the system. With typical home Intero@nections having
significantly higher download bandwidth than upload bandwidth (e.g., [156]F pee
downloading content in parallel from multiple peers may also bettiére their
download bandwidth.

BitTorrent is a popular download protocol for large files that watitize upload
bandwidth of peers to offload the original content source. Filesglit intopieces
which themselves are split into smaller sub-pieces. Multiplepgedes (potentially of
the same piece) can be downloaded in parallel from different péepeer is said to
havea piece whenever the entire piece is downloaded. Peers ardecedsiterested
in all peers that have at least one piece that it currently does not have itself.

The state information about all the peers currently having piscesintained
by a tracker, while information about the original file andpisces are stored in a
torrent file. Typically, a client wanting to download a filegsfiobtains the torrent file
(e.g., through a webpage), extracts the URL of the tracker (finentorrent file), and
contacts the tracker, which replies with a list of peerstthae pieces of the file. After
connecting to the peers specified in this list, the client findsmith pieces each of

these peers have, and starts requesting the pieces that it needs.
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BitTorrent distinguishes between peers that have the entir¢céileed seedy,
and peers currently downloading the file, that only have parts effith (called
leecher$. Studies have shown that it is not uncommon for the number of long-lived
seeds currently active in the system to be an order of magnésgléhian the number of
active leechers [91, 111, 132]. To achieve efficient download it isftrerimportant
that leechers contribute to the total upload capacity of the system.

To achieve fairness, load balancing, and high piece diversity a naindeéhoc
policies are used in BitTorrent. There are currently manferéiiit versions of the
BitTorrent client used on the Internet, each with different ataristics. This section
only describes the characteristics of the most fundamental pdlicies.

With BitTorrent each peer establishes persistent connectiohsawérge set of
peers; however, at each time instance each peer only uploadsrited number of
peerss This is accomplished through a process (catledking in which the peer
ceases (or chokes) the upload process to all other peers. Ordythpeare unchoked
may be sent data. Generally, clients re-evaluate the sgtabioked peers relatively
frequently (e.g., every 18econds, each time a peer becomes interested/uninterested,
and/or each time a new connection is established/broken).

To discourage free-riding, BitTorrent usesitégor-tat policy in which leechers
give upload preference to the leechers that provide the highestcdamlvrdtes. To
probe for better pairings (or in the case of the seeds, allavesvgpeer to download
pieces), periodically, typically every third time the set of unchoked pesrsigluated,
each client uses aptimistic unchokeolicy, in which a random peer is unckoked.

Without any measure of the upload rates from other peers, seedsnganally
proposed to give preference to peers for which a high download oatd te achieved
[48]. However, as this can allow peers to monopolize the seed u@addiolth, it has
been found beneficial that seeds always upload to a set of randeledtied peers. To

determine new peers to unchoke the seeds always use optimistic unchBlirniger,

" Legoutet al [110] provide a more detailed description of theslicies. Using a recent version of the
original BitTorrent client (sometimes called thinline client) they explore the impact these policies
have on the performance of a client.

® The number of concurrent uploads is client depend@/hereas the original mainline client usedxadi
number of upload connections, newer versions af ¢ient determine the number of upload connections
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when determining which peers should remain unchoked, the seeds dmenre to
recently unchoked peers [110].

With the exception of the first few requested pieces (thatoftien randomly
selected) BitTorrent employs rarest-first policy in which a peer always requests a
piece from the set of pieces that are the rarest in thef aitpieces that the peers that it
is connected to have, and that it does not have itself. While thcy fals been shown
to achieve good piece diversity [110, 111], the impact on performancéeaifative
piece selection policies have not been studied.

Many recent studies have considered the download performance ofrBitf
It has been shown that this protocol adapts well to changing derfi@%dsthat sharing
(using the tit-for-tat policy) is generally done between ntiewith similar upload
bandwidth [134], and that performance does not critically depend on usgridreor
piece selection strategies such as rarest-first [120]. r @ik has noted that there is an
imbalance in the contribution made by different peers, and proposeficatioins that
try to ensure that peers contribute more evenly [25].

A variety of extensions have been proposed to improve the perfoemaf
BitTorrent-like systems [78, 162]. For example, assuming the egestef an origin
server, acting as a persistent seed, Slurpie [162] usesiaudedd algorithm to organize
the downloading peers into a mesh, through which information is priggag&he load
at the server is kept independent of the number of peers in the negta whkstributed
probabilistic back-off algorithm, which establishes individual back-otibabilities
based on estimates of the number of current downloaders in the meshethdrveach
peer is eligible to download from the server.

Erasure coding can be used to improve the efficiency of padallelretrieval in
peer-assisted systems [28, 102, 78]. Rather than exchangingr rpgadeas, these
systems exchange encoded pieces called blocks. While blodksefréo be useful to
more peers than regular pieces, not all blocks are useful to.alpegarticular, there is
no benefit retrieving two copies of the same block. To estimhiehvwpeers are likely

to have useful blocks peers can use techniques such as Bloomdiiltepproximate

based on its maximum upload rate. Other clientsvathe user to explicitly set the number of coment
upload connections.
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reconciliation trees [28]. Network coding can be used to dexres likelihood of
peers exchanging identical (or otherwise less useful) blockish détributed network
coding, each peer re-encodes the blocks before uploading them to e¢re{28, 78].

By re-encoding data throughout the entire network, Gkant&tial. [78] observe
improvements in download times of 20-30%, compared to when encoding is only done
at the origin server, and observe improvements of 100-200%, compared rionwhe

encoding is used.

2.4.2 Peer-assisted Streaming

Various peer-to-peer systems have been developed that strearonieat using
some application-level multicast architecture [95, 125, 85, 39, 102]. Howasverith
any tree delivery topology, the maximum achievable rate to a isotbnstrained by the
minimum of the rate between any of the upstream peers. Theréfereansmission
rate that any application-level multicast tree can achielmnited by the monotonically
decreasing achievable bandwidth in such a delivery tree.

To efficiently utilize the upload bandwidth of peers with highly déeeupload
bandwidths, and resolve the potential bottleneck caused by individual péerew
upload rates, many protocols utilize some form of parallel coulelitery [39, 102].
For example, SplitStream [39] splits a content stream intapteulbw-rate streams and
broadcasts these streams over disjoint multicast trees. fi$uses that nodes are not
directly limited by the upload rate of any particular peerd all nodes contribute with
upload bandwidth (providing load balancing among peers).

Common to all of the above peer-assisted streaming protocdiatisetatively
long-duration streams of stable minimum bandwidth must be establishezbntrast,
but similar to BitTorrent [48], a number of recent peer-asdisiystems in which peers
actively pull pieces from other peers participating in the sstmeam have successfully
been used to achieve live-streaming of various TV programs andatsej86, 191,
190, 112]. By exchanging buffer maps, containing information about duegithat
each peer has, peers can request (pull) pieces that they neeftosoasther peers.
With peers being at roughly the same play point, peers typically damall window of
pieces that they exchange among each other. To determine which pieces tdn@guest

each peer, Zhangt al [190] suggest a heuristic in which the rare pieces are given
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preference. If a piece can be provided by multiple peers, preéeiegosen to the peer
with the highest available bandwidth.

While most of these systems are proprietary, it appeatdibse systems do not
typically use tit-for-tat, or other incentive mechanisms, irkteigh-bandwidth peers
with high upload bandwidth capacity are expected to upload much tnanethey
download [86]. Peers will request information about additional peeronnect to
when not achieving sufficient download rates. By both pulling antipgisieces
increased propagation rates can be achieved [191]. Increased reddizaton and
load balancing can be achieved using various overlay maintenanceqtexshie.g.,
taking locality and peer load into account) [112].

Client caches can be used together with tree-delivery stradtorachieve on-
demand peer-assisted streaming of stored media [163, 53, 24, 161]. Bodmo[S8¢
and OSMOSIS [24] implement streaming using a cache-and-rekggy, in which
each peer typically receives content from a single sendey i(separent). These
protocols assume that all peers can retrieve and forward thencahtine play rate of
the file. After playing a piece of the content, this piecstased in the client cache,
from which it can later be forwarded to client(s) that are kater play point of the file.
The authors of dPam [161] observe that peers are often capable obddinglat a
higher rate than the play rate and suggest using a pre-fedetelay technique. The
pre-fetched data allows the peers to better handle departures of upstream peer

Other work considers systems in which each peer connects to matipders
(i.,e., some set of servers and/or peers) from which data amstce sequentially;
however, in contrast to systems such as SplitStream [39] theudteates from each
sender is dynamically adjusted by the receiver [143, 118, 130, 85lrows&i et al
[130] use a piece selection algorithm in which pieces are reglissquentially from
individual senders. If the achieved download rate from the senderndbeslow a
piece to be downloaded by its expected playout time, the clientpgido increase the
rate the piece is downloaded, by either re-assigning which paeeesownloaded from
each sender, or splitting the piece into sub-pieces. Rajak[143, 118] assume that
the data is layered (using layered or multiple description encoding propose

techniques for the client to adjust its streaming quality. To@raowdate for time-
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varying download rates they suggest that each peer requestscie gneresponding to
the layers that best match its current download rate. These gisottx not consider
incentive mechanisms (such as the tit-for-tat policy) and sequprgce selection (used
by these protocols) can result in poor performance in highly dynanviconments as
shown by the results presented in Chapter 5.

In the work in this area most closely related to the workegared in this thesis,
Annapureddyet al [16] propose a video-on-demand system for stored files in which
each file is split into sub-files. Each sub-file consistsmitiple pieces and can be
downloaded using a BitTorrent-like approach; sub-files are downlosegadentially.
To improve performance, they suggest pre-fetching a small amouwdtaffrom the
sub-file that will be required next, and having each peer re-emaiden a sub-file-by-
sub-file basis (using distributed network coding). While re-encoliogks increases
the usability of a block, encoding requires that enough blocks of sauiiile are
retrieved (and decoded) before the sub-file can be played out. tiNdtese of large
sub-files results in large startup delays, while using velissub-files results in close
to sequential piece selection, which again can lead to poor perimemanhe best
choice of sub-file sizes would be workload (and possibly also cliéependent,
although the method requires these sizes to be statically determlhe authors do not
elaborate on how the sizes of the sub-files can be chosen, or htyp skalays can be
dynamically determined.
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Chapter 3
Scalable Download from a Single Server

As discussed in Section 2.2, existing multicast-based approachssalable
download from a single server inclubdatching[66, 182] anctyclic multicasii146, 10,
26, 176, 31, 150, 27]. In contrast to the work on scalable download using bateising, t
chapter considers delivery of large files, for which joining an ongyaiulticast, rather
than waiting until the beginning of the next multicast, may prowadsignificant
performance benefit. Also, rather than considering the problemhetisking delivery
of a fixed collection of objects on given channel(s), this chapter aensscontexts in
which the server bandwidth devoted to this task is somewhat ekstichus focus on
the averagebandwidth used for delivery of each file, and the resulting aveoage
maximum client delay. In contrast to this prior work on cyclictroast, this chapter
focuses on the performance comparison between batching and cyclizastputind the
design of hybrid protocols that combine elements of both approaches to achieva superi
performance.

This chapter considers the problem of devising protocols that mmithie
average or maximum client delay for downloading a single filea &snction of the
average server bandwidth used for delivery of that file. An equivpl®fiem is to
minimize the average server bandwidth required to achieve a gweraga or
maximum client delay. This equivalent perspective is sometadepted. Although
delivery of multiple files is not explicitly considered, note thise of a download
protocol that minimizes the average server bandwidth for delivergach file will
minimize the average total required server bandwidth for delivering all fdegek

Focusing first on systems with homogeneous clients that havecala®iteption
rate constraints lower bounds are developed on the average andumagiient delay
for downloading a file, as functions of the average server bandwidthfasdelivering

that file. It is found that neither batching nor cyclic multicamsistently yields delays
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close to optimal. Motivated by these results, new practical mistace developed that
largely close these gaps. The new protocols achieve within d5%e optimal
maximum delay and 20% of the optimal average delay, in homogeneous systems.

Next, protocols for delivery of a file to heterogeneous cli¢mas have widely
varying achievable reception rates are considered. In this coatdweving efficient
delivery as well as lower delay for higher rate clients meguise of multiple multicast
channels. Each client listens to the number of channels correspondis@chievable
reception rate. The key challenge is to achieve a close-toamompromise between
high-rate transmissions (in aggregate, over all channels usedfile), which enable
lower delays for clients that can receive at such rates|oandate transmissions that
allow maximal sharing. A protocol for delivery to heterogenedignts is proposed
that yields maximum client delays that are within 25% of optimathe scenarios
considered.

The remainder of the chapter is organized as follows. Section 3nksieind
analyzes the basic batching and cyclic multicast protocols.hignsection, as in the
subsequent two sections, homogeneous clients are assumed. Lower bouhds on
average and maximum client delay for downloading a single filegif@n average
server bandwidth usage (or, equivalently, on the average server bandsedired to
achieve a given average or maximum client delay) are derivBddtion 3.2. Section
3.3 develops new scalable download protocols that achieve close to optimal
performance. Protocols for delivery to heterogeneous clientsdeweloped and

evaluated in Section 3.4. Summary and conclusions are presented in Section 3.5.

3.1 Baseline Policies

This section defines and analyzes simple “baseline” batching sokc c
multicast protocols for delivery of a single file, assuming hcenegus clients. The
metrics of interest are the average client delay (i.e., download timepatkienum client
delay in cases where such a maximum exists, and the averagelsandwidth used for
the file data multicasts. It is assumed throughout the chapterabla requesting client
receives the entire file; i.e., clients never balk whil&iwg for service to begin or after

having received only a portion of the file. The analysis and protocekemied are
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compatible with erasure-coded data. Each client is assumed toshewessfully
received the file once it has listened to multicasts of an anafuttal. (termed the
“file size” in the following, although with packet loss and erasur@ing,L may exceed
the true file size). Poisson request arrivals are assumeds witlesrwise specified.
Generalizations are discussed in some cases. Note that Poisgals can be expected
for independent requests from large numbers of clients. Furthermdaieast delivery
protocols that have high performance for Poisson arrivals, have evenpgeformance
under the more bursty arrival processes that are typically fioucohtexts where client

requests are not independent [68].

3.1.1 Batching

Consider first batching protocols in which the server periodicalliticasts the
file to those clients that have requested it since it wasrlalticast. Any client whose
request arrives while a multicast is in progress, simplyswaitil the next multicast
begins.

Perhaps the simplest batching protocol is to begin a new mulatake file
everyt time units for some constant However, this protocol has the disadvantage that
multicasts may sometimes serve no or only a few clients.

Two optimized batching protocols are considered here. The fesned
batching/constant batching deldlgatchingcbd), achieves the minimum average server
bandwidth for a given maximum client delay, or equivalently the minmnvalue of
maximum client delay for a given average server bandwidth, beeclass of batching
protocols as defined above. Lettifigdenote the time at which some file multicast
begins anda denote the duration of the time interval framuntil the next request
arrival, the server will begin the next multicast at tilma+A, whereA is a parameter of
the protocol. Thus, using the notation defined in Table 3.1, the aviemagdetween
file multicasts isA+1/A, the average server bandwidghs L/(A+1/A), and the maximum
client delayD is A plusL/r (the file transmission time). Herg,is the rate at which the
file is requested and the transmission rateé the multicast channel is at most equal to
the maximum sustainable client reception fate With respect to the average client
delay A, note that the client whose request arrival triggers the schgdofia new

multicast experiences the maximum waiting tidweuntil the multicast begins. All
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Table 3.1: Notation used in Chapter 3.

Symbol | Definition

A File request rate

L File size

b Maximum sustainable client reception rate

r Transmission rate on a multicast channed )

B Average server bandwidth

A Average client delay (time from file request, until file| is
completely received)

D Maximum client delay

A Batching delay parameter (threshold value on |the
maximum time until service)

n Batching delay parameter (threshold value on the number
of requests)

f Batching delay parameter (fraction of timesl should
be used as a threshold, rather thpn

clients whose requests arrive during the batching d&layll share reception of this
multicast. On average, there will BA such clients, and the average waiting time until

the multicast begins for such a client will &2. In summary’

L
B = X 3.1
biobd = 7177 (3.1)
AL+AA T2
Ay cbd :%”—/r? Dpjcbg =A+L/T. (3.2)

The second optimized batching protocol, termbdtching/request-based delay
(batching/rbd, achieves the minimum value of average client delay for a giverage
server bandwidth, over the class of batching protocols as defined ‘Abdvee basic
idea is to make the batching delay some integral number of raqte¥sarrival times.
To make it possible to achieve arbitrary average server baidvatites, the protocol is
defined such that the server waits il requests for a fractidnof its multicasts, and

for n requests for the remaining fractionflwheren andf are protocol parameters

° In the non-Poisson case, assuming request interhtimes are independent and identically distigiou
(IID), these performance metrics can be obtaineddgulating conditional expectations. For example
note that I in the bandwidth expression can be replaced wgheixpected time from after the initiation
of a transmission until the next request, condébion the fact that there was a request arrivad finm
the past.

9 This can be established formally using an argursinilar to that used for the lower bound on averag
server bandwidth in Section 3.2.1.
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(integern > 1, 0<f < 1) Thus, the average time between file multicasts§)/\,
and the average server bandwidthLig(n+f)/A). The average client delay can be
derived from the fact that each multicast semedients plus with probability one
additional client, and théth last of these clients experiences an average waiting tim
until the multicast begins oi1)/A. Note that the maximum client delay is unbounded

with this protocol. Thus,

L .
B/ rbd :m, (3.3)
n(n—l) n
+f—
A/ rbd :%+ L/r :%+ L/r; Dyme IS Unbounded. (3.4)

Note that for both of these batching protocols, the value of the natltigasmission
rate r that minimizes average and maximum client delay is equahdomaximum
sustainable client reception rdite

Figure 3.1 illustrates the operations of these two batching prefca®iwell as
the cyclic multicast protocol discussed in the next section, f@xample sequence of
requests. Requests are numbered and the arrival times and semjaetion times of
the requests are indicated by the arrows at the bottom and tepcbf subfigure,
respectively. The solid, slanted lines denote multicast transmsssach of which, in
the case of the batching protocols, delivers the entire filer tlie batching/cbd
protocol, the batching delays (each of duratfjnare indicated with double arrows

along the horizontal (time) axis.

3.1.2 Cyclic Multicast

Perhaps the simplest cyclic multicast protocol is to continualificast file data
at a fixed rate (cycling back to the beginning of the file when the end is rejabre a
single multicast channel, regardless of whether or not therarar clients listening.
Instead, consider a more efficient cyclic multicast protocytlic/listeners (cyclic)l
that assumes that the server can determine whether thatréeesst one client with an
unfulfilled request for the file, and transmit only if there Since the server transmits

Y When arrivals are Poisson, inter-arrival times @memoryless, and the method by which the server
determines when to wait forversusn+1 arrivals (for fixed) has no impact on average server bandwidth
usage or average delay.
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Figure 3.1: Operation of the Baseline Protocols for an Example
Request Sequence.

whenever there is at least one client, the delay experiencealchyclient is just the file
transmission timel./r. The average server bandwidth can be derived by noting that
there will be at least one client listening on the multichanoel at an arbitrary point in
time T, if and only if at least one request for the file was made ddin@dime interval
[T-L/r, T], and that the probability of at least one request arrival damgterval of
durationL/r is 1-e™" for Poisson arrivals at rade™ This yields

Boy =rfi-e); (3.5)

A, =D =LI/r. (3.6)
Note that the transmission ratés the only protocol parameter, and by itself determines

the tradeoff between server bandwidth usage, and client delay.

12 Note that the performance of this protocol canabalyzed for any arrival process for which it is
possible to compute the probability of there bedhdeast one request arrival during a randomly ehos
time period of duratiof/r.
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3.2 Lower Bounds

Making the same assumptions as in Section 3.1 of homogeneous dlilfile, f
delivery, and Poisson client request arrivals, this section deriuadarnental
performance limits for scalable download protocols. These liogigend on the
maximum sustainable client reception rate. Note that for bagcpmtocols, for
example, if the server transmission rate is increased theihgtdelay can be increased
without increasing the total client delay, thus providing a longeiogheover which
aggregation of requests can occur and more efficient use of amadwidth. Section
3.2.1 considers the limiting case in which clients can receive data aamisphirgh-rate,
for which there is a previously derived bound on maximum delay [1714tio8e3.2.2

considers the realistic case in which there is an upper dpandlient reception rate.

3.2.1 Unconstrained Client Reception Rates
Consider first the maximum client delay, and the average séamdwidth

required to achieve that delay. From ®aml [171],*3

B> L

> - D= L/B-1/\. (3.7)
D+1/A

This bound is achieved in the limit, as the server transmissioterate to infinity, by a
protocol in which the server multicasts the file to all waitoignts whenever the
waiting time of the client that has been waiting the longest re&thes

Consider now the problem of optimizing for average client delayeagh point
in time an optimal protocol able to transmit at infinite rate Waither not transmit any
data, or would transmit the entire file. To see this, supposedima gortion of the file
is transmitted at an earlier point in time than the remainfi¢he file. Since client
requests might arrive between when the first portion of thesfteansmitted and when
the remainder is transmitted, it would be more efficient ta wad transmit the first
portion at the same time as the remainder. Optimizing foageetlient delay requires
determining the spacings between infinite rate full file tnéissions that are optimal for

this metric. With Poisson arrivals and an on-line optimal prototfjlé transmissions

13 As with the bandwidth expression foatching/cbdin Section 3.1, for the case of non-Poisson reques
arrivals with 1ID request interarrival times the\ltlerm can be replaced by the appropriate conditiona
expectation. Further note that a bandwidth lowaurtal can be obtained for any process such that this
quantity can be bounded from above, as has beed nothe scalable streaming context [68].
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occur only on request arrivals, and (2) each multicast must sémeereor n+1 clients
for some integen>1. With respect to this latter property, consider a scenaridichw
the file is multicast tan waiting clients on one occasion andntek clients fork > 2 on
another. A lower average delay could be achieved, with the samsgeavgracing
between transmissions, by delaying the first multicast untietheen+1 waiting clients,
and making the second multicast at the request arrival instatteaf+k—1" client
instead of tha+k™,

Thus, a lower bound on the average server bandvd#quired to achieve a
given average client delaycan be derived by finding an intege¥ 1, and value f (0<
f< 1), such that

Mn—ﬂ+fg
__ 2 _nn+2f-1) (3.8)
n+ f 2(n+f) '
in which case
L (3.9)

) (n+f)n
Equivalently, to determine a lower bound on the average detagt can be achieved
with average server bandwidi) letn = max[1, B[], andf = max[0,AL/B—n]. Then,

n(n+2f -1)
2 ——.
20 (n+ f)

(3.10)
Note that forB < AL (the bandwidth required for unicast delivery), the optimal protocols
for minimizing the average delayand the maximum deldy are different, and thus the
lower bounds o\ andD cannot be achieved simultaneously. In fact, foBallAL the
optimal protocol for average delay has unbounded maximum delayL/Bf is an
integer greater than one, the lower boundAois exactly half the lower bound db
otherwise, it is somewhat greater than half. In particuta #nds toAL, the ratio of

the lower bounds oA andD tends to one.

3.2.2 Constrained Client Reception Rates
Assume now that clients have a finite maximum sustainable recepteb. In
this case, both the maximum and average delay must be atfleasto achieve the

minimal valuesD = A = L/b, each client must receive the file at maximum rateistart
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immediately upon its request. Thgclic/l protocol defined in Section 3.1.2 achieves
the lowest possible server bandwidth usage in this case, asrbmigsion rate of the
server is (onlyp whenever there is at least one active client, and zero offeerwhus,
for D = A=L/b, the bound becomds> (1—e™'?),

More generally, for a specified maximum delBy> L/b, the average server
bandwidth is minimized by theend as late as possib(slp) protocol, in which the
server cyclically multicasts file data at r&t@vhenever there is at least one active client
that has no “slack” (i.e., for which transmission can no longgrds¢poned). Such a
client must receive data continuously at fatntil it has received the entire file, if it is
to avoid exceeding the delay bound. Note that although this protocol isabptir
maximum delay, it requires that the server maintain infoonatin the remaining
service requirements and request completion times of all outstamdingests.
Furthermore, theslp protocol can result in extremely fragmented transmission
schedules. This motivates simpler and more practical near-ogtioiicols such as
that devised in Section 3.3.1.

An accurate approximation for the average server bandwidth withslthe
protocol is given by

AL/b _ _
BS|p:@(e D/r+D L/bE%' (3.11)

et’PIn+D-L/b

Here thel/D factor approximates the average server bandwidth usage over those
periods of time during which there is at least one active cliemt client with an
outstanding request). The factor in brackets approximates thmifraf time that this
condition holds. This fraction is equal to the average duration of adpauring which

there is at least one active client, divided by the sum of tlesmage duration and the
average request inter-arrival timeX)L/ The average duration of a period during which
there is at least one active client is approximated by thegealuration of aM/G/oo

busy period with arrival ratk and service timé&/b, as given by ¢-/°—1)A', plus the

duration of the delay after the arrival of a request to amsystiéeh no active clients until

1% This expression can be derived by observing tmaptobability that the system is idle (i.e7-'?) is

equal to the expected duration of an idle perical,(LA) divided by the expected duration of a full cycle
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Request Arrival Rate, logo( A )

Slack, logo(D—L /b)

Figure 3.2: Lower Bound Approximation (% relative error contours;
unit of data volume is the file, unit of time is the time requi@d
download the file at maximum rate: i.e.= 1,b = 1).

the server must begin transmitting—/b). Note that a corresponding approximation
for the minimum achievable maximum delay, for given average rsbarewidth, can
be obtained by solving fd@ in the above approximation.

Exhaustive comparisons against simulation results indicate thattibee
approximation is very accurate, with relative errors under 4%, anditbusmainder of
the chapter uses the approximation rather than simulation ValueBigure 3.2
summarizes the validation results, showing contours of equal error avievo
dimensional space. Negative and positive errors correspond to undetiests and
overestimations of the true values as obtained from simulation, teghec Without
loss of generality, the unit of data volume is chosen to be thafitethe unit of time is
chosen to be the time required to download the file at the maximuanside client
reception rate. With these choices of urlitendb are each equal to one. The only two

remaining parameters akeandD. The logarithm of the arrival rafeis used on the

including both an idle period (of expected duratldx) and a busy period (the expected duration of which
can be solved for).

15 All simulations make the same system and worksslimptions as the analytic models (including the
assumption of Poisson arrivals). Note that whexth Isimulation and analytic results are preserttesl,
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vertical axis of the contour plot, covering six orders of magnitidarival rates, while

six orders of magnitude of “slack” are covered on the horizontal asiisg the
logarithm ofD—L/b. As can be seen directly from the approximation, this expression
exact for the boundary casesf- 0 (minimumA), A - o (maximumA), D — o
(maximumD), L - 0 (minimumL), b - o (maximumb), andD = L/b (minimumD, or
maximumL, or minimumb), holding the other parameters fixed in each case. For
example, note that fdyr - o the approximation reduces t&(D+1/A), and forD = L/b

the approximation reduces 1—e™-'?).

The optimal scalable download protocol fveragedelay, under a reception
rate constraint, appears to be very difficult to determine inrgenélowever, a lower
bound can be derived as follows. As noted previouslyAfei/b the optimal protocol
Is cyclic/l as defined in Section 3.1.2, with= b. Furthermore, a variant of cyclic
multicast in which the server sometimes or always waits andiécond request arrival
before beginning transmission will also be optimal, for valuesvefage delay and
bandwidth that can be achieved by this protocol, since each unit ofoadtlithannel
idle time is achieved by delaying the minimum possible numbetiarits (only one).
Letting f denote the fraction of idle periods in which channel transmission roes
begin until a second request arrives, the server bandwidth arabevelay under this

cyclic/wait for second, listene(syclic/w2,l) protocol are given by

LL/b AL/b

= e/t 1

S =b ; 3.12
MR )k 1)/ @ f (3.12)
Aciwzl = o sLib=—* i, (3.13)

a@"? -1 1+ @+ £)/72) /by f

Note here thatg"’*—1)/\ is the average duration of 81G/« busy period with arrival
rateA and service timé&/b, and (1€)/A is the average duration of a channel idle period.
For server bandwidth valu@sthat can be achieved with this protocol, it can be shown

(by solving forf in terms ofB and then substituting into the average delay expression)
that,

purpose of the simulation is to assess the accufihe approximations made in the analysis, artdaro
validation of the system or workload assumptions.
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0O AL/b _ _aM/b ]
A> maxco, [ -1Jo-e SHL/b. (3.14)
g Me-1uB g

Equivalently, to determine the lower bound on the average server bam@luit can
be achieved with average delAysolving forf in terms ofA and substituting into the

average server bandwidth equation yields

B> max@), b(l— etth )WE (3.15)

Values ofB that are smaller (or values Afthat are larger) than those achievedfferl

are not achievable by tloyclic/w2,l protocol, because in this protocol each idle period
always ends no later than the time of the second request arHealever, the above
bounds are valid (although unachievable) for those smaller valuBs(ahd larger
values ofA) that can be obtained by substituting values greater than one for the
parametef in the above expressions. The bounds are valid in this case becauf® eve
f> 1, these expressions still assume that the minimum numbeerdsak delayed (i.e.,
only one) before the server begins transmission. The bounds are uabhgnce the
average duration of this delay is assumed t&/xewhich forf > 1 is greater than the
average delay until the second request arrival.

A second lower bound on average delay can be derived as follows. Fiest, not
that in an optimal protocol, data transmission will always octratab, since: (1) each
client can receive at rate at mdstand (2) the average delay cannot increase when a
period of length between request completions during which the transmission rate is less
thanb, is replaced by an idle period followed by a period of transomsst rateb (of
combined lengtt and equal total server bandwidth usage).

Suppose now that each request arrival that occurs during a busy pestiteis
earlier, so that it occurs at a multiple (possibly zerd)/(#b) from the start of the busy
period. As a result of this shifting, requests arriving during a Ipesipd will have
greater likelihood of completing service before the busy period émds, fixed busy
period duration. Therefore, average delay cannot increase. Iltwispassible to
determine the optimal protocol, assuming this shift of request rribased on the
following three observations: (1) by the same arguments asciin®e.2.1, in the

optimal protocol each idle period must end omgceor n+1 with some probabilityf,
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requests have been accumulated, for some integelr and 0 <f < 1; (2) each busy
period must end on a request completion, and therefore in the optimatqgbrbe of
total length equal to a multiple (at least two)Ldf2b); and (3) since the state of the
system at each multiple df/(2b) within a busy period is entirely captured by the
number of request arrivals that occurred within the previoi@@b) (all of whose
respective clients have been listening to the channel forlgxane L/(2b), owing to
the shifting), there is an integer threshkle 1 such that if the number of such arrivals is
less thark, the server will stop transmitting in the optimal protocol (thndireg the
busy period), and otherwise it will not. Note that these observatioigsiely specify
the operation of the optimal protocol, by establishing the critegd & determining
when to start a transmission, specifying the possible instavites a transmission can
be completed, and for each of these time instances specityingriteria used to
determine if the transmission should be stopped.

Given values for the parameterd, andk, the average server bandwidth and the
average client delay with this (unrealizatdb)fted arrivals(sa) protocol are given by
(1+1/ p)L /(2b)

Bsa:b , (316)
k—l. P
(L+1/ p)L/(2b)+Eq+ fo Z|F;%/x
i=0
kip, O, 1 (h-ifn-i-1) n O
S piln-i) s+ f
Asa:%w:o PO % 2 — > O (3.17)
XE1+1/ p)L/(2b)+Eq+f—zi‘2E/xE
=

wherep; = i—1|()\L/(2b))i e /@) is the probability of request arrivals in time/(2b), and

p = S5op is the probability of a busy period ending when its duration reaches a

multiple of L/(2b) (and at least/b). Bsais given by the ratio of the average duration of
a busy period to the sum of the average durations of a busy period aiid period,
times the transmission rabe Note here that when the busy period ends owing to having
I <k request arrivals during the previolug2b), the average duration of the idle period
will be (n+f—)/A, since onlyn— (or n+1-) new requests need be received to obtain a
total of n (or n+1) unsatisfied requests.As, is equal to the total expected idle time

incurred by those clients making requests during a busy period amalltivang idle
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Figure 3.3: Lower Bounds on Client Delay (unit of data volume
Is the file, unit of time is the average time between requests:
L=1,.=1).

period, divided by the expected number of such requests, plus the timeedetyui
download the file datdL/b). The optimaln, f, andk values for a particular server
bandwidth or average client delay can be found numerically, so as in ablawer

bound on average delay or server bandwidth, respectively. This bound can then be
combined with the corresponding bound from ¢lelic/w2,l protocol analysis, to yield

a single lower bound, by taking the maximum of the two.

3.2.3 Lower Bound Comparisons

Figure 3.3 shows the lower bounds on average and maximum clienfalelhg
case of unconstrained client reception rates and fod andb = 0.1. Without loss of
generality, the unit of data volume is chosen to be the file anghihef time is chosen
to be the average time between requests. With these choicetsof eni, A = 1, client
delay is expressed as a normalized value in units of the aversgbdtween requests,
average server bandwidth is expressed as a normalized value in obinfite
transmissions per average time between requests, and the masustaimable client
reception rate is expressed as a normalized value in unitg eéfieptions per average

time between requests. These units are used in all figures wogipamogenous client
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protocols (Sections 3.2 and 3.3). Note that the average server b#mBwid these
units can be interpreted as the fraction of the average bandwliired for unicast
delivery, so the region of interest in the design of scalableigasit protocols
corresponds to values Bfconsiderably less than one.

Although the above choice of data volume and time units correctlctetiee
fact that it is server bandwidth and client reception relive to request rate and file
size that determines performance, some care is required ipretteg the resulting
figures. Consider, for example, Figure 3.3, and a scenario in wiechlient request
rate decreases for fixed average server bandwidth (when exprassadormalized
units). With the chosen units A remains equal to one in this scenario (since the unit of
time is the average time between requests), Bufexpressed in units of file
transmissions per average time between requests) increaspgsrtionally to the
decrease in the client request rate. Thus, in Figure 3.3, thesimgrealue of the
normalized server bandwid® as one moves from left to right on the horizontal axis
can correspond to increasing server bandwidth (with a fixed clezpiest rate) or
decreasing client request rate (with a fixed server bandwidBnilar considerations
apply with respect to the normalized maximum sustainable client receatam

Perhaps the main observation from Figure 3.3 is that client reneptie
constraints can strongly impact the achievable performant®ugh this impact
diminishes as the value of the normalized average server band®wititbreases. Note
also that the difference between the average and maximumiabelagls decreases with
increasing server bandwidth. The point where these bounds becomeaidsntite
point at which each client experiences only the minimum delaybof

Figure 3.4 plots the percentage increases in the maximum dikéay for the
baseline batching and cyclic multicast protocols in comparison ttmwer bound, for
three different values of client reception rate. Figure 3.5 gludscorresponding
percentage increases in average client delay for the basetitteqls. The system
measures are expressed in the same normalized units asuia Big. Note that the
average server bandwidth witlyclic/l cannot exceed times the fraction of time that
there is at least one active client, and thus the rightmost gledchcyclic/l curve is

for server bandwidth of less than one.
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Figure 3.4: Maximum Delay with Baseline Protocols Relatove t
Lower Bound L = 1,1 = 1).

Figures 3.4 and 3.5 show that the batching protocols are close to oftimal
small (normalized) server bandwidths, when many requests are @Watesnbefore the
next transmission takes place, and for server bandwidths approachinghamemost
clients are served individually with minimal delayldb. Batching can be significantly
suboptimal for intermediate server bandwidth values, however, partycuiar
maximum client delay (for example, in Figure 3.4@) 0.1 andB between 0.05 and
0.2). Note also that the overall relative performance of batchiggades as the
maximum sustainable client reception rate decreases, sintesicase the required
duration of a multicast increases, and with the batching protocelsclents are not
able to begin listening to a multicast after it has commenced.

In contrast, the performance ofclic/l improves for decreasing client reception
rate. Howevergyclic/l is substantially suboptimal for average client delay over most of
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the parameter space, and for maximum delay when the clesytien rate is high and

the server bandwidth is also high although not approaching onen(ifégure 3.4(c)b

= 10.0 andB between 0.4 and 0.9). Note that for small and intermediate server
bandwidthsgyclic/l is close to optimal for maximum client delay, but since the @btim
average client delay is approximately half the optimal maxinalient delay in this

case, the average client delay watfelic/l is about 100% higher than optimal.

3.3 Near-optimal Protocols

Figures 3.4 and 3.5 suggest that there is substantial room for immotverer
the baseline batching and cyclic multicast protocols, sincedoh of maximum and
average client delay there is a region of the parameter spacevhich each protocol is

substantially suboptimal. The main weakness of the batching proisedbiat clients
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that make requests while a multicast is already in progresstdisten to this multicast.
All clients receive the file data “in-order”, waiting untihé beginning of the next
multicast before beginning their downloads. With the baseline cyclic mulpoztscol,
on the other hand, clients can begin receiving data at arbitrarng poitime within an
on-going multicast.  Since the server transmits whenevee fkeat least one active
client, however, there will be periods over which transmissions gefagvely few
clients.

Clearly, an improved protocol should allow clients to begin listetingn on-
going multicast at the times of their requests, but should dtse sérver transmissions
to be delayed so as to increase the actual or expected number of clientsveschlsis
straightforward to apply a batching-like rule for deciding whenyelic multicast
transmission should commence; the key to devising a near-optimal girasoc
determining the conditions under which a multicast should be continuedpndésd.
Section 3.3.1 develops and analyzes new protocols that focus on improvimgumexi
client delay, while Section 3.3.2 develops and analyzes protocols whase ifc
improved average client delay. As in Sections 3.1 and 3.2, these sexdgurse
homogeneous clients, full-file delivery, and Poisson arrivals.tid®e8.3.3 relaxes the
Poisson assumption, and considers the worst-case performance obttemlprunder

arbitrary arrival patterns.

3.3.1 Protocols Minimizing Maximum Delay

Consider first a simple hybrid of batching and cyclic multicéstmed
cyclic/constant delay, listene(syclic/cd,), in which a cyclic multicast is initiated only
after a batching delay (as in thatching/cbdprotocol from Section 3.1.1), and is
terminated when there are no remaining clients with outstaneugests (as in the
cyclic/l protocol). With batching delay paramefeand transmission rate(r < b), the
average duration of a channel busy period is givend¥y' 1), and the average

duration of an idle period is given byAtA. This yields

eXL/r -1 ]
Be/cal :rm, (3.18)
_A1+3472) _ _
C, T r, c C, - . .
AC/dl_eL/ +M+|_/ Dejeq) =A+L/T (3.19)
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Figure 3.6: Examples Scenarios for Improved Protocols.

The operation of theyclic/cd,lprotocol, as well as that of the other protocols developed
in this section, is illustrated in Figure 3.6 for the same exarppteern of request
arrivals as in Figure 3.1.

For Dgcqy > L/b, there are multiple combinations &fandr that yield the same
maximum client delay. Optimal settings that minimize sebandwidth can be found
numerically. Interestinglyr = b is often not optimal. Since a cyclic multicast is
continued as long as there is at least one listening client, cHaumseperiods may have
long durations. Under such conditions, it may be possible to reduc Sandwidth

usage while keeping the maximum delay fixed by reducing batidA. In particular,
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note that folA — oo, the channel is always busy, and thus the optinathe minimum
possibler (the file sizel divided by the maximum delay) and the optimdins zero.

A better hybrid protocol, termed heogclic/constant delay, bounded on-time
(cyclic/cd,bot) can be devised by using a better policy for when to stop tramgmit
The key observation is that the duration of a multicast trangmissin be limited to at
mostL/r without impact on the maximum client delay. As in tiyelic/cd,l protocol, a
cyclic multicast is initiated only after a batching dedgybut the multicast is terminated
after at most a duratiok/r, allowing the server to be idle for a new batching dé&lay
that impacts only the clients whose requests arrived aftemticast began, if any.
Any clients whose requests arrive during a multicast wikikexpart of the file during
the multicast that is in progress and the rest of the file glutie next multicast one
batching delayA later, thus guaranteeing a maximum client delaydof L/r. A
multicast is terminated before duratibff when a client completes reception of the file
and there are no remaining listeners, an event that will ocoornew client has arrived
since before the previous multicast terminated. Note thaetagvely simple operation
of this protocol, illustrated in Figure 3.6(b), is in contrast to tfatlp, for which the
transmission schedule and service of any particular clienbeaxtremely fragmented.
The optimal value for with cyclic/cd,botis the maximum possibld), and thus this
parameter setting is used in the experiments presented.

Accurate approximations for the average server bandwidth usabaverage
client delay with theyclic/cd,botprotocol can be derived as follows. First, two types of
channel busy periods are distinguished. Channel busy periods such l#edt aine
request arrival occurred during the preceding idle period areetefitype 1" busy
periods, and will have the maximum duratibfi. The remaining busy periods are
termed “type 2” busy periods. A type 2 busy period will have duratepral toL/r if
there is at least one request arrival during this periothete are no such arrivals, the
duration will equal the maximum, over all clients whose requesitged during the
preceding busy period, of the amount of data that the client has y&teive, divided
byr.

Now, make the approximation that the rate at which a type 2 bumdpsrds
when prior to its maximum duratiddr (i.e., the system empties) is constant. Denoting
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this rate byy, the probability that a type 2 busy period is of duration lesslthagalso
equal to the probability that the system empties during this bugydjpeis then given
by 1-e"'", and the average duration of a type 2 busy period is given ky"{(1y/y.
Note that the duration of a type 2 busy period of less than maxuwation depends
only on the duration of the previous busy period and the points at which raguimss
occurred during this previous period. In light of thisservation, suppose that a is
independent of\, and calculate o for a system with A — 0. Consider, foA - 0, the
average total duration of a type 1 busy period and the following typsy2deriods up
to when the system next empties (following which there is thetgpe 1 busy period).
This quantity is equal to the average duration oM&@/c busy period with arrival rate
A and service time./r, as given by ¢-'"—1)A. This quantity is also equal to the
probability that the total duration is greater thiain (equal to 1e™-'") times the
average total duration conditioned on being greater ltha(equal toL/r+14), plus the

probability that the total duration is equallto (equal toe™'") timesL/r, yielding

(em_/r —1)/Xz(l—e"“'/r XL/r +1/y)+(e"“‘/r )L/r 0 y= ( W}_i\)_/x;/r - (3.20)
e —1)/n-L/r

Let pempiesdenote the probability that at the beginning of a randomly chosepedts
the system had emptied; i.e., there were no clients with unsatisiquests. Lebypa
denote the probability that a randomly chosen busy period is of type 1se Tie
probabilities can be obtained by solving the following two equationdjritef which
applies pemptied to the idle period preceding a randomly chosen busy period, and the
second of which appliepypa to the busy period preceding a randomly chosen idle
period:
Pypa = pemptied+(1_ pemptied)(l_e_m ); (3.21)
Pampicd = Pypa€ " + (L~ Pypa f1-e 7). (3.22)
The average duration of a channel busy period is givemybyL/r+(1— Prypea)(1—
e )ly and the average duration of an idle perioghbysiedA+4, yielding

Pypal /17 + (1_ ptypeL)(l_e_YL/r )/Y .
ptypelL/r +(1_ ptyp@.)(\]'_e_yL/r )/Y"' pemptied/x"'A ’

(3.23)

Bc/cd,bot =r
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AL/
A(F’emptied +A 2) + (1_ pemptied)lge—m_r/)r a

— +L/r; (3.24)
7V(ptypell-/r + (1_ ptypa)(l_e ! )/"/+ pemptied/7"+A)

Ac/cdpot =

De/capor =A+L/T. (3.25)

The derivation of the first term in the numerator of the equatiomferage delay is
similar to the corresponding term in the average delay equdbtofmtching/cbdand
cyclic/cd,l except that the batching delay was triggered by a newsegureval (which
then experience the maximum waiting timg only in the case when the system has
emptied (with probabilitypempied. The second term in the numerator is the probability
that at the beginning of a randomly chosen idle period the systmobamptied (i.e.,
that the idle period results from the limitlof on the duration of a multicast), times the
average number of clients still active at the beginning of suctil@period all of whom
must wait until the next multicast to complete their service, times the duration A of this
wait. The average number of clients active at the beginning of @uddle period is
equal to the average number of arrivals during the preceding buey pefriengthL/r),
conditioned on there being at least one such arrival.

The results in Figure 3.7 show that thelic/cd,botprotocol performs close to
optimal (within 15% in all cases). The figure also illusaige high accuracy of the
approximate analysis. In addition, Figure 3.7 illustrates that theersimple hybrid
cyclided,| protocol can yield good performance (within 30% of optimal in adlesy
although note that the results shown for this protocol are with oppaa@meter
settings. An advantage ofclidcd,botis that it has just one paramet#),(which is
chosen based on the desired trade-off between maximum deldyaaddidth usage.
Sincecyclidcd,botis relatively simple and outperfornegclic/cd,l, the performance of

cyclided,l with alternative (suboptimal) parameter settings is not explored here.
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Figure 3.7: Maximum Delay with Improved Protocols Relative
to Lower BoundI( = 1,A = 1).

3.3.2 Protocols Minimizing Average Delay

Again, consider first a simple hybrid of batching and cyclic mastién which a
cyclic multicast is initiated only after a batching deliaythis case of the same form as
in thebatching/rbdprotocol from Section 3.1.1, and terminated when there are no active
clients (as in the cyclic/l protocol). The average server bandwidth and
average/maximum client delay achieved with ttyslic/request-based delay, listeners
(cyclic/rbd,l) protocol, with batching delay parametarandf (integern> 1, 0<f < 1),
and transmission rate(r < b), are given by

eXL/r -1

re“”—1+(n+f)’

(3.26)

Be/rba) =

nfn+2f -1)/(2))
e —1+(n+f)

Acirba) = +L/r; D¢/mpa, 1S Unbounded. (3.27)
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These expressions are derived using the average duration of a channelehbod
(e™'"—1)/\ and the average duration of an idle perio¢f)(A. As with thecyclic/cd,|
protocol, r = b is not necessarily optimal, and parameter settings that iaptifar
average delay are found numerically.

The key to designing a better protocol is, as before, determinegter policy
for when to stop transmitting. If the total time each cligreins$ receiving data from the
channel was exponentially distributed (rather than of constant dutdtipnthen the
optimal policy for average delay would be for the server to goatits cyclic multicast
whenever there is at least(or n+1 for some fraction of busy periodsclients with
unfulfilled requests. In the (actual) case of constant servioesti however, the
objective of achieving consistently good sharing of multicaststddee balanced by
consideration of the required remaining service time of theeaclients. For example,
if a client has only a small amount of additional data that eédsdo receive for its
download to complete, then continuing the cyclic multicast may beaptith respect
to the average delay metric regardless of the number of other active. clients

In the protocol proposed here, termsatlicrequest-based delagontrolled on-
time (cyclic/rbd,co), these factors are roughly balanced by distinguishing between
clients whose requests were made prior to the beginning of apeusyl, and clients
whose requests were made during it. The server continue<lits ityilticast at least
until all of the former clients complete their downloads (tile), after which
transmission continues only as long as the number of clients witHilledutequests is
at least maxj-1, 1], wheren is the same as the batching delay parameter that is used,
together with the parametér to control the initiation of transmission after an idle
period. Empirically, the optimalis equal td for this protocol.

Note that fom = 1 or 2, this protocol is identical to tlegclic/rbd,l protocol with
r = b, the analysis of which was given above. Although an exact analiyglss
protocol forn = 3 appears to be quite difficult, an accurate approximate an&lgsis
been developed. This approximate analysis constrains the duratidsusy @eriod to
be a multiple oL/b, yielding the following approximations for server bandwidth usage

and average client delay (fo 3):
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wherep; = i1|()\L/b)i e™® andp = Y 7p; . Denbdcot is unbounded. The derivations of

these expressions are analogous to those foshiited arrivalsprotocol in Section
3.2.2.
The results in Figure 3.8 show that theyclic/rbd,cot protocol yields

performance close to optimal, with an average delay within 20% ddwer bound in
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Table 3.2: Summary of Worst-case Performadeg € 1 iff > 0 and O otherwise).

Protocol Parameters | Average Client Delay| Average Server Bandwidth
Batching/chd Ar A+L/r min[L/AAL]
Batching/rbd n,f,r (n—=1+0r0)/\ + LIr AL/(n+f)

Cyclic/l r L/r min[r,AL]

Cyclic/cd,| Ar A+Lir min[r,AL]
Cyclic/cd,bot Ar A+Lr min[L/(A+L/r),AL]
Cyclic/rbd,l n,f,r (n=1+0r0)/\ + LIr min[r,AL]
Cyclic/rbd,cot n,f,r (n=140s0)/\ + LIr min[r, AL/max[n-1,1]]

all cases considered. Note also that the lower bound on average delay is achidyable
for high server bandwidth (low delay), specifically the region inclwtthecyclic/w2,|
protocol operates, so performance is even closer to optimal thanrésests would
suggest. Also shown in the figure is the high accuracy of the dppate<analysis.
Finally, the figure shows that the simple hybwsiclic/rbd,l protocol yields good
performance across the server bandwidth range of most intergstoortiigh client
reception rates (i.e., rates such that the probability of a ckeoiest arrival during the

time required to download the file is very low).

3.3.3 Worst-case Performance

This section relaxes the Poisson arrival assumption and consideveriecase
performance of the protocols under arbitrary request arrivédrpat Specifically, of
interest is the worst-case average server bandwidth usage aageackent delay, as
functions of the protocol parameters and the average request. raf@e results are
summarized in Table 3.2. The maximum client delay is not condidsirece for each
protocol either the maximum delay is independent of the requestlgrattern, or it is
unbounded under Poisson arrivals and can therefore be no worse with sonaeridler
process. Note that achieving these worst-case results oftereseting arrival pattern to
be pessimally tuned according to the values of the protocol paramaiet that the
worst-case average bandwidth usage and the worst-case avieagelelay cannot
usually be achieved with the same arrival pattern.

Consider first the average client delay. Egelic/I, the client delay (and thus the
average client delay) is alwal#&. Forbatchingcbd cyclided,l, andcyclidcd,bot the
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average client delay can be at most the maximum client delayhiand achieved when
all request arrivals occur in batches (of arbitrary sizéfh wach batch arriving when
there are no previous clients with outstanding requests.bdtohingdrbd, cyclidrbd,|,
andcyclidrbd,cot consider first the case bE 0. With all three protocols, note that the
average client delay cannot excerdl()/A+L/r, since in that case the average number of
clients waiting for a multicast transmission to begin wouldnfrLittle’s Law) exceed
n—1, whereas in each protocol there can never be morentfamwaiting clients. An
arrival pattern for which this average client delay is achieved wllas/. Immediately
after the end of a multicast transmission, a batak-tbfrequests arrives. Following this
batch arrival a long delay ensues of deterministic duratierl#n)/A)—L/r, for m— oo,
followed by a batch arrival withh requests. This initiates a new multicast transmission
of durationL/r. It is straightforward to verify that the average arrivaé raith this
request pattern 5 and that the average client delay tendswd J/A+L/r asm- . For

f > 0, the worst-case average delay depends on the precise lpokdyich the server
determines whether to wait until requests have accumulated, or to wait umtl
requests have accumulated, prior to beginning a new multicast, ta#rerjust the
fraction f of occasions that it waits for+1. Given here is the highest possible worst-
case average delay over all such policies, which can be achievesxample, by a
policy that makes the choice probabilistically. By the sargamaent as used above for
the case of = 0, the average client delay cannot exagadL/r. An arrival pattern for
which this average client delay is achieved is similar to that used above, lipat lvaitch
size ofn rather tham-1, and (whenever the server chooses to wan+ararrivals and
thus a new transmission does not start immediately) a delayration ((+fm)/A—
L/r)/f, for m- oo, followed by a batch arrival witin requests.

Consider now the average server bandwidth. Waichingrbd, the average
bandwidth depends only on the average arrival rate, rather tharpeh#icsarrival
pattern, since every™ (or n+1%) request arrival causes a new transmission of the file
that only the clients making those(or n+1) requests receive. Thus, the worst-case
average bandwidth usage for this protocol is the same as the aberalyedth usage
for Poisson arrivals. Fdyatchingcbd if A < 1/A then request arrivals can be spaced

such that no arrivals occur simultaneously and no arrivals occur gubatghing delay,
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yielding a worst-case bandwidth usage equal to the unicast bahdwmlje oAL. For

A > 1/A, batched arrivals with deterministic spacingMolbetween the batches yield the
worst-case bandwidth usageldf. Thus, the worst-case bandwidth usage is IoMy[
AL]. For cyclidl, if A < r/L the worst-case bandwidth usage is achieved when the
spacing between consecutive arrivals is always at légsyielding a bandwidth usage
of AL. ForA > r/L, transmission can be continuous, giving a bandwidth usage of
Thus, the worst-case bandwidth usage is mikll]. The same worst-case bandwidth
usage is achieved wittyclic/cd,| andcyclidrbd,l. ForA > r/L, transmission can be
continuous, and fok <r/L a bandwidth usage @i is achieved when the fraction of
arrivals that occur during busy periods approaches one, and the spacimgrbet
consecutive busy-period arrivals is of deterministic duration infimtally less than
L/r. Similarly, for cyclidrbd,cot, if A < (r/L)(max[n—1, 1]) the worst-case bandwidth
usage is achieved when the fraction of arrivals that occur during pesods
approaches one, and busy period arrivals occur in batches afaide-1, 1] with
spacing between consecutive batches of deterministic durationdsiimdlly less than
L/r, yielding a bandwidth usage ®E/max[n—1, 1]. ForA > (r/L)(max|n—1, 1]), arrivals
can be spaced such that transmission is continuous, giving a bandwidé aisa
Thus, the worst-case bandwidth usage is miAlL/maxjn-1, 1]]. Finally, for
cyclidcdbot, if A < 1/(A+L/r) then request arrivals can be spaced such that no arrivals
occur simultaneously or during a batching delay or channel busy pergdding a
worst-case bandwidth usageXxf. ForA > 1/(A+L/r), arrivals can be spaced such that
the system never empties, giving a bandwidth usagé&&#L/r). Thus, the worst-case

bandwidth usage is mibf(A+L/r), AL].

3.4 Heterogeneous Clients

This section relax the homogeneity assumption and consider théncakéch
there are multiple classes of clients with differing asgedi maximum delays (Section
3.4.1) and achievable reception rates (Section 3.4.2). Section 3.4supfsxses that
the amount of data a client needs to receive from a channelaenagds-specific. This

scenario is relevant to the protocols developed in Section 3.4.2, in whidata blocks
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are delivered on multiple channels and each client listens teubget of channels
appropriate to its achievable reception rate. Throughout thi®semnly maximum

client delay is considered, although the results can also yiaghin®r the case in
which average client delay is the metric of most interest.

3.4.1 Class-specific Service Requirement and Maximum Delay

Here it is assumed that clients of cladsave maximum delap; and need to
receive an amount of file data from a single shared channel. All clients have a
common reception rate constraimt As in the case of homogeneous clients, sipe
protocol is optimal and thus its average bandwidth usage provides ablowst on that
achievable with any protocol. Section 3.4.1.1 generalizes the apprimxinfat this
lower bound that was given in Section 3.2.2, to this heterogeneous contest. A
motivated again by the complexity stp, Section 3.4.1.2 extends the simpler and near-
optimal cyclic/cd,bot protocol given in Section 3.3.1, so as to accommodate

heterogeneous clients, and compares its performance to #ipt of

3.4.1.1 Lower Bound (slp) Bandwidth Approximation

A key observation used to generalize the lower bound approximation sithat
slp, the presence or absence of requests from “high slack” clientclients of classes
j such thatD; is large relative td/b), will have relatively little impact on the server
bandwidth usage during periods with one or more active “low slack” slient
Exploiting this observation, the classes are ordered in non-increadegodt./D;, and
the average server bandwidth usageslpf with the assumed client heterogeneity, is

written as
Nc
lep = z (P -Ra) B, (330)
i=1

where Nc denotes the number of customer clasdgsdenotes the (cumulative)
probability that there is at least one client from classésdughi with an outstanding
request (withPy defined as 0), ang denotes the average server bandwidth usage over
those periods of time during which there is at least one client tlassi with an
outstanding request but none from any class indexed lower.than

An approximation for the probabilify; can be obtained using a similar approach

as was used for the corresponding quantity in the approximation foogemm@ous
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clients. P; is equal to the average duration of a period during which therdeiasatone
client from classes 1 throughwith an outstanding request, divided by the sum of this

average duration and the average request inter-arrival tim¢hi®orset of classes

(1/2‘k=lxk, whereAy denotes the rate of requests from clasdients). The average

duration of a period during which there is at least one client flasses 1 through
with an outstanding request is approximated by the average duragorMdt/co busy
i %i(L;/b)

period with arrival ratez‘k:lxk and average service tim N
171 ) =1k

, as given by

(ez}ﬂ“"/b—l)/z‘k:lxk, plus the average duration of the delay after the arrival of a

request to an idle system, until the server must begin tramsn({tyi Zi ),
=1 K=tk
yielding
iz AL /b i
ej:ljj _1+Iz>\.J(DJ_LJ/b)
P~ =L . (3.32)
Z XJ'LJ' /b

e +32,(D,-L; /)

j=1
The average bandwidth usgges approximated as reduced by the average amount of
datax; received by a clagsclient while there is at least one active client from aelow
indexed class, divided by the portion of the tilyeluring which no such lower indexed

client is active:

- Li—x%
B ACYECRE (3.32)

Defining 5_ave by
i-1
Bave=5 B[P -PL)iP,, (3.33)
B

the quantityx is computed using

x =B, (DiP)+(B ave - B )E;, (3.34)
whereE; denotes the average portion of the tileluring which a classclient receives
data from the channel at the higher average rate eqgiaht@, owing to the presence
of requests from lower indexed classes, rather than at the lawasf;. A simple
approximation forg; would beD;P;.;, but this would neglect the impact of variability in
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the portion of timd; that there is at least one active client from a lower indiekess,
during the period over which a particular clas$ient is active. In particular, there is a
maximum length of time during which a classlient can receive data at the higher
average rate, without accumulating an amount of data exceledidpting thatt; is at
most D;, the first-order impact of variability is captured by assgma truncated
exponential distribution fot;, with rate parametep; such that the average of the
distribution isD;P;.:

2 _{geo Jh-evo)-op (3.35)

During the portion of time when a claisslient is receiving data at the higher average
rate;_ave, the rate at which additional data is received (i.e., beyond thahwiould
otherwise be received) is given yave—f;. Since at modt; data can be received in
total during this time period, the average additional amount of dataahae received
owing to reception at the higher average rate is upper boundedHy,. Here the
maximum length of time during which a classlient can receive data at the higher
average rate, without accumulating an amount of data excegdiisgapproximated by
t_max = min[D;, (L—ES)/(f_ave-p£)]. An approximation foE; is then obtained as

E = F(l_ e L )/ ¢ —t_max (e_(pi i )Eﬂ_ma)g @e_wma‘ —e E, (3.36)

H 1-e790Di 1-e 9D

where the first term is the probability tatdoes not exceed max times its expected
value in this case, and the second terrh max times the probability that exceeds
t_max.

The above analysis results in a system of non-linear equatiansan easily be
solved numerically, beginning with the quantities for class 1 and gloce® those for
successively higher indexed classes. Although the analysist mé&em complex,
simpler variants were found to have substantially poorer accuracy. Notbatléorthe
case in which the client classes have identigand D;, the analysis yields identical

bandwidthgs;, and the bound reduces to that given earlier for homogeneous clients.
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Figure 3.9: Impact of Class-specific Maximum Deldys(1,D-
= BDy, varying arrival rates {A1, A2}).

Sample validation results comparing the analysis against siondaof theslp
protocol are presented in Figure 3.9(a). In the scenarios considdhesl figure there
are two client classes, with =L, = 1 andD; = 5D,. The maximum sustainable client
reception rateb is fixed at one. Five combinations of request rates A,} are
considered, and the percent relative error in the average server ithiiindisage
computed using the approximate analysis is plotted against thgBldak) of the low
slack clients (class 1), for each request rate combination. @Auwlglitiexperiments

included a full factorial experiment for two class systems,amexperiment in which a
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large number of randomly generated systems with 3-6 classestested. In all these

experiments no case was found in which the absolute relative error exceeded 20%.

3.4.1.2 Extension of Cyclic/cd,bot

The cyclic/cd,botprotocol is extended to accommodate heterogeneous clients as
follows. The duration of each multicast transmission is limiteat tmost the maximum
value of Li/r over all classes that have active clients at the beginning of the
transmission. As before, if the last active client completesption of the file and there
are no more listeners, the transmission is terminated earhe d€layA becomes
variable, now being dependent on which classes have clients withralitgf requests.
At the beginning of each delay period, it is initialized to thaimum value ofD—L/r
over all classesthat have active clients. If a client of some other glassves during
the delay period, and the time remaining in the delay period @xBge.i/r, the length
of the delay period must be reduced accordingly. As beforé, demt obtains the
entire file either in a single busy period, or in two busy persejsarated by an idle
period, and the optimalis equal td.

Representative simulation results comparing performance withextended
cyclic/cd,bot protocol to the lower bound defined by the optinsg protocol are
presented in Figure 3.9(b). (The analytic approximation from Section 3.4.1.1 is not used
here, as the differences from optimalityoytlic/cd,botare not sufficiently greater than
the errors in the approximation.) As in Figure 3.9(a), therévareclient classes with
Ly = L, = 1 andD; = 5D,, the client reception ratb is fixed at one, and five
combinations of request rated;{ A} are considered. As the figure illustrates, the
achieved performance is reasonably close to optimal.

Figure 3.9(c) shows the maximum delay for class 1 cliehesrtaximum delay
for class 2 clients is five times greater) as a functiorsefer bandwidth for the
cyclic/cd,botprotocol, for the same scenarios as previously considered. Noanthe
curves can be separated into three groups based only on the ratpiethie low slack
clients, the main observation from this figure is the minimal impact of the seraie of

the “high slack” clients on system performance.
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3.4.2 Class-specific Reception Rates

Suppose now that classclients have a class-specific maximum sustainable
client reception raté; as well as maximum deldy;, but commonL; = L. Section
3.4.2.1 presents an algorithm for computing a lower bound on the requieaba
server bandwidth. In Section 3.4.2.2, scalable download protocols for thexicars

proposed and their performance evaluated.

3.4.2.1 Heterogeneous Lower Bound

The slp protocol can be suboptimal when there is heterogeneity in client
reception rates. For example, consider a scenario in whichismbsarequest the file at
approximately the same time, one with a relatively high remepate and a relatively
low maximum delay and one with a low reception rate and a higimmen delay, and
in which no other requests arrive until these two clients have cadpieteption. With
slp, the server will delay beginning transmission for as long ashpp@sand then, if it is
the high-rate client that has no slack at this point, begin trainsgnat an aggregate rate
equal to the rate of the high-rate client. However, in this gasater sharing of the
server transmissions, and thus lower server bandwidth usage, coutthibeed by
starting transmission earlier, at the low rate.

Using the notation in Table 3.3, Figure 3.10 presents an algorithryi¢hdd a
lower bound on the server bandwidth required to serve a given sequencpiestre
arrivals®. The algorithm considers each reqyeist order of request deadline; i.e., the
time by which the associated client must have completed renegitithe file so as not

to exceed the maximum delay for its respective class. Thetiua}™ approximates

(in a manner allowing a lower bound on server bandwidth to be computeaththent
of additional data (not received by earlier clients) that theesevould need to transmit

to enable the requejstlient to meet its deadline. This quantity is computetd-ag", ;,
where y! ; is the total over all earlier reque$t®f an optimistic estimate” of the

portion of x that the requegtclient could have shared reception of. A proof thit

18 The algorithm as presented in Figure 10 has coripl®(K?), but can easily be implemented in a more
efficient manner in which only requestswhose time in system overlaps with that of requeate
explicitly considered in the inner loop.
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Table 3.3: Notation for Heterogeneous Lower Bound Algorithm.

Symbol | Definition

K Length of request sequence, with requests indexed fromKL ito order of
request deadline

c(j) The class of the requgstlient

T | Arrival time of request

T° | Deadline of requegt(T" + D)

Ti Time from the arrival of requesuntil the deadline of requeistT;” — T)
Amount of data received by the requgstient, from transmissions not received
by any client with an earlier request deadline
X Amount of data received by the requgestient, from transmissions not received
by any client with an earlier request deadline, that is adseived by the
request client | <i <K)

Yii Sum ofx; for 1< k<j

B Total amount of data transmitted to serve requests 1 thjough

By =0, ygP =0 1<i<K
for j=1 toK
hib _ hib
Xjo =L-yjaj
hlb _ phlb hlb
B =Bj1 *X;
fori=j+1 toK

if A <TP then

hlb — .: hlb hlb hib
Xi = m'”{xi L= Yimn B T — Vs b T ,i}
else

X =0

hib _ hib  hib
Yii =VYj-ui X

end for
end for

Figure 3.10: Heterogeneous Lower Bound Algorithm.

= Zlizlx,’g'b is a lower bound on the total server bandwidth required to serve redquest

throughj is given in Appendix A. In the case that all classes shaoenanon maximum
sustainable client reception rate, the lower bound is tight and theebandwidth used

by slp. With heterogeneous client reception rates, the bound may be unachievable.

3.4.2.2 Protocols
Perhaps the simplest protocol for serving clients with heterogsneception
rates is to dedicate a separate channel to each class. fAng scalable download

protocols from Section 3.3 can be utilized on each channel, with trsgiemirate
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chosen not to exceed the maximum sustainable reception rate rekfieztive clients.
The disadvantage of thgeparate channelgrotocol is that there is no sharing of server
transmissions among clients of different classes.

A second approach, termed hetered cyclic/listeners (s-cyclig/lgxtends the
cyclic/l protocol from Section 3.1.2 to this heterogeneous client context. The client
classes are indexed in decreasing order of their associatechum delays, aggregating
any classes with equal maximum delays into a single classhannel is created for
each class, with the transmission rate on channel 1 choskefbasnd the rate on
channel fori > 1 chosen ak/Di-L/Di;. Class clients listen to channels 1 throuight
The server cyclically multicasts file data on each channelnewes at least one client is
listening. Here (as well as for the remaining protocols dssmlisn this section) it is
assumed that through careful selection of the order in which datestdoe transmitted
on each channel [26, 27], and/or use of erasure codes with long “stretch factorsit, a clie
listening to multiple channels will nonetheless never receivedhee data twice. The
average server bandwidth usage on each chanme} be derived in a similar fashion as

for thecyclic/l protocol, yielding
D N _ D
B :(L/Dl)%—e'ZJN‘Cl“DJ % S (L/D, —L/Di_l)%—e ZI5Hi0; % (3.37)
1=2

This protocol achieves sharing of server transmissions amoegtsclof different
classes, but as with thogclic/l protocol there will be periods over which transmissions
on a channel serve relatively few clients.

The near-optimal protocols for delivery to homogeneous clients tlea¢ w
proposed in Section 3.3 have the characteristic that whenevesrttee sansmits, it is
at the maximum client reception rabe Intuitively, for fixed maximum or average
client delay, transmitting at the maximum rate allows a gredglay before beginning
any particular transmission, and thus a greater opportunity for bgichin contrast,
note that in thes-cyclic/l protocol, clients of each clasgeceive server transmissions
that are at an aggregate rate equal tonhemumrate required to complete their

downloads within timeD;. The key to devising an improved protocol is to achieve a

7 Alternatively, a large number of channels may tmpleyed, with the server transmitting on each at th
same low rate. Class clients would then listen to channels 1 throtghvherek; = [L /(rD; )[.
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good compromise between use of higher aggregate rates, which pettaitbatching
opportunities for the clients that can receive at those ratespanagigregate rates that
maximize the sharing of server transmissions among clients of diffeassesl

A family of protocols that enables such a compromise is defintallaws. The
client classes are indexed in non-decreasing order of tloejptien rates. A channel is

created for each client class, with the transmissionrrad@ channel chosen ad—

z‘j‘jlrj 18 Class clients receive an amount of dafaon each channgl for 1<j <i, as

_!{ . Server transmissions on each channel

determined by the protocol, such that z‘j

follow a protocol such as the extendsatlic/cd,botprotocol from Section 3.4.1.
Within this family, two extremes can be identified. At ondrexe, clients

receive the maximum amount of data possible on the lower-numbered Ishdhug

maximizing the sharing of transmissions among clients ofemdifit classes.
Specifically, class clients receive an amount of dafa= min[L—z,ijlik, riDi] on each
channelj, 1<j <i.'® At the other extreme, batching opportunities for clagd@nts are
maximized by equalizing their slack on each channel. In thés gas (r;/bi)L for each

channel, 1<j <i. Simulation results have shown that neither of these protocols yields
uniformly better performance than the other, and that the performdiffeeences
between them can be quite significant.

The best intermediate strategy can be closely approximatagimtocol termed

hereoptimized sharingin which thel!values are chosen to be approximately optimal.

With N¢ classes, the number of free parameters in the optimization prabNaiN—
1)/2. For each candidate allocation, the approximate lower boundiarfedys Section
3.4.1 can be used to estimate the average server bandwidth withdtatiad. With a
small number of classes, as in the experiments whose resulisezented herg, can
be discretized and exhaustive search employed, for example, tanfiatlocation that

results in the minimum predicted average server bandwidth.

'8 Note that if b =ly_;, then the rate; is computed as 0. Chanrielwill then not be used, but for

convenience of indexing it is retained.
191f this rule results in classclients retrieving no data from chanmethen channel can effectively be
aggregated with channieil.
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Figure 3.11: Maximum Delay with Heterogeneous Client
Protocols Relative to Lower Bound. & 1, A = 1, D values
inversely proportional to maximum achievable reception rates).

Note that with all of the above protocols, the amount of data receivexhch
channel by a client is statically determined according to the clidags.cThe extension
to heterogeneous clients of thkp protocol, in which a client’'s use of each channel is
dynamically determined, is also considered. The client daaee indexed in non-
decreasing order of their associated maximum sustainai@etien rates. The server
transmits at aggregate rdfevhenever there is at least one client from dldkat has no
slack, and there is no such client from a class indexed highern.th&hannels are
defined (as in the previous protocol family, for example), such tleédssj client can
receive at rate mibj, bj] whenever the server is transmitting at aggregateborate

Figure 3.11 shows representative performance results, usingtdredemeous

lower bound algorithm from Section 3.4.2.1 to provide a baseline for caaparior
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the separate channelandoptimized sharingrotocols, the optimadlp protocol is used
on each channel, although as illustrated in Figure 3.9(b) use of the pramtical
cyclic/cd,botprotocol would not greatly impact the results. For the heterogsrdient
slp protocol and fooptimized sharingsimulation is used to obtain the results shown
(although as noted previously, the approximate lower bound analysis isirused
optimized sharingo determine the data allocation), while g@mparate channelands-
cyclic/l, the results are from analysis. In the scenarios considetleid iiigure there are

3 client classes with respective reception rates of 0.2, 1, and ) aaldies such that
biDi = byD; for all classes, j. The total request arrival rate is (without loss of genejality
fixed at one, and the different parts of the figure correspond taeattfehoices for the
division of the total request rate among the classes.

The principal observations from this figure are: (1) separate channels
protocol yields poor performance, even in this scenario with greétisring client
reception rates; (2) thecyclic/l protocol can yield performance as poor, or worse than,
separate channelgnote, however, that the protocol does relatively better when the
classes are more similar); (3) tbptimized sharingrotocol yields substantially better
performance thaseparate channeland s-cyclic/l and never worse (and sometimes
significantly better) than the heterogeneous cl@ptprotocol; and (4) theptimized
sharing protocol does not appear to leave much room for performance impnolyeme
achieving within 25% of the lower bound on maximum client delay irs@harios

considered.
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3.5 Summary

This chapter considers the problem of using scalable multicast piotte
support on-demand download of large files from a single server to ipditeidrge
numbers of clients. Lower bounds are developed that indicate theadl@st/able
performance. Baseline batching and cyclic multicast protocasfand to have
significantly sub-optimal performance, motivating the developmenteaf protocols.
In the case of homogeneous clients, the best of the new practitatols that focus on
improving maximum client delay yields results within 15% of optjnralall scenarios
considered. Similarly, the best of the new protocols designadprove average client
delay yields results within 20% of optimal. For heterogeneoestsli the proposed
optimized sharingprotocol achieves within 25% of the optimal maximum client delay,
in all scenarios considered. An interesting observation is thean substantially

outperform theslp protocol, which is optimal in the homogenous environment.
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Chapter 4
Scalable Download from Multiple Replicas

Systems using replication requireeplica selectiorpolicy that chooses a replica
to serve each client request. In systems using aggregatiegilass replication, a basic
tradeoff that the replica selection policy must address isdagtwocality of service and
efficiency of service. At one extreme, each client requadtidoe served by the closest
replica, maximizing locality of service. At the other eriee all client requests could
be served by the same replica, maximizing opportunities for gafgre and thus
efficiency of use of server resources. In intermediatecipsli some client requests are
served by the closest replica, and others are served by segliednich a higher degree
of aggregation can be achieved.

This chapter considers the problem of replica selection in sygaiéhzing both
replication and aggregation. As discussed in Section 2.3.2, prior work oepiiea
selection problem has assumed individual rather than aggregated §&5yigg, 94, 96,
133, 140, 186], or has considered aggregated service but only in the spmwiéixt of
media streaming and corresponding streaming-based service diggrégehniques [9,
72, 81]. In contrast to assuming a media streaming context, thieclapsiders two
general types of service aggregation that may be applicablganety of contexts, and
in particular to systems providingdownloadservice for large files, such as software
distributions or videos. In the case of download, the two service aggreggpes
considered correspond to: (a) batching multiple requests for the i@ and serving
them with a single (IP or application-level) multicast, or (ipgis “digital fountain”
approach [31, 146, 176], respectively. For each service aggregatiorclygses of
policies of differing complexities are compared, with the gofldetermining the
performance improvements that more complex types of policiey srable.

Comparisons are carried out in the context of a simple systedelnthat allows the
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performance that may be achievable with each class of policidse accurately
delimited.

The first and most basic policy distinction considered is betwegptica
selection policies that us®/namicstate information (for example, numbers of waiting
requests), and (simpler) policies that use osiigtic (or semi-static) client-replica
proximity and average load information. The obtained results indibateuse of
dynamic state information has the potential to yield largaatons in client delay, for
fixed total service delivery cost, in many cases by a factor of two or. more

Among policies using dynamic state information, a second distincaonbe
made between policies thdeferreplica selection decisions, for example until near or at
the end of a batching delay as employed by the aggregation @oildyhose (simpler)
policies that make a replica selection decision immediately upguest arrival. It is
found that deferred selection can potentially yield substantial peafure
improvements, again by a factor of two or more in some caslesugh only for fairly
narrow ranges of model parameter values.

Finally, among policies using dynamic state information and defeselection,
a third distinction is between “local state” policies that thsér replica selection and
scheduling decisions on the currently outstanding “local” cliequests, and “global
state” policies that use information concerning all current gquét is found that
relatively simple local state policies appear able to achieest of the potential
performance gains.

The remainder of the chapter is organized as follows. Thensystedel is
described in Section 4.1. Section 4.2 addresses the question of whetbédysamic
state information can yield major performance improvements. oBett8 considers the
extent to which performance can potentially be improved in dynamicig®liby
deferring replica selection decisions, rather than making such atecishmediately
upon request arrival. Section 4.4 focuses on the class of poliogsdygiamic state
information and deferred selection, and considers the extent to whicaspasing only
“local” state information can realize the full potential ofstpiolicy class. Throughout

Sections 4.2, 4.3, and 4.4, the maximum client delay is the primarycnused to
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measure client performance. Section 4.5 considers the impact ofavsiragie delay as

delay metric. A short summary is presented in Section 4.6.

4.1 System Model

Consider a system witN replicas, each of which delivers a service (such as
download of a popular file) using the same service aggregation technijiemts are
divided according to network location ind groups, such that all of the clients in a
group can be considered to have approximately the same netvaxiknjpy to each
replica. For simplicity, in the following it is assumed thdt= N. Given this
assumption, the client groups and replicas are indexed such tha¢ fdreints of group
i, the closest replica is replica Replicai is called the “local” replica for client group
while all other replicas are called “remote” replicas fuis tgroup. Service requests
from the clients of each group are assumed to be Poisson at ratewith the
replicas/groups indexed from 1N&bin non-increasing order of the group request rates.

Two types of service aggregation are considered. With thetypst called
batchedservice, requests are accumulated and served in batchesawhtbaich being
served by a single replica. The required “service cost” lateh of requests (measured
In units such as processor-seconds or bytes of replica bandwidth cdnslepending
on the service) is assumed to be a fixed valuedependent of the number of requests
in the batch. Any request arriving after a batch has already begun smit# receive
service with that batch, but must wait for service with somer dithteh. For a service
providing downloads of a popular file, this type of service aggregatomespond to a
replica serving a batch of requests for a file of sizewith a single multicast
transmission.

With the second type of aggregation, called Hetetain service, whenever a
replica has at least one client wishing to receive its sersgrvice is dispensed at a rate
r to all such clients. Clients may switch replicas during teeivice period. As in
Chapter 3, the service periodlif. For a service providing downloads of a popular
file, this type of service aggregation corresponds to using a ‘idigitatain” approach
[31, 146, 176], in which file data is erasure encoded and transmiytteddh replica at
rate b on its own multicast channel whenever at least one clienstening to that
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channel. A requesting client need only listen to one or some sequoénmeplica
channels for a total duratiddr, assuming use of an erasure-coding (e.g., [164]) and/or
transmission scheme such that the probability of receiving dimlpeeckets, even when

a client switches replicas during its service, is negligible.

The performance metrics considered are the maximum clieng Beknd the
total service delivery cost. For the batched service type;lignt delay is defined to
include only the time from request generation until the requbatsh enters service.
For the fountain service type, the client delay is definegtieservice duration, equal to
L/r. In this case, unlike for batched service, the client delay isaime for all requests.
For both service types, the total service delivery & defined as the average total
rate at which service cost is incurred at the replicas (irs whitost per unit time) plus
the average total rate at whialkcesscostis incurred. The access cost is defined in a
manner that may make it applicable to a variety of seryigest When a client from
groupi receives a fractioq of its service from a repliga(note that for batched service,
g is 1 for the replica at which the client’s batch is served,Oafod all other replicas) an
access cost afjgL is assumed to be incurred, where the consiagives the network
cost per unit of service received when repjipaovides service to a client from group
For simplicity, in the following it is assumed, unless statedraiise, thatc; = 0, andc;
= c for somec such that 0 € <1, for alliz j. B;jis used to denote the average rate at
which service cost is incurred at each replicaConsidering download systems, as in
Chapter 3B; corresponds to the average server bandwidth usage at a replising

the notation defined in Table 4.1, this yields a total service deliverLaretulated as

C:éBi +E§lxiqi %L. 4.2)

Clearly, there is a tradeoff between maximum client defay tatal service delivery
cost, and in policy comparisons either the maximum client delaybe@ompared, for
a fixed total service delivery cost, or the total servidéveley costs can be compared,

for a fixed maximum client delay.
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Table 4.1: Notation used in Chapter 4

N

Symbol | Definition

A Request rate from the clients of grapygroups indexed so that> A; fori <|j

A Total request rate, summed over all client groups

L Service required by each requesting client (equal to the file size)

N Number of replicas (assumed equal to the number of client groups)

B; Average rate at which service cost is incurred at r@pli@ssumed equal t
the average server bandwidth)

c Access cost per unit of service received for all clgnoupsi and replicag,
i %]

o] Average fraction of its service that a graugplient receives from other tha
replicai

C Total service delivery cost

D Maximum client delay

A Average client delay

r Service rate with fountain service

4.2 Dynamic vs. Static Policies

Static policies use only client-replica proximity and average information in

making replica selection decisions. Although fountain service,nergé allows each

client to switch replicas during its service period, with stpbticies there can be no

advantage to this flexibility, and therefore with such policiess iassumed that each

request is served by a single replica, for both batched and fouséaince.

Furthermore, in a static policy either all requests fragivan client group are served by

the same replica (in general, dependent on the group), or repdiestion is

probabilistic.
arrivals at each replica will also be Poisson.
results for a single replica with Poisson request arrivaisSekction 4.2.2, these results
are applied to determine a tight bound on the achievable performance witpclates
Section 4ifataly

delimits the achievable performance with dynamic polici€®erformance comparisons

for each of the batched and fountain aggregation types.

In either case, with Poisson requests from ekt group, request

are presented in Section 4.2.4.
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4.2.1 Analysis for Single Replica Systems

Referring to the single server analysis for the batched aritt eyulticast (for
the “fountain service” case) presented in Chapter 3, the sexstée.g., average server
bandwidth usage) can easily be calculated.

Consider first the case of batched service. For a fixedmuex client delay
(waiting time) D, the delivery cost is minimized by a policy in which all euatty
waiting requests are served once the waiting time of thiestasuch request reachBs
Since the expected time duration from the beginning of ser¥io@e batch until the
beginning of service of the next B + 1/ with this policy, the following equation
relates the optimd) and average service cost rBtéequation (3.1) and (3.2)):

L
D+1/)

For fountain service, the replica is dispensing service at a nateenever there is at

(4.2)

least one client with a request that is not yet satisfiecde CHoice ofr determines the
achieved tradeoff between the client delay and the averageeseost rate. Since each
request has a required service timeLtif and the probability of there being no active
request (and thus of the replica being idley s, the following equations are obtained
for D andB (equation (3.5) and (3.6)):

D=L/r; B=bfi-e7). (4.3)

4.2.2 Delimiting the Achievable Performance with Static Policies

Note that in equations 4.2 and 4.3, the average service coBtgaten fixedD
is a monotonically increasing, concave function of the request laraieaat the replica.
Thus, in a static policy, if all requests that are served teyrete replica are served by
the replica with the highest rate of requests from its lolbaht group (i.e., replica 1),
the total of the average service cost rates at the replgthsbe minimized.

Furthermore, since assuming tleat= c for all i # j, serving such requests at replica 1

incurs no greater access cost than serving them at anyrethete replica(s). Finally,
the concavity of the average service cost rate function, andssuengtions regarding
access costs, imply that in an optimal static policy eitheeqliests from a client group
are served by a remote replica (namely, replica 1), or nened the former case can

hold only if all requests from client groups with equal or loweguest rate are also
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served remotely. Thus, in an optimal static policy there is ax ikde < k < N), such
that all requests from grougclients, fori <k, are served by the local replica, while all
requests from group clients, forj > k, are served by replica 1. Note that for
homogenous systems in which the client groups have identical reqiest in the
optimal static policy either all requests are served byoited replica, or all requests are
served at some single replica.

Given the form of the optimal static policy as described abibes) equations
(1) and (2) a tight lower bound on the total service delivery ctséable with a static

policy and batched service, for a fixed maximum client dBlaig given by

H L .
min 3 f 3 + A LD 4.4
k=1.2:-NED +1/(7»1 + Zi’ikﬂ)\'i) =D +1/7» Z @4

Equations (1) and (3) yield the corresponding expression for fountainesemhereD
=L/r:

‘(M"‘X{ia,li)'—/r K _ A—AjL/T N ) O 4.5
min E)@ e k+ Hdrgzb@ e )+C'21XILE' (4.5)

k=12,-

4.2.3 Delimiting the Achievable Performance with Dynamic Policies

4.2.3.1 Batched Service

Determining an optimadn-line dynamic policy for batched service appears to be
a difficult and perhaps intractable problem. For example, suppdgbda is a waiting
request from some client groupwhen there is a remote replicabout to begin service
for some batch of requests. The optimal choice between joinindpdtah and being
served by the remote replica, versus continuing to wait for a batbh served at the
local replica, in general depends not only on the accesg bostalso on the complete
system state and on the statistics of the request arrivalsgroewever, the achievable
performance with dynamic policies can accurately be dednihrough a combination
of results for optimabff-line performance, with a given number of replicas and client
groups, and results for optimal off-line performance in a limitage as the number of
replicas and client groups grow without bound. The off-line policied hees assume
complete information about all requests made to the system (including fuguests).
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Consider first the problem of determining optimal off-line perforneanith a
given number of replicas and client groups. An algorithm is develdpgdakes as
input a request sequence (indicating both the arrival time and ém ghoup of each
request) and a maximum client del2y and finds the minimum total service delivery
cost for serving all of the requests in the sequence. Thisitalgois based on the
following observation. Define the deadline of a request as tleedirwhich the request
waiting time would equal the maximum client delay. Then, straquest deadling
the minimum access cost incurred by the corresponding requietersnined solely by
the batch service initiations that occur within the intertdD] ], i.e., from the request
arrival time to its deadline. In particular, the minimucoess cost is zero if and only if
the local replica begins service of a batch of requests dimsgnterval, and otherwise
IS C.

The above observation enables the following algorithm structure. A window of
durationD is advanced through the given request sequence, with the right enafpoint
the window moving at each advance to the next request deadlink.p&aatial choice
of batch service initiations within the current window defines atést When the
window advances, the set of states changes, as earlier baick satiations may now
be outside of the window and some new batch service initiations enagided. Each
state has an associated minimum total service delivery cbst.cast of a new state (as
created when the window advances) is calculated as the minimtime obsts of the
alternative prior states (before the advance of the window) ékattrin this new state,
plus the access cost associated with the request whose deadiimes diee right
endpoint of the new window (according to whether or not the local aepbecves a
batch in the new state), plus the service cost of any nth barvice initiations. When
the window advances to include the deadline of the last requestreqinest sequence,
the minimum total service delivery cost for the input requestiesece and maximum
client delay is given by the minimum over all current stateshe associated total
service delivery cost.

The feasibility of this approach depends on being able to tightlytraomghe
potential choices of batch service initiation times and locationstharsdthe number of

states associated with the current window, in a manner thaillsw's discovery of the
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minimum total service delivery cost. Assuming for clartgttno two events (request

arrivals or deadlines) occur simultaneously, the constraintsrédhangployed here are as

follows:

1.

A replicamay begin service of a batch of requests at a tinoaly if timet is a
request deadline. (Otherwise, service could be postponed, with n@rgreat
service delivery cost.)

Replicai may begin service of a batch of requests at the deatlofea client
groupi request,only if replicai did not begin service of an earlier batch of
requests during the interval-D, t). (Otherwise, the request with deadline
could have been served with the earlier batch, and the service reintheing
requests in the later batch postponed.)

Replicai may begin service of a batch of requests at the deatlofea client
groupj request, fori # j, only if there is no replick (k may equali or j) that
began service of a batch of requests during the intdnid) ). (Otherwise, the
request with deadliné could have been served earlier by repkgcaand the
service at replica postponed, with no greater total service delivery cost.)
Constraints (1)-(3) imply that each replica may begin servica oftch of
requests at most once during any time period of dur&tion

Replicai may begin service of a batch of requests at the deatlofea client

groupj request, fori #z j, only if there have been at least two arrivals of client

groupi requests in the interval-D, t) (and that thus could belong to the batch).
(Otherwise, the batch could be served by reglitestead, with no greater total
service delivery cost.)

Somereplicamustbegin service of a batch of requests at a deadllifighere
have been no batch service initiations in the intetval, (t).

A replicamay not begin service of a batch of requests at a deadlliie(a) a
previous batch service initiation was at a replicd the deadling’ of a client
groupi request, with-D < t’ < t; (b) at most X arrivals of group requests
occurred in the intervat’D, t"); and (c) the batch service initiation prior to the
one at timd’ occurred at a timg’ witht-D <t"” < ¢’ <t. (Since, in comparison

to a schedule with batch service initiations at tinYes, andt, the cost would be
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no greater if the batch service initiation at tithBad not occurred, and each of
the requests that belonged to the batch served at'tinege served instead with
either the batch at tint& or a batch at time which is possible owing to the time
separation of at mof between tima” and timet.) Essentially, this constraint
says that the decision to serve the batch at tihueuld be necessary in an
optimal schedule (and thus the partial schedule including this bateitese
initiation possibly fruitful to pursue further), only if there is hatch service
Initiation at timet.

. A replica may notbegin service of a batch of requests at a tim& (a) a
previous batch service initiation was at a replied the deadling’ of a client
groupi request, witht—-D < t' < t; (b) the most recent deadline of a graup
request previous to tintéoccurred at a timg’ with t-D < t” < ¢’ <t; (c) at most
one arrival of a group request occurred in the interval,(t"); and (d) no batch
service initiation occurred at tinté, but such a batch service initiation was not
prevented by the constraints (and thus, there is a state in vepiotai begins
service of a batch at timg’ rather than at’). (Since, in comparison to a
schedule with batch service initiations at tinvesndt but not at time”, the cost
would be no greater if each of the requests that belonged to tredeaved at
time t’ and that arrived prior t0’ are served instead by replicatt”, and the
other requests that belonged to this batch are served insteanheat.)t
Essentially, this constraint says that the decision to sebagch at replica at
timet’ and not at time&” could be necessary in an optimal schedule only if there

iS no batch service initiation at tine

Although constraints (6) and (7) are somewhat more complex thanhirs,athey can

greatly reduce the number of states that need be consideredis ilhistrated in Table

4.2, which shows 95% confidence intervals for the average numbereas atsociated

with the current window, and the observed maximum number, for algowi#nants

using different subsets of the above constraints, Mith16,c = 0.5,L = 1,A; = 1 for all

i, and various values of the maximum client déba§? For each algorithm variant and

3 The particular algorithm implementation used feese results could accommodate 8,000,000 current
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Table 4.2: Average and Maximum Number of States using the Op(@fiikihe

Algorithm (N=16,c=0.5,L = 1,A; = 1 for alli)

Constraints Constraints Constraints Constraints
D (©) (1)-(5) only (1)-(6) 1)-(5), (1) 1-(M
6.518+0.091 4.115+0.025 6.141+0.073 4.045+0.024
0.1 (0.6526+0.0006) 2,300 69 1,285 63
2,040+190 98.6+1.1 666+21 86.86+0.85
0.5 (0.4645+0.0006) 5,072,540 3,619 349,799 2,247
- 2,250+190 19,610+660 1,181+35
1.0 (0.3999+0.0008)| > 8,000,000 475,843 1,661,760 106,531
- - - 13,940+460
1.5 (0.3446+0.0007)| > 8,000,000 > 8,000,000 > 8,000,000 1,342,120

value ofD, 10 runs were performed, each on a different randomly generatedtreque
sequence with 25,000 request arrivals.

Although additional constraints are possible, at the cost of increaseplexity
in the implementation, constraints (1)-(7) were found to be suffitteallow use of the
optimal offline algorithm for a large portion of the paramsfaace. The algorithm can
become too costly whebd is large and I/ is not substantially greater thanD
(implying that there are many deadlines, and thus many posstbled®vice initiation
times, within a window, and that constraint 6 becomes less effgcivé/or there are a
large number of replicas. Fortunately, in those cases in whichlgbatlam is too
costly, consideration of a simple limiting case yields a lowgamd on the total service
delivery cost that is empirically tight. Specifically, calesi the case in which there are
a sufficiently large number of replicas and client groups, wWanever it would be
optimal for a request to receive service from other than the lephta, there is always
some batch of requests to be served at a remote replica thagqthest could join
The
minimum total service delivery cost for this case can be detecmwith small

(without any impact on the time at which service is initafer that batch).

computational cost by a variant of the optimal offline algorithmvhich each replica
and its associated client group is considered in isolation, withglitiexonsideration
of the remote replicas. Note that this lower bound on the totdtseselivery cost is
tight not only when there is a sufficiently large number of reglibat also when almost
all requests would be served by the local replica in an optimal policy.
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4.2.3.2 Fountain Service

An optimal dynamic policy for fountain service is easily deieed. Consider
some arbitrary point in time and denote the number of requests from client grologt
are receiving service at timeby w;. If all of thew; are zero, no replica is dispensing
service at timd. Otherwise, at least one replica must be serving requesf(spme

replicaj is serving request(s), then the total cost is reduced wheglicarie(i # j) also

dispenses service at tinte rather than requiring its local clients to receive service
remotely, if and only ifv; > 1/c. Thus, the following policy achieves the minimum total
service delivery cost for fountain service. At each timeach replica dispenses

service if and only if eithew; > 1/c, orwi = maxw; > 1 and there is n& < i such thatw
J
= maxw; . A request from a groupclient receives service from the local replica if it is
I

dispensing service, and otherwise receives service from angtaereplica that is
dispensing service.

With fountain service, the maximum client delayDis= L/r. The total service
delivery cost with the above policy, and thus a tight lower bound on tHesé&mtace

delivery cost achievable with a dynamic policy and fountain service, ia give

N @ @/c] O i-1 N %
rZ OLl- p(w; <1/c))+ Z p(w; =k)rke+ (L— kc)r_| p(w; <k) [ p(w; <K)0, (4.6)
Els k=1 g =1 j 55

Si+l

Me_}‘i“r .

wherep(w;, =m) = -

4.2.4 Performance Comparisons
Figures 4.1 and 4.2 apply the results from Sections 4.2.2 and 4.2.3 to compare

the potential performance with static versus dynamic repktacton policies, for
batched and fountain service, respectively. Rather than congideemminimum total
service delivery cost potentially achievable with a given marintlient delay, here
(equivalently) the lowest maximum client delay potentially echble with a given total
service delivery cost is considered. Specifically, these figwi@ow the lowest
potentially achievable maximum client delay for static policegressed as a
percentage increase over that with dynamic policies, as ddoraf the total service

delivery cost expressed as total cost per request. The tatgezagquest is varied by
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Figure 4.1: Best Potential Performance with Static Paglicie
Relative to that with Dynamic Policies, for Batched Service.

changing the batching del@yin the case of batched service, or the servicerrat¢he
case of fountain service. Without loss of generality, the uniosff is chosen to be the
total service required by each request, and the unit of tirokeoisen to be the average
time between requests from a client group when the total reaiess divided evenly
among the client groups. With these choices of ubits] and A = N. For the case of
batched service and dynamic policies, the optimal offline algoritbm Section 4.2.3.1
was run on 10 randomly generated request sequences, each with 25,000aregaks
and the results averaged, for each set of parameters for thiscgorithm was found
to be feasible. For the other parameter sets, a similar metigydehs followed, but
using the variant of the optimal offline algorithm in which eacplica and its

associated client group is considered in isolatfon.

4 |n this case, owing to the relatively low execntimst, each of the 10 runs for each parametdraskt
200,000 request arrivals. In general, unless usinglytic expressions, all data points presented in
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Figure 4.2: Best Potential Performance with Static Pglicie
Relative to that with Dynamic Policies, for Fountain Service.

Interestingly, the results in Figures 4.1 and 4.2 are quite sjneN@n though
they are for quite different types of service aggregation. Wdth batching and
fountain service, dynamic policies have the potential to yield aotislly better
performance than static policies over large regions of thenpger space. In many
cases, the lowest potentially achievable maximum client dsldy static policies is
over 100% higher than with dynamic policies; i.e., higher by a factor of 2.

Note the presence in many of the curves of a local maximuheiperformance
difference, at an intermediate value of the total service dglo@st per request. These
peaks correspond to points where the optimal static policy changesebetwe in
which all requests are served by the local replica, and one irhvalicequests are

served by some single replica. For the cases in which afitaroups have the same

Chapter 4 are generated by taking the averageldveimulations, each simulating 200,000 or 1,000,00
requests.
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request rate, the total service delivery cost per requesppsoximately equal to the
value of the access casat these points.

It is possible to obtain the asymptotic limits of the curveBigures 4.1 and 4.2
as the cost per request (in normalized units) approaches onehiedeftt since in this
case the batching del&yis so small (in the case of batched service), or the seatiee r
r so large (for fountain service), that the probability that a queuld receive service
with more than one other request becomes negligibly small. Theabstatic policy
in this case is for each request to be served by the localaeprhe optimal dynamic
policy in this case is for each request to be served by tla deglica if no previous
request is waiting for service (in the case of batched s¢miaeceiving service (in the
case of fountain service) at the time of arrival of the requedihe rare event that there
IS such a previous request, the cost is minimized if the newsesjuares its service (all
in the case of batched service, or whatever service remaitisef@revious request in
the case of fountain service) with this previous request (and, ioathe of fountain
service, receives the remaining portion of its service locally).Appendix B these
optimal policies are analyzed, and the asymptotic limits ah eeurve derived.
Assuming identical client group request rates these limgsNar1)(1-€) x 100%, for
both the batched and fountain service model.

Figures 4.1 and 4.2 show tpetentialperformance improvements with dynamic
policies, but these improvements may not be practically realizalilee next two
sections consider the question of how complex a dynamic policy neéeéstd achieve

the full potential of this policy class.

%% Note that these peaks occur in regions of therpaier space in which the optimal offline algoritisn
feasible; only well to the left of each peak, dicbecame necessary to use the variant in which each
replica and its associated client group is considién isolation.
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Figure 4.3: Confidence Intervals for Figure 4.2(a).

Throughout this chapter only the average values are reported; however, it should
be noted that the confidence in the differences between the differanées is high. To
illustrate this, Figure 4.3 shows confidence intervals capturingrtieeaverage with a
confidence of 95%, using 10 simulations for each data point with identicdéngth to
those used to generate Figure 4.2(a). Note that the confidencalmtigttly follow
the shape of the curve and do not affect the results. Similarvabieas are true for

other policies and parameter settings.

4.3 Deferred Selection vs. At-arrival Selection

A basic distinction among dynamic policies is whether repldaction occurs
immediately when a request is made (“at arrival”), or whetbplica selection may be
deferred for some period of time. With batched service, eaclesteipiserved by a
single replica. This replica is selected at the requesthtime in an at-arrival replica
selection policy, while with deferred selection the choice magdiayed (at most, by
the maximum client delalp). With fountain service, each request immediately begins
receiving service at rate and clients may switch replicas during their service period of
durationD =L/r. In an at-arrival replica selection policy, a schedule gitregreplica
from which the client will receive service at each instantth@& service period is
determined at the request arrival time, while with deferreectgeh the replica from

which a client will receive service at each titmeay deferred up until time Note that
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at-arrival replica selection is a simpler approach, but defeselection may offer the
potential for improved performance, since replica selection takg into account
subsequent request arrivals.

Section 4.3.1 determines optimal at-arrival replica selection eslifor both
batched and fountain service, and corresponding tight bounds on the achievable
performance with at-arrival replica selection. Section 4.3.2eptesperformance
comparisons between these results and the results for gegeaahid policies from
Section 4.2.3.

4.3.1 Delimiting the Achievable Performance with At-arrival Policies

4.3.1.1 Batched Service

Consider first the case in which all client groups have the saoueest rate
(A/N). If there are one or more previous requests waiting forcaebyi replica when a
new request from client grougarrives, the new request should join this batch. Suppose
that there are no such waiting requests. Since all groups hasantigerequest rate, in
an optimal at-arrival policy a remote replica would never Hecssl for a newly-
arriving request unless there is at least one previous redrezstyawaiting for service
by that replica, and thus the next request to begin waiting feicedrom replica can
only be from group. Therefore, if a remote replica is selected for the mewest, the
same state with respect to client group and repli@anewly-arriving group request,
and no waiting requests at repligawill be entered again after a time of expected
duration (with Poisson arrival®y/A, and a cost of cL will have been incurred. If replica
i is selected, the same state will be entered after a time of expectedrdDratN/A (the
expected cost is minimized if a batch is not served until Drnadter formation), and a
cost ofL will have been incurred. Comparing these two scenarios, itimapb select
the local replica if and only if there is no remote replicth\ai least one waiting request
and/or €L)/(N/L) > L/(D+N/}L), or equivalently ¢ > 1/(A/N)D+1); otherwise, it is optimal
to select such a remote replica.

With the optimal at-arrival policy as described above; # 1/((A/N)D+1) all
requests receive service from the local replica, and thé detaice delivery cost is

given byAL/((A/N)D+1). If c < 1/(A/N)D+1), the total service delivery cost is given by
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)DEL where the term in parentheses gives the expected cost per
request, as computed by dividing the expected total cost to skofdaled requests in a
batch by the expected number of requests in a batch.

Consider now the general case in which client groups may hdedrdifrequest
rates. Suppose that when a client groupquest arrives there are no previous requests
waiting for service by any replica. Recalling that reggigroups are indexed from 1 to
N in non-increasing order of the group request rates, analogoudig taptimal static
policy there is an optimal indéx(1 < k < N), such that for <k, the new request begins
a batch that will receive service by the local replichilevfori >k, the new request
begins a batch that will receive service by replica 1.

For client groups with 2 <i <k, the optimal replica selection policy is as
described in the case of homogeneous groups, but with the coritiorf(A/N)D+1)
replaced byc > 1/(AD+1). For group requests with >k, it is optimal to select a
remote replica that already has a waiting request ¥if, @md otherwise to select replica
1. Finally, consider group 1 requests. If there is at least @wops request that is
waiting for service by replica 1, or if there are no previmgpiests waiting for service
by any replica, it is optimal to select replica 1. Thesdaswhich there are no previous
requests that are waiting for service by replica 1, but at l@ae request waiting for
service by some remote replica, is more complex than with homogeagroups,
however, wherk < N. This is since requests from other than group 1 may initiate new
batches to be served by replica 1, which increases the desirabsilecting replica 1
in this case. Note though, that wher N it must be true that 24D < A D for some
client groupi (namely, each groupfor i > k), since it can only be desirable for a group
request to begin a new batch to be served by replica 1 raterby replica if the
expected number of group 1 requests that will be served in that &eateleds the
expected number of groupgequests. This implies thafD > 1, and therefore that>
1/(A\,D+1) forc> 1/2. Since it is even more desirable than with homogeneous groups to
select replica 1 for a newly-arriving request from group lhénevent that there are no
previous requests that are waiting for service by replica lablgast one request

waiting for service by some remote replica, ot 1/2 (and k < N) it must be true that is
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optimal to select replica 1 in this case. For the results siro®action 4.3.2 for client
groups with differing request rates, the access cost is clasgen 1/2, and simulation
Is used to determine the optimal indexand the minimum total service delivery cost
according to the optimal policy as described above.

4.3.1.2 Fountain Service

With fountain service, the replica from which a newly-arriving e=guwill
receive service must be determined for each instant of téet’sliservice period of
durationD = L/r. Denoting the time since the previous request arrivat by is
necessary to determine: (1) which replica should be scheduled to psewuse for the
last ming,, L/r] of the service period, and (2) for each time instant at wtiiehocal
replica is not scheduled to dispense service during the initial mb4f&,] of the
service period, whether the local replica should now be scheduled fotirtfga or
whether the new request should receive service from a rematsarajpeady scheduled
(such a replica must exist owing to the service period of the previous request).

Consider first the case in which all client groups have the saquest rata/N.
In this case, it is clearly optimal to schedule the localcapb dispense service for the
portion of the service period during which no replica is alreadyecided (the last
min[t, L/r]). For each time offset at which the local replica is not scheduled to
dispense service, within the initial maxJJr—t] of the service period, it is optimal to
schedule the local replica, rather than to have the new requestereservice from a
(remote) replica already scheduled, if and only #f rc(1+A/N)t), or equivalentlyt >
N(1—)/(cA). Denoting the threshold value m¥{L—)/(cA), L/r] by T, the above
observations yield the following tight lower bound on the total serdelivery cost

achievable with an at-arrival replica selection policy and fountain service:

{ N (1_ e—(MN)(L/r—T))+ (e—(MN)(L/r—T) _ e—k(L/r—T))dT

+e‘X(L”‘T)§1—e‘”)+ C(XT —(:L—e‘kT ))NT_lg . 4.7)

This expression is derived as follows. Consider the state ofystens at an arbitrary
point in time under the operation of an optimal at-arrival policy.thdre was at least

one request from client grougt an offset prior to the current time in the interval(;-

96



—T], replicai will currently be dispensing service, yielding the firstiexithin the outer
parentheses. If there were no requests from grduyp at least one request from some
other groug in [-L/r, —T] (and thus replicgis currently dispensing service), any group
I requests that were made inT[-0] will currently be receiving service from a remote
replica, yielding the second term within the outer parentheseslly if there were no
requests from any group inl#4, —T], one replica will currently be dispensing service if
and only if at least one request arrived in the interval B}, and all requests that
arrived in the interval [F, O] from client groups other than that from which the first
such request arrived, will currently be receiving service from a rerapliea.

For the general case in which client groups may have differoqugeset rates, the
optimal choice between receiving service from a remote replready scheduled, or
scheduling the local replica, is determined according to the tirisetaffrom the
beginning of the service period as in the case of homogeneousgecbeps. Fot > T,
= min[(1-c)/(cA), L/r], it is optimal to schedule the local replica; otherwises aptimal
to receive service from the remote replica.

Unlike in the case of homogeneous groups, for new requests from other tha
group 1 (that with the highest request rate) it may not be optovsthedule the local
replica for the portion of the service period of a new requeshgluvhich no replica is
already scheduled. Consider a newly-arriving request from dthardroup 1, and a
time offsett > T, from the beginning of the service period, at which no repliedrésady
scheduled. In this case, it is optimal to schedule the local agplidispense service at
timet if and only ifr(1—e ™))+ e M reh; Ty < re(1+Ait); otherwise, replica 1 should
be scheduled instead. This relation takes into account the posdimitgven if the
local replica is scheduled to dispense service at timeplica 1 may also be so
scheduled at a subsequent group 1 request arrival. Considérnibw It is optimal to
schedule the local replica to dispense service at tihand only if rcAt < rc(1+At);
otherwise, it is optimal to schedule replica 1 instead. Combinirsg tlweo cases yields
the condition

(1— e'xl(t'mi”[t'Tl]))+ e MMt Tl g mingt, T, < cfL+4t). (4.8)

It is straightforward to verify that this condition divides theematl [O, L/r] into (at

most) three regions: an initial region in which the condition holdgcand region that
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may or may not be present and in which the condition does not hold, remdd(she
second region be present) a third region that may or may notbenprin which the
condition again holds. Defing’ and T,” to be the boundary values separating the
regions, should all three exist, witli’ < T, note thafl,' <T, in this case. If just the first
two regions exist, them = L/r. In this case defing" as the boundary value separating
these regions and defifig¢ = T, (= L/r). Finally, if only the first region exists, defifée’
=T'=T. Then itis optimal to schedule the local replica to dispenseeatt for t <
T, and fort> T, and replica 1 foll " <t <T.

Defining f as the fraction of requests that are from client grpapalysis of the
above optimal policy yields the following tight lower bound on the wealice delivery
cost achievable with an at-arrival policy and fountain servicethiergeneral case of

heterogeneous client groups:

rz{@ (L TI 2 (L/r-T;) _e—k(L/r—ﬂ)):)LiTi re LT g )c(kTi _@_e—ﬂi ))fi

+((e—A(L/r—Ti) _e—x(L/r—Ti'))+( AWM= —M_/r))
+e‘"A(L”‘Ti')f-C( (T =T+ (1 R Xl fi) )+( ) L/r_Ti))fiCMTi"
et Mg T g lmli-mafnm) o0 -, )1-,T,)

wlgrrerrmanl) _ et 1 ch madfT,, T+ buma0,T, -7 - e P omT )—1)f1)}
+ ’,{ (1_ e—xl(l_/r—Tl))+ (e—xl(L/r—Tl) _ e—x(L/ r_Tl))Clel + (e—x(L/ r-T) _ e MLIr )fl

e )b, -} ®9)

A derivation of this expression is presented in Appendix C.
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Figure 4.4. Best Potential Performance with At-arrival ddedi
Relative to that with General Dynamic Policies, for Batched Service.

4.3.2 Performance Comparisons
Figures 4.4 and 4.5 apply the results from Sections 4.3.1 and 4.2.3 to compare

the potential performance with at-arrival versus general rdimaeplica selection
policies, for batched and fountain service, respectively. As ilbeskia the figures, use
of deferred selection can potentially yield substantial perfocenamprovements, by a
factor of two or more in some cases, although only for fairly nareowges of model
parameter values. In particular, large potential performance improvemestsearonly
when the total cost per request is approximately the sameeasctess cost when a
request is processed (entirely) remotely, equatlio In such regions, the potential
performance improvements are maximized as the client groupsmbeanore
homogeneous, as the number of replicas and client groups increasks, \aldes ofc
(in normalized units) between 0.3 and 0.7. Note that in the case of hosoogeclient

groups, as the total cost per request decreases (i.e., the batelap® for batched
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Figure 4.5. Best Potential Performance with At-arrival idked
Relative to that with General Dynamic Policies, for Fountain Service.

service increases, or the service rater fountain service decreases), the point at which
the total cost per request equellsis exactly (for batched service) or approximately (for
fountain service) the point at which the optimal at-arrival potisgnges from one in
which all requests receive all service from the local raplito one in which some

service is received remotely.

4.4 Local State vs. Global State

Dynamic replica selection policies use information about the musgstem
state. A key part of this information concerns what requestwaitmg for service (in
the case of batched service) or receiving service (in theofdsantain service). Here,
“local state” policies are defined as those that make regpdileection decisions for client
groupi requests, and service scheduling decisions for replicased on the currently

outstanding group requests. “Global state” policies, in contrast, are defineithcse
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that use information concerning the current requests from othett @dmups, in
addition to the local group. Note that both types of policies nsywe other types of
state information, in particular concerning the times at whagliaas are scheduled to
serve batches (in the case of batched service) or which repieasirrently dispensing
service (in the case of fountain service).

Section 4.4.1 describes candidate local state replica selection policiescfada
and fountain service. Section 4.4.2 presents a candidate on-line globaddiey for
batched service. Section 4.4.3 compares performance with thesegptdiche limits

on achievable performance from Section 4.2.3.
4.4.1 Candidate Local State Policies

4.4.1.1 Batched Service

In the candidate local state policy for batched service, repédileection uses the
following two rules. First, when a repligainitiates service of a batch, all currently
waiting client groupi requests receive this service. Second, when a remote replica
initiates service of a batch at a timjea waiting client group request that arrived at a
time t, receives this servicé: (a) for the earliest waiting grouprequest with arrival
timet'<t, there are fewer thancl# A (t,'+D-t) waiting groupi requests with arrival
time no earlier thart; and (b) there is no batch service initiation that has been
scheduled (by tim® at any replica within the time interva) (+D].°

A batch service initiation is scheduled (for a time possibly inftiere) at a
replicai whenever one of the following events occurs: (a) the waitng of a request
from client group reaches the maximum duratibr (b) a request arrives from group
and the number of groupequests that are waiting for service reaches at leasirit)
a request arrives from groupnvhen there is no future batch service initiation that has
been scheduled at any replica, and the number of requests from ghatigre waiting
for service reaches at least max[(2/3)12]. The motivation for scheduling a batch at
the last of these events is to increase the likelihood that whehesaare served that

%6 No significant advantage have been observed higipslthat treat each requests individually, alfmyvi
some subset of outstanding requests, local to ticplar replica, to retrieve service, while othelefer
their decision. For example, this local state @otiives essentially the same results as if theabdle is
modified such that rule (a) require there to bediethan 1¢ — A(t,+D—t) waiting groupi requests for
eachwaiting groupi request with arrival timg' <t rather than only for th#érst such request.
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have less than dfequests from any one client group, the replica that servémttie is
one with a relatively large number of requests from its local client group.

When a replica schedules a batch service initiation, the time of this cervi
initiation is chosen a$+D, wheret, denotes the arrival time of the earliest request
among the client grouprequests that are waiting for servide, (a) there is a future
batch service initiation that has been scheduled by some othemrgjcthe most
recent batch service initiation was by repligaor (c) the most recent batch service
initiation occurred later than tinte Otherwise, the time of the batch service initiation

is chosen as the maximum of the current time,tan€ D, wheret__ denotes the time of

last

the last batch service initiation at any replica.

4.4.1.2 Fountain Service

In the candidate local state policy for fountain service, a regeesives service
from the local replica whenever that replica is dispensing secing the service
period of the request, and otherwise receives service from @teaegplica. So as to
provide a tunable upper bound on the number of replicas from which a reqedstse
service, and on the frequency with which a replica initiatesiitextes service, whenever
a replicai initiates service it is constrained to continue this serfoceat leastL'/r,
whereL’ (L' <L) is a protocol parameter, or until there are no requests fremt gioup
i that are receiving this service.

Replicai initiates service whenever one of the following events occurs vt
replica is not already dispensing service: (a) a requagesifrom client group, and no
replica is currently dispensing service; (b) the only replicspatising service is
terminating its service, there is at least one griorgguest for which further service is
required, and no other replica initiates service upon this seteiogination?” (c) a
request arrives from group and the new number of outstanding groupquests is at
least 1¢, as is the expected average number of growgguests that will be receiving

service over the next/r;*® or (d) a request arrives from grouvhile there is only one

2" If there are requests from multiple client grofimswhich further service is required, multiple lieps
may be eligible to initiate service in this scenapvnly one of which should actually do so (setattof
which may be random, or according to some detestiiniule).

8 This latter quantity can be efficiently calculateyglkeeping track of the sum, over all outstanditignt
groupi requests, of the service that each will receiverdhe nextL'/r; denoting this sum b, the
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replica that is dispensing service, this replica has been disgessivice for at least
L'r, it has been at lea&t/r since replica was last dispensing service, and the new
number of outstanding grouprequests, as well as the expected average number of
group i requests that will be receiving service over the nke%t, is at least
max[(2/3)(1£), 2].

A replicai terminates its service whenever one of the following everdsrec
while it is dispensing service: (a) a grouplient stops receiving service, and there are
no remaining group clients receiving service; (b) a groupclient stops receiving
service, there are less tharc Iémaining group clients receiving service, and the
replica has been dispensing service for at ledstor (c) some other replica initiates
service, there are less thaw §ifoupi clients receiving service, and the replica has been

dispensing service for at ledstr.

4.4.2 Candidate On-line Global State Policies

To give additional intuition for the potential performance differences betateen
arrival policies and dynamic policies, as well as betweenaglstate and local state
policies, this section considers the performance achieved-ligie global state policies.
Note that the optimal dynamic policy for fountain service, define8leiction 4.2.3.2, is
in fact an optimal on-line global state policy. Therefore, shis-section only defines a
policy for the batched service model.

Unlike local state policies, global state policies have knowledfethe
outstanding requests of all replicas. Taking advantage of this &dg&lallows these
policies to better determine which replica should serve a bateched when a deadline
is reached. As for the local state policy (defined in Sectidnl.1), no significant
differences have been observed for policies that treat requesta individual basis,
versus policies which treat requests on a per replica basis. pdlicy presented here
assumes that either all or no outstanding requests local wiculaa replica is served
by a batch. Further, a batch is only served when some outstanguegtreeaches its

deadline.

expected average number of client groupequests that will be receiving service over tletri '/r,
assuming Poisson request arrivals, is given 8yr{(+ A;(L'/r)*/2)/(L"Ir).
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Assuming replicai initiates service of the batch at timeand the longest
outstanding client request waiting from some other client gjoanpived at a time,
then (i) all currently waiting client grouprequests receive this serviesd (i) so does
all of replicaj’s requestdf for each client grougx with t < t; (includingj) there are
fewer than ¢ — ) (t, +D—t) waiting groupk requests, wherg is the arrival time of that
client groups’ most outstanding request. While these rules enstreefiiaas with
more local requests are more likely to have requests readbedlines, these rules do
not eliminate the chance of a replica with less tharotél request reaching a deadline.

When a deadline is reached, the local replica serves theibdtbas at least &/
local requests; otherwise, there are two natural candidatesvi® tbe batch: (i) the
replica that has the next deadline among the set of replicasatvikast 1¢ local
requests, or (ii) the replica with the most local request antengdt of all replicas with
requests that will obtain service at this deadline. Sincedplkca with the current
deadline is always included in at least the second of thessetwpat least one natural
candidate always exists.

In an attempt to select the better of these two candidatepptity used here
weighs the expected cost of these two candidates. To do this, riotieetheenefit of
initiating service at the first replica associated with group (iyedaction in the amount
of batches served. While only one of the two batches are usediffgllaweduction in
cost with equal td), it is important to note that there is an indirect cost agtamtiwith
having a replica with at leastcllocal requests serve the batch before its next deadline.
This cost is assumed to grow linearly with time, and (assadider approximation) the
cost per time unit (that the batch is moved earlier) is appréednaith the average
service delivery cost per replic&/().?° The benefit of initiating service at this replica
can hence be approximated by &3 C/N, whered; is the time until this replica’s next
deadline. This benefit must be compared against the additionalssosiated with all
ngiy of the request local to the replica with the most local recpfesie replicas in group

(ii) retrieving service remotely. Comparing the benefits ofelie batches (i.e.l. —

? In a real system the total delivery cost (per timit) C can be obtained using some form of on-line
estimation technique (e.g., an exponentially weidhthoving average). For the results presented here
binary search over long-duration simulations wasdus find a correct value f@.
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Figure 4.6: Performance with Local State Policy Relativéhe
Best Potential Performance with General Dynamic Policies, for
Batched Service.

9;C/N) against the remote access cost associated with thygseequests retrieving
service remotely (i.ecw)L), the policy initiates service at the first replica in grogp (i
if the benefit is greater than the costs, otherwise the politgtes service at the replica

with the most local request in group (ii).

4.4.3 Performance Comparison

Figures 4.6 and 4.7 compare the performance of the candidatetiieglaicies
described in Section 4.4.1, as evaluated using simulation, to the bestigbote
performance with general dynamic policies, determined as dedanb®ection 4.2.3,
for batched and fountain service, respectively. The results for fousdéavice, as
shown in Figure 4.7, are the easiest to interpret. Here thleskata policy (withL’' =
L/2) achieves within 25% of the lowest potentially achievable maximiient delay in
all cases considered. Thus, in the context of fountain service, althhbagh are
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Figure 4.7: Performance with Local State Policy Relativéhe
Best Potential Performance with General Dynamic Policies, for
Fountain Servicel( =L/2).

substantial potential performance benefits in using dynamic r#ther static replica
selection policies (as shown in Section 4.2), and deferred ratheattaanval policies
(as shown in Section 4.3), within the class of deferred, dynamidgmlgimpler local
(vs. global) state policies appear able to achieve close to optimal perfermanc

The results for batched service, as shown in Figure 4.6, anglicatad by the
fact that the best potential performance is delimited using apigmal off-line
performance. It is uncertain as to what portion of the performgayee shown in Figure
4.6 are owing to use of local state vs. global state, and what pard@mwing to use of
on-line vs. off-line policies. Figure 4.8 illustrates the perforoceadifference between
the above local state policy and the candidate (on-line) global gtéicy, defined in
Section 4.4.2. Note that these results are much more similae ttoantain service
results, presented in Figure 4.6. Based on these results, it ictooegethat the

performance gaps between the candidate local state policyhandptimalon-line
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Figure 4.8: Performance with Local State Policy Relativéhe
Performance with the Candidate Global State Policy, for Bdtche
Service.

performance are intermediate in size to those for fountaincsefivigure 4.6) and those

shown in Figure 4.7, and are closer in size to the former than to the latter.
Performance comparisons among all of the considered policy clasees

presented in Figure 4.9, which show various examples of parametegsetor the

batched service model.

4.5 Average Delay Batching Policy Comparison

While previous sections of this chapter have compared policy clagsies
regards to the maximum delay metil; this section compares policy classes with
regards to the average delay me&ic Note that for the case of fountain service D;
thus, for the fountain service model, all results are the sarfor #¥ maximum delay
metric. For the batched service model, comparing policy clagsesegards to the

average delay metric (rather than with regards to the maxidalay metric) is a much
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more complex task, especially in environments with multiple cligotips and replica
sites. For example, some policy may achieve a low averday lae giving preferential
treatment to some group of clients; however, such policy can notirhedampared
with policies that provide each client group with the same avetelge. To compare
policies under relatively fair circumstances, this section regusome form of fairness
to be taken into consideration; specifically, policies are cordptrat provide each
client group with equal (or roughly equal) average delays.

As it appears much more complex to delimiter the performaneadi policy
class, Section 4.5.1 defines an optimal static policy (delimitiegperformance using
static policies), Section 4.5.2 defines a candidate dynamic poliag ggobal state
information (providing an idea of achievable performances of dynamimerglobal
state policies), and Section 4.5.3 defines a candidate at-arrivay gmioviding an idea
of achievable performances of at-arrival on-line policies). hWhie exception of the
dynamic global state policy (which achieves fairness for theogemous case, as well
as the special cases when all requests always are decadlgl, or by the replica with
the most local requests, respectively), all policies provide all dienips with the same
average delays. Section 4.5.4 compares the relative performamesefpplicies, and
relates these results to the maximum delay results, obtair@@vious sections of this

chapter.

4.5.1 Delimiting the Achievable Performance with Static Policies

Using the same arguments as used in Section 4.2.2, in an ogtatalpolicy
there is an indek (1 < k <N), such that all requests from grouplients, fori <k, are
served by the local replica, while all requests from grodipents, forj > k, are served
by replica 1. Ensuring that each client (or group of clidmis)the same expected time
until service (i.e., the same average dé\pyindependent of its geographic location or
which replica serves a group of client requests, the static aiptimst can be calculated

as,

min i L +§ L +C %x LE, (4.10)
kzlz""'“ﬁ”l + fl)/()‘l +Zi'\ik+1)w) S+ ) % E

wheren; andf; are selected such that the average daldpr clients receiving service

from replicai, is equal to some target delay, calculated as
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n, (ni +2f, —1)

(4.11)

2(7% +0i4 Y Mk X”i +1)

wheredi-; = 1 ifi = 1 and 0 otherwise.
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4.5.2 A Candidate Dynamic Global State Policy

Consider first the case in which all client groups have the sameest rate.
With the candidate policy presented here, each request assodifitedr@plica receives
service with the current batéhthe local replica is the replica initiating servioe,the
local replica has less tham outstanding requests, whareis chosen to be equal to an
integer parametar with probability 1+ andn+1 with probabilityf. (Using the protocol
parametersr andf (0 < f <1) the threshold' can be probabilistically determined at
times when there less tharoutstanding local requests.) Note thagjreater than t/is
sub-optimal, as the cost associated with serving thessquests would be smaller if
served locally.

Using the above rule to determine which clients should be served by a @ptenti
batch, the policy initiates service (of a new batch), at theceeplith the most local
requests, as soon as there are a total’' oéquests that would retrieve service with the
batch, wherem' is equal to an integer parametemwith probability 1-g, andm+1 with
probabilityg. Using the protocol parametarsandg (0 < g <1) the threshold' can be
probabilistically determined at times when there are less rihaequests that would
retrieve service with the batch. Note that 1 corresponds to the extreme cases where
all service is retrieved locally, which is optimal when teevie cost is much smaller
than the remote access cost. Similanly,» c corresponds to the extreme cases where
all outstanding requests in the system are served simultanequs$lg keplica with the
most local requests, which is optimal when the remote accests eogth smaller than
the service cost.

To extend the above policy to the general case, the two para&tendy are
used. A* can be considered as a target delay, whigea weighing factor used to ensure
that replica sites with higher arrival rates are lesdylike listen remotely, given the
same number of accumulated local requests. For each rgphicandg; are chosen

m; (mi +2g; ‘1)
2ni(m +g;

such thatA* = , andn; andf; are chosen such that-fi = max[1, [1/c[—

yAil.
Selectingn;’ as above, the same rule can be used to determine which requests

should receive service with a batch. However, in contrast ttdheogenous case a
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somewhat more general rule is used to determine when a batch $leouldiated.
With batches only being scheduled immediately following a requestew service

period is scheduled (i) there would be a total orﬁwlagfm’ requests that would receive

service with the batchor (ii) a replica reaches max{, n;] local requests. For the first
case, the replica with the most local requests initiates ceerfwith ties giving
preference to the replica with the lowest arrival rate). tRersecond case, service is
initiated at the replica reaching its threshold. Note thatbwye policy achieves the
same average delays for all client groups whenever (iy@lipg have the same request
arrival rate, (ii) all service is retrieved locally, of)(iiequests always are served by the

first initiated service batch, independent of repfita.

4.5.3 A Candidate At-arrival Policy

This section defines a policy that is similar in nature toatih@rrival maximum
delay batching policy, presented in Section 4.3.1.1. The policy usethrteaholdsk;
andk; (0< k; < ka< N) to split the replicas into three categories. Kheeplicas with the
highest arrival rates are in category one, the followr§,; replicas are in category two,
and the remainingN—k, replicas (with the lowest arrival rates) are in categbrge.
Based on this classification, (i) requests associated witlcasgh the first category are
always served locally, (i) requests associated with repiicaghe second category are
always served by the replica within this category, which feseives a local request,
following the previous service initiation at some replica in thasegory, and (iii)
requests associated with a replica of the third categorglaseys served by replica 1.
Note thatk; = ko, = N captures the case when all requests are served localll a0k,
= N captures the case when requests are always served bystheglica receiving a
request, after the previous service initiation. Further, under stepheameter settings
(i.e., the best choice df andk,), replicas with sufficiently large arrival rates will
always serve (at least) its local requests, and client requestsatssedath replicas with

%0 While the policy does not guarantee fairness amuetgrogeneous replicas and client groups, similar
performance improvements can be obtained usingdraléderred policy that split the replicas in three
classes, based on their arrival rates, much ligatharrival policy defined in Section 4.5.3. Hoer this
policy is more restrictive and does not achieveegas good performance for the homogenous casee as
policy presented here.
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sufficiently low arrival rates will be served by a replibat is likely to have the most
local requests.

As with the static optimal policy, the parameters of this padiey chosen such
that all groups of clients experience the same average daldspendent of their
location (or which request they are served). Using the abowfidason and a target
delayA*, a replica in category one (i.e.<li <kj) initiates service if this batch would
serven; (with a probability 1) or nj+1 (with a probabilityf;), wheren; andf; are chosen
such that the target deldy is equal to the expected average delay

2, + fn).(in.:aZf.;) x) (#.12)

[ i )W i=1 2 j=kpr1 ]

wheredi-z; = 1 ifi = 1, and 0 otherwise. Similarly, in category two (i.e., replsach

thatk; <i <kp) the first replica to receive a request (after the prevseugice initiation
in this category) initiates service as soon as it would sgr¢with a probability 1f,) or
ng+1 (with a probabilityfy), whereny andfy are chosen such that the target dél&ys
equal to the expected average delay

(n +2f —)
. (4.13)
n +fg)(zl k+1 i aklozj k2+1 J)

wheredi-o = 1 if k; = 0, and 0 otherwise. Using the above threshold values the total

service delivery cost can be calculated for any given configuration.

The best performance of the policy is obtained using the besblgosgstem
configuration. Assuming that all arrival rates are known andrget delayA* is
selected, the total service delivery c@stunder optimal parameters, can therefore be
calculated by taking the minimum over all possible configurat{pes possible choices
of ky andky),

N Ky
mmHL(Xl + Zi:k2+17‘i )+ koL, N L i:k1+1)“i +
kg, kza n +f; i+ N+ fk1+1

N
+c§zi:k2ﬂ)Li + Z. "1+1)L H'e * T - k2 i %N AL
N _1 - Hng +f i

E Yizhi i= k1+1 ZJ k+17‘J %

(4.14)

[0 I O
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Figure 4.10: Best Potential Performance with Static Polames
Actual Performance with an At-arrival Policy, Relative te t
Actual Performance for a Global Dynamic Policy, for Batth
Service (each policy is evaluated based on average delay).

4.5.4 Performance Comparisons

Figure 4.10 compares the performance of optimal static patidyttee candidate
at-arrival policy, both evaluated analytically, to the perfamoe of the dynamic on-line
policy, evaluated using simulations. As shown, the performanceetiffes using an

average delay metric is similar to the corresponding diffeeensgng maximum delay

113



as the metric (Figure 4.9). However, while it is clear thate is a large benefit from
using dynamic policies, due to higher complexity and no delimitiagratal policy, the

results using average delay as a metric is less cleasedBon the results obtained, it
appears beneficial to defer replica selection decisions asatafossible. With the
higher complexity of these policies, no local state policies baes considered. The

design and evaluation of such policies remain an open problem.

4.6 Summary

To summarize, this chapter considers the fundamental conflict betwee
replication and service aggregation. Specifically, to deternmnapgaropriate level of
complexity, this section compares policy classes of varying axitpl Policy classes
are defined and evaluated with respect to both maximum and aeéeagealelay, under
both a batched and a fountain service model. It is concluded thsin@) dynamic state
information (rather than only proximities and average loads) cahd yiarge
improvements in performance, (ii) when it is possible to defectsatedecisions (e.g.,
when requests are delayed and served in batches), deferring decisionssagdasgie,
rather than using at-arrival selection, can yield significaprovements, although only
for a fairly narrow range of the model parameter spand, (@) relatively simple
maximum delay policies using “local state” information appeag &blachieve most of

the potential performance gains (achieved by “global state” policies).
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Chapter 5
On-demand Streaming using Scalable Download

Existing peer-assisted systems and algorithms proposed for omdema
streaming of stored media files [24, 53, 161] establish relatlgaely-duration streams
from the content source and between peers as organized into someffouarlay
topology. Rather than requiring peers to organize themselves intotauctres, this
chapter proposes using adaptations of already proposed peerdassistable
downloading techniques, such as BitTorrent [48], to achieve a formtm&fatsing”
delivery, in the sense that playback can begin well beforeetiiee media file is
received. With BitTorrent-like protocols, the file is split irsimaller pieces that each
peer can download in parallel, from multiple peers. A peer can dosvpieaes from
any other peer (that has at least one piece that the peer doesweoitself). To
encourage peers to contribute with upload bandwidth, each peer prefers it taploa
peers that upload to it, at a relatively high rate. This apprisacéry flexible and its
simplicity allows the system to easily handle dynamic emwirents where peers may
join and/or leave the system frequently.

In the context of filalownload where the file is not considered usable until fully
downloaded, it has been found beneficial to download pieces in an orderaihtding
high piece diversity [110, 111]. For example, BitTorrent usesest-first policy when
deciding which pieces to download. With this policy, strict preferéngiven to pieces
that are the rarest among the set of pieces owned by afledrs from whom it is
downloading. This ensures that peers are more likely to have peesbare. On the
other hand, in the context streaming where clients may start playback before the
content is fully retrieved, it is most natural to download pieicesrder. When
designing piece selection techniques for this context it isftreranportant to achieve
a good compromise between the goal of piece diversity and in-ordevaebf pieces.

Furthermore, an on-line policy is needed for deciding when playbaok safely
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commence. This chapter presents and evaluates both piecmsgletities and simple
startup rules.

Various policies are evaluated using event-based simulations, in edgbhpeer
Is assumed to be bottlenecked by either its maximum sustarimvietransmission or
reception rate (called the peers upload and download bandwidth capesygctively).
It is further (very conservatively) assumed that no peer, exbepbriginal content
source, shares pieces once the whole file has been receivedieal system peers are
likely to continue serving other peers as long as they arglstying out the media file,
while other peers may (graciously) choose to upload to other pearadbthat time.
With the higher availability of rare pieces and additional seed hdtidvin such
systems, the benefits of more aggressive piece selection techijgivieg priority to
earlier pieces rather than rare pieces) are likely to be evermgtiean presented here.

Simple probabilistic piece selection techniques are proposed thave@ good
tradeoff between selecting pieces that give priority to piewEied sooner, while
maintaining enough piece diversity that peers can easily exel@ages among each
other. These techniques are shown to enable startup delays sigiyifsraaller than
the download time. Secondly, a number of simple policies to deternhiae i@ safely
begin playback are evaluated. A simple rule is found promising,hwigiguires the
number of pieces retrieved to exceed some (small) thresholdhanmdte at which in-
order pieces are retrieved to exceed a threshold that would pléowack without
interruptions, should that rate be maintained.

The remainder of the chapter is organized as follows. The giorulaodel is
described in Section 5.1. Section 5.2 defines a number of candidateselecgon
policies and evaluates their potential performance advantagesonSe8 addresses the
problem of dynamically determining the startup delay. Conclusamaspresented in
Section 5.4.
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5.1 Simulation Model

In contrast to previous simulation studies [25, 78] that only allow peebe
connected to a few peers, this study assumes that peers aretednoed! other peers
in the system. In real systems peers are often connecteghtopeers; for example, the
default parameters in recent versions of the mainline clitow gleers to be connected
to up to 80 other peers, which is often achieved in practice [1113.futther assumed
that pieces are split into infinitesimal sub-pieces, such thapartion of a piece can be
uploaded to, or downloaded from, a p&er.

The model assumes that a peecan at most have; concurrent upload
connections and no connections are choked in the middle of an upload. dhpesat
that it is uploading to changes when (i) it completes the uploagiaica,or (ii) some
other peer becomes interested and péees not utilize all its upload connections. The
new set of upload connections consists of (i) any peer currentlyei middle of an
upload,and (ii) additional peers up to the maximum lingit These additional peers are
determined according to a rate-based unchoking algorithm. To moelstased tit-for-
tat with optimistic unchoking, a probabilistic approach is used. Wipobability 1
the next peer to get unchoked is selected using an optimistic uncipaiicyg and with
a probability of ¢i—1)A; using a rate-based policy. The optimistic unchoking policy
selects a random peer from the set of peers that are intere$he rate-based policy
selects the peer, from within the set of interested peershusigploading to peearat
the highest rate. Random selection is used to break tieg tiNdtthis ensures that the
seeders only use random peer selection.

To simulate the exchange of pieces among peers it is imparstdetdrmine the
rate at which data is exchanged. Connection bottlenecks are assubeetbtated at
the end points; i.e., connections are either bottlenecked by the upload dthndwi
capacity (i.e., the maximum sustainable client transmissie) aathe sender or by the
download bandwidth capacity (i.e., the maximum sustainable client recep@patriie

receiver. It is further assumed that the network operateg osm-min fair bandwidth

31 The size of the sub-pieces used in BitTorrenyjscally 1/16 of the size of a piece (16 kB ver2i$
kB).
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Table 5.1: Notation used in Chapter 5.

Symbol Definition

N Number of peers

U Upload bandwidth capacity of peer

b; Download bandwidth capacity of pger

u" Maximum sustainable upload rate for any’sefupload connections

b™ Maximum sustainable download rate for any j&§ download
connections

Ji 1 if i is transmitting toj (i.e., ] is interestedin i and has beep
unchokeduyi); O otherwise

ri Connection rate from peéeto peej

A File request rate

) Peer defection rate

n Exponential decay factor

sharing (using TCP, for example) [23, 99, 136, 183]. In max-min fawanks each
flow operates at the highest possible rate that ensures thad (ipttleneck operates
above its capacity, and (ii) the rate of no flow can be increagedw decreasing the
rate of some other flow operating at a the same or lower(wathout exceeding some
bottleneck’s maximum sustainable bandwidth capacity).

A bottleneck is constrained whenever the total flow through the botkiéeec
equal to its capacity and a flow is considered constrained whenevemofoite
bottlenecks is constrained. Existing algorithms [23] to deterrtiremax-min fair
bandwidth allocation, iteratively identify the next bottleneck that dobé&come
constrained if the rate of all unconstrained flows in the netwak increased by the
same amount. At the point a bottleneck becomes constrained, allp®s®mg through
the bottleneck (that are not yet constrained) become constrained angtéee can no
longer be increased. With more constrained flows the rates ofreimaining
unconstrained flows can again be increased uniformly, until another boktleeeomes
constrained. This procedure is repeated until all flows aretreamsd. To reduce the
computation cost, the algorithm is modified to take into consideratidredith end-to-
end connection (or flow) is either constrained by its upload or dmgntonnection.
Rather than identifying one bottleneck at a time this symmstiysed to determine
(potentially) multiple bottlenecks (with different allowable rates) in #raesiteration.

Using the notation defined in Table 5.1, Figure 5.1 presents the afgargad

to find the max-min fair solution. Given a set of unchoked connections (defined through
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Figure 5.1: Max-min Fair Bandwidth Allocation Algorithm used
to Calculate the Rates of the Unchoked Peer Connections.

9j), as well as the total uplink capacityand downlink capaciti; for each peer (¥ i,

< N) the algorithm determines the maximum upload raté among all upload
connections from peer and the maximum download rabg" among all download
connections for peer. The algorithm starts with the set of maximum upload and
download ratesi{" andb™) undetermined (within the s&. As long as at least one of
these values is undetermined, the algorithm calculates a lower lestinthte of the
undetermined values by providing equal share of the remaining bokleapacity,
with the rate of the already constrained flows subtracted. e Sirese values can only
increase in later iterations;* and b* provide lower bound estimates of the smallest
upload and download constraints of future iterations, which itself imghas (i) all
flows with lower upload rate™ than the most constrained downlibk will be upload
constrained by™, and (ii) all flows with lower download ratg™ than the most
constrained uplinku* will be download constrained Hy™ This observation allows
(potentially) multipley™ or bj™ values to be determined (and removed from the set of
still unconstrained variableS) in each iteration. With each flow only having two
bottlenecks, each characterized i or b™, the rate of the flow between peeandj,

denotedsj, can easily be calculated &smin{u"™, b;"}.
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Table 5.2: Example Simulation Execution Times for a Flash Crowd of\Size

N Execution Times (in seconds)
16 1.6
32 5.6
64 24.8
128 179
256 1,560
512 8,290

Assuming a total ofN fully connected peers, each iteration requi$?®)
operations, one for each (possible) connection. In the worst case, this algegjthras
2N iterations, resulting in a total @(N° operations. However, typically this algorithm
requires many fewer iterations. For example, if all connecao@sipload constrained,
the algorithm allows the rates of all flows to be determinedguenly two iterations,
while the standard algorithms would requiM iterations (one for each uplink
bottleneck, until the rates of all flows are determined). Afsgystems where peers are
not connected to all other peers the number of calculations patidtecan easily be
reduced (e.g., using sparse matrices).

Using event-based simulations, rates must be recalculatedisacihe set of
unchoked peers changes for some peer (i.e., with a large numbersfroeghly each
instance at which a piece becomes fully downloaded). Therefdreawarge number
of pieces, and given the cost of the above algorithm, the computatiohaif dbese
simulations is restricting simulations to only smaller peer popuns. Table 5.2
illustrates some example execution times on an AMD Opteron 856gs@crunning at
2.4GHz, for a scenario with a flash crowdMpeers, each downloading all 512 pieces

of a file using a rarest-first policy.

5.2 Piece Selection

This section considers the order in which pieces should be retrievatbwo
streaming. A peer requests a new piece each time it gdtekatcby a peer in which it
is interested, or when the download of one piece is completed and eéhes pill
interested in additional pieces. Section 5.2.1 describes candidate gmbsrtion

policies, and Section 5.2.2 evaluates these policies with regartie toest possible
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startup delay (i.e., the startup delay peers would be able to adhievewing when
each piece would be fully retrieved). In practice this exant instance can not be
determined using an on-line algorithm. Section 5.3 evaluates simgiee policies to
determine when to start playback.

5.2.1 Candidate Policies

To begin playback well before the entire media file is eg&rd, pieces must be
selected in a way that effectively mediates the conflibvéen the goals of high piece
diversity (achieved in BitTorrent using earest-first policy) and thein-order
requirements of media file playback. Assuming that pegrabout to request a piece
from peeii, two baseline policies are defined as follows:

Rarest: Among the set of pieces that pedras and does not have, client
requests the rarest piece among the set of all pieces that pegrs twsinected to have.
Ties are broken using random selection.

In-order: Among the set of pieces that peéas, clienf requests the first piece
that it does not have itself.

Rather than considering advanced piece selection techniques, simple
probabilistic policies are proposed. Perhaps the simplest suchgieehsito request an
in order piece with some probability and the rarest piece othervidgber techniques
may use some probability distribution to bias towards earlierepiec The Zipf
distribution has been found to work well for this purpose. Below, one ofcédblkse
two types of probabilistic policies are defined:

Portion (p): For each new piece request, cliposes the in-order policy with a
probabilityp and the rarest policy with a probability (-

Zipf (a): For each new piece request, cligmrobabilistically selects a piece
from the set of pieces thahas, but that does not have. The probability of selecting
each of these pieces is chosen to be proportionalk® 1t)“, wherek is the index of
the pieceky the index of its first missing piece, aads a parameter of the protocol.

The policies choices considered in this section are: rarest, dam;or
portion(50%), portion(90%), and Zipf(1.25). With the portion policy, the most natura
choice is to use a probability of 50%. However, in some scenarios this parameter

choice is very conservative. To illustrate the performance ofoae aggressive
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parameter choice, simulations are also presented in whictdar-pieces are selected
with a probability of 90%. For the Zipf policy, a Zipf parammeteof 1 may be the most
natural choice; however, a slightly more aggressive paranteterec(in this case 1.25)
is generally beneficial. Results using other parametecebdor the Zipf policy are not
presented as Zipf(1.25) performs well in all scenarios consideresvewér, note that
the Zipf parameter can be tuned so that the policy is more omatggessive. For
example, with a larger Zipf parameter the policy becomes aggeessive, giving more

bias to earlier pieces, while with a smaller Zipf parameter it becaaesbgressive.

5.2.2 Performance Comparisons

Throughout this chapter, it is assumed that there is one singistpetrseed and
all other peers leave the system as soon as they haveegttiee entire file (i.e., only
acts as leechers). As noted previously, this is a very conseragsumption, as in real
systems peers are likely to continue serving other peers gsisothey are still playing
out the stream, while other peers may (graciously) choose to serve as seadstaly

Without loss of generality, the file’s sideand play rate, are both set at 1.
This corresponds to measuring the volume of data transferred in units of gieditnd
time in units of the file play duration. Hence, all rates apressed relative to the play
rate, and all startup delays are expressed relative tontleeittitakes to play the entire
file. For example, an achieved download rate of 2 means that lthecdin be
downloaded approximately twice as fast as it can be played ountilai®y, a startup
delay of 0.1 means that the client could start playback after datuemual to 0.1 times
the play duration. The file is split into 512 pieces, and unlesdstdéherwise, peers are
assumed to have three times higher download capacity than upjmadtgand each
peer uploads to at most four peers simultaneously.

To compare the performance of the above piece selection pollugsettion
initially considers a simple scenario in which peers (i) do natdehe system until
having fully downloaded the file (i.e., the peer defection ¢aie equal to zero), (ii)
arrive according to a Poisson process, and (iii) are homogenouslli(peera have the
same upload bandwidth capacityand download bandwidth capachy. Alternative

scenarios and workload assumptions are subsequently considered.
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Figure 5.2: Average Achievable Startup Delay under a Steady
State Poisson Arrival Process without Early Departures: The
Impact of Client Bandwidth Capacitp/( = 3,A = 64, andp = 0).

To capture the steady state behavior of the system, the sgstenulated for at
least 4000 requests. Further, measurements are only done for requebtslo not
occur in the beginning or the end of each simulation. Typically,itstie1f000 and the
last 200 requests are not analyzed; however, to better captutedtyg state behavior
of the inorder policy warmup period longer than 1000 requests is someémesed®
Each data point represents the average of 10 simulations. Ytdesds otherwise, this
methodology is used throughout Chapter 5. It should be noted that thecgdnufraese
values are high. To illustrate this, Figure 5.2 shows confidereesals capturing the
true average with a confidence of 95%. Note that the confidengwaisteare only
visible for the inorder policy. For the other policies the avevadiges presented in this
chapter are very accurate and confidence intervals are therefotedomit

Figure 5.2 characterizes the system (under this scenariggnying the total
client bandwidth capacity (i.eu,+ b). The peer arrival rat® is assumed to be 64 and
the seed has an upload bandwidth capacity equal to that of regular pde most
significant observation is that Zipf(1.25) consistently outperforimesather candidate
policies. In systems with an upload bandwidth capacity at least the play rate (i.e.,
U > 2) peers are able to achieve startup delays two orders of magnitude smaller than the
time it takes to play the file and much faster than it woulke t® download the file

using the rarest policy.

%2 The inorder policy was typically simulated usindesst 20,000 requests.
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Figure 5.3 presents the cumulative distribution of achievable staelgys
under this initial scenario. Note that Zipf(1.25) achieves low afadively uniform
startup delays for the set of clients. The high variabilitytantup delays, using the in-
order policy, are due to peers becoming synchronized. Peers usiingotiger policy
never upload pieces to peers they currently are downloading fothdse peers have
all pieces that the peer has). Therefore, all active upload dameare determined
using random unchoking. With larger download capacity and many pegosvtdoad
from, peers with fewer pieces will quickly catch up with peen® have fewer peers to
download pieces from. This causes peers to become synchronizesfjualing the
same piece. Being limited by the upload rate of the seed pesss will, at this point,
see poor download rates. In general, some peers will be stuck itgsecie build-up”
for a long time, while others will be stuck for a much shorteretifpossibly still
allowing them low startup delays). With lots of peers completiegr downloads at
roughly the same time, the system will become close to empgoyrele new set of peers
repeat this process (in which they all become synchronized). sénsce behavior
causes the number of peers in the system using the in-order toolathow a saw-tooth
pattern. In contrast, the number of concurrent leechers, using hbe milicies, is

relatively stable.
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Figure 5.4: Average Achievable Startup Delay under Steady
State Poisson Arrival Process: Example Scenarios.

Figure 5.4 considers the impact of (i) the peer arrival rayehé ratio between
peers’ download and upload bandwidth capacity, and (iii) the bandwidth tapattie
persistent seed. Again, the simple Poisson model without eapgrtdees and
homogenous clients is considered. As expected, in-order and portion(90%y aeelle
in systems with very low arrival rates. However, alreatlyan arrival rate of one
Zipf(1.25) outperforms these policies. In fact, Zipf(1.25) is relétivesensitive to the
peer arrival rate. At this point it should be noted that the dexieasverage delay,
observed by the in-order policy, may be somewhat misleadirtieaachievable startup
delays in this region is highly variable (see Fig 5.3). Fidu4déb) illustrates that the
results are relatively insensitive to the download/upload bandwidtlcitapatio for
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ratios larger than 2. In this experiment the upload bandwidth capasifixed at 2 and

the download bandwidth capacliyaried. Typical Internet connections generally have
ratios between 2 and 8 (e.g., [156]). While the in-order policy achieaproved
performance when the ratio is constrained between 1 and 2, aftétstpatformance
decreases. The reason for these increasing startup deléwgd recently arrived peers,

that have many peers from which they can download, will ¢gigar share of the seeds

total upload bandwidth capacity, than in systems where these pe¢nscge) download
constrained. As pieces uploaded to such peers are of no benefit to peers waiting for late
pieces, and the retrieved piece could have been retrieved frowf dingse peers, the
seed bandwidth used to deliver such a piece is essentially wasted.

Finally, this chapter considers a scenario in which the persisé=at may be
more powerful than regular peers. For simplicity it is assuthat the seed (or server)
is behind a single bottleneck and that it allows for the maximum eumibupload
connections to be proportional to the capacity of the seed. A serletwice the
upload bandwidth capacity of a regular peer can therefore uploatc®asymany peers
in parallel as a regular peer (assuming enough peenstarested), or upload to a single
peer at twice the maximum sustainable upload rate of a psern(gg only one peer is
downloading). Figure 5.4(c) illustrates that (for systems in gptestate) not much
additional server bandwidth capacity is required for peers to acloevaverage startup
delays using much more aggressive policies (such as in-ordenjlarSmprovements
can be achieved using a more aggressive Zipf parameter.

This section now considers three additional scenarios, callegsetiend, third
and fourth scenario. The second scenario considers the averagenpade of peers in
a system in which some peers leave before having fully dowrdotde file. It is
assumed that peers arrive according to a Poisson process bueawaythe system
prematurely at a fixed rate ¢f (per client). Figure 5.5 illustrates that all policies are
insensitive to the rate peers depart the system. This ingépngii peer departures is a
characteristic of peers not relying on retrieving piecemfany particular peer. This
insensitivity has been verified by reproducing very similar graptieose presented in
Figures 5.2, 5.3 and 5.4.
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Figure 5.5: Average Achievable Startup Delay under a Steady
State Poisson Arrival Process with Early Departunes Z,b = 6,
A =64).

The third scenario considers the impact of peer arrival pattétase, peers are
assumed to arrive according to a Poisson process with exponentizdlyirdg arrival
rate. This type of arrival pattern is motivated by measurersteigies done on real
BitTorrent systems [82]. Given an initial arrival rateand an exponential decay factor
n the rate at a time instantecan be calculated agt) = Age™. Using this arrival
pattern, 100« (1 —e ™) percent of the total number of arrivals occurs within im8y
varying the decay factor between 0 antboth a pure Poisson arrival process (in steady
state) and a flash crowd in which all peers arrive instantaneouslydlzefdrafter which
no other arrivals occur) can be captured. To compare arrival nsatgth different
decay factors the expected number of arrivals within somepeéried is fixed at some
value. In Figure 5.6 the expected number of arrivals within teeZitime units (i.e.,
the time it takes to play the file twice) is set to 128, &edeixponential decay factprs
varied between 0.01 and 100. To put this range of decay factors inpegans, with a
decay facton = 1, 63.2% of all peer arrivals occur within the first timet amd 86.5%
within the first two time units. With a decay factpr= 6.9, on average 99.9% of the
peer arrivals occur within the first time unit. For thespegxnents no warmup period
were used and simulations were run until the system were emAgain, note that the
performance of in-order and portion(90%) quickly becomes very pooheagmitial

arrival rate\g increases. These policies do a poor job ensuring that peerpibess to
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share among each other, and are therefore limited by the uplodditth capacity of
the seed.

The fourth scenario considers a system in steady state, thutwa classes of
peers: low and high-bandwidth peers. The low-bandwidth peers hastal ecltent
bandwidth capacity of 1.6u( = 0.4 andb_ = 1.2) and high-bandwidth clients have a
total client bandwidth capacity of &4 = 2 andby = 6). Figure 5.5 illustrates the
average startup delay for the high-bandwidth peers as a functibme g@ercentage of
low-bandwidth peers arriving to the system. As expected, a peng®n of low-rate
peers causes significant performance degradation to highegats. The figure for low-
bandwidth peers looks very similar, but with the exception that tiénmaim startup
delay for the policies is higher (e.g., the minimum startugydelsing Zipf(1.25) is
roughly 0.08).

Similar results have also been observed in a scenario whepeeak are
assumed to have a total upload bandwidth capacity wE&(andb = 6); however, one
group only makes 20% of its upload bandwidth capacity availableui.e.0.4 anduy
= 2). For this modified scenario the startup delays of Zipf(ir@pjove slightly as the
low sharing peers provide additional download capacity to the systeith the in-
order policy, on the other hand, the startup delays become much (@srdee number
of low-rate peers increase). With these peers downloading mtaerden the seed
(allowed by its higher download bandwidth capacity) more seed baindveidised

uploading to weaker peers, which do not do a good job relaying these mecther
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peers. It should also be noted that, in systems using Zipf(1.25), lowglkhents may,
on average, see startup delays of more than twice those of rrejjelats. This
discrimination is especially pronounced in the region where thatglistart to see
degrading performance.

5.3 Using a Dynamic Startup Rule

In highly unpredictable environments, with large and changing seiseos$, it is
difficult to predict future download conditions. Therefore, it is ngieeted that any
on-line strategy for selecting a startup delay would giveectosoptimal startup delays
(without significant chance of playback interruption). To deal with (potentiaig$ing
pieces, it is likely that existing techniques used by existiedia players (such as error
concealment, layered media, etc.) may be applied. This sectioenprassimple
protocol that uses the Zipf(1.25) policy, presented in the previous seogethér with
a simple policy to predict when playback can safely commencaintdning the
simplicity of the piece selection policy, it should be noted timy the startup policy
requires future rates to be predicted. Section 5.3.1 defines a numbandifiate

policies, while their performance is compared in Section 5.3.2.
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5.3.1 Simple Startup Policies

This section defines three simple startup policies. The ssinpigicy is to
always ensure that at least some minimum number of piecesieyed before allowing
playout to begin. Here, such a policy is defined as follows:

At-least (kreq): Start playback when at ledst, pieces have been retrieved, and
one of those pieces is the first piece of the file.

While this policy does not require the download rates to be predicted,
determining the best possible value kg, is non-trivial (in highly dynamic
environments).

The other two policies considered here attempt to measure that natach a
file marker, before which all the file data has been retriezddances through the file.
An “in-order buffer” is defined that contains all pieces up tofits¢ missing piece, and
the rate at which the size of this buffer increases is derteg; Note thatrseqwill
initially be smaller than the download rate (as some pieeesetrieved out-of-order),
but can exceed the download rate as holes (of missing piecdfl)edre Assuming a
constant valued download ratg.q can be expected to increase over time, as holes are
filed more and more frequently. Assuming a constant download ratefdafres it is
safe to start playback as soonrag allows the in-order buffer to be filled within the
time it takes to play the entire file. Witk pieces in the in-order buffekeq must
therefore be at leask{k) / K times as large as the play rate, wheiis the total number
of pieces in the file. Using this rate condition two rate-based policieeanedt

LTA (kreg): Start playback when the start condition of at-légsg)(is satisfied
and the rate condition is satisfied Iy, = (Lk/K)/T, whereT is the time since the peer
arrived to the system arids the index of the piece immediately before the first mggsi
piece.

EWMA (ke a):  Start playback when the start condition of at-léasg)(is
satisfiedand the rate condition is satisfied by = (L/K) / Tseq Wheretseqis calculated
using an exponentially weighted moving average (EWMA).

For all results presented here, the EMWA uses an exponentightwiaictor
equal to 0.1 (i.e., the old estimationtfyis given a weight 0.9 and the observed inter-

arrival time is given a weight 0.1)Tseq iS initialized at the time the first piece is
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retrieved (using its inter-arrival time). When multiple peege inserted into the in-
order buffer at the same piece arrival, equal weight isgiveeach piece. For example,

if piece 3 was retrievet before piece 4. Assuming piece 5 and 6 have already been
retrieved at the time piece 4 is retrieved, each of the tlepeests are considered as if

retrieved in-order with inter-arrival timés.

5.3.2 Performance Comparisons

Making the same workload assumptions and using the same simulation
methodology as in Section 5.2.2, the above startup policies are evdhgedter with
the Zipf(1.25) piece selection policy. Whereas startup policigs beatuned for the
conditions under which they are expected to operate, in highly dynangc pe
environments with changing network conditions, it is important foh qolicies to be
responsive, allowing the startup delays used to adapt as the network conditiaschang

To evaluate the above policies over a wide range of network condito@mars
three and four from the previous section is used, together with thegsponding
simulation setup. In the scenario three the burstiness with \pliels arrive is varied.
Here, the exponential decay factor is varied four orders of magnitovering arrival
patterns from close to steady state to a flash crowd (inhwd@ise all peers arrive close
to instantaneously). In scenario four arriving peers belongs to dae aflasses, high-
and low-bandwidth clients. For this scenario the portion of peeeriesd such that the
network conditions is varied from good (where most peers are high-ldthdvlients)
to a case with poor network conditions (where the majority of pererfow-bandwidth
clients). For both these scenarios, the following policies are cedhpat-least(20), at-
least(60), at-least(160), LTA(20), and EWMA(20, 0.1).

Figures 5.8 and 5.9 presents the average used startup delay aectémegge of
pieces not retrieved in time of playback of that part ofitke Again, note that missing
pieces could be handled using various existing techniques, designed t® mésgihg
data (such as error concealment, layered media, etc.). FiguoeeSents the results for
varying arrival patters. These results suggests that bo#&{20)y and EWMA(20,0.1)
adjust well to the changing network conditions. For close to stealaate they
both achieve low startup delays and as conditions become burstiest, thdjir startup

delays to maintain a low percentage of late pieces. Of thaseolicies, LTA is
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somewhat more conservative and is therefore able to achieve lower losd/Vaiksthe

b-parameter can be tuned for certain network condition (e.g., in the ppdeof the

parameter space at-least(60) achieves both lower delays andpewentage of late
pieces than EWMA and LTA), it is not necessarily good in torac as network
conditions may quickly change.

Figure 5.9 illustrates similar graphs for high- and low-bandwidiéntd as a
function of the percentage of arriving clients that are low-bandwitigmnts; the
differences in responsiveness are even greater for this mcenBy increasing the
startup delays LTA(20) effectively adapts its startup detah that the percentage of
late pieces is consistently low and the delays used are conguittblall other policies
achieving low loss rates for a particular peer mix. EWMA(@0)the other hand is
somewhat more aggressive, resulting in larger percentages of late pieee=sas the at-
least(b) policies are non-responsive. This is best illustratetebgtraight lines and/or
high loss rates observed by this policy. Designed for highlyrdymanvironments, the
characteristics observed by the LDBA(policy is found promising. This policy is
relatively simple and uses a single parameter, in contras/tdAd b,a) which requires
two parameters. Using a long term average (LTA) of the rate at whichzthef the in-
order buffer have changed, rather than an exponentially wdighteving average
(EWMA), giving more bias towards more recently retrieved gsechis policy is
somewhat more conservative allowing the policy to avoid being foolegroporary

increases in the rate at which this buffer changes.
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5.4 Summary

This chapter proposes a new approach to achieve peer-assistenngtraa
which adaptations of already existing peer-assisted download protsath as
BitTorrent, are used to download pieces of a file in an order tlmtsastreaming.
Simple probabilistic piece selection policies are shown to alle@sspge begin playback
well before the entire file is downloaded. While giving prafesto earlier pieces,
these policies effectively mediate the conflict between tdasgof achieving high piece
diversity (required for peers to effectively share pieces)lamdh-order requirements of
media file playback. Further, promising results are obtained wsisimple rule for
when to start playback, which requires the number of pieces tocexosee (small)
threshold, and the rate at which in-order pieces are retrievaltbtv playback to begin

(if that rate was to be maintained).
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Chapter 6
Conclusions

This thesis is concluded with a short summary, a list of the nwmaitributions,

as well as a brief outline of potential future directions.

6.1 Thesis Summary

Chapters 1 and 2 describe and outline the research question, the gibads of
thesis, and survey related work.

Chapter 3 considers the problem of using scalable multicast protoclpport
on-demand download of large files from a single server to potentadjg numbers of
clients. Lower bounds were developed that indicate the best aclkigyatibrmance.
An optimized cyclic multicast protocol and two batching protocols,nupéd for
average and maximum client delay, were found to have significautbpptimal
performance over particular regions of the system designespaotivating the
development of new hybrid protocols.

In the case of homogeneous clients, the best of the new practicadgisathat
focus on improving maximum client delagy€lic/cd,bo} yielded results within 15% of
optimal, in all scenarios considered. Similarly, the best of the new pretesigned to
improve average client delagyclic/rbd,coj yielded results within 20% of optimal.
Both these protocols allow clients to begin listening to an on-gaingcast if one is in
progress at the times of their requests. Both protocols also aefiievent batching of
clients through use of a batching delay prior to the start df sadticast transmission
and by limiting the transmission duration.

With the objective of minimizing the maximum client delayglic/cd,botuses a
batching delay of fixed duration, and terminates each multicastntissien after
delivering the full file or when a client completes receptionheffile and there are no
remaining listeners. In contrast, with the objective of miningzihe average client
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delay,cyclic/rbd,cotinitiates each new multicast transmission only when the number of
waiting clients reaches some minimum value. The multicasrisinated when the
clients that were waiting at the beginning of the multicage lkmmpleted reception, and
the number of newly arrived clients still listening to the maktcdrops below some
minimum value.

For heterogeneous clients, in all scenarios considered, the propots®ized
sharing protocol achieved within 25% of the optimal maximum client delay. s Thi
protocol uses multiple channels to deliver the file data, and an ianaigidel to
estimate the optimal amount of data that each class of ctibatdd retrieve from each
channel. An interesting observation is thaitimized sharingcan substantially
outperformsend as late as possiblehich is optimal in the homogenous environment.

Chapter 4 considers the replica selection problem for systemaitexgplboth
replication and request aggregation. Two types of service aggmregeae considered,
batched service and fountain service. For each type of semygregation, policy
classes of differing complexities were compared within trgext of a simple system
model.

Results obtained by comparing optimal representatives under @esoust
model suggest that replica selection using dynamic systeenistarmation (rather than
only proximities and average loads) can potentially yield largprovements in
performance. Within the class of dynamic policies, use of eefeather than at-arrival
replica selection has the potential to vyield further substantiaforpgance
improvements, although only for fairly narrow ranges of model pammetlues.
Finally, within the class of deferred, dynamic replica &@a policies, “local state”
policies appear able to achieve reasonably close to the best possible performance.

Chapter 5 considers systems in which clients are willing (cowaged) to
contribute with server capacity while downloading a file. A ra@proach is proposed
in which adaptations of already existing peer-assisted download @i)t@tich as
BitTorrent, are used to download pieces of a file in an order that allows stgeaBuch
protocols must include both (i) a piece selection strategy ffesttigely mediates the

conflict between the goals of high piece diversity (achievegitiforrent using a rarest-

135



first policy), and the in-order requirements of media file playbackl, (i) an on-line
rule for deciding when playback can safely commence.

Using event based simulations it is shown that simple probabilséce
selection policies, giving preference to earlier pieces, all@sspge begin playback well
before the entire file is downloaded. These policies appeardotigélly mediate the
conflict between the goals of achieving high piece diversigguired for peers to
effectively share pieces) and the in-order requirements of media fileaola While no
on-line strategy for selecting startup delays is expectgiveoclose to optimal startup
delays (without significant chance of playback interruption), priomisesults are
obtained using a simple rule, which requires the number of piecescémdexsome
(small) threshold, and the rate at which in-order pieces are retrievedvwopédlyback to

begin (if that rate was to be maintained).

6.2 Thesis Contributions

The following summarizes the main contributions of this work.

* New single server bounds for the delivery of a single filght lower bounds on
the average and maximum client delay for completely downloadiilg, as a
function of average server bandwidth used to serve requests fdrlehdor
systems with homogenous clients. A lower bound algorithm on thegavera
server bandwidth used to serve requests from heterogeneous chiht
different client bandwidth and maximum delay constraints, givesgaesce of
such requests.

* New near optimal single server download protocols for the delivery ofgles
file. Relatively simple, near optimal (with regards to eitherayeor maximum
delay, given some average bandwidth usage), single server protocofstEms
with homogenous clients. A protocol that achieves close to optimaystems
in which clients are heterogeneous, with classes of clients vifdratit client
bandwidth and delay constraints.

» A classification and thorough performance comparison of policy classes in
delivery (or service) systems using both service aggregation andcatmh
techniques In particular, a simple cost model is developed in which (in many
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cases optimal) representatives of classes of policiesoanpared, using both a
batched and a fountain service model.

* A new approach to achieve peer-assisted streaming is advodatgding upon
already existing scalable download protocols, such as BitTortenproposed
protocol splits the file into multiple pieces, uses a probabilgice selection
policy with bias towards pieces needed sooner, and a simplapstale to

determine when playback can safely commence.

6.3 Future Work

The following outlines some open research problems that may provide
interesting future work.

* While the above work focuses on the delivery of a single file, areasiing
problem is presented when considering the dynamics of systewlsich more
files are delivered concurrently. For example, a server with bdedof files
and a fixed server bandwidth (defining the maximum rate athwiile data can
be disseminated) may be required to, at each time instance, idetGiow much
bandwidth (possibly none) to use for delivery of each file. An additiaséct
that would be interesting to consider in such systems is thatrateich clients
may leave the system (balk) before being fully served.

» Determining true optimal “on-line” performance for batched serpmeies, in
systems utilizing both service aggregation and replication, renainspen
problem. In fact, for the case of average delays, determiningptireal “off-
line” performance (or some other good bound) on the achievable pentegma
remains an open problem. Although the complexity of optimal “on-line”

algorithms may be significant, it is believed that such algms may provide

further insight into the desirable characteristics (and complexitypbgystems.

* To provide further insight into systems, utilizing both service aggmyaind
replication, more complex proximity and cost models could also bedavesi
For example, the distances to different replicas may beiviediatdifferent;
causing the rate at which data is transferred (with TCReXample) to depend

on the client’s distance from the replica at which it is being served.
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* With heterogeneous client rates another interesting aspectafféheof parallel
downloading from multiple replica sites (each implementing servic
aggregation). In such systems, clients with greater cliemtiviidth may be
served by more replicas than clients with lower bandwidth. Wghiywariable
service times the impact of coordination among replicas may leegoportant.
For example, what is the cost of each replica acting independeetsus if all
replicas are coordinated to achieve some common service goal?

» Developing a prototype implementation of BitTorrent-like stremmprotocols
on PlanetLah could allow for wide area experiments giving further insigtua
the feasibility of using on-line rules to determine when to giyback, in
heterogeneous wide area environments with clients operating uadgngv
network conditions. A preliminary prototype is currently under development.

* To allow BitTorrent-like streaming protocols to better deahvtime-varying
reception rates, protocols could be implemented using layered nrextidirey
techniques (e.g., [122, 142]). More advanced protocols could also take more
system information into consideration. For example, to allow somanom
media quality an enterprise seeder may use information about ticspieces
possessed by individual peers, as well as their current play peiren
determining which peers to serve, and which pieces to upload to e#ubsef

peers.

! PlanetLab, http://www.planet-lab.org/, August 2006
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Appendix A

Proof of Single Server Heterogeneous Lower Bound

This appendix provides a proof of theterogonous lower bouncbmputed using the
algorithm in Figure 3.10; i.e., tha"® <B; for any realizable protocol. In fact, this
proof actually prove a stronger result, by considering a morerglealgorithm in which
the expression giving" in Figure 3.10 is replaced hy-y™, ; -, , where thes;, 1<]j
<K, can be chosen to be any values suchithat™, ; > ¢; > 0.

The proof that this more general algorithm yields a lower bouné;onses strong

induction onj. As each client receives an amount of data equal to th&Zé¢, in the
case of just a single requesf® =L -¢ <L =B, thus establishing the induction basis.

Now, assume thag” <B,, B, <B,,, ..., B"<B,, for somejz1. The proof shows
that B} <B,,, by establishing that
BEIb”—‘YE,I?JrlSBk +L =Yy e (A.1)
fork=1, 2, ...J. Note that fok =], relation (A.1) implies that
o1 =Bl 408 =B+ Ly,
< B?lb + L_y?yl?*_l < B] + L_yj,j+l = BJ +Xj+l = Bj+l' (A.Z)
Relation (A.1) is proven by strong induction kn Fork = 1, sinceBM™ =L-¢, B, =L,

Vit =xy, and y . =%+, relation (A.1) is equivalent tox ., <x'[i+&. If

T/ 2T, % . =X =0 and the relation holds. Otherwise, using the expression giving
x'? in Figure 3.10x;,, < X1, +£ is equivalent to

le+1smin{|__£1, L, bC(j+l)Tl.j+l’ bc(j+1)Tl.1}+€1' (A.3)
Since the amount of data received by the request 1 client framsntissions also
received by the requeptl client can be at mos&t and at mosbg.1) times the period
over which such transmissions can occur, this establishes the induction basis.

Suppose now that relation (A.1) holds kok-1, ..., 1, for somé such thatj >k=>1,
and consider the relation flat1. If 75,272, theny 1., = yiue ;. =0, and the relation
holds since from the inductive hypothesis on the main clafth<B,,, fork <j. There
are four cases to consider whefy <T,2;, based on which term in the expression giving
x' in Figure 3.10 yields the minimum (i.e., whethgf, ., is equal tox, L-y",,,

hlb
bc(j+1)Tk+1j+1 - yk,j+1; or bc(j+1)Tk+:Lk+1)-

Casel: .\ =x
Since relation (A.1) holds fdefrom the inductive hypothesis,
B+ Lyl o = (B e L[ o082 B Ly
= Bk +L- yk,j+1 = Bk +L- yk,j+1 +(Xk+1 - Xk+1,j+1): Bk+1 +L- yk+1,j+11 (A4)
which establishes relation (A.1) fkt1 for this case.
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. hib — hib
Ca.%z Xk+lj+1_L_yk,j+l

Since from the inductive hypothesis on the main claf#§, < B,., fork <j,

Bli<1l+bl +L- yl?'f’lm = Bl?l+b1 +L- (yl?,l?ﬂ + XI':I+b1,j+l)
= Bl?lﬂ +L- (yl?l?ﬂ + (L - yl?l?ﬂ)): Bl?lg. < Bk+1 < Bk+1 +L- yk+1,j+1a (AS)

establishing relation (A.1) fde+1 for this case.

. Jhb hib
Case 3 Xy ja1 = ejap Thrnjor = Yidjo

From the inductive hypothesis on the main clagff’ <B,., for k <j. Also, since
Tk+1j+1 IS the time from the arrival of requgstl until the deadline of requelst1, and
Yk+1+1 IS the total amount of data received by the regudstlient from transmissions
also received by at least one other client, with request indéxedsak+1, it must be
that yy.y 4 SbgjaTierja - Therefore,

hib hb  _ hib hib hib
Bis1 L= Yisrje1 =B +L _(yk,j+1 + Xk+1j+l)
_ hib hib hib )} _ ghib
=By tL- (yk,j+1 + (bc(j+1)Tk+Lj+1 - yk,j+l))_ Bisa L~ bc(j+1)Tk+],j+1
< Byaa + L =0c(an Tian o1 < Baa + L= Yican, juas (A.6)

establishing relation (A.1) fd¢+1 for this case.

Cased: X ju1 =be(jay Tesrns
This case is divided into sub-cases depending on the other requesig, Wwhose
deadlines fall between the arrival time and the deadline of rekpest

Case 41: x4 =bysTeiw, and there is no request (i<k) such that
T <TP <Td:.

Since there are no clients with earlier request deadlinésatbaable to share the
transmissions required for requdstl, B,,, =B, +L. From this fact together with
X S Ly Yisn s = Yioj#1 = Xeorj1 < bejapy Teanan, @Nd since relation (A.1) holds farfrom
the inductive hypothesis, it follows that

B + Ly = (B #50 L-s )

= (Bl?lb +L- yE,Itj’ﬂ)"' (XELbl _bc(j+l)Tk+Lk+l)

= (Bk +L- yk,j+1)+ (L - bc(j+1)Tk+:Lk+1)

= (Bk + L)"‘ L- (yk,j+l + bc(j+l)Tk+],k+l)S Bis1 + L= Yisrjsas (A.7)
which establishes relation (A.1) fef1 for this case.

Case 4.20 x4 ;4 =byjsy Tk, and there is at least one requiegi<k) such that
T4 <TP <72, and such thag™, =L-y"% ;.

This case cannot occur sincg’,, =L-y™ ., would imply that x{\} ., =0, in
contradiction to the assumption tha, ., =bq . T -
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Case 4.3: x4 s =byjsy Tk, and there is at least one requiegi<k) such that
Té: <TP° <T2; and such thak’; =b T s = Vi e -

: : Wb _ hib hib : :
Relationship x4 11 = bejag Terskn and Vi 2 Vi implies that
hb  _ hib hib hib : b _ hib
Yirnj+1 = Yo j+1 T Xernjo1 2 Vi j1 F B Thotken - Since  x'h = by T jer — Vit j+1o and

hb _ . hib hb _ ‘o i hib
therefore yi" = yit1 ju1 + X 131 =be(janTi jor» thiS YieldS v ju 2bejun T g #0600 Tk -

UsiNg Tk > Tesrjor ~Tijsa, @Nd the fact thaby Ty ju 2 Yiea ja, this implies that
YieLjsa > Yissj+-  TOgether with the inductive hypothesis on the main claiffi,< B, .,
for k <j, this yields
hib hib hib
Bis1 L= Yierj+1 S Brar ¥ L= Yiwwivn <Byar + L= Viarj1s (A.8)
which establishes relation (A.1) fkt1 for this case.

Case 4.4: x4 =by(jspTesske1, @nd all requests (i <k) such thatts, <T° <13, (of
which there is at least one), are such tialt, = x".

Let n > 0 denote the number of such requests, indé&xéeh throughk. Given that
x""y = x" for each such requeist

k+1 k+1
hib hb  _ |xhib hib hib hib
Bk+1+|-_yk+],j+1_%k—n+ > X %*L‘E\/k-n,m‘* in,jﬂ%

i=k+1-n i=k+1-n
= Bl?l—bn +L- yl?l—bn,jﬂ + (XELbl - XELb],jﬂ)' (A.9)
Since relation (A.1) holds fde-n from the inductive hypothesis, this implies
Bl +L- ym-b],jﬂ SBen tL=Yeenjua t (XELbl - XELb],jﬂ)' (A.10)
Using x4 ;11 =bej+y Tessiss @Nd the fact thaklly <L yields
Bl +L- ymb],jﬂ SBen tL=Yeenjua t (L _bc(j+l)Tk+lk+l) : (A.11)

Consider now the total amount of data that the reqjtektclient receives from
transmissions also received by at least one of the clietitsraguests indexekt1-n

through k+1, but not received by any client with an earlier request deadlime
k+1
Y %,j+1- The portion of this data received after the arrival of retgkiek is upper

i=k+1-n

bounded byb, .y Tsiksa - The portion of this data received prior to the arrival of reiques

k+1 k+1
k+1 is upper bounded by 5 x -L, since Y x gives the amount of data received by
i=k+1-n i=k+1-n

the clients with requests indexkd#l-n throughk+1, from transmissions not received by
any client with an earlier request deadline, and at lea$this data must be transmitted
after the arrival of requesttl so as to serve this request. (Note that all of the data
received by the requegt-1l client, must be from transmissions not received by any

client with a request deadline earlier than that of regkiebi, since such deadlines
k+1 k+1
occur prior to the arrival of requektl.) Thus, 3 x . <bgjuTaka* 5 % -L, OF
i=k+1-n i=k+1-n
k+1 k+1
L=byjuyThees Y X = 3 % ju1 » Yielding, when applied with the previous relation,

i=k+1-n  i=k+1-n
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k+1 k+1
BL‘Lb1+L—yE'ij+1s By-n +L_yk—n,j+l+E D%~ in,j+lE: Bt L= Viar o1 (A.12)

=k+l-n i=k+1l-n

and establishing relation (A.1) f&#1 for this case.

Case 4.5  xpiy 41 = by Tkerksr» @nd all requests (i<k) such thatt/, <T,° <772, are

such that eithet,; =b .y T; or X", = X", with at least one having'’,; =b,.T;, -
Define two requests indexep, q (p < g, and thusT; <T;) as overlapping if

T, <7, . Define “(in)directly overlapping” as the transitive closofethe overlapping

relation. LetU denote the set of requests that are (in)directly overlappitngrequest
j+1 when considering only requeptl and those requestssuch thati<k+1and
X" =by .y Ti;.  Note thafju 2, since by the assumptions of this case, redueisis
in U as is at least one other request. Let the index of the rdquéswith the earliest
arrival time be denoted by Note that ifT* <7/, then, since}; <B,,, fork <j from

the inductive hypothesis on the main claim,

Bl?l+b1 +L- y'|2|+b1j+1 < Bl?|+b1 +L _bc(j+1)Tk+1j+1
< Byar + L =D(an Teanivg S Bras + L= Yiag jua s (A.13)

which would establish relation (A.1) fa#1 for this case. Assume in the following that
TS >l

Let V denote the set of requestyi<k) such thatT®<TP° <12, and such that
X" #byjay T - No requestov can havex™,, =L-y™3 ., by the same reasoning as
used for case 4.2 above. Also, if for at least one reqest x"; =byjy T j+1 = Vit 410

then relation (A.1) is established forl for this case using similar reasoning as used for

case 4.3 above, ie., from yM™, =y L+ xR =by T and

Vil s > Been T jo1 2 Yierjs2-  THUs, in the following, assume thaft},, = x™ for each

requesti0V .
Let B, denote the total amount of data in the transmissions receivedebgr more

of the setU clients. Note that these transmissions would be sufficiensdoring a
shorter request stream includiogly the requests in the set Therefore, from the
inductive hypothesis on the main claim, is lower bounded by the total amount of

transmitted data that would be computed by the (more generdl, thé &)

heterogeneous lower bound algorithm, when applied to this reduced retiaesh.
Denote the values computed for the reduced request stream, andviflees used in

this computation, with the superscrigt’: It is possible to choose thg values such
that for each request in the reduced stream, i.e., each requestx™ =x". To see
this, note that for the requestiu with the earliest deadline (and thus the first request
in the reduced request stream), can be chosen as-x°. For the request, DU with

the next earliest deadline, note thgt >y, since the presence of requeisis the

full request stream with deadlines prior to thatigfand the resulting nonnegative
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x> values, cannot decreasg?, . Similarly, requestsintermediate between andi; in

II2

the full request stream contribute nonnegati¥¥ values, and thusy?; =y,

implying thate;, can be chosen ag)®, -y +&,. Similarly for the other requests in
U; in general, thefsiI values can be chosen in order of request deadline, such that
& = lelPLH _lelt;’Lu ) Thus,z x"° :z x"" < B, .
ity
Let m> 2 denote |U |+|V|. From xlh'Jb+l =x" for each requestov, the following
holds

hib hib hib xhio hib hib hib hib
Bis1 tL = Yisrja1 = %kﬂ— +y + Z X %‘f %/kﬂ—m ja t z X a1t Y % ,j+l%
itv

=B L Wi * 3 - 5 K (A.14)
which implies, since relation (A.1) holds ﬂorl—mfrom the inductive hypothesis,
B +L- yL"f’lm < Byarem * L= Yist-m ju %Z X" ‘Z Xii?ljbﬂ E (A.15)

Since x; =b, .y T, for each requestOuU, byj.Tue < Z&hﬂbﬂ- Together with

Y x> < By, this yields
iU

Bl +L- yELb],Hl Bis-m L= yk+l—mj+l+(BU _bc(j+l)Tk+1,E)' (A.16)
Consider now the total amount of data that the reqjtektclient receives from
transmissions also received by at least one of the cliertsrequests indexeki2-m

k+1
throughk+1, but not received by a client with an earlier request deadkng 3 x; j.; -

i=k+2-m
The portion of this data received after the arrival of regedst upper bounded by
bej+yTksre- The portion of this data received prior to the arrival of relgeiés upper

k+1 k+1
bounded by ¥ x -By, since Y x gives the amount of data received by the clients
i=k+2-m i=k+2-m
with requests indexekt2-m throughk+1, from transmissions not received by a client
with an earlier request deadline, and at |dstof this data is transmitted after the
arrival of requesg, as it is received by one or more Betlients. (Note that all of the
data received by séi clients, must be from transmissions not received by any client

with a request deadline earlier than that of reqklegtm since such deadlines occur
k+1
prior to the arrival of any of the setclients.) Thus, 2’9 i1 S0 Tiere ¥ 3 %~
i=k+2-m i=k+2-m
k+1 k+1
Or By —byjupTkae S 3 % — 3 X ju» Yielding, when applied with the previous relation,

i=k+2-m  i=k+2-m
hib hib k+1 k+1
Bk+1 +L- yk+l,J+l s Bk+1— +L- Yk+1-m, j+1 +E z X = z Xi,j+1 Ez Bk+1 +L- yk+],j+1’ (A17)
=k+2-m i=k+2-m
which establishes relation (A.1) fef1 for this case.
As the above cases are mutually exhaustive, relation (A.1l)}ablisked, and thus
also the main claim.
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Appendix B

Asymptotic Analysis of Dynamic vs. Static Replica
Selection

Assuming that the probability that a request could receive semitbemore than one
other request is negligibly small, the optimal static policyois each request to be
served by the local replica. Under this assumption, for the lwhdwice model, a
request arrival occurring at timteonly causes a service initiation (at tire D) if no
other request arrival has occurred within (D+t]. Using this observation, the total
service delivery cost in a system with identical client graquest rates (i.e\; = A/N)
can be calculated as

pe /NP < xLH DH (B.1)

where Taylor expansmns have been used for the final expression.he=&untain
service model, on average a request is able to share halfvitessith a local request
that arrives withirD of itself. Using this observation, the corresponding cost under the
fountain service model can be approximated as

Me NP4 1-e 0N/ 2)= xLH DH (B.2)

As described in Section 4.2.4, the optlmal dynamic policy is foh eaquest to be
served by the local replica if no previous request is waitingdovice (in the case of
batched service) or receiving service (in the case of fountaucegat the time of
arrival of the request. In the rare event that there is spebvdous request, the cost is
minimized if the new request shares its service (all in #s® of batched service, or
whatever service remains for the previous request in theofdeantain service) with
this previous request (and, in the case of fountain service, receives theimgrpartion
of its service locally).

Similar to the above analysis, the total service delivery cosguke batched and
fountain service model can be calculated as

er‘*Du(1—e'(”N)D)N—'1cLH=xL§—x —N—_chJH, (B.3)
0 N O O N O
and
2D N EN-IO L L N-1
x% L+(-e )E'Tgcfm 5 Z%XLE - B—% (B.4)

respectively. With equation B.1 to B.4 being linear equat@nsan easily be solved
for. With the batched service model the maximum client delsing the optimal static
and the optimal dynamic policy, respectively, can be calculated as
N C 1 C
= -~n B.
statlc B‘ AL E dynamic M1- C(N _1)/ N) Q— XL@ ( 5)
The correspondlng delays, using the fountain service model, can be calculated as

~2ANj C = 2 L
Distatic = N Q— XL@ Ddynamlc X(l—C(N—l)/N)Q- XL@ (B6)
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For both service models, using these asymptotic limits and sinigébra, the
asymptotic delay differences reducetb-1)(1-€) x 100%.

159



Appendix C

Analysis of Heterogeneous Batched At-arrival Policy

This appendix outlines an analysis of the optimal at-arrivala@@election policy for
the fountain service model, with policy and the threshold paramé&tefs, and T"”
defined in Section 4.3.1.2.

As in the case of homogenous client groups, the analysis progeedadidering the
state of the system at an arbitrary timender the operation of an optimal at-arrival
policy. Consider first a replica and client graupther than replica/group 1. If there
has been at least one request arrival from client graughe time intervaltfL/r, t-T|],
replicai will be dispensing service at time If there have been no requests from client
groupi but at least one request from some other client gronghe time intervalt[—
L/r, =T] (and thus replicqis dispensing service at tinig all requests that arrive from
client groupi in the time intervaltE-T,, t] will be receiving service from a remote replica
at timet. If there have been no requests from any client group in theritereal f—
L/r, t=T] but at least one request in the interuall] t], and the first such request was
from a client group other than groupall requests that arrive from client groum the
time interval {—T,, t] will be receiving service from a remote replica atdin{note that
the expected number of such requests must be conditioned on theratbeiast one
request arrival, with the first such being from other than grpupf there have been no
requests from any client group in the time intertalf, t—T] but at least one request in
the interval {T, t—T.], or no requests from any client group in the time intertwdl/f,
t—T."] but at least one request in the interv&adT[”, t], and the first such request was
from client groupi, then replica will be dispensing service at tinte (The above
corresponds to the first four terms within the first set of cbrgckets of equation
(C.1))

The remaining case that has non-zero expected cost is whereh#iverdoeen no
requests from any client group in the time intertalfr, t—T.'] but at least one request
in the interval T/, t-T."], and the first such request was from client graupn this
case, all requests that arrive from client groupthe time intervalst{T ', t—T,"”] and f—
T.”, t] will be receiving service from replica 1 at time Referring to equation (C.1),
terms six and seven in the first set of curly brackets quoresto the remote access cost
of these requests, while terms eight and nine refer to the eserust of replica 1,
initiated by these replicarequests (while compensating for the fact that the andtysis
replica 1 does not take these request into consideration), angseduring the intervals
[t—T/', t—=max[T, T."]] and ft—-max[T,, T."], t-T."], respectively.

The analysis for replica and client group 1 follows a similgpraach. In the
resulting analytic expression for the total service delivery, as shown below, the
terms for replica and client group 1 (within the second set oy twdces), neglect the
fact that requests from other than client group 1 can causearépiicbe scheduled; this
Is compensated for with the last two terms for each replica/client gauthin the first
set of curly braces):
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rZ{(l i(Lir TI e (L/T=T) _ gh(Lir=T )CXT +e ML T|)(1 f)(ﬂ (1 -AT; ))fi

+((e—x(L/r—Ti)_e—x(L/r—Ti'))+(—x Lir=T)) _ —AL/r))fl
+e—x(L/r—Ti’)f.C( 0 (T =T+ (1 (T Xl ) )+( MLIr-T) _ L/r—Ti))fiCxiTiu

+ e HLITT) g (T Tl)(l g~(hali-maxn ) X% 10.=24 ))L-00Ty)
+(e—x(L/r—max[T1,Ti’1) —e AL/ T.))f (1 (7‘1 max{Tl T]+(Xmax[0 T, - T] /(1 maX[O’Tl_Tﬂ)—l)fl)}
N ’{ (1_e-xl(L/r—Tl))+ (e—xl(L/r—Tl) _ e—x(L/r—Tl))CM-I-l + (e-X(L/r—Tl) e )fl

s T g ) (%Tl (1 nl))fl} , (C.1)

where f; corresponds to the fraction of requests that are from client grouphe

correctness of this analysis has been checked using simulation.
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