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Abstract 

Scalable on-demand content delivery systems, designed to effectively handle increasing 
request rates, typically use service aggregation or content replication techniques.  
Service aggregation relies on one-to-many communication techniques, such as 
multicast, to efficiently deliver content from a single sender to multiple receivers.  With 
replication, multiple geographically distributed replicas of the service or content share 
the load of processing client requests and enable delivery from a nearby server. 

Previous scalable protocols for downloading large, popular files from a single 
server include batching and cyclic multicast.  Analytic lower bounds developed in this 
thesis show that neither of these protocols consistently yields performance close to 
optimal.  New hybrid protocols are proposed that achieve within 20% of the optimal 
delay in homogeneous systems, as well as within 25% of the optimal maximum client 
delay in all heterogeneous scenarios considered. 

In systems utilizing both service aggregation and replication, well-designed 
policies determining which replica serves each request must balance the objectives of 
achieving high locality of service, and high efficiency of service aggregation.  By 
comparing classes of policies, using both analysis and simulations, this thesis shows that 
there are significant performance advantages in using current system state information 
(rather than only proximities and average loads) and in deferring selection decisions 
when possible.  Most of these performance gains can be achieved using only “local” 
(rather than global) request information. 

Finally, this thesis proposes adaptations of already proposed peer-assisted 
download techniques to support a streaming (rather than download) service, enabling 
playback to begin well before the entire media file is received.  These protocols split 
each file into pieces, which can be downloaded from multiple sources, including other 
clients downloading the same file.  Using simulations, a candidate protocol is presented 
and evaluated.  The protocol includes both a piece selection technique that effectively 
mediates the conflict between achieving high piece diversity and the in-order 
requirements of media file playback, as well as a simple on-line rule for deciding when 
playback can safely commence. 
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Glossary 

Batching protocol 
A type of service aggregation protocol, in which clients having requested a file, 
wait to begin receiving the file until the beginning of a multicast (or broadcast) 
transmission, which collectively serves a set of waiting clients. 

BitTorrent 
A peer-assisted download protocol, in which a file is split into smaller pieces 
that can be downloaded in parallel from different peers. 

Bulk data 
Data or files for which there is no advantageous order in which data should be 
retrieved. 

Choke algorithm 
Algorithm used, by BitTorrent, to determine which peers to upload (and not to 
upload) pieces of a file to. 

Client reception rate 
The rate at which data is received by the client. 

Content Distribution Network (CDN) 
Interconnected servers distributed across the network, which allows the content 
to be effectively replicated, clients to be served by nearby replicas, and the 
content distributor to maintain control over the content. 

Continuous media files 
Media files, such as audio and video, that continuously must be rendered at 
specified rates. 

Cyclic multicast protocol 
A type of service aggregation protocol, in which the file data is cyclically 
transmitted on a multicast channel, which clients begin listening to at an 
arbitrary point in time, and continue listening to until all of the file data has been 
received. 

Digital fountain 
A cyclic multicast protocol, in which the file data is erasure coded such that a 
client listening to the channel can recreate the original content after having 
retrieved an arbitrary set of data equal (or slightly larger) in size as the original 
file. 

Download bandwidth capacity 
The maximum sustainable rate at which data can be received by the client. 

Download protocol 
Protocol used to transfer bulk data to clients.  The main metric of these protocols 
is the time until the entire file is fully downloaded. 

Erasure coding 
Coding technique used to accommodate packet losses. 

Leecher 
BitTorrent peer which does not have a complete copy of a file, and currently is 
downloading pieces of the file. 
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Multicast 
Family of techniques used to set up forwarding trees and to forward the content 
(through these distribution trees), from one or more source to multiple receivers. 

Multicast channel 
The server and network resources used to deliver each multicast to each member 
of a multicast group. 

Multicast group 
A collection of nodes interested in receiving the same multicast transmission. 

Upload bandwidth capacity 
The maximum sustainable rate at which data can be transferred by the client. 

Peer-assisted protocol 
Protocol in which peers contribute to the collective power of the system by 
making (part of) their resources available. 

Peer-to-peer system 
Systems consisting of peers. 

Piece selection policy 
Policy used by BitTorrent peer to determine the next piece to request for 
download. 

Proxy caches 
Content caches located at servers embedded between clients and the origin 
server, which intercept client requests and (in the case they have a stored copy) 
serves them on behalf of the origin server. 

Poisson arrival process 
A memoryless arrival process with constant arrival rate, or equivalently, an 
arrival process with inter-arrival times that are independent and exponentially 
distributed. 

Replica  
A server which has a copy of the replicated file (or service). 

Replica selection policy 
Policy used to determine which replica should serve a given client request. 

Seeder 
A BitTorrent peer which has a complete copy of a file (hence not requiring 
additional data to be downloaded), yet uploading pieces of the file to other peers. 

Server bandwidth 
The rate at which data is transferred by a server. 

Service aggregation technique 
Technique that allows multiple client requests to be served together in a manner 
that is more efficient than individual service.  

Streaming protocol 
File transfer protocol for continuous media files that allows playback to begin 
before a file is completely retrieved. 

Tit-for-tat policy 
Policy used by BitTorrent, giving upload preference to peers that provide the 
highest download rates. 



 

1 

Chapter 1 

1 Introduction 

With tremendous improvements in network bandwidth and computer capabilities 

many new high-bandwidth applications have emerged in the entertainment, business, 

and scientific communities.  In contrast to traditional content distribution systems, such 

as TV and radio channels, many of these new applications operate on an on-demand 

basis and only serve clients when explicit requests for service are made. 

As on-demand applications are becoming more popular, content providers are 

faced with the problem of distributing enormous amounts of data to a growing 

population of client requests.  For example, the size of a full length movie may be on the 

order of gigabytes.  On-demand dissemination of such files to many different clients, 

potentially widely distributed across the Internet, requires significant server and network 

resources.  Therefore, the rate at which a system can serve client requests is often 

limited by the server (and/or network) bandwidth available for dissemination, where 

bandwidth refers to the amount of data that can be transferred per time unit by the server 

(and/or across some network connection). 

Two basic service models commonly used for on-demand delivery of stored data 

are download and streaming.  With download, clients download the entire file before 

making use of it.  In this context the main performance metric is the time until the entire 

file is downloaded.  Streaming, on the other hand, utilizes the in-order playback 

characteristics of media files, such as video, to allow playback to begin well before all 

of the file data is retrieved.  To increase the likelihood that each part of the media file is 

retrieved before its playback time, streaming techniques generally require that some 

initial portion of the file is retrieved, and stored into a buffer, before starting playback.  

Maintaining a buffer of file data is especially important in environments with widely 

varying (playback and/or retrieval) rates.  With streaming, the primary metric of interest 

is the startup delay until playback can safely begin. 
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For content delivery systems to handle high request rates, it is important that 

protocols are designed such that either the resource requirements increase sub-linearly 

with increasing request rate, or the resources available for content delivery increase 

linearly with request rate.  Using scalable techniques can allow a content distributor 

with limited resources to provide its customers with better service, handle a higher 

request rate, and/or reduce its resource requirements (and hence also its delivery costs).  

Throughout this thesis the scalability and resource requirements of different delivery 

protocols and architectures are considered.  Of particular interest is the best achievable 

delivery service, given some available resources. 

The remainder of this chapter is organized as follows.  Section 1.1 provides an 

overview of existing scalable content delivery approaches.  Section 1.2 defines the 

objectives of the thesis.  The primary contributions are outlined in Section 1.3.  Section 

1.4 gives the organization of the remainder of the thesis. 

1.1 Scalable Content Delivery  

Before discussing scalable delivery architectures and protocols, consider the 

limitations of the basic client-server model, in which a content provider hosts all its 

content at a single server, and client requests are served individually.  Such systems, 

independently of the scheduling algorithm used, require resource usage directly 

proportional to the number of requests.  With limited resources this can easily result in 

unbounded client delays or dropped requests.  Further, both the server itself and the 

network connectivity to the server will be potential bottlenecks and act as single points 

of failure. 

Scalability can be achieved using service aggregation (e.g., [2, 6, 10, 12, 26, 31, 

57, 146, 150, 176, 180, 182]) or replication (e.g., [93, 94, 96, 133]) techniques.  With 

aggregation, multiple client requests for the same file are collectively served.  These 

techniques often rely on one-to-many delivery multicast techniques, which build 

efficient dissemination trees from a single sender to multiple receivers.  With 

replication, multiple geographically distributed replicas of the content share the load of 

processing client requests, offload the origin content server, and enable delivery from 

nearby replica servers.  For example, replicas may be proactively pushed out to replica 
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servers across a Content Distribution Network (CDN) or reactively replicated at proxy 

caches in response to client requests.  Replication is also utilized in peer-assisted 

systems, in which other clients having obtained, or are currently obtaining, some content 

are willing to serve as additional replica servers. 

1.1.1 Service Aggregation 

Rather than serving each request individually, service aggregation techniques 

attempt to serve multiple requests simultaneously, in a manner that is more efficient 

than individual service.  These techniques often utilize multicast, in which the server can 

use a single send operation to deliver content to all of the requesting clients.  Multicast 

service employs a multicast delivery tree to disseminate the content.  This tree can be 

constructed either by network routers (e.g., [178, 123, 19, 18, 60, 61, 87, 138]) or by 

application-level software (e.g., [45, 42, 95, 193, 153, 39, 139, 40]).  When serving 

multiple requests simultaneously, multicast can significantly decrease the bandwidth 

requirements at the server, as well as the total bandwidth required throughout the 

network. 

Multicast-based service aggregation techniques have been proposed both in the 

context of download and streaming.  Previous scalable protocols for downloading large, 

popular files from a single server include batching [66, 182] and cyclic multicast [146, 

10, 26, 176, 31, 150, 27].  With batching, clients wait to begin receiving a requested file 

until the beginning of its next multicast transmission, which collectively serves all of the 

waiting clients that have accumulated up to that point.  With cyclic multicast, the file 

data is continually being multicast.  Clients can begin listening to the multicast at an 

arbitrary point in time, and continue listening until all of the file data has been received. 

In the context of streaming, scalable service aggregation protocols include 

periodic broadcast protocols [5, 177, 90, 119, 88] and immediate service protocols [79, 

36, 89, 67, 68, 69, 76].  To allow playback to begin quickly, with immediate service 

protocols, a new stream is started for each client request, delivering the beginning of the 

file.  To allow later clients to catch up with earlier clients, with respect to the portion of 

the file that has been received, clients may also listen to earlier streams.  At the point a 

stream is no longer needed (since the clients listening to it have already received the 

data it is delivering, by listening to earlier streams) it can be terminated.  With periodic 
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broadcast protocols, segments of files are periodically multicast according to some 

schedule.  Clients are provided with a schedule for listening to the various multicasts 

that ensures that all data is received in time. 

To accommodate packet losses many service aggregation techniques, including 

some cyclic multicast and periodic broadcast protocols, utilize erasure codes [148, 31, 

164, 121].  With erasure coding, a file of size N blocks is encoded into M blocks (M > 

N) such that reception of only a subset of the M blocks (of total number N or slightly 

larger) is sufficient to allow recreation of the file.  For example, a client listening to a 

cyclic multicast can recover from a packet loss by continuing to listen until a sufficient 

amount of erasure-coded data has been received [146, 31].  Erasure codes also simplify 

content delivery in systems utilizing replication [30].  A client is able to download 

erasure coded blocks from multiple servers with minimal duplicate block receptions, as 

long as M >> N.  The ratio M/N is called the stretch factor of the coding scheme. 

1.1.2 Replication 

The first and simplest replication approach is for the content distributor to invest 

in a server farm consisting of a set of mirror servers among which an intelligent content 

switch can direct requests.  However, without service aggregation this approach requires 

server and network resources to scale linearly with the number of requests and may 

result in a single point of failure if all replicas are located in the same sub-network or 

behind a common network bottleneck.  Three alternative replication strategies are (i) 

proxy caching, (ii) Content Distribution Networks (CDNs), and (iii) peer-to-peer 

networks. 

1.1.2.1 Proxy Caching 

Internet Service Providers (ISPs) or user communities (such as businesses or 

universities) often embed proxy servers or organization level caches at the boundary of 

their networks.  By redirecting client requests through a proxy server, that caches 

previously requested files, these architectures allow requests to be served by a nearby 

proxy server, rather than the origin content source.  Specifically, if the proxy has a 

cached copy of the requested content, the proxy can serve the request itself, otherwise 

the proxy first retrieves a copy from the server.  Proxy caching can reduce network 

bandwidth usage as well as improve the perceived client performance. 
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To determine which files a proxy cache should retain copies of, various 

replacement policies have been developed [147, 1, 34].  Such policies may exploit (i) 

the highly variable popularities of web objects, (ii) short-term temporal locality in the 

object request stream, whereby an object may experience several closely spaced 

requests, and (iii) the correlations among requests for different objects.  However, with 

relatively cheap storage, disk caches can be made large enough to make replacement 

policies less pertinent.  The effectiveness of proxy caching is largely determined by the 

proportion of cacheable objects, and the rate these objects are updated, in comparison 

with the request rate of each object [181].  To increase the probability that a copy of the 

requested file can be found close to the requesting client, many systems have been 

proposed that use cooperative caching, whereby proxy caches close to each other 

cooperate in serving client requests [71, 181]. 

Common for all caching techniques is that they work best if the content is static; 

however, as data is pulled from the origin server and stored at individual proxy caches 

the content provider loses control over the content and can not provide service 

guarantees.  Therefore, the origin server may include a directive with data that it sends 

to the proxy cache, requesting a short maximum cache lifetime, forcing caches to refresh 

their content relatively frequently, and thus reducing their effectiveness. 

1.1.2.2 Content Distribution Networks 

Content Distribution Networks (CDNs) [62, 166] are provisioned by content 

brokers.  By distributing servers across the network and interconnecting them at the 

application-level the content broker can create a distributed overlay infrastructure, 

which it can use to provide content distribution services for content providers.  Selling 

their services to content providers, these networks are generally designed to provide 

attractive services such as reliable and high quality delivery to the content provider’s 

customers.  These systems relieve content providers from investing in infrastructure and 

offload the origin content servers.  With control over the entire delivery architecture the 

content broker is able to allow the content provider to maintain full control of its 

content.  This added control also allows CDNs to be used to deliver dynamic content 

and streaming media [62] 
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In practice, CDNs use both reactive and proactive replication.  In contrast to 

reactive approaches, used by proxy caches, proactive replication is extremely beneficial 

for networks that may suffer from substantial network delays, low bandwidth, or even 

unidirectional links.  For example, in a network with a unidirectional satellite link and 

no uplink, data may be pushed to a local server, from which local clients can retrieve the 

data; or a movie that is about to be released can be proactively replicated to multiple 

servers (avoiding a single server to become overloaded at the release).  This approach 

can be further improved by disseminating content to servers at times when the network 

is less utilized. 

Akamai1 is the largest and best known CDN.  In August 2006 it deploys 20,000 

servers, spread over 1,000 networks, located in 71 different countries.  However, there 

are other commercial CDNs deployed that use many fewer servers.  Also, some larger 

corporations choose to set up private CDNs over which they provide training, distribute 

tools, information and software, as well as provide an infrastructure for efficient wide-

area meetings, while saving considerable network resources [166].  In an attempt to 

scale beyond the limitations set by individual content brokers, without impacting the 

privacy of each CDN, some research efforts have investigated interconnection of 

independent CDNs [58, 80]. 

A common goal for all CDNs is to provide an architecture that improve the 

overall client experience.  When redirecting requests it is therefore important that 

content brokers provide an infrastructure and mechanism that is transparent for the end 

user.  In particular, client requests should be transparently redirected to an appropriate 

server.  Optimally, the clients should benefit from being redirected while interacting 

with the system in exactly the same way as if there were only a single server.  Many 

redirection techniques have been proposed for CDNs [21]; however, most commercial 

systems use some form of Domain Name System (DNS) redirection [103].  For 

example, Akamai implements its own DNS service using a two level server hierarchy 

[7]. 

                                                 
1 Akamai, http://www.akamai.com/, August 2006. 
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1.1.2.3 Peer-to-Peer and Peer-assisted Systems 

In peer-to-peer and peer-assisted systems peers distributed across the network 

contribute to the collective resources of the system.  Even though the original Internet 

was designed on peer-to-peer principles, it is not until the last few years that peer-

assisted systems have been considered for content distribution.  As more peers choose to 

share their content and resources, the capacity of these architectures grows.  With 

appropriate techniques to discover nearby replicas, these systems also have the potential 

to reduce network bandwidth usage. 

The main application of current peer-to-peer systems is file sharing among peers.  

This application is not only the most widespread application, but also the most 

controversial application.  Systems such as Napster [124], Gnutella2, Freenet [47, 188], 

Kazaa3, and many of the sites providing support for the BitTorrent [48] download 

protocol have gained a multitude of attention from authorities, copyright protectors, and 

media due to the enormous amount of copyrighted music and movies that are shared 

among users across these systems.  Other applications include distributed computation, 

computer gaming, and other collaboration applications. 

Measurement studies have observed that peer-to-peer traffic is responsible for a 

large portion of the bytes transferred across the Internet (e.g., [157]).  With increasing 

peer-to-peer traffic locality aware mechanisms, which allow content to be retrieved from 

nearby rather than far-away peers becomes more important [145, 98]. 

Peer-assisted content distribution systems and algorithms have been proposed 

for both live streaming [39, 45, 95, 102] and for on-demand streaming of stored media 

files [24, 53, 161].  To achieve streaming, these protocols typically establish relatively 

long-duration streams from the content source and between peers, as organized into 

some form of overlay topology.  In contrast, with BitTorrent [48] and similar download 

protocols (e.g., [78, 162]) a client may download a file from a large and changing set of 

peers, using connections of heterogeneous and time-varying bandwidths.  This 

flexibility is achieved by breaking the file into many small pieces, each of which may be 

                                                 
2 Gnutella, http://www.gnutella.com/, August 2006. 
3 Kazaa, http://www.kazaa.com, August 2006. 
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downloaded from different peers.  This approach has also been found beneficial in the 

context of live streaming [86, 191, 190, 112].   

Other work has proposed mechanisms to replicate content [116, 51, 55, 152], 

search for content (or information) [116, 184, 49, 50, 117, 105, 17, 172], as well as route 

data (or queries) [38, 39, 193, 168] in various types of overlay peer-to-peer structures. 

1.2 Problem Description  

This thesis considers the scalability and performance of download protocols, 

used to effectively disseminate data to a large number of requesting clients.  In 

particular, new protocols and policies are designed and evaluated for three different 

contexts, each achieving scalability through service aggregation and/or replication. 

First, this thesis considers the problem of devising single server protocols that 

minimize the average or maximum client delay for downloading a single file, as a 

function of the average server bandwidth used for delivery of that file.  An equivalent 

problem is to minimize the average server bandwidth required to achieve a given 

average or maximum client delay.  This equivalent perspective is sometimes adopted.  

Although delivery of multiple files is not explicitly considered, note that use of a 

download protocol that minimizes the average server bandwidth for delivery of each file 

will minimize the average total required server bandwidth for delivering all files as well. 

Secondly, this thesis considers the problem of devising policies to select which 

replica should serve each request, in systems exploiting both service aggregation and 

replication.  Such policies must take into consideration the basic tradeoff between 

locality of service (maximized by selecting the nearest replica), and efficiency of use of 

server resources (maximized by selecting the replica at which service can be shared 

among the largest number of clients). 

Finally, a peer-assisted environment is considered in which the content is 

replicated but peers do not utilize service aggregation techniques.  For this context, 

scalable download protocols, such as BitTorrent [48] have already been proposed, 

successfully deployed, and have shown to provide good performance [111, 134].  This 

thesis considers the problem of using adaptations of these download protocols to 

provide on-demand streaming of stored media. 
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1.3 Contributions  

The main contributions of this thesis are as follows. 

•  New scalable download protocols are designed for download of a large 

file from a single server, using a multicast based approach, and their 

performance evaluated against new analytic bounds on the best 

achievable performance. 

•  The relative performance of classes of replica selection policies, of 

varying complexities, are compared in a context where a large file may 

be downloaded from multiple replica sites, each using multicast. 

•  A peer-assisted protocol is designed that splits a large media file into 

small pieces, uses a piece selection policy to determine which piece to be 

downloaded next from multiple content server(s) and/or other clients 

having retrieved part of the file, in an order that allows streaming, as well 

as a rule to determine when playback can safely begin. 

For each of the above contexts a number of abstractions are developed, within 

which protocols and policies are evaluated.  The following sections elaborate on the 

contributions made in each context. 

1.3.1 Scalable Download from a Single Server  

To evaluate the performance of existing and new protocols lower bounds on the 

average and maximum client delay for completely downloading a file, as functions of 

the average server bandwidth used to serve requests for that file, are developed for 

systems with homogeneous clients.  The results show that neither optimized versions of 

cyclic multicast nor batching consistently yield performance close to optimal.  New, 

relatively simple, scalable download protocols are proposed that achieve within 15% of 

the optimal maximum delay and 20% of the optimal average delay in homogeneous 

systems.  Similar to cyclic multicast, these protocols allow clients to start listening to 

on-going multicasts at the time of their arrival, but limit server transmissions to time 

periods in which (probabilistically) there are more clients listening. 

For heterogeneous systems in which clients have widely-varying achievable 

reception rates, an additional design question concerns the use of high-rate 
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transmissions, which can decrease delay for clients that can receive at such rates, in 

addition to use of low-rate transmissions that can be received by all clients.  A new 

scalable download protocol for such systems is proposed, and its performance is 

compared to that of alternative protocols as well as to new lower bounds on maximum 

client delay.  The new protocol achieves within 25% of the optimal maximum client 

delay in all scenarios considered. 

Throughout this analysis it is assumed that each requesting client receives the 

entire file (i.e., clients never abort their request while waiting for service to begin or 

after having received only a portion of the file).  The analysis and protocols presented 

are compatible with erasure-coded data.  Each client is assumed to have successfully 

received the file once it has listened to multicasts of an amount of data L (termed the 

“file size”, although with packet loss and erasure coding, L may exceed the true file 

size).  Poisson request arrivals are typically assumed, although generalizations are 

discussed in some cases.  Note that Poisson arrivals can be expected for independent 

requests from large numbers of clients (during time periods with constant arrival rates).  

Furthermore, multicast delivery protocols that have high performance for Poisson 

arrivals, have even better performance under the more bursty arrival processes that are 

typically found in contexts where client requests are not independent [68]. 

1.3.2 Scalable Download from Multiple Servers  

In large distributed systems implementing both replication and service 

aggregation, a basic tradeoff is between locality of service (maximized by selecting the 

nearest replica), and efficiency of use of server resources (maximized by selecting the 

replica at which service can be shared among the largest number of clients).  Rather than 

propose a specific policy to mediate this tradeoff, classes of policies of differing 

complexities are compared within the context of a simple cost model, capturing both the 

service requirements of the individual replica servers, and the additional cost associated 

with retrieving service at remote replicas.   

A large popular file is assumed to be replicated at multiple servers across the 

network, from which the file can be downloaded.  The set of servers with a replica may 

be determined based on expectations of future demands, availability, or some other 

system requirements.  Here, the set of servers with a replica of the file is assumed to be 
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predetermined.  It is further assumed that each server implements some form of service 

aggregation technique allowing multiple client requests to be served together, rather 

than individually. 

Within each class of policies, limits on the best achievable performance are 

determined (or representatives defined) for both batching and cyclic multicast 

aggregation approaches.  When using cyclic multicast the file is assumed to be erasure 

encoded.  Similar to the analysis used for the single server case, this analysis assumes 

that requests arrive according to a Poisson process, and no client aborts their request 

while waiting for service to begin or after having received only a portion of the file. 

It is concluded that (i) selection using current system state information (rather 

than only proximities and average loads) can yield large improvements in performance, 

(ii) when it is possible to defer selection decisions (e.g., when requests are delayed and 

served in batches), deferring decisions as late as possible can yield additional large 

improvements, and (iii) relatively simple policies using only “local” (rather than global) 

request information are able to achieve most of the potential performance gains. 

1.3.3 On-demand Streaming using Scalable Download 

Based on the design of the relatively simple and flexible BitTorrent download 

protocol, this thesis proposes a peer-assisted BitTorrent-like approach to media file 

delivery which is able to achieve a form of “streaming” delivery, in the sense that 

playback can begin well before the entire media file is received.  Achieving this goal 

requires: (i) a piece selection strategy that effectively mediates the conflict between the 

goals of high piece diversity (achieved in BitTorrent using a rarest-first policy), and the 

in-order requirements of media file playback, and (ii) an on-line rule for deciding when 

playback can safely commence.   

Candidate protocols including both of these components are presented and 

evaluated using event-based simulations, in which each peer is assumed to be 

bottlenecked by either its upload or download rate.  Locality is not considered in this 

part of the thesis.  It is further (very conservatively) assumed that no peer, except the 

origin content source, shares pieces once it has received the whole file.  In a real system, 

peers are likely to continue serving other peers as long as they are still playing out the 

media file, while other peers may (graciously) choose to upload to other peers beyond 
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that time.  With the higher availability of rare pieces and download bandwidth in such 

systems, the benefits of more aggressive piece selection techniques (giving priority to 

earlier pieces rather than rare pieces) are likely to be even greater than presented here. 

It is found that simple probabilistic piece selection policies, giving preference to 

earlier pieces, allow peers to begin playback well before the entire file is downloaded.  

Further, whereas no on-line strategy for selecting startup delays is expected to give close 

to optimal startup delays (without significant chance of playback interruption), 

promising results are obtained using a simple startup rule.  Before starting playback, the 

rule requires the retrieved number of pieces to exceed some (small) threshold, and the 

rate at which in-order pieces are being accumulated to exceed a value sufficient to allow 

continuous playback without interruption, if that rate was to be maintained. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows.  Chapter 2 reviews related 

work, outlining the current state of scalable download protocols and setting existing 

solutions into context.  Chapter 3 develops lower bounds and new scalable download 

protocols that achieve close to optimal performance when downloading large files from 

a single server.  Chapter 4 considers the problem of replica selection in systems 

exploiting both replication and service aggregation.  Chapter 5 proposes adaptations of 

existing scalable peer-assisted download protocols, in a way that allows on-demand 

streaming.  Conclusions and directions for future work are presented in Chapter 6. 
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Chapter 2 

2 Background 

Rather than attempting to provide a complete survey of all existing scalable 

content delivery protocols and architectures, this chapter focuses on the techniques most 

relevant for the three contexts considered in this thesis.  Section 2.1 presents an 

overview of various approaches to implement multicast.  Section 2.2 surveys previous 

work on scalable single server download protocols that use multicast-based service 

aggregation.  Section 2.3 discusses replica placement and selection techniques 

applicable for the context of scalable download from multiple servers.  Finally, related 

work on peer-assisted content delivery protocols is surveyed in Section 2.4. 

2.1 Multicast 

When distributing content to multiple clients across the Internet, content servers 

have traditionally used multiple concurrent unicast connections.  This approach suffers 

from highly redundant usage of network resources and high server overhead.  With 

multicast, in contrast, a single transmission of the content can be received by multiple 

receivers.  A collection of nodes interested in receiving the same multicast transmission 

is called a multicast group, and the server and network resources used to transmit each 

multicast to each member of the group is called a multicast channel.  Throughout this 

thesis, “listening to a channel” refers to listening to a particular on-going or intermittent 

multicast transmission.  Content is disseminated using a multicast delivery tree, and in 

contrast to replication strategies, multicast does not require any persistent storage 

capacity in the network.  Multicast significantly decreases the bandwidth requirements 

at the server, and decreases the total bandwidth required throughout the network. 

Despite first being implemented as an overlay system implemented at the 

application-level [70], multicast was originally envisioned as a network-level 

functionality (“IP multicast”) supported by the network routers [59].  In theory this 
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would give shorter paths and use less total network bandwidth; however, for numerous 

reasons IP multicast has seen slow commercial deployment [64, 87].  This has prompted 

much research on implementing multicast at the application level.  This section will 

discuss both IP multicast and application-level multicast. 

2.1.1 IP Multicast 

This section discusses how the current multicast solution has evolved and 

concludes with a discussion of current deployment issues and alternative network-level 

solutions that have been proposed. 

In the traditional IP multicast service model, a multicast group is formed by a set 

of clients that have all expressed interest in receiving transmissions sent to some 

particular multicast address (used as the group identifier).  While only the nodes 

currently in the group receive data sent to the multicast address, any node, including 

nodes that are not members of the group, can send data to the group by addressing 

transmissions to the multicast address.  Implemented at the network-level, the content is 

delivered without guarantees of in-order or loss-free delivery. 

The Internet Group Membership Protocol (IGMP) [32] provides the functionality 

to handle group membership.  It operates between clients and their directly attached 

routers.  Group members use this protocol to inform their nearest router about multicast 

groups which they wish to join or leave.  Note that IGMP is only used for group 

membership, and other protocols called multicast routing protocols are needed to build 

and maintain delivery trees for each group. 

To achieve scale and administrative autonomy the Internet is organized into 

domains or regions, each called an Autonomous System (AS).  Routing protocols are 

generally categorized as either intradomain routing protocols, responsible for routing 

within a domain, or interdomain routing protocols, responsible for routing between 

different domains. 

Many different intradomain protocols have been proposed for multicast routing 

within an AS.  The main differences among these protocols concern how they build and 

maintain the multicast tree structure.  These routing protocols are normally categorized 

as either dense-mode protocols or sparse-mode protocols.  Dense-mode protocols are 

designed to perform best when multicast transmissions must pass through most of the 
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network routers and normally use some form of “broadcast and prune” mechanism.  

Sparse-mode protocols are designed to perform best when multicast transmissions need 

to pass through only a small fraction of the network routers and rely on receivers 

explicitly sending requests to join the multicast group.  Dense-mode intradomain 

multicast protocols include Distance Vector Multicast Routing Protocol (DVMRP) 

[178] and Multicast Open Shortest Path First (MOSPF) [123], while sparse-mode 

protocols include Core-Based Trees (CBT) [19, 18] and Protocol Independent Multicast 

Sparse Mode (PIM-SM) [60, 61].  PIM-SM is also an integral component of the current 

interdomain multicast architecture.1  PIM-SM forms a reverse shortest path tree, rooted 

at a rendezvous point (RP) associated with a multicast group, by setting up routing 

states at routers when propagating the explicit join messages towards the RP.  The tree 

is a reverse shortest path tree in the sense that the path from each receiver to the RP uses 

the “shortest” IP path; however, with the asymmetry of path lengths, these paths are not 

necessarily the shortest paths from the RP to each receiver.  A novel feature of PIM-SM 

is its ability to let receivers switch from group-shared trees (in which all content is 

forwarded through the RP) to source-specific trees (in which the multicast tree is rooted 

at the content source).  This ability can improve performance for clients and offload the 

RP. 

While all routers in a specific AS generally deploy the same multicast routing 

protocol, routers in different domains may use different protocols.  Therefore, 

interdomain routing protocols are generally required to achieve interoperability among 

domains using different routing protocols.  Up until the beginning of 1999, DVMRP 

was almost exclusively the only protocol deployed for interdomain routing.  However, 

as a dense-mode protocol (using a broadcast and prune approach) it is not suited for 

sparse sets of participating routers, and as observed by Rajvaidya and Almeroth [137], 

DVMRP was almost entirely replaced in March 2000.  In the replacement multicast 

architecture, PIM-SM is used for routing and the Multiprotocol Boarder Gateway 

Protocol (MBGP) [22], which extends the Boarder Gateway Protocol (BGP) [144], is 

                                                 
1 PIM-SM is currently the only multicast routing protocol used for interdomain routing and it (or other 
PIM versions) is also typically used for intradomain routing [160]. 
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used to exchange routing information among multicast-enabled domains.  MBGP allows 

domains to learn of paths to reachable multicast-enabled networks. 

The Multicast Source Discovery Protocol (MSDP) is currently used in 

conjunction with MBGP and PIM-SM, although it is viewed as a short term solution.  

MSDP uses flooding among RPs of different domains to distribute information about 

new sources that have started transmitting to a multicast address.  If a RP has received a 

join message from within its domain for a multicast group to which a new external 

source is transmitting, the RP sends a join message to the source.  Any data received by 

the RP will then be forwarded on the local multicast tree.  With knowledge of the 

source, source-specific trees can be established using PIM-SM.  Almeroth discusses the 

MBGP/PIM-SM/MSDP solution and some of its drawbacks [11], while other work has 

proposed interdomain solutions to overcome MSDPs scaling problems [106]. 

While quantifying the bandwidth savings at the server from use of multicast is 

relatively easy, quantifying the bandwidth savings throughout the network is more 

difficult.  For example, each network link may have a different cost function associated 

with it and costs may be associated with many different organizations.  Chuang and 

Sirbu [46] define a cost measure, originally aimed at pricing multicast, as the ratio of the 

total number of multicast links in a distribution tree and the average path length between 

two arbitrary nodes in the network.  Through extensive simulations of shortest path 

multicast trees using both real and generated network topologies they found this ratio 

follows a power law, scaling as a power of the number of receivers.  The same power 

law was also found using analysis of k-ary trees [128].  Van Mieghem et al.  [175] 

perform a more thorough analysis, finding that the exponent in the power law increases 

with the number of nodes in the system.  Chalmers and Almeroth [41] validate this later 

model using data obtained from measurements of real multicast trees, and explain it by 

the underlying network connectivity putting a constraint on the possible shapes of 

interdomain multicast trees.  While previous studies [46, 128] suggest a power law 

exponent of about 0.8, Chalmers and Almeroth [41] indicate that it may be between 0.7 

and 0.8 for real networks.  They also observe a bandwidth reduction of 55-70% from 

using multicast, with multicast groups as small as 20-40 receivers. 
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Despite considerable potential bandwidth reduction, IP multicast has not been 

widely deployed outside individual organization-based networks [155].  While there are 

many difficulties with implementing wide-area multicast at the network level [64, 87, 

11], most of which are due to the highly heterogeneous nature of the Internet (with 

many domains deploying different routers, protocols, etc.), one of the main reasons 

often used to explain this fact is the inherent complexity of implementing the IP 

multicast service model, in which both multiple senders and receivers are allowed.  By 

restricting the model to a single sender (or source), as in the Single Source Multicast, 

deployment may be made much easier [87, 63].  Here, the root of the tree is placed at 

the sender and each receiver specifies both an IP multicast address (specifying the 

group) and a regular IP-address (specifying the source).  Other researchers have 

proposed leveraging from existing unicast solutions [170, 52, 138].  For example, 

Ratnasamy et al. [138] propose an approach in which routers use BGP routing tables to 

compute dissemination trees, consisting of the union of all unicast paths to know 

receivers, and forward data only to the next set of routers in the dissemination tree 

[138]. 

IP multicast has also been deployed using short-term solutions, which satisfies 

short-term demand, but makes re-deployment difficult.  For example, IGMP did not 

support Single Source Multicast until late 2002 [32], and this new IGMP version is still 

constrained by backwards compatibility with previous versions.  With observations of 

successful bandwidth savings [155], improved stability of the current multicast 

infrastructure [137], and increasing demands for the original service model (e.g., 

distributed network games), the feasibility of wide-area multi-source deployment of IP 

multicast is currently being revisited [138]. 

2.1.2 Application-level Multicast 

The end-to-end principle [154] states that complexity should be pushed to the 

end systems, keeping the core of the network simple.  This is done in application-level 

multicast.  In this approach, network-level routers play no role in implementing 

multicast.  Instead, multicast is implemented by application-level software that 

establishes conventional unicast connections among a collection of nodes, including 

those that wish to receive the multicast transmissions, the source(s), and possibly other 
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nodes as well.  Data transmitted by a source is relayed by these participating nodes, 

across unicast connections, until reaching all receivers.  The collection of nodes and the 

connections (“links”) between them is commonly called a “virtual”, or “overlay” 

network.  Some of the main advantages of application-level multicast are: (i) billing can 

be done on participants in the virtual network, (ii) group management can be handled at 

the application-level, (iii) higher level services can benefit from well understood unicast 

solutions, (iv) multicast address allocation can be done in a single virtual domain, (v) 

existing unicast tools can be used to monitor the overlay network, and (vi) interdomain 

routing is avoided by routing in a single virtual domain.  Since application-level 

multicast can be implemented by any willing collection of nodes, without requiring 

additional infrastructure, it is also relatively easy to deploy. 

Depending on the construction of the routing overlay, for the control and data 

distribution, application-level multicast protocols can be categorized into three classes: 

(i) mesh-first approaches, (ii) tree-first approaches, and (iii) key-based routing 

approaches in which the multicast tree is created on top of structured overlays. 

Mesh-first protocols, such as Gossamer [42] and Narada [45], perform a two-

step process in which a mesh of connections is created before the actual delivery tress.  

Both Gossamer and Narada use delay measurements and threshold algorithms to create 

and maintain a sparse mesh with limited out-degree at each participating node.  The 

redundancy of the mesh provides for better reliability than a tree (where the breakage of 

a single link partitions the network) and mesh maintenance can ensure that the mesh 

links in use have relatively low end to end delays and high-bandwidth.  To form their 

respective delivery trees using the mesh network links, both protocols use a distance 

vector protocol, in which nodes periodically exchange with their neighbors their 

established network distance over the mesh to each destination, thus allowing each node 

to determine their best next hop (and correct estimates of network distances) to each 

destination.  By building their delivery trees on top of a mesh they inherit the attractive 

properties of the mesh, while permitting use of a relatively simple tree building protocol.  

While Narada is tailored for smaller end-system groups [44], Gossamer achieves 

scalability by adding a two-level hierarchy to its design. 
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For the purpose of robustness tree-first protocols may also create a mesh; 

however, central to this approach is that protocols begin by creating a group-shared or 

source-specific tree.  ALMI [127] is a tree-first protocol tailored towards multicast 

groups of small sizes using group shared trees, Yoid [74] and Host Multicast Tree 

Protocol (HMTP) [189] are more scalable protocols using group-shared trees, while 

Overcast [95] is a scalable single source protocol using source-specific trees.  In ALMI, 

a central session controller uses the relative distances of the different nodes to form a 

minimum spanning delivery tree.  With the more scalable protocols, each node is 

responsible for finding an appropriate parent on the tree.  A potential parent should have 

sufficient resources to support an additional child, and the addition of a link to the 

potential parent should not result in a routing loop.  Other implicit protocols structure 

themselves into a hierarchy which implicitly defines the delivery tree.  For example, 

NICE [20] structures itself into a hierarchical overlay of clusters, where each cluster has 

a cluster leader that is also a member of a higher level cluster.  This structure allows 

NICE to efficiently route messages to all nodes in the overlay by having each node send 

the messages to all nodes in all the clusters in which it participates. 

Key-based approaches build multicast trees on top of structured overlays that use 

key-based routing [56, 192, 151, 37, 169, 141, 131], wherein all nodes are given 

identifiers in a numerical key space, and routing proceeds using some technique that 

guarantees movement closer in the key space to the destination node at each hop.  

Examples of such protocols are Bayeux [193], Scribe [153, 38], SplitStream [39], and 

CAN-multicast [139].  These protocols all take advantage of the underlying key-based 

routing (KBR) [56] mechanism, when forming their distribution trees. 

Much of the work on application-level multicast considers a scenario in which a 

different overlay network is formed for each multicast group, consisting only of the 

sender and receivers (e.g., client work stations) for that group.  It has also been 

suggested that application-level multicast could be offered as an infrastructure service, 

using an overlay network constructed using servers distributed through the Internet in a 

manner of a CDN [42, 43]. 

Despite numerous advantages, application-level multicast uses more network 

bandwidth than IP multicast.  This is primarily since different links in an overlay 
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network may share links in the underlying physical network, hence requiring multiple 

copies of the same content to traverse the same network links.  Chu et al.  [45] define a 

metric they call Normalized Resource Usage (NRU), as the ratio of the network usage 

for a content delivery scheme of interest relative to that for IP multicast.  Assuming 

symmetric links and in light of the previously discussed findings of Chuang and Sirbu’s 

[46], the expected NRU for sequential unicast is O(N0.2), where N is the number of 

receivers in the distribution network.  Unfortunately, not many researchers use this 

metric when evaluating their protocols.  For application-level multicast to save network 

resources, compared to sequential unicast, it should have an NRU better than N0.2.  Note, 

however, that even when application-level multicast does not reduce substantially the 

network bandwidth usage, compared to unicast, it still offers substantial bandwidth 

savings at the server. 

Other measures that have been used to evaluate application-level multicast 

protocols are the stress and stretch metrics.  These metrics measure the number of 

identical packets sent over the same physical link, and the ratio of the path length along 

the delivery tree and the length for the unicast path, respectively.  Note that the stress for 

IP multicast is always 1 but is generally higher for application-level multicast.  

Assuming symmetric routes in the physical network (i.e., the route from A to B is the 

reverse of the path from B to A), IP multicast will deliver data along the unicast paths, 

resulting in a stretch of 1.  This property is not necessarily true if the routes are 

asymmetric since the direct unicast path may not be the same as the reverse shortest 

path, used to create many multicast trees (e.g., PIM-SM).  Further, research suggests 

that a substantial portion of IP-routes on the Internet are non-optimal and efficient 

routing choices over a virtual overlay can achieve a stretch below 1 [158, 159, 13, 14].  

Because of asymmetries and non-optimal IP-routes, application-level multicast certainly 

has room to achieve a lower stretch than IP multicast.   

2.2 Multicast-based Single Server Scalable Download Protocols 

This section discusses the main multicast-based download protocols used for 

content delivery from a single server.  It is important to note that the multicast-based 

protocols considered here are beneficial even for systems in which some form of 
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multicast-like operation has been implemented only at the server, and not in the network 

itself.  In this case, server resource use (such as disk access bandwidth, CPU and 

memory use) can be reduced by replicating the data at (or just before reaching) the 

network interface [150].  Although this may result in the network interface becoming a 

bottleneck it can significantly improve the performance of download systems in which 

some other server resource is the bottleneck. 

Existing multicast-based approaches for scalable download of popular files from 

a single server include batching [66, 182] and cyclic multicast [10, 150].  With batching, 

clients wait to begin receiving a requested file until the beginning of its next multicast 

(or broadcast) transmission, which collectively serves all of the waiting clients that have 

accumulated up to that point.  With cyclic multicast, the file data is cyclically 

transmitted on a multicast channel that clients begin listening to at times of their 

choosing, and continue listening to until all of the file data has been received.  Section 

2.2.1 and 2.2.2 discuss batching protocols and cyclic multicast protocols, respectively.  

Hybrid protocols are discussed in Section 2.2.3.  The accommodation of heterogeneity 

in multicast-based protocols is considered in Section 2.2.4. 

2.2.1 Batching Protocols 

Considerable prior work has concerned scheduling one or more broadcast 

channels that serve a collection of small, fixed length objects using a batching approach 

[66, 182].  The main problem considered is that of determining which object should be 

transmitted on the channel (or channels) at each point in time, so as to minimize the 

average client delay.  With batching protocols scheduling small files, the average client 

delay is often defined as the time that a client waits for service, from its arrival until it 

first starts receiving service.  This delay is often referred to as the access delay.  Both 

push-based [12, 83, 2] and pull-based [66, 182, 8] protocols have been proposed.  Push-

based protocols determine a transmission schedule based only on average object access 

frequencies.  Pull-based protocols assume knowledge of the currently outstanding client 

requests.  Hybrid approaches that combine push and pull are also possible [3, 167].  

Other work has investigated batching protocols for streaming rather than download [6, 

57, 173]. 
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2.2.1.1 Push-based Protocols 

In asymmetric environments, where clients have little or no uplink bandwidth, 

directly communicating requests may not be feasible.  For such environments push-

based protocols are commonly used.  Push-based protocols determine a transmission 

schedule based only on average object access frequencies, obtained using some offline 

method, model, or other estimation of the expected demands.  Given knowledge of only 

the average access frequencies, a periodic delivery schedule is optimal [12].  Providing a 

natural relaxation of the problem, where scheduling conflicts are ignored, the optimal 

spacing between transmissions, as well as a lower bound, can be derived.  Hameed and 

Vaidya [83, 84, 174] generalize these results to consider different file sizes and 

transmission errors.  They further suggest a simple but close to optimal scheduling 

algorithm, inspired by packet fair queuing.  The scheduling time of this algorithm scales 

logarithmically with the number of files and is extended to handle multiple channels.   

Various other approximation algorithms have been proposed that provide 

performance guarantees.  For example, Kenyon et al.  [100] propose a polynomial-time 

approximation scheme (PTAS), which separates files into three categories and places 

them in a fairly intuitive manner.  Transmissions of the most frequently requested files 

are first scheduled in a near optimal fashion over the schedule space provided for the 

two first categories.  Secondly, transmissions of the files belonging to the largest group 

of files are scheduled in a round robin fashion, before the schedule is finally stretched to 

give room for the leftover files with the lower cost. 

Another approach proposed in this context is the broadcast disks technique [2], 

in which files are partitioned into groups with similar access frequencies.  Placing files 

with similar access frequencies on a single disk minimizes the required storage, and 

allows each individual disk to operate using a round robin schedule.  A transmission 

schedule for the channel is created by separating each disk into smaller chunks and 

multiplexing among transmitting chunks from each disk, based on their relative access 

frequencies.  Since the times of future transmissions are fixed, this scheme also has the 

added benefit of simplifying client operation.   
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Push-based protocols do not utilize potential information about outstanding 

requests, and are therefore not suitable for content delivery in on-demand systems with 

explicit knowledge of outstanding requests. 

2.2.1.2 Pull-based Protocols 

Pull-based protocols employ a queue of client requests, and a policy for 

determining which request(s) in the queue to serve next by transmitting the requested 

object.  Early papers by Dykeman et al. [66] and Wong [182] consider policies such as: 

First Come First Serve (FCFS) – broadcasts the file that has the request with the longest 

individual wait time; Most Request First (MRF) – broadcasts the file with the maximum 

number of pending requests; Most Request First Lowest (MRFL) – same as MRF but 

breaks ties in favor of the file with the lowest access probability; and Longest Wait First 

(LWF) – broadcasts the file with the largest cumulative waiting time over all pending 

requests for that file.  Among these policies, LWF results in the lowest average access 

times (when averaged over batches), MRF in the lowest access times for popular files, 

and FCFS in the most fair access times.  The criteria used by FCFS and MRF are 

combined in the RxW policy, proposed by Aksoy and Franklin [8].  When deciding 

which object to transmit next, this policy weighs the number of pending requests (R) for 

each file and the associated longest waiting time of the pending requests (W).  RxW has 

been shown to provide a relatively good tradeoff between the fairness of FCFS and the 

bias towards popular requests in MRF. 

Acharya and Muthukrishnan [4] consider the case of varying file sizes and allow 

for preemption.  Focusing on the completion time of requests, rather than the access 

time, they argue that the user-perceived performance decreases less per time unit for 

clients downloading large files than for clients downloading smaller files, as their 

expected download time is larger and the perceptual difference becomes smaller.  Based 

on this observation they define the stretch factor as the ratio of the completion time of a 

request and its required service time (if the request was served immediately without any 

preemption).  By minimizing the total stretch, rather than the completion times, it is 

suggested that fairness among all jobs can be maintained, while minimizing some 

“perceived” client delay.  It is proposed that each file is broken into smaller segments so 

that transmissions of larger files can be interrupted, allowing smaller files to keep their 
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stretch factor low, and improving both the overall stretch and the average completion 

times. 

Batching protocols do not typically allow clients to join an on-going multicast, 

instead clients are required to wait until the beginning of the next multicast 

transmission; clearly, when considering delivery of large erasure encoded files this is 

sub-optimal.  Further, previous work on batching protocols assumes that the system 

devotes a fixed set of server resources to file delivery, and does not consider the case 

where the server bandwidth devoted to this task may be somewhat elastic (and the 

system may adjust its resources usage based on current demands). 

2.2.2 Cyclic Multicast Protocols 

Prior work on scalable download of large files from a single server has focused 

on cyclic multicast, in which a file’s data is cyclically transmitted on a 

multicast/broadcast channel [146, 10, 26, 176, 31, 150, 27].  Each requesting client can 

begin listening to the channel at an arbitrary point in time, and continues listening until 

all of the file data has been received.   

Now, consider a simple cyclic multicast protocol using only one channel and one 

object.  As the data is cyclically transmitted on the channel a client can tune in and listen 

until it receives the whole object.  Assuming there are no losses, this scheme is very 

efficient since each client is served immediately and only has to wait for the duration of 

one broadcast, no matter when the client arrives.  Unfortunately, this is an unreasonable 

assumption on some networks.  Packet losses do occur and clients missing a packet 

would either have to listen to the channel until the missing packet gets retransmitted in a 

later cycle or rely on some additional mechanisms to retrieve the missing data. 

Erasure codes have been proposed to accommodate packet losses.  As in Section 

1.1.1, let N be the number of blocks in the original file and M the number of encoded 

blocks.  With the simplest form of erasure codes, one additional block (M = N+1) is 

created using the exclusive-or (XOR) operation on the N original blocks.  This operation 

is performed on a bit-by-bit basis.  Having received any N out of these N+1 blocks 

ensures that the (N+1)th block can be retrieved as well, thus allowing the original file to 

be reconstructed.  This approach can be extended in a number of ways; however, the 
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stretch factor M/N of these simple schemes is typically small, and for many extensions 

receiving N distinct blocks does not ensure that the original blocks can be reconstructed. 

By multiplying the original source blocks with a transformation matrix of size 

M×N, consisting of linearly independent rows, Reed-Solomon codes can be created for 

any arbitrary stretch factor M/N [148].  Given a set of N distinct blocks, the original 

source blocks can be obtained by multiplying the inverse of a transformation matrix 

(created by a subset of the rows in the original transformation matrix) with the received 

blocks.  Unfortunately, matrix inversion is costly and this approach suffers from a 

serious scalability problem, as the objects become bigger and N grows large. 

Tornado codes [114], LT codes [115], and Raptor codes [164] allow for faster 

decoding.  These coding techniques require the receiver to receive on average (1+ε)N 

distinct blocks before decoding is possible, where ε is a small number.  For example, 

with Tornado codes where ε is typically in the range 0.05 to 0.1.  Similar to some of the 

basic schemes discussed earlier, both encoding and decoding is efficiently performed 

using only XOR operations.  However, here each encoded block is created using a linear 

combination of original source blocks.  Similarly, given a set of encoded blocks, the 

original source blocks can be decoded (or reconstructed) by considering each block as 

an equation and solving these equations in an order based on the number of unknown 

source blocks in each equation. 

In comparison to Reed-Solomon codes, Tornado codes have far superior 

decoding speeds.  However, they require a large amount of coding and decoding 

information to be communicated to both servers and clients.  In addition, the encoding 

and decoding memory requirements at both the server and the clients are proportional to 

the object size multiplied by the stretch factor [115].  By using random number 

generators, rather than locally stored transformation information, LT codes can achieve 

a dynamically expandable stretch factor, and significantly decrease the memory and 

storage requirements on the clients and servers.  Raptor codes [164] are an extension of 

LT-codes, which achieve linear time encoding and decoding. 

Using the erasure codes described above, Byers et al.  [31] envision a content 

distribution system (termed a digital fountain) in which the content provider provides 

clients with an unbounded stream of distinct encoded data blocks to which clients can 
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tune in until it has received enough data to reconstruct the file.  In the ideal case each 

block is of full value to the receiver.  Having received some arbitrary set of data with the 

combined size equal to the size of the original data the client should, with minimal 

effort, recover the original data; i.e., obtaining the same satisfaction as if the original 

content was delivered directly to the client.  Based on this ideal case, the perfect erasure 

code should (i) have an infinite stretch factor, (ii) have an infinitesimal encoding and 

decoding cost, and (iii) allow any receiver to decode the data after receiving exactly N 

unique blocks.  As discussed above there are no known erasure codes with these 

properties.  However, due to their superior decoding efficiencies Raptor codes are 

considered to be the codes that are most efficient with today’s technology.  In fact, these 

codes are used in Digital Fountain’s commercial systems.2 

2.2.3 Hybrid Protocols 

There has been some prior work on hybrid protocols that combine batching and 

cyclic multicast, specifically the work by Wolf et al. [180].  The focus in the work by 

Wolf et al. is on delivery of digital products using spare bandwidth in a broadcast 

television system, and thus their algorithms assume a fixed schedule of broadcast 

channel availability and fixed delivery deadlines with associated delivery payments. 

Client requests for a particular file are allowed to be aggregated using techniques 

similar to those used in cyclic multicast protocol.  However, as with size-based 

approaches [4], files are split into subtasks.  The subtasks for a particular file are 

scheduled in cyclic order, allowing requests waiting for the same file to be served as a 

single batch.  The next subtask to be scheduled is reevaluated at the completion of a 

subtask.  Rather than using FCFS, or some other common techniques, to decide which 

subtask to schedule next, the authors design scheduling techniques that attempt to 

maximize revenue. 

They assume that each request is associated with delivery deadlines and 

corresponding delivery payments.  This defines a revenue function indicating the profit 

as a function of the completion time.  Transmissions (of cyclically enumerated subtasks 

for each requested file) are scheduled in such a way that the total revenue of an on-

                                                 
2 Digital Fountain Inc., http://www.digitalfountain.com/, August 2006. 
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demand delivery system is maximized.  After demonstrating that the scheduling 

problem is NP-hard they propose three heuristics to determine which subtask to 

schedule next.  The most complex of these heuristics weighs the remaining delivery 

time of the file, the time until the different delivery deadlines, and the cost of missing 

each deadline.  The second heuristic relaxes this approach by only considering the cost 

of missing the next deadline that is feasible for each object.  The third heuristic greedily 

maximizes the profit per time unit of each possible scheduling.  Of these heuristics, the 

first performs the best and the greedy approach the worst.  However, all three heuristics 

are shown to outperform a non-hybrid protocol based on a transportation problem 

formulation, which does not split the file into subtasks. 

Similar to this work, Chapter 3 of this thesis designs hybrid protocols that 

combine elements from both cyclic multicast and batching protocols to achieve superior 

performance.  However, in contrast to this work, this thesis assumes complete flexibility 

in when transmissions occur, and develops protocols that achieve near-optimal average 

or maximum client delay as a function of the average required server bandwidth.  

2.2.4 Client Heterogeneity 

Real deployable delivery systems generally serve clients that are spread over 

many domains with highly diverse characteristics.  For example, the available 

bandwidth, round trip times and loss rates may be very different between different 

clients.  Various multicast-based protocols have been proposed for a heterogeneous 

client population, using one of two main approaches.  The first, and simplest, approach 

is to categorize the client population into a set of groups.  For each group a different 

version of the content is encoded and delivered over the network.  Clients simply choose 

to receive the version that best fits their respective channel characteristics.  Although it 

is possible to allow clients to switch between versions during delivery, this may create 

delivery interruptions and/or redundant data being received. 

A second approach is to deliver a single version of the file, but with 

transmissions spread over multiple channels.  Each client listens to the subset of 

channels appropriate to its achievable reception rate [122, 176, 29, 107, 113].  By 

careful selection of the order in which data blocks are transmitted on each channel [26, 

27], or use of erasure codes with long stretch factors (i.e., M >> N) [164], receptions of 
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the same data block on different channels can be reduced or eliminated.  A client can 

adjust to current network conditions by changing the set of channels it is listening to. 

2.3 Server Placement and Selection 

By strategically placing replica servers, the scalability and efficiency of CDNs 

and other content delivery systems using replication can be improved, especially if 

combined with an efficient replica selection strategy.  This section overviews prior work 

concerning where to place replica servers, what content to store at each replica server, as 

well as how to select the appropriate replica server to serve each client request.  

Although these questions can be considered separately the design choice of one 

component will generally affect the other choices.  Note that these choices also are 

affected by many other factors, such as the specific client, content and network 

characteristics.  Throughout this thesis, a “replica” refers to a replica server that has a 

copy of the replicated file.  Note that a replica server can be a replica for many different 

files. 

2.3.1 Replica Placement 

Depending on the CDN, the relationship between placement of replica servers 

and content is different.  A large content broker, such as Akamai, with tens of thousands 

of servers distributed over the Internet generally only stores each file (to be replicated) 

at a smaller subset of its servers [62].  In contrast, a smaller CDN, possibly custom made 

for a particular client population, may replicate the content to all its servers. 

Although two different tasks, both placement of servers and content can 

generally be abstracted in the same way.  Both consider the problem of deciding where 

to place service resources to satisfy a given demand.  In the case of content placement, 

demand is for the particular content replicated.  In the case of server placement, the 

demand that must be satisfied is the cumulative demand over all content served by the 

system.  However, server placement is more costly as it requires investing in additional 

infrastructure.  Therefore, server placement is generally done incrementally, while 

content placement is done with more freedom as replicas can easily be distributed to any 

subset of servers provided by the CDN. 
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Simple iterative greedy approaches that place one server or file at a time have 

proven to achieve similar network costs as optimal server or file placement [133, 104, 

94, 135].  For both server and content placement, increasing the number of servers (or 

replicas) only results in significant reduction of server load or download times when the 

number of servers (or replicas) is relatively small [94].  With increasing number of 

servers, diminishing returns are observed.  However, with increasing load on each server 

more replicas may be required to offload current replicas, and avoid congestion. 

By minimizing the overall network delay suffered by the client population 

Cameron et al. [33] investigate the relationship among demand, delay, and optimal 

server/replica placement.  Analytic expressions and simple algorithms are derived to 

determine the number of replicas to allocate to each file, as well as where these replicas 

should be placed.  Wang et al. [179] do not consider where to place the replicas but 

observe significant improvements in system capacity by dynamically adjusting the 

number of replicas according to server load and demand. 

Reliable application-level multicast protocols, or some other distribution 

mechanism, can be used to distribute the content to the replica servers (e.g., [43, 95, 

108]).  Recent research efforts include specialized protocols for reliable replication and 

content distribution of large files from a central server to multiple replica servers [126, 

75].  For example, SPIDER [75] uses multiple dynamic delivery trees and an end-to-end 

flow control algorithm relying on TCP connections between neighboring overlay nodes. 

2.3.2 Replica Selection 

Most previous work on replica selection concerns selection among replicas that 

do not implement service aggregation techniques.  In general, such replica selection 

techniques may attempt to minimize network delays, maximize the download 

bandwidth, accomplish load balancing among the servers, or achieve some other 

objective (e.g., Akamai direct requests to closeby replicas that have available resources 

and are likely to have a copy of the content [62]).  However, because some of the above 

design goals may be conflicting they will have to be weighed against each other.  Most 

current systems give precedence to keeping the network delay low rather than 
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maintaining high bandwidth between the replica and the client.3  With the introduction 

of more and more high-bandwidth applications, such as video streaming, this focus is 

likely to shift.4  To achieve a good compromise between various objectives a CDN may 

use some simple heuristics that weigh the importance of various factors when 

determining to which replica to direct each client’s request.  Rather than directing 

clients to some optimal replica, Johnson et al.  [96] observe that Akamai5 and Digital 

Island6, two of the largest CDNs, primarily attempt to avoid directing clients to bad 

servers. 

Various replica selection techniques have been proposed to select a replica that 

is “close” to a given client, in terms of delay, hop count, or some other metric.  In the 

simplest solution each client is given a list of all servers and uses probes to determine 

which replica is the closest.  This method is not desirable since it relies on the client to 

perform tasks it normally would not do, and does not scale to a large number of clients 

and servers.  The IDMaps architecture [93] consists of third party instrumentation 

boxes, called Tracers, which actively measure distances among themselves to form a 

distance map.  This map can then be used to provide a service indicating which server is 

the closest.  Other approaches cluster clients into groups, based on their distances to 

different servers [15], use distances to different landmarks [140], or some other set of 

virtual coordinates (e.g., [54]) to determine which server may be the closest.  At this 

point it should be noted that dynamic replica selection techniques can significantly 

outperform static replica selection techniques [35].  Anycast is a particularly promising 

approach, in which a client requesting service sends an anycast message to an anycast 

address, shared by a set of servers.  While the request is directed to all servers with this 

address, the idea with anycast is that the request is served (or answered) by the “best” 

replica, specified by some predetermined criteria [186]. 

The best replica to serve a request may change during the download of a large 

file.  Switching replicas during a download can be costly but it may in many cases be 

                                                 
3 Note that the round trip time of an end-to-end path and the achieved download rate on that path may be 
highly correlated.  In particular, studies of the TCP protocol have shown that the throughput of long 
duration TCP flows varies between the inverse and the inverse square of the round trip times [109, 73]. 
4 Unfortunately, more advanced tools or techniques are required to measure the available end-to-end 
bandwidth or capacity (e.g., [92, 65]). 
5 Akamai, http://www.akamai.com/, August 2006. 
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desirable.  For example, the advantage of a faster server has to be weighed against the 

added delay experienced for a client when setting up a new connection [97].  However, 

a sometimes more efficient technique is to allow clients to retrieve data in parallel from 

different replicas.  Parallel download simplifies replica selection and improves the 

download rates of individual clients [30, 129, 149, 187].  Clients utilizing parallel 

download naturally adapt to changing network conditions, and improve their resilience 

to congestion and network failures.  However, as each connection is associated with 

some overhead, the advantages of parallel download may decrease as the portion of 

clients using parallel download increases [77, 101, 165]. 

In addition to the above work, assuming each request is served individually, 

some work has considered replica selection in systems utilizing both replication and 

aggregation [9, 72, 81].  All these papers consider the specific context of media 

streaming and corresponding streaming-based service aggregation techniques.  Among 

these studies, Fei et al. [72] consider systems in which a long-lived multimedia stream is 

being multicast concurrently by replicated servers and the objective is to direct clients to 

servers so as to minimize the total network bandwidth usage.  They show that the replica 

selection problem in this scenario is NP-complete, and compare a number of heuristic 

policies.  Guo et al. [81] design and evaluate replica selection techniques for replicated 

video-on-demand servers, each with a fixed number of channels.  Several heuristic 

techniques are proposed and shown to outperform a basic policy that always directs 

requests to the closest replica.   

Unlike all of the above replica selection techniques, both the ones using and the 

ones not using service aggregation, but similar to the work presented in this thesis, 

Almeida et al. [9] assume that each replica server devotes varying resources, on-

demand, to the service of interest, rather than statically allocating fixed resources.  They 

consider the problem of replica placement and selection/routing with a weighted sum of 

network and replica server bandwidth usage as the objective function to be minimized, 

and show that, in the assumed on-demand media streaming context, use of service 

aggregation can result in optimal solutions that are very different from those for systems 

without service aggregation. 

                                                                                                                                                
6 Digital Island was acquired by Cable & Wireless (http://www.cw.com/, August 2006) in June 2001. 
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2.4 Peer-assisted Content Delivery  

A highly scalable approach to content delivery is to utilize the resources of 

clients.  In peer-assisted content distribution systems, clients contribute to the collective 

power of the system by making (part of) their upload bandwidth (and/or other resources) 

available.  Many scalable peer-assisted content distribution protocols have been 

proposed, for both the download and streaming contexts. 

2.4.1 Peer-assisted Download 

Rather than using application-layer multicast, existing scalable downloading 

techniques, such as BitTorrent [48], allow each peer to download content from any peer 

that has content that it does not have, and do not require any organized delivery 

structure.  These techniques are flexible, and can easily adapt in environments where 

peer connections are typically heterogeneous with time-varying bandwidths and/or peers 

frequently join or leave the system.  With typical home Internet connections having 

significantly higher download bandwidth than upload bandwidth (e.g., [156]) peers 

downloading content in parallel from multiple peers may also better utilize their 

download bandwidth. 

BitTorrent is a popular download protocol for large files that utilize the upload 

bandwidth of peers to offload the original content source.  Files are split into pieces, 

which themselves are split into smaller sub-pieces.  Multiple sub-pieces (potentially of 

the same piece) can be downloaded in parallel from different peers.  A peer is said to 

have a piece whenever the entire piece is downloaded.  Peers are considered interested 

in all peers that have at least one piece that it currently does not have itself. 

The state information about all the peers currently having pieces is maintained 

by a tracker, while information about the original file and its pieces are stored in a 

torrent file.  Typically, a client wanting to download a file, first obtains the torrent file 

(e.g., through a webpage), extracts the URL of the tracker (from the torrent file), and 

contacts the tracker, which replies with a list of peers that have pieces of the file.  After 

connecting to the peers specified in this list, the client finds out which pieces each of 

these peers have, and starts requesting the pieces that it needs. 
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BitTorrent distinguishes between peers that have the entire file (called seeds), 

and peers currently downloading the file, that only have parts of the file (called 

leechers).  Studies have shown that it is not uncommon for the number of long-lived 

seeds currently active in the system to be an order of magnitude less than the number of 

active leechers [91, 111, 132].  To achieve efficient download it is therefore important 

that leechers contribute to the total upload capacity of the system. 

To achieve fairness, load balancing, and high piece diversity a number of ad hoc 

policies are used in BitTorrent.  There are currently many different versions of the 

BitTorrent client used on the Internet, each with different characteristics.  This section 

only describes the characteristics of the most fundamental policies.7 

With BitTorrent each peer establishes persistent connections with a large set of 

peers; however, at each time instance each peer only uploads to a limited number of 

peers.8  This is accomplished through a process (called choking) in which the peer 

ceases (or chokes) the upload process to all other peers.  Only peers that are unchoked 

may be sent data.  Generally, clients re-evaluate the set of unchoked peers relatively 

frequently (e.g., every 10 seconds, each time a peer becomes interested/uninterested, 

and/or each time a new connection is established/broken). 

To discourage free-riding, BitTorrent uses a tit-for-tat policy in which leechers 

give upload preference to the leechers that provide the highest download rates.  To 

probe for better pairings (or in the case of the seeds, allows a new peer to download 

pieces), periodically, typically every third time the set of unchoked peers is re-evaluated, 

each client uses an optimistic unchoke policy, in which a random peer is unckoked.  

Without any measure of the upload rates from other peers, seeds were originally 

proposed to give preference to peers for which a high download rate would be achieved 

[48].  However, as this can allow peers to monopolize the seed upload bandwidth, it has 

been found beneficial that seeds always upload to a set of randomly selected peers.  To 

determine new peers to unchoke the seeds always use optimistic unchoking.  Further, 

                                                 
7 Legout et al. [110] provide a more detailed description of these policies.   Using a recent version of the 
original BitTorrent client (sometimes called the mainline client) they explore the impact these policies 
have on the performance of a client. 
8 The number of concurrent uploads is client dependent.  Whereas the original mainline client used a fixed 
number of upload connections, newer versions of this client determine the number of upload connections 
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when determining which peers should remain unchoked, the seeds give preference to 

recently unchoked peers [110]. 

With the exception of the first few requested pieces (that are often randomly 

selected) BitTorrent employs a rarest-first policy in which a peer always requests a 

piece from the set of pieces that are the rarest in the set of all pieces that the peers that it 

is connected to have, and that it does not have itself.  While this policy has been shown 

to achieve good piece diversity [110, 111], the impact on performance of alternative 

piece selection policies have not been studied. 

Many recent studies have considered the download performance of BitTorrent.  

It has been shown that this protocol adapts well to changing demands [185], that sharing 

(using the tit-for-tat policy) is generally done between clients with similar upload 

bandwidth [134], and that performance does not critically depend on user behavior or 

piece selection strategies such as rarest-first [120].  Other work has noted that there is an 

imbalance in the contribution made by different peers, and proposed modifications that 

try to ensure that peers contribute more evenly [25]. 

A variety of extensions have been proposed to improve the performance of 

BitTorrent-like systems [78, 162].  For example, assuming the existence of an origin 

server, acting as a persistent seed, Slurpie [162] uses a distributed algorithm to organize 

the downloading peers into a mesh, through which information is propagated.  The load 

at the server is kept independent of the number of peers in the mesh using a distributed 

probabilistic back-off algorithm, which establishes individual back-off probabilities 

based on estimates of the number of current downloaders in the mesh and whether each 

peer is eligible to download from the server. 

Erasure coding can be used to improve the efficiency of parallel data retrieval in 

peer-assisted systems [28, 102, 78].  Rather than exchanging regular pieces, these 

systems exchange encoded pieces called blocks.  While blocks are likely to be useful to 

more peers than regular pieces, not all blocks are useful to a peer.  In particular, there is 

no benefit retrieving two copies of the same block.  To estimate which peers are likely 

to have useful blocks peers can use techniques such as Bloom filters or approximate 

                                                                                                                                                
based on its maximum upload rate.  Other clients allow the user to explicitly set the number of concurrent 
upload connections. 
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reconciliation trees [28].  Network coding can be used to decrease the likelihood of 

peers exchanging identical (or otherwise less useful) blocks.  With distributed network 

coding, each peer re-encodes the blocks before uploading them to other peers [28, 78].  

By re-encoding data throughout the entire network, Gkantsidis et al. [78] observe 

improvements in download times of 20-30%, compared to when encoding is only done 

at the origin server, and observe improvements of 100-200%, compared to when no 

encoding is used. 

2.4.2 Peer-assisted Streaming 

Various peer-to-peer systems have been developed that stream live content using 

some application-level multicast architecture [95, 125, 85, 39, 102].  However, as with 

any tree delivery topology, the maximum achievable rate to a node is constrained by the 

minimum of the rate between any of the upstream peers.  Therefore, the transmission 

rate that any application-level multicast tree can achieve is limited by the monotonically 

decreasing achievable bandwidth in such a delivery tree.   

To efficiently utilize the upload bandwidth of peers with highly diverse upload 

bandwidths, and resolve the potential bottleneck caused by individual peers with low 

upload rates, many protocols utilize some form of parallel content delivery [39, 102].  

For example, SplitStream [39] splits a content stream into multiple low-rate streams and 

broadcasts these streams over disjoint multicast trees.  This ensures that nodes are not 

directly limited by the upload rate of any particular peer, and all nodes contribute with 

upload bandwidth (providing load balancing among peers). 

Common to all of the above peer-assisted streaming protocols is that relatively 

long-duration streams of stable minimum bandwidth must be established.  In contrast, 

but similar to BitTorrent [48], a number of recent peer-assisted systems in which peers 

actively pull pieces from other peers participating in the same stream have successfully 

been used to achieve live-streaming of various TV programs and/or events [86, 191, 

190, 112].  By exchanging buffer maps, containing information about the pieces that 

each peer has, peers can request (pull) pieces that they need soon from other peers.  

With peers being at roughly the same play point, peers typically have a small window of 

pieces that they exchange among each other.  To determine which pieces to request from 

each peer, Zhang et al. [190] suggest a heuristic in which the rare pieces are given 
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preference.  If a piece can be provided by multiple peers, preference is given to the peer 

with the highest available bandwidth. 

While most of these systems are proprietary, it appears that these systems do not 

typically use tit-for-tat, or other incentive mechanisms, instead high-bandwidth peers 

with high upload bandwidth capacity are expected to upload much more than they 

download [86].  Peers will request information about additional peers to connect to 

when not achieving sufficient download rates.  By both pulling and pushing pieces 

increased propagation rates can be achieved [191].  Increased resource utilization and 

load balancing can be achieved using various overlay maintenance techniques (e.g., 

taking locality and peer load into account) [112]. 

Client caches can be used together with tree-delivery structures to achieve on-

demand peer-assisted streaming of stored media [163, 53, 24, 161].  Both oStream [53] 

and OSMOSIS [24] implement streaming using a cache-and-relay strategy, in which 

each peer typically receives content from a single sender (i.e., its parent).  These 

protocols assume that all peers can retrieve and forward the content at the play rate of 

the file.  After playing a piece of the content, this piece is stored in the client cache, 

from which it can later be forwarded to client(s) that are at a later play point of the file.  

The authors of dPam [161] observe that peers are often capable of downloading at a 

higher rate than the play rate and suggest using a pre-fetch-and-relay technique.  The 

pre-fetched data allows the peers to better handle departures of upstream peers. 

Other work considers systems in which each peer connects to multiple senders 

(i.e., some set of servers and/or peers) from which data is streamed sequentially; 

however, in contrast to systems such as SplitStream [39] the data and rates from each 

sender is dynamically adjusted by the receiver [143, 118, 130, 85].  Piotrowski et al. 

[130] use a piece selection algorithm in which pieces are requested sequentially from 

individual senders.  If the achieved download rate from the sender does not allow a 

piece to be downloaded by its expected playout time, the client attempts to increase the 

rate the piece is downloaded, by either re-assigning which pieces are downloaded from 

each sender, or splitting the piece into sub-pieces.  Rejaie et al. [143, 118] assume that 

the data is layered (using layered or multiple description encoding) and propose 

techniques for the client to adjust its streaming quality.  To accommodate for time-
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varying download rates they suggest that each peer requests the pieces corresponding to 

the layers that best match its current download rate.  These protocols do not consider 

incentive mechanisms (such as the tit-for-tat policy) and sequential piece selection (used 

by these protocols) can result in poor performance in highly dynamic environments as 

shown by the results presented in Chapter 5. 

In the work in this area most closely related to the work presented in this thesis, 

Annapureddy et al. [16] propose a video-on-demand system for stored files in which 

each file is split into sub-files.  Each sub-file consists of multiple pieces and can be 

downloaded using a BitTorrent-like approach; sub-files are downloaded sequentially.  

To improve performance, they suggest pre-fetching a small amount of data from the 

sub-file that will be required next, and having each peer re-encode data on a sub-file-by-

sub-file basis (using distributed network coding).  While re-encoding blocks increases 

the usability of a block, encoding requires that enough blocks of each sub-file are 

retrieved (and decoded) before the sub-file can be played out.  Note that use of large 

sub-files results in large startup delays, while using very small sub-files results in close 

to sequential piece selection, which again can lead to poor performance.  The best 

choice of sub-file sizes would be workload (and possibly also client) dependent, 

although the method requires these sizes to be statically determined.  The authors do not 

elaborate on how the sizes of the sub-files can be chosen, or how startup delays can be 

dynamically determined.  
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Chapter 3 

3 Scalable Download from a Single Server 

As discussed in Section 2.2, existing multicast-based approaches to scalable 

download from a single server include batching [66, 182] and cyclic multicast [146, 10, 

26, 176, 31, 150, 27].  In contrast to the work on scalable download using batching, this 

chapter considers delivery of large files, for which joining an on-going multicast, rather 

than waiting until the beginning of the next multicast, may provide a significant 

performance benefit.  Also, rather than considering the problem of scheduling delivery 

of a fixed collection of objects on given channel(s), this chapter considers contexts in 

which the server bandwidth devoted to this task is somewhat elastic, and thus focus on 

the average bandwidth used for delivery of each file, and the resulting average or 

maximum client delay.  In contrast to this prior work on cyclic multicast, this chapter 

focuses on the performance comparison between batching and cyclic multicast, and the 

design of hybrid protocols that combine elements of both approaches to achieve superior 

performance. 

This chapter considers the problem of devising protocols that minimize the 

average or maximum client delay for downloading a single file, as a function of the 

average server bandwidth used for delivery of that file.  An equivalent problem is to 

minimize the average server bandwidth required to achieve a given average or 

maximum client delay.  This equivalent perspective is sometimes adopted.  Although 

delivery of multiple files is not explicitly considered, note that use of a download 

protocol that minimizes the average server bandwidth for delivery of each file will 

minimize the average total required server bandwidth for delivering all files, as well. 

Focusing first on systems with homogeneous clients that have identical reception 

rate constraints lower bounds are developed on the average and maximum client delay 

for downloading a file, as functions of the average server bandwidth used for delivering 

that file.  It is found that neither batching nor cyclic multicast consistently yields delays 
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close to optimal.  Motivated by these results, new practical protocols are developed that 

largely close these gaps.  The new protocols achieve within 15% of the optimal 

maximum delay and 20% of the optimal average delay, in homogeneous systems.   

Next, protocols for delivery of a file to heterogeneous clients that have widely 

varying achievable reception rates are considered.  In this context, achieving efficient 

delivery as well as lower delay for higher rate clients requires use of multiple multicast 

channels.  Each client listens to the number of channels corresponding to its achievable 

reception rate.  The key challenge is to achieve a close-to-optimal compromise between 

high-rate transmissions (in aggregate, over all channels used for a file), which enable 

lower delays for clients that can receive at such rates, and low-rate transmissions that 

allow maximal sharing.  A protocol for delivery to heterogeneous clients is proposed 

that yields maximum client delays that are within 25% of optimal in the scenarios 

considered.  

The remainder of the chapter is organized as follows.  Section 3.1 defines and 

analyzes the basic batching and cyclic multicast protocols.  In this section, as in the 

subsequent two sections, homogeneous clients are assumed.  Lower bounds on the 

average and maximum client delay for downloading a single file, for given average 

server bandwidth usage (or, equivalently, on the average server bandwidth required to 

achieve a given average or maximum client delay) are derived in Section 3.2.  Section 

3.3 develops new scalable download protocols that achieve close to optimal 

performance.  Protocols for delivery to heterogeneous clients are developed and 

evaluated in Section 3.4.  Summary and conclusions are presented in Section 3.5. 

3.1 Baseline Policies 

This section defines and analyzes simple “baseline” batching and cyclic 

multicast protocols for delivery of a single file, assuming homogeneous clients.  The 

metrics of interest are the average client delay (i.e., download time), the maximum client 

delay in cases where such a maximum exists, and the average server bandwidth used for 

the file data multicasts.  It is assumed throughout the chapter that each requesting client 

receives the entire file; i.e., clients never balk while waiting for service to begin or after 

having received only a portion of the file.  The analysis and protocols presented are 
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compatible with erasure-coded data.  Each client is assumed to have successfully 

received the file once it has listened to multicasts of an amount of data L (termed the 

“file size” in the following, although with packet loss and erasure coding, L may exceed 

the true file size).  Poisson request arrivals are assumed unless otherwise specified.  

Generalizations are discussed in some cases.  Note that Poisson arrivals can be expected 

for independent requests from large numbers of clients.  Furthermore, multicast delivery 

protocols that have high performance for Poisson arrivals, have even better performance 

under the more bursty arrival processes that are typically found in contexts where client 

requests are not independent [68]. 

3.1.1 Batching 

Consider first batching protocols in which the server periodically multicasts the 

file to those clients that have requested it since it was last multicast.  Any client whose 

request arrives while a multicast is in progress, simply waits until the next multicast 

begins.   

Perhaps the simplest batching protocol is to begin a new multicast of the file 

every t time units for some constant t.  However, this protocol has the disadvantage that 

multicasts may sometimes serve no or only a few clients. 

Two optimized batching protocols are considered here.  The first, termed 

batching/constant batching delay (batching/cbd), achieves the minimum average server 

bandwidth for a given maximum client delay, or equivalently the minimum value of 

maximum client delay for a given average server bandwidth, over the class of batching 

protocols as defined above.  Letting T denote the time at which some file multicast 

begins and a denote the duration of the time interval from T until the next request 

arrival, the server will begin the next multicast at time T+a+∆, where ∆ is a parameter of 

the protocol.  Thus, using the notation defined in Table 3.1, the average time between 

file multicasts is ∆+1/λ, the average server bandwidth B is L/(∆+1/λ), and the maximum 

client delay D is ∆ plus L/r (the file transmission time).  Here, λ is the rate at which the 

file is requested and the transmission rate r on the multicast channel is at most equal to 

the maximum sustainable client reception rate b.  With respect to the average client 

delay A, note that the client whose request arrival triggers the scheduling of a new 

multicast experiences the maximum waiting time ∆ until the multicast begins.  All 
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clients whose requests arrive during the batching delay ∆ will share reception of this 

multicast.  On average, there will be λ∆ such clients, and the average waiting time until 

the multicast begins for such a client will be ∆/2.  In summary, 9  
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B cbdb ;        (3.1) 
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The second optimized batching protocol, termed batching/request-based delay 

(batching/rbd), achieves the minimum value of average client delay for a given average 

server bandwidth, over the class of batching protocols as defined above.10  The basic 

idea is to make the batching delay some integral number of request inter-arrival times.  

To make it possible to achieve arbitrary average server bandwidth values, the protocol is 

defined such that the server waits for n+1 requests for a fraction f of its multicasts, and 

for n requests for the remaining fraction 1–f, where n and f are protocol parameters 

                                                 
9 In the non-Poisson case, assuming request interarrival times are independent and identically distributed 
(IID), these performance metrics can be obtained by calculating conditional expectations.  For example, 
note that 1/λ in the bandwidth expression can be replaced with the expected time from after the initiation 
of a transmission until the next request, conditioned on the fact that there was a request arrival time ∆ in 
the past. 
10 This can be established formally using an argument similar to that used for the lower bound on average 
server bandwidth in Section 3.2.1. 

Table 3.1:  Notation used in Chapter 3. 
 

Symbol Definition 
� File request rate 
L File size 
b  Maximum sustainable client reception rate  
r Transmission rate on a multicast channel (r ≤ b) 
B Average server bandwidth 
A Average client delay (time from file request, until file is 

completely received) 
D Maximum client delay 
∆ Batching delay parameter (threshold value on the 

maximum time until service) 
n  Batching delay parameter (threshold value on the number 

of requests) 
f Batching delay parameter (fraction of times n+1 should 

be used as a threshold, rather than n) 
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(integer n ≥  1, 0 ��f < 1).11  Thus, the average time between file multicasts is (n+f)/λ, 

and the average server bandwidth is L/((n+f)/λ).  The average client delay can be 

derived from the fact that each multicast serves n clients plus with probability f one 

additional client, and the i’th last of these clients experiences an average waiting time 

until the multicast begins of (i–1)/λ.  Note that the maximum client delay is unbounded 

with this protocol.  Thus, 
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Note that for both of these batching protocols, the value of the multicast transmission 

rate r that minimizes average and maximum client delay is equal to the maximum 

sustainable client reception rate b.   

Figure 3.1 illustrates the operations of these two batching protocols, as well as 

the cyclic multicast protocol discussed in the next section, for an example sequence of 

requests.  Requests are numbered and the arrival times and service completion times of 

the requests are indicated by the arrows at the bottom and top of each subfigure, 

respectively.  The solid, slanted lines denote multicast transmissions, each of which, in 

the case of the batching protocols, delivers the entire file.  For the batching/cbd 

protocol, the batching delays (each of duration ∆) are indicated with double arrows 

along the horizontal (time) axis. 

3.1.2 Cyclic Multicast 

Perhaps the simplest cyclic multicast protocol is to continually multicast file data 

at a fixed rate r (cycling back to the beginning of the file when the end is reached) on a 

single multicast channel, regardless of whether or not there are any clients listening.  

Instead, consider a more efficient cyclic multicast protocol, cyclic/listeners (cyclic/l), 

that assumes that the server can determine whether there is at least one client with an 

unfulfilled request for the file, and transmit only if there is.  Since the server transmits 

                                                 
11 When arrivals are Poisson, inter-arrival times are memoryless, and the method by which the server 
determines when to wait for n versus n+1 arrivals (for fixed f) has no impact on average server bandwidth 
usage or average delay. 
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whenever there is at least one client, the delay experienced by each client is just the file 

transmission time, L/r.  The average server bandwidth can be derived by noting that 

there will be at least one client listening on the multicast channel at an arbitrary point in 

time T, if and only if at least one request for the file was made during the time interval 

[T–L/r, T], and that the probability of at least one request arrival during an interval of 

duration L/r is L/re �1 −−  for Poisson arrivals at rate λ.12  This yields 

( )L/r
lc erB �

/ 1 −−= ;                  (3.5) 

rLDA lclc /// == .        (3.6) 

Note that the transmission rate r is the only protocol parameter, and by itself determines 

the tradeoff between server bandwidth usage, and client delay. 

                                                 
12 Note that the performance of this protocol can be analyzed for any arrival process for which it is 
possible to compute the probability of there being at least one request arrival during a randomly chosen 
time period of duration L/r. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1:  Operation of the Baseline Protocols for an Example 
Request Sequence. 
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3.2 Lower Bounds 

Making the same assumptions as in Section 3.1 of homogeneous clients, full-file 

delivery, and Poisson client request arrivals, this section derives fundamental 

performance limits for scalable download protocols.  These limits depend on the 

maximum sustainable client reception rate.  Note that for batching protocols, for 

example, if the server transmission rate is increased the batching delay can be increased 

without increasing the total client delay, thus providing a longer period over which 

aggregation of requests can occur and more efficient use of server bandwidth.  Section 

3.2.1 considers the limiting case in which clients can receive data at arbitrarily high-rate, 

for which there is a previously derived bound on maximum delay [171].  Section 3.2.2 

considers the realistic case in which there is an upper bound b on client reception rate. 

3.2.1 Unconstrained Client Reception Rates 

Consider first the maximum client delay, and the average server bandwidth 

required to achieve that delay.  From Tan et al. [171], 13 
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This bound is achieved in the limit, as the server transmission rate tends to infinity, by a 

protocol in which the server multicasts the file to all waiting clients whenever the 

waiting time of the client that has been waiting the longest reaches D. 

Consider now the problem of optimizing for average client delay.  At each point 

in time an optimal protocol able to transmit at infinite rate would either not transmit any 

data, or would transmit the entire file.  To see this, suppose that some portion of the file 

is transmitted at an earlier point in time than the remainder of the file.  Since client 

requests might arrive between when the first portion of the file is transmitted and when 

the remainder is transmitted, it would be more efficient to wait and transmit the first 

portion at the same time as the remainder.  Optimizing for average client delay requires 

determining the spacings between infinite rate full file transmissions that are optimal for 

this metric.  With Poisson arrivals and an on-line optimal protocol, (1) file transmissions 

                                                 
13 As with the bandwidth expression for batching/cbd in Section 3.1, for the case of non-Poisson request 
arrivals with IID request interarrival times the 1/λ term can be replaced by the appropriate conditional 
expectation.  Further note that a bandwidth lower bound can be obtained for any process such that this 
quantity can be bounded from above, as has been noted in the scalable streaming context [68]. 



 

45 

occur only on request arrivals, and (2) each multicast must serve either n or n+1 clients 

for some integer n≥ 1.  With respect to this latter property, consider a scenario in which 

the file is multicast to n waiting clients on one occasion and to n+k clients for k ≥  2 on 

another.   A lower average delay could be achieved, with the same average spacing 

between transmissions, by delaying the first multicast until there are n+1 waiting clients, 

and making the second multicast at the request arrival instant of the n+k–1th client 

instead of the n+kth. 

Thus, a lower bound on the average server bandwidth B required to achieve a 

given average client delay A can be derived by finding an integer n �����	����	����f  (0 ��
f < 1), such that 

( )
( )

( )fn

fnn

fn

n
f

nn

A
+

−+
=

+

+−

= �2

12��2

1

,       (3.8) 

in which case 
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Equivalently, to determine a lower bound on the average delay A that can be achieved 

with average server bandwidth B, let n = max[1,  BL/� ], and f = max[0, λL/B–n].  Then, 
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Note that for B < λL (the bandwidth required for unicast delivery), the optimal protocols 

for minimizing the average delay A and the maximum delay D are different, and thus the 

lower bounds on A and D cannot be achieved simultaneously.  In fact, for all B < λL the 

optimal protocol for average delay has unbounded maximum delay.  If λL/B is an 

integer greater than one, the lower bound on A is exactly half the lower bound on D; 

otherwise, it is somewhat greater than half.  In particular, as B tends to λL, the ratio of 

the lower bounds on A and D tends to one. 

3.2.2 Constrained Client Reception Rates 

Assume now that clients have a finite maximum sustainable reception rate b.  In 

this case, both the maximum and average delay must be at least L/b.  To achieve the 

minimal values D = A = L/b, each client must receive the file at maximum rate starting 
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immediately upon its request.  The cyclic/l protocol defined in Section 3.1.2 achieves 

the lowest possible server bandwidth usage in this case, as the transmission rate of the 

server is (only) b whenever there is at least one active client, and zero otherwise.  Thus, 

for D = A = L/b, the bound becomes B ����– bLe /�− ). 

More generally, for a specified maximum delay D ≥ L/b, the average server 

bandwidth is minimized by the send as late as possible (slp) protocol, in which the 

server cyclically multicasts file data at rate b whenever there is at least one active client 

that has no “slack” (i.e., for which transmission can no longer be postponed).  Such a 

client must receive data continuously at rate b until it has received the entire file, if it is 

to avoid exceeding the delay bound.  Note that although this protocol is optimal for 

maximum delay, it requires that the server maintain information on the remaining 

service requirements and request completion times of all outstanding requests.  

Furthermore, the slp protocol can result in extremely fragmented transmission 

schedules.  This motivates simpler and more practical near-optimal protocols such as 

that devised in Section 3.3.1. 

An accurate approximation for the average server bandwidth with the slp 

protocol is given by 
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Here the L/D factor approximates the average server bandwidth usage over those 

periods of time during which there is at least one active client (i.e., client with an 

outstanding request).  The factor in brackets approximates the fraction of time that this 

condition holds.  This fraction is equal to the average duration of a period during which 

there is at least one active client, divided by the sum of this average duration and the 

average request inter-arrival time (1/λ).  The average duration of a period during which 

there is at least one active client is approximated by the average duration of an M/G/∞ 

busy period with arrival rate λ and service time L/b, as given by ( bLe /� –1)/λ14, plus the 

duration of the delay after the arrival of a request to a system with no active clients until 

                                                 
14 This expression can be derived by observing that the probability that the system is idle (i.e., bLe /�− ) is 
equal to the expected duration of an idle period (i.e., 1/λ) divided by the expected duration of a full cycle 
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the server must begin transmitting (D–L/b).  Note that a corresponding approximation 

for the minimum achievable maximum delay, for given average server bandwidth, can 

be obtained by solving for D in the above approximation. 

Exhaustive comparisons against simulation results indicate that the above 

approximation is very accurate, with relative errors under 4%, and thus the remainder of 

the chapter uses the approximation rather than simulation values.15  Figure 3.2 

summarizes the validation results, showing contours of equal error over a two 

dimensional space.  Negative and positive errors correspond to underestimations and 

overestimations of the true values as obtained from simulation, respectively.  Without 

loss of generality, the unit of data volume is chosen to be the file, and the unit of time is 

chosen to be the time required to download the file at the maximum sustainable client 

reception rate.  With these choices of units, L and b are each equal to one.  The only two 

remaining parameters are λ and D.  The logarithm of the arrival rate λ is used on the 

                                                                                                                                                
including both an idle period (of expected duration 1/λ) and a busy period (the expected duration of which 
can be solved for).   
15 All simulations make the same system and workload assumptions as the analytic models (including the 
assumption of Poisson arrivals).  Note that where both simulation and analytic results are presented, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2:  Lower Bound Approximation (% relative error contours; 
unit of data volume is the file, unit of time is the time required to 
download the file at maximum rate: i.e., L = 1, b = 1). 
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vertical axis of the contour plot, covering six orders of magnitude of arrival rates, while 

six orders of magnitude of “slack” are covered on the horizontal axis using the 

logarithm of D–L/b.  As can be seen directly from the approximation, this expression is 

exact for the boundary cases of λ → 0 (minimum λ), λ → ∞ (maximum λ), D → ∞ 

(maximum D), L → 0 (minimum L), b → ∞ (maximum b), and D = L/b (minimum D, or 

maximum L, or minimum b), holding the other parameters fixed in each case.  For 

example, note that for b → ∞ the approximation reduces to L/(D+1/λ), and for D = L/b 

the approximation reduces to b(1– bLe /�− ). 

The optimal scalable download protocol for average delay, under a reception 

rate constraint, appears to be very difficult to determine in general.  However, a lower 

bound can be derived as follows.  As noted previously, for A = L/b the optimal protocol 

is cyclic/l as defined in Section 3.1.2, with r = b.  Furthermore, a variant of cyclic 

multicast in which the server sometimes or always waits until a second request arrival 

before beginning transmission will also be optimal, for values of average delay and 

bandwidth that can be achieved by this protocol, since each unit of additional channel 

idle time is achieved by delaying the minimum possible number of clients (only one).   

Letting f denote the fraction of idle periods in which channel transmission does not 

begin until a second request arrives, the server bandwidth and average delay under this 

cyclic/wait for second, listeners (cyclic/w2,l) protocol are given by 

( )
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Note here that ( bLe /� –1)/λ is the average duration of an M/G/∞ busy period with arrival 

rate λ and service time L/b, and (1+f)/λ is the average duration of a channel idle period.  

For server bandwidth values B that can be achieved with this protocol, it can be shown 

(by solving for f in terms of B and then substituting into the average delay expression) 

that, 

                                                                                                                                                
purpose of the simulation is to assess the accuracy of the approximations made in the analysis, and not for 
validation of the system or workload assumptions. 
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Equivalently, to determine the lower bound on the average server bandwidth B that can 

be achieved with average delay A, solving for f in terms of A and substituting into the 

average server bandwidth equation yields 

( ) ( )




 −−−≥ �/1

/�/1
1,0max �- bLA

ebB L/b .      (3.15) 

Values of B that are smaller (or values of A that are larger) than those achieved for f = 1 

are not achievable by the cyclic/w2,l protocol, because in this protocol each idle period 

always ends no later than the time of the second request arrival.  However, the above 

bounds are valid (although unachievable) for those smaller values of B (and larger 

values of A) that can be obtained by substituting values greater than one for the 

parameter f in the above expressions.  The bounds are valid in this case because even for 

f > 1, these expressions still assume that the minimum number of clients is delayed (i.e., 

only one) before the server begins transmission.  The bounds are unachievable since the 

average duration of this delay is assumed to be f/λ, which for f > 1 is greater than the 

average delay until the second request arrival. 

A second lower bound on average delay can be derived as follows.  First, note 

that in an optimal protocol, data transmission will always occur at rate b, since: (1) each 

client can receive at rate at most b, and (2) the average delay cannot increase when a 

period of length l between request completions during which the transmission rate is less 

than b, is replaced by an idle period followed by a period of transmission at rate b (of 

combined length l and equal total server bandwidth usage). 

Suppose now that each request arrival that occurs during a busy period is shifted 

earlier, so that it occurs at a multiple (possibly zero) of L/(2b) from the start of the busy 

period.  As a result of this shifting, requests arriving during a busy period will have 

greater likelihood of completing service before the busy period ends, for a fixed busy 

period duration.  Therefore, average delay cannot increase.  It is now possible to 

determine the optimal protocol, assuming this shift of request arrivals, based on the 

following three observations:  (1) by the same arguments as in Section 3.2.1, in the 

optimal protocol each idle period must end once n, or n+1 with some probability f, 
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requests have been accumulated, for some integer n ����	������� f < 1;  (2) each busy 

period must end on a request completion, and therefore in the optimal protocol be of 

total length equal to a multiple (at least two) of L/(2b); and (3) since the state of the 

system at each multiple of L/(2b) within a busy period is entirely captured by the 

number of request arrivals that occurred within the previous L/(2b) (all of whose 

respective clients have been listening to the channel for exactly time L/(2b), owing to 

the shifting), there is an integer threshold k ≥ 1 such that if the number of such arrivals is 

less than k, the server will stop transmitting in the optimal protocol (thus ending the 

busy period), and otherwise it will not.  Note that these observations uniquely specify 

the operation of the optimal protocol, by establishing the criteria used for determining 

when to start a transmission, specifying the possible instances when a transmission can 

be completed, and for each of these time instances specifying the criteria used to 

determine if the transmission should be stopped. 

Given values for the parameters n, f, and k, the average server bandwidth and the 

average client delay with this (unrealizable) shifted arrivals (sa) protocol are given by 
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where pi = 
!

1

i
(λL/(2b))i )2/(� bLe−  is the probability of i request arrivals in time L/(2b), and 

p = ∑ −
=

1
0

k
i ip  is the probability of a busy period ending when its duration reaches a 

multiple of L/(2b) (and at least L/b).  Bsa is given by the ratio of the average duration of 

a busy period to the sum of the average durations of a busy period and an idle period, 

times the transmission rate b.  Note here that when the busy period ends owing to having 

i < k request arrivals during the previous L/(2b), the average duration of the idle period 

will be (n+f–i)/λ, since only n–i (or n+1–i) new requests need be received to obtain a 

total of n (or n+1) unsatisfied requests.   Asa is equal to the total expected idle time 

incurred by those clients making requests during a busy period and the following idle 
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period, divided by the expected number of such requests, plus the time required to 

download the file data (L/b).  The optimal n, f, and k values for a particular server 

bandwidth or average client delay can be found numerically, so as to obtain a lower 

bound on average delay or server bandwidth, respectively.  This bound can then be 

combined with the corresponding bound from the cyclic/w2,l protocol analysis, to yield 

a single lower bound, by taking the maximum of the two. 

3.2.3 Lower Bound Comparisons 

Figure 3.3 shows the lower bounds on average and maximum client delay for the 

case of unconstrained client reception rates and for b = 1 and b = 0.1.  Without loss of 

generality, the unit of data volume is chosen to be the file and the unit of time is chosen 

to be the average time between requests.  With these choices of units, L������������������
�
delay is expressed as a normalized value in units of the average time between requests, 

average server bandwidth is expressed as a normalized value in units of file 

transmissions per average time between requests, and the maximum sustainable client 

reception rate is expressed as a normalized value in units of file receptions per average 

time between requests.  These units are used in all figures comparing homogenous client 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3:  Lower Bounds on Client Delay (unit of data volume 
is the file, unit of time is the average time between requests: i.e., 
L = ���� = 1). 
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protocols (Sections 3.2 and 3.3).  Note that the average server bandwidth B in these 

units can be interpreted as the fraction of the average bandwidth required for unicast 

delivery, so the region of interest in the design of scalable multicast protocols 

corresponds to values of B considerably less than one.   

Although the above choice of data volume and time units correctly reflects the 

fact that it is server bandwidth and client reception rate relative to request rate and file 

size that determines performance, some care is required in interpreting the resulting 

figures.  Consider, for example, Figure 3.3, and a scenario in which the client request 

rate decreases for fixed average server bandwidth (when expressed in unnormalized 

���
�������
��
�������������
�������	�������	��
���������
��������	�����������
������
����
time is the average time between requests), but B (expressed in units of file 

transmissions per average time between requests) increases proportionally to the 

decrease in the client request rate.  Thus, in Figure 3.3, the increasing value of the 

normalized server bandwidth B as one moves from left to right on the horizontal axis 

can correspond to increasing server bandwidth (with a fixed client request rate) or 

decreasing client request rate (with a fixed server bandwidth).  Similar considerations 

apply with respect to the normalized maximum sustainable client reception rate b. 

Perhaps the main observation from Figure 3.3 is that client reception rate 

constraints can strongly impact the achievable performance, although this impact 

diminishes as the value of the normalized average server bandwidth B decreases.  Note 

also that the difference between the average and maximum delay bounds decreases with 

increasing server bandwidth.  The point where these bounds become identical is the 

point at which each client experiences only the minimum delay of L/b. 

Figure 3.4 plots the percentage increases in the maximum client delay for the 

baseline batching and cyclic multicast protocols in comparison to the lower bound, for 

three different values of client reception rate.  Figure 3.5 plots the corresponding 

percentage increases in average client delay for the baseline protocols.  The system 

measures are expressed in the same normalized units as in Figure 3.3.  Note that the 

average server bandwidth with cyclic/l cannot exceed b times the fraction of time that 

there is at least one active client, and thus the rightmost point of each cyclic/l curve is 

for server bandwidth of less than one.   
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Figures 3.4 and 3.5 show that the batching protocols are close to optimal for 

small (normalized) server bandwidths, when many requests are accumulated before the 

next transmission takes place, and for server bandwidths approaching one, when most 

clients are served individually with minimal delay of L/b.  Batching can be significantly 

suboptimal for intermediate server bandwidth values, however, particularly for 

maximum client delay (for example, in Figure 3.4(a), b = 0.1 and B between 0.05 and 

0.2).  Note also that the overall relative performance of batching degrades as the 

maximum sustainable client reception rate decreases, since in this case the required 

duration of a multicast increases, and with the batching protocols new clients are not 

able to begin listening to a multicast after it has commenced. 

In contrast, the performance of cyclic/l improves for decreasing client reception 

rate.  However, cyclic/l is substantially suboptimal for average client delay over most of 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4:  Maximum Delay with Baseline Protocols Relative to 
Lower Bound (L = 1, � = 1). 
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the parameter space, and for maximum delay when the client reception rate is high and 

the server bandwidth is also high although not approaching one (i.e., in Figure 3.4(c), b 

= 10.0 and B between 0.4 and 0.9).  Note that for small and intermediate server 

bandwidths, cyclic/l is close to optimal for maximum client delay, but since the optimal 

average client delay is approximately half the optimal maximum client delay in this 

case, the average client delay with cyclic/l is about 100% higher than optimal. 

3.3 Near-optimal Protocols 

Figures 3.4 and 3.5 suggest that there is substantial room for improvement over 

the baseline batching and cyclic multicast protocols, since for each of maximum and 

average client delay there is a region of the parameter space over which each protocol is 

substantially suboptimal.  The main weakness of the batching protocols is that clients 

                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5:  Average Delay with Baseline Protocols Relative to 
Lower Bound (L = 1, � = 1). 
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that make requests while a multicast is already in progress do not listen to this multicast.  

All clients receive the file data “in-order”, waiting until the beginning of the next 

multicast before beginning their downloads.  With the baseline cyclic multicast protocol, 

on the other hand, clients can begin receiving data at arbitrary points in time within an 

on-going multicast.   Since the server transmits whenever there is at least one active 

client, however, there will be periods over which transmissions serve relatively few 

clients. 

Clearly, an improved protocol should allow clients to begin listening to an on-

going multicast at the times of their requests, but should also allow server transmissions 

to be delayed so as to increase the actual or expected number of clients each serves.  It is 

straightforward to apply a batching-like rule for deciding when a cyclic multicast 

transmission should commence; the key to devising a near-optimal protocol is 

determining the conditions under which a multicast should be continued, or terminated.  

Section 3.3.1 develops and analyzes new protocols that focus on improving maximum 

client delay, while Section 3.3.2 develops and analyzes protocols whose focus is 

improved average client delay.  As in Sections 3.1 and 3.2, these sections assume 

homogeneous clients, full-file delivery, and Poisson arrivals.  Section 3.3.3 relaxes the 

Poisson assumption, and considers the worst-case performance of the protocols under 

arbitrary arrival patterns.   

3.3.1 Protocols Minimizing Maximum Delay 

Consider first a simple hybrid of batching and cyclic multicast termed 

cyclic/constant delay, listeners (cyclic/cd,l), in which a cyclic multicast is initiated only 

after a batching delay (as in the batching/cbd protocol from Section 3.1.1), and is 

terminated when there are no remaining clients with outstanding requests (as in the 

cyclic/l protocol).   With batching delay parameter ∆ and transmission rate r (r ≤ b), the 

average duration of a channel busy period is given by (rLe /� –1)/λ, and the average 

duration of an idle period is given by 1/λ+∆.  This yields 

∆+
−= �

1
/�

/�

,/ rL

rL

lcdc
e

e
rB ;            (3.18) 

( )
rL

e
A

rLlcdc /�
2/�1

/�,/ +
∆+

∆+∆= ;     rLD lcdc /,/ +∆= .     (3.19) 



 

56 

The operation of the cyclic/cd,l protocol, as well as that of the other protocols developed 

in this section, is illustrated in Figure 3.6 for the same example pattern of request 

arrivals as in Figure 3.1. 

For Dc/cd,l > L/b, there are multiple combinations of ∆ and r that yield the same 

maximum client delay.  Optimal settings that minimize server bandwidth can be found 

numerically.  Interestingly, r = b is often not optimal.  Since a cyclic multicast is 

continued as long as there is at least one listening client, channel busy periods may have 

long durations.  Under such conditions, it may be possible to reduce server bandwidth 

usage while keeping the maximum delay fixed by reducing both r and ∆.  In particular, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6:  Examples Scenarios for Improved Protocols. 
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note that for λ → ∞, the channel is always busy, and thus the optimal r is the minimum 

possible r (the file size L divided by the maximum delay) and the optimum ∆ is zero. 

A better hybrid protocol, termed here cyclic/constant delay, bounded on-time 

(cyclic/cd,bot), can be devised by using a better policy for when to stop transmitting.  

The key observation is that the duration of a multicast transmission can be limited to at 

most L/r without impact on the maximum client delay.  As in the cyclic/cd,l protocol, a 

cyclic multicast is initiated only after a batching delay ∆, but the multicast is terminated 

after at most a duration L/r, allowing the server to be idle for a new batching delay ∆ 

that impacts only the clients whose requests arrived after the multicast began, if any.  

Any clients whose requests arrive during a multicast will receive part of the file during 

the multicast that is in progress and the rest of the file during the next multicast one 

batching delay ∆ later, thus guaranteeing a maximum client delay of ∆ + L/r.  A 

multicast is terminated before duration L/r when a client completes reception of the file 

and there are no remaining listeners, an event that will occur if no new client has arrived 

since before the previous multicast terminated.  Note that the relatively simple operation 

of this protocol, illustrated in Figure 3.6(b), is in contrast to that of slp, for which the 

transmission schedule and service of any particular client can be extremely fragmented.  

The optimal value for r with cyclic/cd,bot is the maximum possible (b), and thus this 

parameter setting is used in the experiments presented. 

Accurate approximations for the average server bandwidth usage and average 

client delay with the cyclic/cd,bot protocol can be derived as follows.  First, two types of 

channel busy periods are distinguished.  Channel busy periods such that at least one 

request arrival occurred during the preceding idle period are termed “type 1” busy 

periods, and will have the maximum duration L/r.  The remaining busy periods are 

termed “type 2” busy periods.  A type 2 busy period will have duration equal to L/r if 

there is at least one request arrival during this period.  If there are no such arrivals, the 

duration will equal the maximum, over all clients whose requests arrived during the 

preceding busy period, of the amount of data that the client has yet to receive, divided 

by r. 

Now, make the approximation that the rate at which a type 2 busy period ends 

when prior to its maximum duration L/r (i.e., the system empties) is constant.  Denoting 
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this rate by γ, the probability that a type 2 busy period is of duration less than L/r (also 

equal to the probability that the system empties during this busy period), is then given 

by 1– rLe /�− , and the average duration of a type 2 busy period is given by (1–rLe /�− )/γ.  

Note that the duration of a type 2 busy period of less than maximum duration depends 

only on the duration of the previous busy period and the points at which request arrivals 

occurred during this previous period.  In light of this ������	
����� ��  ���� 
�	
� !� ���
independent of ∆��	����	����	
��!�����	��"�
���#�
��∆ → 0.  Consider, for ∆ → 0, the 

average total duration of a type 1 busy period and the following type 2 busy periods up 

to when the system next empties (following which there is the next type 1 busy period).  

This quantity is equal to the average duration of an M/G/∞ busy period with arrival rate 

λ and service time L/r, as given by ( rLe /� –1)/λ.  This quantity is also equal to the 

probability that the total duration is greater than L/r (equal to 1– rLe /�− ) times the 

average total duration conditioned on being greater than L/r (equal to L/r+1/γ), plus the 

probability that the total duration is equal to L/r (equal to rLe /�− ) times L/r, yielding 
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Let pemptied denote the probability that at the beginning of a randomly chosen idle period 

the system had emptied; i.e., there were no clients with unsatisfied requests.  Let ptype1 

denote the probability that a randomly chosen busy period is of type 1.  These two 

probabilities can be obtained by solving the following two equations, the first of which 

applies pemptied to the idle period preceding a randomly chosen busy period, and the 

second of which applies ptype1 to the busy period preceding a randomly chosen idle 

period: 
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The average duration of a channel busy period is given by ptype1L/r+(1– ptype1)(1–

rLe /�− )/γ and the average duration of an idle period by pemptied/λ+∆, yielding 
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rLD botcdc /,/ +∆= .        (3.25) 

The derivation of the first term in the numerator of the equation for average delay is 

similar to the corresponding term in the average delay equations for batching/cbd and 

cyclic/cd,l, except that the batching delay was triggered by a new request arrival (which 

then experience the maximum waiting time %) only in the case when the system has 

emptied (with probability pemptied).  The second term in the numerator is the probability 

that at the beginning of a randomly chosen idle period the system had not emptied (i.e., 

that the idle period results from the limit of L/r on the duration of a multicast), times the 

average number of clients still active at the beginning of such an idle period all of whom 
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��	�
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����� ��
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��������������
�����
������	
����%����
����
wait.  The average number of clients active at the beginning of such an idle period is 

equal to the average number of arrivals during the preceding busy period (of length L/r), 

conditioned on there being at least one such arrival. 

The results in Figure 3.7 show that the cyclic/cd,bot protocol performs close to 

optimal (within 15% in all cases).  The figure also illustrates the high accuracy of the 

approximate analysis.  In addition, Figure 3.7 illustrates that even the simple hybrid 

cyclic/cd,l protocol can yield good performance (within 30% of optimal in all cases), 

although note that the results shown for this protocol are with optimal parameter 

settings.  An advantage of cyclic/cd,bot is that it has just one parameter (∆), which is 

chosen based on the desired trade-off between maximum delay and bandwidth usage.  

Since cyclic/cd,bot is relatively simple and outperforms cyclic/cd,l, the performance of 

cyclic/cd,l with alternative (suboptimal) parameter settings is not explored here. 
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3.3.2 Protocols Minimizing Average Delay 

Again, consider first a simple hybrid of batching and cyclic multicast in which a 

cyclic multicast is initiated only after a batching delay, in this case of the same form as 

in the batching/rbd protocol from Section 3.1.1, and terminated when there are no active 

clients (as in the cyclic/l protocol).  The average server bandwidth and 

average/maximum client delay achieved with this cyclic/request-based delay, listeners 

(cyclic/rbd,l) protocol, with batching delay parameters n and f (integer n ≥ 1, 0 ≤ f < 1), 

and transmission rate r (r ≤ b), are given by 
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Figure 3.7:  Maximum Delay with Improved Protocols Relative 
to Lower Bound (L = 1, � = 1). 
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These expressions are derived using the average duration of a channel busy period 

( rLe /� –1)/λ and the average duration of an idle period (n+f)/λ.  As with the cyclic/cd,l 

protocol, r = b is not necessarily optimal, and parameter settings that optimize for 

average delay are found numerically. 

The key to designing a better protocol is, as before, determining a better policy 

for when to stop transmitting.  If the total time each client spent receiving data from the 

channel was exponentially distributed (rather than of constant duration L/r), then the 

optimal policy for average delay would be for the server to continue its cyclic multicast 

whenever there is at least n (or n+1 for some fraction of busy periods f) clients with 

unfulfilled requests.  In the (actual) case of constant service times, however, the 

objective of achieving consistently good sharing of multicasts has to be balanced by 

consideration of the required remaining service time of the active clients.  For example, 

if a client has only a small amount of additional data that it needs to receive for its 

download to complete, then continuing the cyclic multicast may be optimal with respect 

to the average delay metric regardless of the number of other active clients. 

In the protocol proposed here, termed cyclic/request-based delay, controlled on-

time (cyclic/rbd,cot), these factors are roughly balanced by distinguishing between 

clients whose requests were made prior to the beginning of a busy period, and clients 

whose requests were made during it.  The server continues its cyclic multicast at least 

until all of the former clients complete their downloads (time L/r), after which 

transmission continues only as long as the number of clients with unfulfilled requests is 

at least max[n-1, 1], where n is the same as the batching delay parameter that is used, 

together with the parameter f, to control the initiation of transmission after an idle 

period.  Empirically, the optimal r is equal to b for this protocol. 

Note that for n = 1 or 2, this protocol is identical to the cyclic/rbd,l protocol with 

r = b, the analysis of which was given above.  Although an exact analysis of this 

protocol for n ≥ 3 appears to be quite difficult, an accurate approximate analysis has 

been developed.  This approximate analysis constrains the duration of a busy period to 

be a multiple of L/b, yielding the following approximations for server bandwidth usage 

and average client delay (for n ≥ 3): 
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where pi = 
!

1

i
(λL/b)i bLe /�−  and p = ∑ −

=
2
0

n
i ip .  Dc/rbd,cot is unbounded.  The derivations of 

these expressions are analogous to those for the shifted arrivals protocol in Section 

3.2.2. 

The results in Figure 3.8 show that the cyclic/rbd,cot protocol yields 

performance close to optimal, with an average delay within 20% of the lower bound in 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8:  Average Delay with Improved Protocols Relative to 
Lower Bound (L = 1, � = 1). 
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all cases considered.  Note also that the lower bound on average delay is achievable only 

for high server bandwidth (low delay), specifically the region in which the cyclic/w2,l 

protocol operates, so performance is even closer to optimal than these results would 

suggest.  Also shown in the figure is the high accuracy of the approximate analysis.  

Finally, the figure shows that the simple hybrid cyclic/rbd,l protocol yields good 

performance across the server bandwidth range of most interest only for high client 

reception rates (i.e., rates such that the probability of a client request arrival during the 

time required to download the file is very low). 

3.3.3 Worst-case Performance 

This section relaxes the Poisson arrival assumption and considers the worst-case 

performance of the protocols under arbitrary request arrival patterns.  Specifically, of 

interest is the worst-case average server bandwidth usage and average client delay, as 

functions of the protocol parameters and the average request rate λ.  The results are 

summarized in Table 3.2.  The maximum client delay is not considered, since for each 

protocol either the maximum delay is independent of the request arrival pattern, or it is 

unbounded under Poisson arrivals and can therefore be no worse with some other arrival 

process.  Note that achieving these worst-case results often requires the arrival pattern to 

be pessimally tuned according to the values of the protocol parameters, and that the 

worst-case average bandwidth usage and the worst-case average client delay cannot 

usually be achieved with the same arrival pattern.   

Consider first the average client delay.  For cyclic/l, the client delay (and thus the 

average client delay) is always L/r.  For batching/cbd, cyclic/cd,l, and cyclic/cd,bot, the 

Table 3.2:  Summary of Worst-case Performance (∂f>0 = 1 if f > 0 and 0 otherwise). 
 

Protocol Parameters Average Client Delay Average Server Bandwidth 
Batching/cbd ∆, r ∆ + L/r min[L/∆,λL]  
Batching/rbd n, f, r (n–1+∂f>0)/λ + L/r  λL/(n+f)  

Cyclic/l r L/r min[r,λL]  
Cyclic/cd,l ∆, r ∆ + L/r min[r,λL] 

Cyclic/cd,bot ∆, r ∆ + L/r min[L/(∆+L/r),λL] 
Cyclic/rbd,l n, f, r (n–1+∂f>0)/λ + L/r min[r,λL] 

Cyclic/rbd,cot n, f, r (n–1+∂f>0)/λ + L/r min[r, λL/max[n–1,1]] 
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average client delay can be at most the maximum client delay, and this is achieved when 

all request arrivals occur in batches (of arbitrary size) with each batch arriving when 

there are no previous clients with outstanding requests.  For batching/rbd, cyclic/rbd,l, 

and cyclic/rbd,cot, consider first the case of f = 0.  With all three protocols, note that the 

average client delay cannot exceed (n–1)/λ+L/r, since in that case the average number of 

clients waiting for a multicast transmission to begin would (from Little’s Law) exceed 

n–1, whereas in each protocol there can never be more than n–1 waiting clients.  An 

arrival pattern for which this average client delay is achieved is as follows.  Immediately 

after the end of a multicast transmission, a batch of n–1 requests arrives.  Following this 

batch arrival a long delay ensues of deterministic duration ((n–1+m)/λ)–L/r, for m→∞, 

followed by a batch arrival with m requests.  This initiates a new multicast transmission 

of duration L/r.  It is straightforward to verify that the average arrival rate with this 

request pattern is λ and that the average client delay tends to (n–1)/λ+L/r as m→∞.  For 

f > 0, the worst-case average delay depends on the precise policy by which the server 

determines whether to wait until n requests have accumulated, or to wait until n+1 

requests have accumulated, prior to beginning a new multicast, rather than just the 

fraction f of occasions that it waits for n+1.  Given here is the highest possible worst-

case average delay over all such policies, which can be achieved, for example, by a 

policy that makes the choice probabilistically.  By the same argument as used above for 

the case of f = 0, the average client delay cannot exceed n/λ+L/r.  An arrival pattern for 

which this average client delay is achieved is similar to that used above, but with a batch 

size of n rather than n–1, and (whenever the server chooses to wait for n+1 arrivals and 

thus a new transmission does not start immediately) a delay of duration ((n+fm)/λ–

L/r)/f, for m→∞, followed by a batch arrival with m requests. 

Consider now the average server bandwidth.  For batching/rbd, the average 

bandwidth depends only on the average arrival rate, rather than the specific arrival 

pattern, since every nth (or n+1st) request arrival causes a new transmission of the file 

that only the clients making those n (or n+1) requests receive.  Thus, the worst-case 

average bandwidth usage for this protocol is the same as the average bandwidth usage 

for Poisson arrivals.   For batching/cbd, if λ ��1/∆ then request arrivals can be spaced 

such that no arrivals occur simultaneously and no arrivals occur during a batching delay, 
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yielding a worst-case bandwidth usage equal to the unicast bandwidth usage of λL.  For 

λ ��1/∆, batched arrivals with deterministic spacing of ∆ between the batches yield the 

worst-case bandwidth usage of L/∆.  Thus, the worst-case bandwidth usage is min[L/∆, 

λL].  For cyclic/l, if λ �� r/L the worst-case bandwidth usage is achieved when the 

spacing between consecutive arrivals is always at least L/r, yielding a bandwidth usage 

of λL.  For λ �� r/L, transmission can be continuous, giving a bandwidth usage of r.  

Thus, the worst-case bandwidth usage is min[r, λL].  The same worst-case bandwidth 

usage is achieved with cyclic/cd,l, and cyclic/rbd,l.  For λ �� r/L, transmission can be 

continuous, and for λ ��r/L a bandwidth usage of λL is achieved when the fraction of 

arrivals that occur during busy periods approaches one, and the spacing between 

consecutive busy-period arrivals is of deterministic duration infinitesimally less than 

L/r.  Similarly, for cyclic/rbd,cot, if λ �� �r/L)(max[n–1, 1]) the worst-case bandwidth 

usage is achieved when the fraction of arrivals that occur during busy periods 

approaches one, and busy period arrivals occur in batches of size max[n–1, 1] with 

spacing between consecutive batches of deterministic duration infinitesimally less than 

L/r, yielding a bandwidth usage of λL/max[n–1, 1].  For λ ���r/L)(max[n–1, 1]), arrivals 

can be spaced such that transmission is continuous, giving a bandwidth usage of r.  

Thus, the worst-case bandwidth usage is min[r, λL/max[n–1, 1]].  Finally, for 

cyclic/cd,bot, if  λ ���'�∆+L/r) then request arrivals can be spaced such that no arrivals 

occur simultaneously or during a batching delay or channel busy period, yielding a 

worst-case bandwidth usage of λL.  For λ ���'�∆+L/r), arrivals can be spaced such that 

the system never empties, giving a bandwidth usage of L/(∆+L/r).  Thus, the worst-case 

bandwidth usage is min[L/(∆+L/r), λL]. 

3.4 Heterogeneous Clients 

This section relax the homogeneity assumption and consider the case in which 

there are multiple classes of clients with differing associated maximum delays (Section 

3.4.1) and achievable reception rates (Section 3.4.2).   Section 3.4.1 also supposes that 

the amount of data a client needs to receive from a channel may be class-specific.  This 

scenario is relevant to the protocols developed in Section 3.4.2, in which file data blocks 
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are delivered on multiple channels and each client listens to the subset of channels 

appropriate to its achievable reception rate.  Throughout this section only maximum 

client delay is considered, although the results can also yield insight for the case in 

which average client delay is the metric of most interest. 

3.4.1 Class-specific Service Requirement and Maximum Delay 

Here it is assumed that clients of class i have maximum delay Di and need to 

receive an amount of file data Li from a single shared channel.  All clients have a 

common reception rate constraint b.  As in the case of homogeneous clients, the slp 

protocol is optimal and thus its average bandwidth usage provides a lower bound on that 

achievable with any protocol.  Section 3.4.1.1 generalizes the approximation for this 

lower bound that was given in Section 3.2.2, to this heterogeneous context.   As 

motivated again by the complexity of slp, Section 3.4.1.2 extends the simpler and near-

optimal cyclic/cd,bot protocol given in Section 3.3.1, so as to accommodate 

heterogeneous clients, and compares its performance to that of slp. 

3.4.1.1 Lower Bound (slp) Bandwidth Approximation 

A key observation used to generalize the lower bound approximation is that with 

slp, the presence or absence of requests from “high slack” clients (i.e., clients of classes 

j such that Dj is large relative to Lj/b), will have relatively little impact on the server 

bandwidth usage during periods with one or more active “low slack” clients.   

Exploiting this observation, the classes are ordered in non-increasing order of Li/Di, and 

the average server bandwidth usage of slp, with the assumed client heterogeneity, is 

written as 

i

N

i
iislp

C

PPB β∑
=

−−=
1

1)( ,        (3.30) 

where NC denotes the number of customer classes, Pi denotes the (cumulative) 

probability that there is at least one client from classes 1 through i with an outstanding 

request (with P0 defined as 0), and �i denotes the average server bandwidth usage over 

those periods of time during which there is at least one client from class i with an 

outstanding request but none from any class indexed lower than i. 

An approximation for the probability Pi can be obtained using a similar approach 

as was used for the corresponding quantity in the approximation for homogeneous 
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clients.   Pi is equal to the average duration of a period during which there is at least one 

client from classes 1 through i with an outstanding request, divided by the sum of this 

average duration and the average request inter-arrival time for this set of classes 

(1/∑ =
i
k k1� , where λk denotes the rate of requests from class k clients).  The average 

duration of a period during which there is at least one client from classes 1 through i 

with an outstanding request is approximated by the average duration of an M/G/∞ busy 

period with arrival rate ∑ =
i
k k1� and average service time ∑

∑= =

i

j
i
k k

jj bL

1 1�
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, as given by 
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k k1� , plus the average duration of the delay after the arrival of a 
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The average bandwidth usage �i is approximated as Li reduced by the average amount of 

data xi received by a class i client while there is at least one active client from a lower 

indexed class, divided by the portion of the time Di during which no such lower indexed 

client is active: 
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xLβ .         (3.32) 

Defining �_avei by 
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the quantity xi is computed using 

( ) ( ) iiiiiii E_avePDx βββ −+≈ −1 ,       (3.34) 

where Ei denotes the average portion of the time Di during which a class i client receives 

data from the channel at the higher average rate equal to �_avei, owing to the presence 

of requests from lower indexed classes, rather than at the lower rate �i.  A simple 

approximation for Ei would be DiPi-1, but this would neglect the impact of variability in 
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the portion of time ti that there is at least one active client from a lower indexed class, 

during the period over which a particular class i client is active.  In particular, there is a 

maximum length of time during which a class i client can receive data at the higher 

average rate, without accumulating an amount of data exceeding Li.  Noting that ti is at 

most Di, the first-order impact of variability is captured by assuming a truncated 

exponential distribution for ti, with rate parameter (i such that the average of the 

distribution is DiPi-1: 
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During the portion of time when a class i client is receiving data at the higher average 

rate �_avei, the rate at which additional data is received (i.e., beyond that which would 

otherwise be received) is given by �_avei–�i.   Since at most Li data can be received in 

total during this time period, the average additional amount of data that can be received 

owing to reception at the higher average rate is upper bounded by Li–Ei�i.  Here the 

maximum length of time during which a class i client can receive data at the higher 

average rate, without accumulating an amount of data exceeding Li, is approximated by 

t_maxi = min[Di, (Li–Ei�i)/(�_avei–�i)].  An approximation for Ei is then obtained as  
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where the first term is the probability that ti does not exceed t_maxi times its expected 

value in this case, and the second term is t_maxi  times the probability that ti exceeds 

t_maxi. 

The above analysis results in a system of non-linear equations that can easily be 

solved numerically, beginning with the quantities for class 1 and proceeding to those for 

successively higher indexed classes.  Although the analysis might seem complex, 

simpler variants were found to have substantially poorer accuracy.  Note also that for the 

case in which the client classes have identical Li and Di, the analysis yields identical 

bandwidths �i, and the bound reduces to that given earlier for homogeneous clients. 
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Sample validation results comparing the analysis against simulations of the slp 

protocol are presented in Figure 3.9(a).  In the scenarios considered in this figure there 

are two client classes, with L1 = L2 = 1 and D1 = 5D2.  The maximum sustainable client 

reception rate b is fixed at one.  Five combinations of request rates {λ1, λ2} are 

considered, and the percent relative error in the average server bandwidth usage 

computed using the approximate analysis is plotted against the slack (D–L/b) of the low 

slack clients (class 1), for each request rate combination.  Additional experiments 

included a full factorial experiment for two class systems, and an experiment in which a 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9:  Impact of Class-specific Maximum Delays (L = 1, D2 
= 5D1���	�"��)�	����	���	
����1���2}). 
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large number of randomly generated systems with 3-6 classes were tested.  In all these 

experiments no case was found in which the absolute relative error exceeded 20%. 

3.4.1.2 Extension of Cyclic/cd,bot 

The cyclic/cd,bot protocol is extended to accommodate heterogeneous clients as 

follows.  The duration of each multicast transmission is limited to at most the maximum 

value of Li/r over all classes i that have active clients at the beginning of the 

transmission.  As before, if the last active client completes reception of the file and there 

are no more listeners, the transmission is terminated early.  The delay ∆ becomes 

variable, now being dependent on which classes have clients with outstanding requests.  

At the beginning of each delay period, it is initialized to the minimum value of Di–Li/r 

over all classes i that have active clients.  If a client of some other class j arrives during 

the delay period, and the time remaining in the delay period exceeds Dj–Lj/r, the length 

of the delay period must be reduced accordingly.  As before, each client obtains the 

entire file either in a single busy period, or in two busy periods separated by an idle 

period, and the optimal r is equal to b. 

Representative simulation results comparing performance with the extended 

cyclic/cd,bot protocol to the lower bound defined by the optimal slp protocol are 

presented in Figure 3.9(b).  (The analytic approximation from Section 3.4.1.1 is not used 

here, as the differences from optimality of cyclic/cd,bot are not sufficiently greater than 

the errors in the approximation.)   As in Figure 3.9(a), there are two client classes with 

L1 = L2 = 1 and D1 = 5D2, the client reception rate b is fixed at one, and five 

combinations of request rates {λ1, λ2} are considered.  As the figure illustrates, the 

achieved performance is reasonably close to optimal. 

Figure 3.9(c) shows the maximum delay for class 1 clients (the maximum delay 

for class 2 clients is five times greater) as a function of server bandwidth for the 

cyclic/cd,bot protocol, for the same scenarios as previously considered.  Noting that the 

curves can be separated into three groups based only on the request rate of the low slack 

clients, the main observation from this figure is the minimal impact of the request rate of 

the “high slack” clients on system performance. 
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3.4.2 Class-specific Reception Rates 

Suppose now that class i clients have a class-specific maximum sustainable 

client reception rate bi as well as maximum delay Di, but common Li = L.   Section 

3.4.2.1 presents an algorithm for computing a lower bound on the required average 

server bandwidth.  In Section 3.4.2.2, scalable download protocols for this context are 

proposed and their performance evaluated. 

3.4.2.1 Heterogeneous Lower Bound 

The slp protocol can be suboptimal when there is heterogeneity in client 

reception rates.  For example, consider a scenario in which two clients request the file at 

approximately the same time, one with a relatively high reception rate and a relatively 

low maximum delay and one with a low reception rate and a high maximum delay, and 

in which no other requests arrive until these two clients have completed reception.  With 

slp, the server will delay beginning transmission for as long as possible, and then, if it is 

the high-rate client that has no slack at this point, begin transmitting at an aggregate rate 

equal to the rate of the high-rate client.  However, in this case greater sharing of the 

server transmissions, and thus lower server bandwidth usage, could be achieved by 

starting transmission earlier, at the low rate. 

Using the notation in Table 3.3, Figure 3.10 presents an algorithm that yields a 

lower bound on the server bandwidth required to serve a given sequence of request 

arrivals16.  The algorithm considers each request j in order of request deadline; i.e., the 

time by which the associated client must have completed reception of the file so as not 

to exceed the maximum delay for its respective class.  The quantity hlb
jx  approximates 

(in a manner allowing a lower bound on server bandwidth to be computed) the amount 

of additional data (not received by earlier clients) that the server would need to transmit 

to enable the request j client to meet its deadline.  This quantity is computed as L– hlb
jjy ,1− , 

where hlb
jjy ,1−  is the total over all earlier requests k of an optimistic estimate hlb

jkx ,  of the 

portion of hlb
kx  that the request j client could have shared reception of.  A proof that hlb

jB  

                                                 
16 The algorithm as presented in Figure 10 has complexity O(K2), but can easily be implemented in a more 
efficient manner in which only requests i whose time in system overlaps with that of request j are 
explicitly considered in the inner loop.  
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= ∑ =
j
k

hlb
kx1  is a lower bound on the total server bandwidth required to serve requests 1 

through j is given in Appendix A.  In the case that all classes share a common maximum 

sustainable client reception rate, the lower bound is tight and gives the bandwidth used 

by slp.  With heterogeneous client reception rates, the bound may be unachievable. 

3.4.2.2 Protocols 

Perhaps the simplest protocol for serving clients with heterogeneous reception 

rates is to dedicate a separate channel to each class.  Any of the scalable download 

protocols from Section 3.3 can be utilized on each channel, with transmission rate 

Table 3.3:  Notation for Heterogeneous Lower Bound Algorithm. 
 

Symbol Definition 

K Length of request sequence, with requests indexed from 1 to K in order of 
request deadline 

c(j) The class of the request j client 

Tj
A

 Arrival time of request j 
Tj

D Deadline of request j (Tj
A + Dc(j)) 

Tj,i Time from the arrival of request i until the deadline of request j (Tj
D – Ti

A) 

xj Amount of data received by the request j client, from transmissions not received 
by any client with an earlier request deadline 

xj,i Amount of data received by the request j client, from transmissions not received 
by any client with an earlier request deadline, that is also received by the 
request i client (j < i � K) 

yj,i  Sum of xk,i for 1 �  k � j   
Bj Total amount of data transmitted to serve requests 1 through j 
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Figure 3.10:  Heterogeneous Lower Bound Algorithm. 
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chosen not to exceed the maximum sustainable reception rate of the respective clients.  

The disadvantage of this separate channels protocol is that there is no sharing of server 

transmissions among clients of different classes. 

A second approach, termed here shared cyclic/listeners (s-cyclic/l), extends the 

cyclic/l protocol from Section 3.1.2 to this heterogeneous client context.  The client 

classes are indexed in decreasing order of their associated maximum delays, aggregating 

any classes with equal maximum delays into a single class.  A channel is created for 

each class, with the transmission rate on channel 1 chosen as L/D1 and the rate on 

channel i for i >  1 chosen as L/Di–L/Di–1.  Class i clients listen to channels 1 through i.17  

The server cyclically multicasts file data on each channel, whenever at least one client is 

listening.  Here (as well as for the remaining protocols discussed in this section) it is 

assumed that through careful selection of the order in which data blocks are transmitted 

on each channel [26, 27], and/or use of erasure codes with long “stretch factors”, a client 

listening to multiple channels will nonetheless never receive the same data twice.  The 

average server bandwidth usage on each channel i may be derived in a similar fashion as 

for the cyclic/l protocol, yielding 

( ) +
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This protocol achieves sharing of server transmissions among clients of different 

classes, but as with the cyclic/l protocol there will be periods over which transmissions 

on a channel serve relatively few clients. 

The near-optimal protocols for delivery to homogeneous clients that were 

proposed in Section 3.3 have the characteristic that whenever the server transmits, it is 

at the maximum client reception rate b.   Intuitively, for fixed maximum or average 

client delay, transmitting at the maximum rate allows a greater delay before beginning 

any particular transmission, and thus a greater opportunity for batching.   In contrast, 

note that in the s-cyclic/l protocol, clients of each class i receive server transmissions 

that are at an aggregate rate equal to the minimum rate required to complete their 

downloads within time Di.  The key to devising an improved protocol is to achieve a 

                                                 
17 Alternatively, a large number of channels may be employed, with the server transmitting on each at the 
same low rate r.  Class i clients would then listen to channels 1 through ki, where ( ) ii rDLk /= . 
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good compromise between use of higher aggregate rates, which permit better batching 

opportunities for the clients that can receive at those rates, and low aggregate rates that 

maximize the sharing of server transmissions among clients of different classes. 

A family of protocols that enables such a compromise is defined as follows.  The 

client classes are indexed in non-decreasing order of their reception rates.  A channel is 

created for each client class, with the transmission rate r i on channel i chosen as bi–

∑ −
=
1
1

i
j jr .18  Class i clients receive an amount of data j

il  on each channel j, for 1 ≤ j ≤ i, as 

determined by the protocol, such that L = ∑ =
i
j

j
il1 .  Server transmissions on each channel 

follow a protocol such as the extended cyclic/cd,bot protocol from Section 3.4.1. 

Within this family, two extremes can be identified.  At one extreme, clients 

receive the maximum amount of data possible on the lower-numbered channels, thus 

maximizing the sharing of transmissions among clients of different classes.  

Specifically, class i clients receive an amount of data j
il  = min[L–

k

i
j
k l∑ −

=
1
1 , r jDi] on each 

channel j, 1 ≤ j ≤ i.19  At the other extreme, batching opportunities for class i clients are 

maximized by equalizing their slack on each channel.  In this case, j
il  = (r j/bi)L for each 

channel j, 1 ≤ j ≤ i.  Simulation results have shown that neither of these protocols yields 

uniformly better performance than the other, and that the performance differences 

between them can be quite significant. 

The best intermediate strategy can be closely approximated by a protocol termed 

here optimized sharing, in which the j
il values are chosen to be approximately optimal.  

With NC classes, the number of free parameters in the optimization problem is NC(NC–

1)/2.  For each candidate allocation, the approximate lower bound analysis from Section 

3.4.1 can be used to estimate the average server bandwidth with that allocation.  With a 

small number of classes, as in the experiments whose results are presented here, L can 

be discretized and exhaustive search employed, for example, to find an allocation that 

results in the minimum predicted average server bandwidth.  

                                                 
18 Note that if 1−= ii bb , then the rate r i is computed as 0.  Channel i will then not be used, but for 

convenience of indexing it is retained. 
19 If this rule results in class i clients retrieving no data from channel i, then channel i can effectively be 
aggregated with channel i+1. 
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Note that with all of the above protocols, the amount of data received on each 

channel by a client is statically determined according to the client’s class.  The extension 

to heterogeneous clients of the slp protocol, in which a client’s use of each channel is 

dynamically determined, is also considered.  The client classes are indexed in non-

decreasing order of their associated maximum sustainable reception rates.  The server 

transmits at aggregate rate bi whenever there is at least one client from class i that has no 

slack, and there is no such client from a class indexed higher than i.  Channels are 

defined (as in the previous protocol family, for example), such that a class j client can 

receive at rate min[bi, bj] whenever the server is transmitting at aggregate rate bi. 

Figure 3.11 shows representative performance results, using the heterogeneous 

lower bound algorithm from Section 3.4.2.1 to provide a baseline for comparison.  For 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11:  Maximum Delay with Heterogeneous Client 
Protocols Relative to Lower Bound (L� �� ��� �� �� ��� D values 
inversely proportional to maximum achievable reception rates). 

(a)  80% b=0.2;  10% b=1;  10% b=5 (b)  equal split among b = 0.2, 1, 5 

(c)  10% b = 0.2; 10% b=1; 80% 
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the separate channels and optimized sharing protocols, the optimal slp protocol is used 

on each channel, although as illustrated in Figure 3.9(b) use of the more practical 

cyclic/cd,bot protocol would not greatly impact the results.  For the heterogeneous client 

slp protocol and for optimized sharing, simulation is used to obtain the results shown 

(although as noted previously, the approximate lower bound analysis is used in 

optimized sharing to determine the data allocation), while for separate channels and s-

cyclic/l, the results are from analysis.  In the scenarios considered in this figure there are 

3 client classes with respective reception rates of 0.2, 1, and 5, and D values such that 

biDi = bjDj for all classes i, j.  The total request arrival rate is (without loss of generality) 

fixed at one, and the different parts of the figure correspond to different choices for the 

division of the total request rate among the classes.  

The principal observations from this figure are:  (1) the separate channels 

protocol yields poor performance, even in this scenario with greatly differing client 

reception rates; (2) the s-cyclic/l protocol can yield performance as poor, or worse than, 

separate channels (note, however, that the protocol does relatively better when the 

classes are more similar);  (3) the optimized sharing protocol yields substantially better 

performance than separate channels and s-cyclic/l, and never worse (and sometimes 

significantly better) than the heterogeneous client slp protocol; and (4) the optimized 

sharing protocol does not appear to leave much room for performance improvement, 

achieving within 25% of the lower bound on maximum client delay in all scenarios 

considered. 
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3.5 Summary 

This chapter considers the problem of using scalable multicast protocols to 

support on-demand download of large files from a single server to potentially large 

numbers of clients.  Lower bounds are developed that indicate the best achievable 

performance.  Baseline batching and cyclic multicast protocols are found to have 

significantly sub-optimal performance, motivating the development of new protocols.  

In the case of homogeneous clients, the best of the new practical protocols that focus on 

improving maximum client delay yields results within 15% of optimal, in all scenarios 

considered.  Similarly, the best of the new protocols designed to improve average client 

delay yields results within 20% of optimal.  For heterogeneous clients, the proposed 

optimized sharing protocol achieves within 25% of the optimal maximum client delay, 

in all scenarios considered.  An interesting observation is that it can substantially 

outperform the slp protocol, which is optimal in the homogenous environment. 
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Chapter 4 

4 Scalable Download from Multiple Replicas  

Systems using replication require a replica selection policy that chooses a replica 

to serve each client request.  In systems using aggregation as well as replication, a basic 

tradeoff that the replica selection policy must address is between locality of service and 

efficiency of service.  At one extreme, each client request could be served by the closest 

replica, maximizing locality of service.  At the other extreme, all client requests could 

be served by the same replica, maximizing opportunities for aggregation and thus 

efficiency of use of server resources.  In intermediate policies, some client requests are 

served by the closest replica, and others are served by replicas at which a higher degree 

of aggregation can be achieved. 

This chapter considers the problem of replica selection in systems utilizing both 

replication and aggregation.  As discussed in Section 2.3.2, prior work on the replica 

selection problem has assumed individual rather than aggregated service [35, 93, 94, 96, 

133, 140, 186], or has considered aggregated service but only in the specific context of 

media streaming and corresponding streaming-based service aggregation techniques [9, 

72, 81].  In contrast to assuming a media streaming context, this chapter considers two 

general types of service aggregation that may be applicable in a variety of contexts, and 

in particular to systems providing a download service for large files, such as software 

distributions or videos.  In the case of download, the two service aggregation types 

considered correspond to: (a) batching multiple requests for the same file and serving 

them with a single (IP or application-level) multicast, or (b) using a “digital fountain” 

approach [31, 146, 176], respectively.  For each service aggregation type, classes of 

policies of differing complexities are compared, with the goal of determining the 

performance improvements that more complex types of policies may enable.  

Comparisons are carried out in the context of a simple system model that allows the 
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performance that may be achievable with each class of policies to be accurately 

delimited. 

The first and most basic policy distinction considered is between replica 

selection policies that use dynamic state information (for example, numbers of waiting 

requests), and (simpler) policies that use only static (or semi-static) client-replica 

proximity and average load information.  The obtained results indicate that use of 

dynamic state information has the potential to yield large reductions in client delay, for 

fixed total service delivery cost, in many cases by a factor of two or more. 

Among policies using dynamic state information, a second distinction can be 

made between policies that defer replica selection decisions, for example until near or at 

the end of a batching delay as employed by the aggregation policy, and those (simpler) 

policies that make a replica selection decision immediately upon request arrival.  It is 

found that deferred selection can potentially yield substantial performance 

improvements, again by a factor of two or more in some cases, although only for fairly 

narrow ranges of model parameter values. 

Finally, among policies using dynamic state information and deferred selection, 

a third distinction is between “local state” policies that base their replica selection and 

scheduling decisions on the currently outstanding “local” client requests, and “global 

state” policies that use information concerning all current requests. It is found that 

relatively simple local state policies appear able to achieve most of the potential 

performance gains. 

The remainder of the chapter is organized as follows.  The system model is 

described in Section 4.1.  Section 4.2 addresses the question of whether use of dynamic 

state information can yield major performance improvements.  Section 4.3 considers the 

extent to which performance can potentially be improved in dynamic policies by 

deferring replica selection decisions, rather than making such decisions immediately 

upon request arrival.   Section 4.4 focuses on the class of policies using dynamic state 

information and deferred selection, and considers the extent to which polices using only 

“local” state information can realize the full potential of this policy class.  Throughout 

Sections 4.2, 4.3, and 4.4, the maximum client delay is the primary metric used to 
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measure client performance.  Section 4.5 considers the impact of using average delay as 

delay metric.  A short summary is presented in Section 4.6. 

4.1 System Model 

Consider a system with N replicas, each of which delivers a service (such as 

download of a popular file) using the same service aggregation technique.  Clients are 

divided according to network location into M groups, such that all of the clients in a 

group can be considered to have approximately the same network proximity to each 

replica.  For simplicity, in the following it is assumed that M = N.  Given this 

assumption, the client groups and replicas are indexed such that for the clients of group 

i, the closest replica is replica i.  Replica i is called the “local” replica for client group i, 

while all other replicas are called “remote” replicas for this group.  Service requests 

from the clients of each group i are assumed to be Poisson at rate λ i, with the 

replicas/groups indexed from 1 to N in non-increasing order of the group request rates. 

Two types of service aggregation are considered.  With the first type, called 

batched service, requests are accumulated and served in batches, with each batch being 

served by a single replica.  The required “service cost” for a batch of requests (measured 

in units such as processor-seconds or bytes of replica bandwidth consumed, depending 

on the service) is assumed to be a fixed value L, independent of the number of requests 

in the batch.  Any request arriving after a batch has already begun service cannot receive 

service with that batch, but must wait for service with some other batch.  For a service 

providing downloads of a popular file, this type of service aggregation correspond to a 

replica serving a batch of requests for a file of size L with a single multicast 

transmission.   

With the second type of aggregation, called here fountain service, whenever a 

replica has at least one client wishing to receive its service, service is dispensed at a rate 

r to all such clients.  Clients may switch replicas during their service period.  As in 

Chapter 3, the service period is L/r.   For a service providing downloads of a popular 

file, this type of service aggregation corresponds to using a “digital fountain” approach 

[31, 146, 176], in which file data is erasure encoded and transmitted by each replica at 

rate b on its own multicast channel whenever at least one client is listening to that 
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channel.  A requesting client need only listen to one or some sequence of replica 

channels for a total duration L/r, assuming use of an erasure-coding (e.g., [164]) and/or 

transmission scheme such that the probability of receiving duplicate packets, even when 

a client switches replicas during its service, is negligible. 

The performance metrics considered are the maximum client delay D and the 

total service delivery cost.  For the batched service type, the client delay is defined to 

include only the time from request generation until the request’s batch enters service.  

For the fountain service type, the client delay is defined as the service duration, equal to 

L/r.  In this case, unlike for batched service, the client delay is the same for all requests.  

For both service types, the total service delivery cost C is defined as the average total 

rate at which service cost is incurred at the replicas (in units of cost per unit time) plus 

the average total rate at which access cost is incurred.  The access cost is defined in a 

manner that may make it applicable to a variety of service types.  When a client from 

group i receives a fraction q of its service from a replica j (note that for batched service, 

q is 1 for the replica at which the client’s batch is served, and 0 for all other replicas) an 

access cost of cijqL is assumed to be incurred, where the constant cij gives the network 

cost per unit of service received when replica j provides service to a client from group i.  

For simplicity, in the following it is assumed, unless stated otherwise, that cii = 0, and cij  

= c for some c such that 0 < c ��1, for all ji ≠ .  Bi is used to denote the average rate at 

which service cost is incurred at each replica i.  Considering download systems, as in 

Chapter 3, Bi corresponds to the average server bandwidth usage at a replica i.  Using 

the notation defined in Table 4.1, this yields a total service delivery cost C calculated as 

cLqBC
N

i
ii

N
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Clearly, there is a tradeoff between maximum client delay and total service delivery 

cost, and in policy comparisons either the maximum client delays can be compared, for 

a fixed total service delivery cost, or the total service delivery costs can be compared, 

for a fixed maximum client delay. 
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4.2 Dynamic vs. Static Policies 

Static policies use only client-replica proximity and average load information in 

making replica selection decisions.  Although fountain service, in general, allows each 

client to switch replicas during its service period, with static policies there can be no 

advantage to this flexibility, and therefore with such policies it is assumed that each 

request is served by a single replica, for both batched and fountain service.  

Furthermore, in a static policy either all requests from a given client group are served by 

the same replica (in general, dependent on the group), or replica selection is 

probabilistic.  In either case, with Poisson requests from each client group, request 

arrivals at each replica will also be Poisson.  Section 4.2.1 reviews the prior analysis 

results for a single replica with Poisson request arrivals.  In Section 4.2.2, these results 

are applied to determine a tight bound on the achievable performance with static policies 

for each of the batched and fountain aggregation types.  Section 4.2.3 accurately 

delimits the achievable performance with dynamic policies.   Performance comparisons 

are presented in Section 4.2.4. 

Table 4.1:  Notation used in Chapter 4 
 

Symbol Definition 

λ i Request rate from the clients of group i; groups indexed so that λ i ��λ j for i ��j 
λ Total request rate, summed over all client groups 
L Service required by each requesting client (equal to the file size) 
N Number of replicas (assumed equal to the number of client groups) 
Bi Average rate at which service cost is incurred at replica i (assumed equal to 

the average server bandwidth) 
c Access cost per unit of service received for all client groups i and replicas j, 

ji ≠  

qi Average fraction of its service that a group i client receives from other than 
replica i 

C Total service delivery cost 
D Maximum client delay 
A Average client delay 
r Service rate with fountain service 
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4.2.1 Analysis for Single Replica Systems 

Referring to the single server analysis for the batched and cyclic multicast (for 

the “fountain service” case) presented in Chapter 3, the service cost (e.g., average server 

bandwidth usage) can easily be calculated. 

Consider first the case of batched service.  For a fixed maximum client delay 

(waiting time) D, the delivery cost is minimized by a policy in which all currently 

waiting requests are served once the waiting time of the earliest such request reaches D.  

Since the expected time duration from the beginning of service of one batch until the 

beginning of service of the next is D + 1/λ with this policy, the following equation 

relates the optimal D and average service cost rate B (equation (3.1) and (3.2)): 

�/1+
=

D

L
B .         (4.2) 

For fountain service, the replica is dispensing service at a rate r whenever there is at 

least one client with a request that is not yet satisfied.  The choice of r determines the 

achieved tradeoff between the client delay and the average service cost rate.  Since each 

request has a required service time of L/r, and the probability of there being no active 

request (and thus of the replica being idle) is e–�L/r, the following equations are obtained 

for D and B (equation (3.5) and (3.6)): 

rLD /= ;  ( )rLebB /�1 −−= .      (4.3) 

4.2.2 Delimiting the Achievable Performance with Static Policies 

Note that in equations 4.2 and 4.3, the average service cost rate B given fixed D 

is a monotonically increasing, concave function of the request arrival rate at the replica.  

Thus, in a static policy, if all requests that are served by a remote replica are served by 

the replica with the highest rate of requests from its local client group (i.e., replica 1), 

the total of the average service cost rates at the replicas will be minimized.  

Furthermore, since assuming that cij = c for all ji ≠ , serving such requests at replica 1 

incurs no greater access cost than serving them at any other remote replica(s).  Finally, 

the concavity of the average service cost rate function, and the assumptions regarding 

access costs, imply that in an optimal static policy either all requests from a client group 

are served by a remote replica (namely, replica 1), or none are, and the former case can 

hold only if all requests from client groups with equal or lower request rate are also 
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served remotely.  Thus, in an optimal static policy there is an index k (1 ��k ��N), such 

that all requests from group i clients, for i ��k, are served by the local replica, while all 

requests from group j clients, for j > k, are served by replica 1.  Note that for 

homogenous systems in which the client groups have identical request rates, in the 

optimal static policy either all requests are served by the local replica, or all requests are 

served at some single replica.    

Given the form of the optimal static policy as described above, from equations 

(1) and (2) a tight lower bound on the total service delivery cost achievable with a static 

policy and batched service, for a fixed maximum client delay D, is given by 
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Equations (1) and (3) yield the corresponding expression for fountain service, where D 

= L/r: 
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4.2.3 Delimiting the Achievable Performance with Dynamic Policies 

4.2.3.1 Batched Service 

Determining an optimal on-line dynamic policy for batched service appears to be 

a difficult and perhaps intractable problem.  For example, suppose that there is a waiting 

request from some client group i, when there is a remote replica j about to begin service 

for some batch of requests.  The optimal choice between joining this batch and being 

served by the remote replica, versus continuing to wait for a batch to be served at the 

local replica, in general depends not only on the access cost c but also on the complete 

system state and on the statistics of the request arrival process.  However, the achievable 

performance with dynamic policies can accurately be delimited through a combination 

of results for optimal off-line performance, with a given number of replicas and client 

groups, and results for optimal off-line performance in a limiting case as the number of 

replicas and client groups grow without bound.  The off-line policies used here assume 

complete information about all requests made to the system (including future requests). 
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Consider first the problem of determining optimal off-line performance with a 

given number of replicas and client groups.  An algorithm is developed that takes as 

input a request sequence (indicating both the arrival time and the client group of each 

request) and a maximum client delay D, and finds the minimum total service delivery 

cost for serving all of the requests in the sequence.  This algorithm is based on the 

following observation.  Define the deadline of a request as the time at which the request 

waiting time would equal the maximum client delay.  Then, at any request deadline t, 

the minimum access cost incurred by the corresponding request is determined solely by 

the batch service initiations that occur within the interval [t–D, t], i.e., from the request 

arrival time to its deadline.   In particular, the minimum access cost is zero if and only if 

the local replica begins service of a batch of requests during this interval, and otherwise 

is c. 

The above observation enables the following algorithm structure. A window of 

duration D is advanced through the given request sequence, with the right endpoint of 

the window moving at each advance to the next request deadline.  Each potential choice 

of batch service initiations within the current window defines a “state”.  When the 

window advances, the set of states changes, as earlier batch service initiations may now 

be outside of the window and some new batch service initiations may be added.   Each 

state has an associated minimum total service delivery cost.  The cost of a new state (as 

created when the window advances) is calculated as the minimum of the costs of the 

alternative prior states (before the advance of the window) that result in this new state, 

plus the access cost associated with the request whose deadline defines the right 

endpoint of the new window (according to whether or not the local replica serves a 

batch in the new state), plus the service cost of any new batch service initiations.  When 

the window advances to include the deadline of the last request in the request sequence, 

the minimum total service delivery cost for the input request sequence and maximum 

client delay is given by the minimum over all current states of the associated total 

service delivery cost.  

The feasibility of this approach depends on being able to tightly constrain the 

potential choices of batch service initiation times and locations, and thus the number of 

states associated with the current window, in a manner that still allows discovery of the 
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minimum total service delivery cost.   Assuming for clarity that no two events (request 

arrivals or deadlines) occur simultaneously, the constraints that are employed here are as 

follows: 

1. A replica may begin service of a batch of requests at a time t, only if time t is a 

request deadline.  (Otherwise, service could be postponed, with no greater 

service delivery cost.) 

2. Replica i may begin service of a batch of requests at the deadline t of a client 

group i request, only if replica i did not begin service of an earlier batch of 

requests during the interval (t–D, t).  (Otherwise, the request with deadline t 

could have been served with the earlier batch, and the service of the remaining 

requests in the later batch postponed.) 

3. Replica i may begin service of a batch of requests at the deadline t of a client 

group j request, for ji ≠ , only if there is no replica k (k may equal i or j) that 

began service of a batch of requests during the interval (t–D, t).  (Otherwise, the 

request with deadline t could have been served earlier by replica k, and the 

service at replica i postponed, with no greater total service delivery cost.)  

Constraints (1)-(3) imply that each replica may begin service of a batch of 

requests at most once during any time period of duration D. 

4. Replica i may begin service of a batch of requests at the deadline t of a client 

group j request, for ji ≠ , only if there have been at least two arrivals of client 

group i requests in the interval (t–D, t) (and that thus could belong to the batch).  

(Otherwise, the batch could be served by replica j instead, with no greater total 

service delivery cost.) 

5. Some replica must begin service of a batch of requests at a deadline t, if there 

have been no batch service initiations in the interval (t–D, t). 

6. A replica may not begin service of a batch of requests at a deadline t, if: (a) a 

previous batch service initiation was at a replica i at the deadline t� of a client 

group i request, with t–D < t� < t; (b) at most 1/c arrivals of group i requests 

occurred in the interval [t�–D, t�); and (c) the batch service initiation prior to the 

one at time t� occurred at a time t�� with t–D < t�������� < t.  (Since, in comparison 

to a schedule with batch service initiations at times t��, t�, and t, the cost would be 
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no greater if the batch service initiation at time t��had not occurred, and each of 

the requests that belonged to the batch served at time t� were served instead with 

either the batch at time t���or a batch at time t, which is possible owing to the time 

separation of at most D between time t�� and time t.)  Essentially, this constraint 

says that the decision to serve the batch at time t� could be necessary in an 

optimal schedule (and thus the partial schedule including this batch service 

initiation possibly fruitful to pursue further), only if there is no batch service 

initiation at time t.  

7. A replica may not begin service of a batch of requests at a time t, if: (a) a 

previous batch service initiation was at a replica i at the deadline t� of a client 

group i request, with t–D < t� < t; (b) the most recent deadline of a group i 

request previous to time t� occurred at a time t�� with t–D < t������� < t; (c) at most 

one arrival of a group i request occurred in the interval (t��, t�); and (d) no batch 

service initiation occurred at time t��, but such a batch service initiation was not 

prevented by the constraints (and thus, there is a state in which replica i begins 

service of a batch at time t�� rather than at t�).  (Since, in comparison to a 

schedule with batch service initiations at times t� and t but not at time t��, the cost 

would be no greater if each of the requests that belonged to the batch served at 

time t� and that arrived prior to t�� are served instead by replica i at t��, and the 

other requests that belonged to this batch are served instead at time t.)  

Essentially, this constraint says that the decision to serve a batch at replica i at 

time t� and not at time t�� could be necessary in an optimal schedule only if there 

is no batch service initiation at time t. 

Although constraints (6) and (7) are somewhat more complex than the others, they can 

greatly reduce the number of states that need be considered.  This is illustrated in Table 

4.2, which shows 95% confidence intervals for the average number of states associated 

with the current window, and the observed maximum number, for algorithm variants 

using different subsets of the above constraints, with N = 16, c = 0.5, L = 1, λ i = 1 for all 

i, and various values of the maximum client delay D.23   For each algorithm variant and 

                                                 
23 The particular algorithm implementation used for these results could accommodate 8,000,000 current 
states. 
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value of D, 10 runs were performed, each on a different randomly generated request 

sequence with 25,000 request arrivals.  

Although additional constraints are possible, at the cost of increased complexity 

in the implementation, constraints (1)-(7) were found to be sufficient to allow use of the 

optimal offline algorithm for a large portion of the parameter space.  The algorithm can 

become too costly when D is large and 1/c is not substantially greater than λ iD 

(implying that there are many deadlines, and thus many possible batch service initiation 

times, within a window, and that constraint 6 becomes less effective), and/or there are a 

large number of replicas.  Fortunately, in those cases in which the algorithm is too 

costly, consideration of a simple limiting case yields a lower bound on the total service 

delivery cost that is empirically tight.  Specifically, consider the case in which there are 

a sufficiently large number of replicas and client groups, that whenever it would be 

optimal for a request to receive service from other than the local replica, there is always 

some batch of requests to be served at a remote replica that the request could join 

(without any impact on the time at which service is initiated for that batch).  The 

minimum total service delivery cost for this case can be determined with small 

computational cost by a variant of the optimal offline algorithm in which each replica 

and its associated client group is considered in isolation, without explicit consideration 

of the remote replicas.  Note that this lower bound on the total service delivery cost is 

tight not only when there is a sufficiently large number of replicas, but also when almost 

all requests would be served by the local replica in an optimal policy. 

Table 4.2: Average and Maximum Number of States using the Optimal Offline 
Algorithm (N = 16, c = 0.5, L = 1, λ i = 1 for all i) 
 

D (C) 
Constraints 
(1)-(5) only 

Constraints 
(1)-(6) 

Constraints 
(1)-(5), (7) 

Constraints 
(1)-(7) 

0.1 (0.6526±0.0006) 
6.518±0.091 

2,300 
4.115±0.025 

69 
6.141±0.073 

1,285 
4.045±0.024 

63 

0.5 (0.4645±0.0006) 
2,040±190  
5,072,540 

98.6±1.1 
3,619 

666±21 
349,799 

86.86±0.85 
2,247 

1.0 (0.3999±0.0008) 
- 

> 8,000,000 
2,250±190 
475,843 

19,610±660 
1,661,760 

1,181±35 
106,531 

1.5 (0.3446±0.0007) 
- 

> 8,000,000 
- 

> 8,000,000 
- 

> 8,000,000 
13,940±460 
1,342,120 
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4.2.3.2 Fountain Service 

An optimal dynamic policy for fountain service is easily determined.  Consider 

some arbitrary point in time t, and denote the number of requests from client group i that 

are receiving service at time t by wi.  If all of the wi are zero, no replica is dispensing 

service at time t.  Otherwise, at least one replica must be serving request(s).  If some 

replica j is serving request(s), then the total cost is reduced when a replica i ( ji ≠ ) also 

dispenses service at time t, rather than requiring its local clients to receive service 

remotely, if and only if wi > 1/c.  Thus, the following policy achieves the minimum total 

service delivery cost for fountain service.  At each time t, each replica i dispenses 

service if and only if either wi > 1/c, or wi = j
j

wmax  ��� and there is no k < i such that wk 

= j
j

wmax .  A request from a group i client receives service from the local replica if it is 

dispensing service, and otherwise receives service from any remote replica that is 

dispensing service. 

With fountain service, the maximum client delay is D = L/r.  The total service 

delivery cost with the above policy, and thus a tight lower bound on the total service 

delivery cost achievable with a dynamic policy and fountain service, is given by 
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4.2.4 Performance Comparisons 

Figures 4.1 and 4.2 apply the results from Sections 4.2.2 and 4.2.3 to compare 

the potential performance with static versus dynamic replica selection policies, for 

batched and fountain service, respectively.  Rather than considering the minimum total 

service delivery cost potentially achievable with a given maximum client delay, here 

(equivalently) the lowest maximum client delay potentially achievable with a given total 

service delivery cost is considered.  Specifically, these figures show the lowest 

potentially achievable maximum client delay for static policies expressed as a 

percentage increase over that with dynamic policies, as a function of the total service 

delivery cost expressed as total cost per request.  The total cost per request is varied by 
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changing the batching delay D in the case of batched service, or the service rate r in the 

case of fountain service.  Without loss of generality, the unit of cost is chosen to be the 

total service required by each request, and the unit of time is chosen to be the average 

time between requests from a client group when the total request rate is divided evenly 

among the client groups.  With these choices of units, L�����	�������N.  For the case of 

batched service and dynamic policies, the optimal offline algorithm from Section 4.2.3.1 

was run on 10 randomly generated request sequences, each with 25,000 request arrivals, 

and the results averaged, for each set of parameters for which this algorithm was found 

to be feasible.  For the other parameter sets, a similar methodology was followed, but 

using the variant of the optimal offline algorithm in which each replica and its 

associated client group is considered in isolation.24  

                                                 
24 In this case, owing to the relatively low execution cost, each of the 10 runs for each parameter set had 
200,000 request arrivals.  In general, unless using analytic expressions, all data points presented in 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1:  Best Potential Performance with Static Policies 
Relative to that with Dynamic Policies, for Batched Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  
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N
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Interestingly, the results in Figures 4.1 and 4.2 are quite similar, even though 

they are for quite different types of service aggregation.  With both batching and 

fountain service, dynamic policies have the potential to yield substantially better 

performance than static policies over large regions of the parameter space.  In many 

cases, the lowest potentially achievable maximum client delay with static policies is 

over 100% higher than with dynamic policies; i.e., higher by a factor of 2. 

Note the presence in many of the curves of a local maximum in the performance 

difference, at an intermediate value of the total service delivery cost per request.  These 

peaks correspond to points where the optimal static policy changes between one in 

which all requests are served by the local replica, and one in which all requests are 

served by some single replica.  For the cases in which all client groups have the same 

                                                                                                                                                
Chapter 4 are generated by taking the average over 10 simulations, each simulating 200,000 or 1,000,000 
requests. 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2:  Best Potential Performance with Static Policies 
Relative to that with Dynamic Policies, for Fountain Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  

Ω = )/1(/ 1∑ =
N
j jN

α  and α ∈  {0, 0.5, 1, 2, 4} 
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request rate, the total service delivery cost per request is approximately equal to the 

value of the access cost c at these points.25 

It is possible to obtain the asymptotic limits of the curves in Figures 4.1 and 4.2 

as the cost per request (in normalized units) approaches one from the left, since in this 

case the batching delay D is so small (in the case of batched service), or the service rate 

r so large (for fountain service), that the probability that a request could receive service 

with more than one other request becomes negligibly small.   The optimal static policy 

in this case is for each request to be served by the local replica.  The optimal dynamic 

policy in this case is for each request to be served by the local replica if no previous 

request is waiting for service (in the case of batched service) or receiving service (in the 

case of fountain service) at the time of arrival of the request.  In the rare event that there 

is such a previous request, the cost is minimized if the new request shares its service (all 

in the case of batched service, or whatever service remains for the previous request in 

the case of fountain service) with this previous request (and, in the case of fountain 

service, receives the remaining portion of its service locally).  In Appendix B these 

optimal policies are analyzed, and the asymptotic limits of each curve derived.  

Assuming identical client group request rates these limits are (N–1)(1–c) × 100%, for 

both the batched and fountain service model. 

Figures 4.1 and 4.2 show the potential performance improvements with dynamic 

policies, but these improvements may not be practically realizable.  The next two 

sections consider the question of how complex a dynamic policy needs to be to achieve 

the full potential of this policy class.  

                                                 
25 Note that these peaks occur in regions of the parameter space in which the optimal offline algorithm is 
feasible; only well to the left of each peak, did it became necessary to use the variant in which each 
replica and its associated client group is considered in isolation.  
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 Throughout this chapter only the average values are reported; however, it should 

be noted that the confidence in the differences between the different policies is high.  To 

illustrate this, Figure 4.3 shows confidence intervals capturing the true average with a 

confidence of 95%, using 10 simulations for each data point with identical run length to 

those used to generate Figure 4.2(a).  Note that the confidence intervals tightly follow 

the shape of the curve and do not affect the results.  Similar observations are true for 

other policies and parameter settings. 

4.3 Deferred Selection vs. At-arrival Selection 

A basic distinction among dynamic policies is whether replica selection occurs 

immediately when a request is made (“at arrival”), or whether replica selection may be 

deferred for some period of time.  With batched service, each request is served by a 

single replica.  This replica is selected at the request arrival time in an at-arrival replica 

selection policy, while with deferred selection the choice may be delayed (at most, by 

the maximum client delay D).  With fountain service, each request immediately begins 

receiving service at rate b, and clients may switch replicas during their service period of 

duration D = L/r.  In an at-arrival replica selection policy, a schedule giving the replica 

from which the client will receive service at each instant of the service period is 

determined at the request arrival time, while with deferred selection the replica from 

which a client will receive service at each time t may deferred up until time t.  Note that 

    
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3:  Confidence Intervals for Figure 4.2(a). 
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at-arrival replica selection is a simpler approach, but deferred selection may offer the 

potential for improved performance, since replica selection may take into account 

subsequent request arrivals. 

Section 4.3.1 determines optimal at-arrival replica selection policies for both 

batched and fountain service, and corresponding tight bounds on the achievable 

performance with at-arrival replica selection.  Section 4.3.2 presents performance 

comparisons between these results and the results for general dynamic policies from 

Section 4.2.3. 

4.3.1 Delimiting the Achievable Performance with At-arrival Policies 

4.3.1.1 Batched Service 

Consider first the case in which all client groups have the same request rate 

(λ/N).  If there are one or more previous requests waiting for service by replica i when a 

new request from client group i arrives, the new request should join this batch.  Suppose 

that there are no such waiting requests.  Since all groups have the same request rate, in 

an optimal at-arrival policy a remote replica would never be selected for a newly-

arriving request unless there is at least one previous request already waiting for service 

by that replica, and thus the next request to begin waiting for service from replica i can 

only be from group i.   Therefore, if a remote replica is selected for the new request, the 

same state with respect to client group and replica i (a newly-arriving group i request, 

and no waiting requests at replica i) will be entered again after a time of expected 

duration (with Poisson arrivals) N'���	���	����
����cL will have been incurred.  If replica 

i is selected, the same state will be entered after a time of expected duration D + N'���
���
expected cost is minimized if a batch is not served until time D after formation), and a 

cost of L will have been incurred.  Comparing these two scenarios, it is optimal to select 

the local replica if and only if there is no remote replica with at least one waiting request 

and/or (cL)/(N'�����L/(D+N'������������	���
�"�c ���'��λ/N)D+1); otherwise, it is optimal 

to select such a remote replica. 

With the optimal at-arrival policy as described above, if c ��1/((λ/N)D+1) all 

requests receive service from the local replica, and the total service delivery cost is 

given by λL/((λ/N)D+1).  If c < 1/((λ/N)D+1),  the total service delivery cost is given by 
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DNNcLL
, where the term in parentheses gives the expected cost per 

request, as computed by dividing the expected total cost to serve all of the requests in a 

batch by the expected number of requests in a batch. 

Consider now the general case in which client groups may have differing request 

rates.  Suppose that when a client group i request arrives there are no previous requests 

waiting for service by any replica.  Recalling that replicas/groups are indexed from 1 to 

N in non-increasing order of the group request rates, analogously to the optimal static 

policy there is an optimal index k (1 ��k ��N), such that for i ��k, the new request begins 

a batch that will receive service by the local replica, while for i > k, the new request 

begins a batch that will receive service by replica 1. 

For client groups i with 2 �� i �� k, the optimal replica selection policy is as 

described in the case of homogeneous groups, but with the condition c ���'��λ/N)D+1) 

replaced by c ��1/(λ iD+1).  For group i requests with i > k, it is optimal to select a 

remote replica that already has a waiting request (if any), and otherwise to select replica 

1.  Finally, consider group 1 requests.  If there is at least one previous request that is 

waiting for service by replica 1, or if there are no previous requests waiting for service 

by any replica, it is optimal to select replica 1.  The case in which there are no previous 

requests that are waiting for service by replica 1, but at least one request waiting for 

service by some remote replica, is more complex than with homogenous groups, 

however, when k < N.  This is since requests from other than group 1 may initiate new 

batches to be served by replica 1, which increases the desirability of selecting replica 1 

in this case.  Note though, that when k < N it must be true that 1+λ iD < λ1D for some 

client group i (namely, each group i for i > k), since it can only be desirable for a group i 

request to begin a new batch to be served by replica 1 rather than by replica i if the 

expected number of group 1 requests that will be served in that batch exceeds the 

expected number of group i requests.  This implies that λ1D > 1, and therefore that c ��
1/(λ1D+1) for c ���'*���+������
�������������������	����
�	��#�
������)�������)��� ��
��
select replica 1 for a newly-arriving request from group 1, in the event that there are no 

previous requests that are waiting for service by replica 1 but at least one request 

waiting for service by some remote replica, for c ���'*��	���k < N) it must be true that is 
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optimal to select replica 1 in this case.  For the results shown in Section 4.3.2 for client 

groups with differing request rates, the access cost is chosen as c = 1/2, and simulation 

is used to determine the optimal index k and the minimum total service delivery cost 

according to the optimal policy as described above. 

4.3.1.2 Fountain Service 

With fountain service, the replica from which a newly-arriving request will 

receive service must be determined for each instant of the client’s service period of 

duration D = L/r .  Denoting the time since the previous request arrival by ta, it is 

necessary to determine: (1) which replica should be scheduled to provide service for the 

last min[ta, L/r] of the service period, and (2) for each time instant at which the local 

replica is not scheduled to dispense service during the initial max[0, L/r–ta] of the 

service period, whether the local replica should now be scheduled for that time, or 

whether the new request should receive service from a remote replica already scheduled 

(such a replica must exist owing to the service period of the previous request). 

 Consider first the case in which all client groups have the same request rate λ/N.  

In this case, it is clearly optimal to schedule the local replica to dispense service for the 

portion of the service period during which no replica is already scheduled (the last 

min[ta, L/r]).  For each time offset t at which the local replica is not scheduled to 

dispense service, within the initial max[0, L/r–ta]  of the service period, it is optimal to 

schedule the local replica, rather than to have the new request receive service from a 

(remote) replica already scheduled, if and only if r ��rc(1+(λ/N)t), or equivalently t ��
N(1–c)/(cλ).  Denoting the threshold value min[N(1–c)/(cλ), L/r] by T, the above 

observations yield the following tight lower bound on the  total service delivery cost 

achievable with an at-arrival replica selection policy and fountain service: 

( )( )( ) ( )( ) ( )( ) TceeeNr TrLTrLNTrLN �1 /�/��/��{ −−−−−− −+−  

                                        ( ) ( ) ( )( ) }1
1�1 ��/� 





 −−−+−+ −−−−

N

N
eTcee TTTrL .  (4.7) 

This expression is derived as follows.  Consider the state of the system at an arbitrary 

point in time under the operation of an optimal at-arrival policy.   If there was at least 

one request from client group i at an offset prior to the current time in the interval [–L/r, 
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–T], replica i will currently be dispensing service, yielding the first term within the outer 

parentheses.  If there were no requests from group i but at least one request from some 

other group j in [–L/r, –T] (and thus replica j is currently dispensing service), any group 

i requests that were made in [–T, 0] will currently be receiving service from a remote 

replica, yielding the second term within the outer parentheses.  Finally, if there were no 

requests from any group in [–L/r, –T], one replica will currently be dispensing service if 

and only if at least one request arrived in the interval [–T, 0], and all requests that 

arrived in the interval [–T, 0] from client groups other than that from which the first 

such request arrived, will currently be receiving service from a remote replica. 

For the general case in which client groups may have differing request rates, the 

optimal choice between receiving service from a remote replica already scheduled, or 

scheduling the local replica, is determined according to the time offset t from the 

beginning of the service period as in the case of homogeneous client groups.  For t ��Ti 

= min[(1–c)/(cλ i), L/r], it is optimal to schedule the local replica; otherwise, it is optimal 

to receive service from the remote replica. 

Unlike in the case of homogeneous groups, for new requests from other than 

group 1 (that with the highest request rate) it may not be optimal to schedule the local 

replica for the portion of the service period of a new request during which no replica is 

already scheduled.  Consider a newly-arriving request from other than group 1, and a 

time offset t > T1 from the beginning of the service period, at which no replica is already 

scheduled.  In this case, it is optimal to schedule the local replica to dispense service at 

time t if and only if r(1– ( )11� Tte −− )+ ( )11� Tte −− rcλ1T1 ≤ rc(1+λ it); otherwise, replica 1 should 

be scheduled instead.  This relation takes into account the possibility that even if the 

local replica is scheduled to dispense service at time t, replica 1 may also be so 

scheduled at a subsequent group 1 request arrival.  Consider now t ��T1.  It is optimal to 

schedule the local replica to dispense service at time t if and only if rcλ1t ��rc(1+λ it); 

otherwise, it is optimal to schedule replica 1 instead.  Combining these two cases yields 

the condition 

( )( ) ( ) ( )tcTtcee i
TttTtt �1],min[�1 11

],min[�],min[� 1111 +≤+− −−−− .    (4.8) 

It is straightforward to verify that this condition divides the interval [0, L/r] into (at 

most) three regions: an initial region in which the condition holds, a second region that 
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may or may not be present and in which the condition does not hold, and (should the 

second region be present) a third region that may or may not be present in which the 

condition again holds.  Define Ti�� and Ti�� to be the boundary values separating the 

regions, should all three exist, with Ti�� < Ti�; note that Ti� < Ti in this case.  If just the first 

two regions exist, then Ti = L/r.  In this case define Ti�� as the boundary value separating 

these regions and define Ti� = Ti (= L/r).  Finally, if only the first region exists, define Ti�� 
= Ti� = Ti.  Then it is optimal to schedule the local replica to dispense service at t for t ��
Ti�� and for t ��Ti�, and replica 1 for Ti�� < t < Ti�. 

Defining fi as the fraction of requests that are from client group i, analysis of the 

above optimal policy yields the following tight lower bound on the total service delivery 

cost achievable with an at-arrival policy and fountain service, for the general case of 

heterogeneous client groups: 

           ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) i
T

ii
TrL

N

i
ii

TrLTrLTrL feTcfeTceeer iiiiiii �/�

2

/�/�/� 1�1�1{ −−−

=

−−−−−− −−−+−+−∑  

 ( ) ( )( ) ( )( )( ) i
rLTrLTrLTrL feeee iii /�/�/�/� −′′−−′−−−− −+−+  
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TrLTrL
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iiii
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   [ ]( ) ( )( ) [ ] [ ] [ ]( )( )( )( )}1
0,����

111
/�,max/� 11/0,��	&,max�1 11 feTTTTcfee iii TT

iii
TrLTTrL −−′′−+′′−−+ ′′−−′′−−′′−−  

( )( ) ( ) ( )( ) ( )( ) 1
/�/�

11
/�/�/� 111111 �1{ feeTceeer rLTrLTrLTrLTrL −−−−−−−−− −+−+−+  

        ( ) ( ) ( )( ) }1�
11

/� 11 1�1 feTcfe TTrL −−− −−−+ .     (4.9) 

A derivation of this expression is presented in Appendix C.  
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4.3.2 Performance Comparisons 

Figures 4.4 and 4.5 apply the results from Sections 4.3.1 and 4.2.3 to compare 

the potential performance with at-arrival versus general dynamic replica selection 

policies, for batched and fountain service, respectively.  As illustrated in the figures, use 

of deferred selection can potentially yield substantial performance improvements, by a 

factor of two or more in some cases, although only for fairly narrow ranges of model 

parameter values.  In particular, large potential performance improvements are seen only 

when the total cost per request is approximately the same as the access cost when a 

request is processed (entirely) remotely, equal to cL.  In such regions, the potential 

performance improvements are maximized as the client groups become more 

homogeneous, as the number of replicas and client groups increases, and for values of c 

(in normalized units) between 0.3 and 0.7.  Note that in the case of homogeneous client 

groups, as the total cost per request decreases (i.e., the batching delay D for batched 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4:  Best Potential Performance with At-arrival Policies 
Relative to that with General Dynamic Policies, for Batched Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  

Ω = )/1(/ 1∑ =
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service increases, or the service rate r for fountain service decreases), the point at which 

the total cost per request equals cL is exactly (for batched service) or approximately (for 

fountain service) the point at which the optimal at-arrival policy changes from one in 

which all requests receive all service from the local replica, to one in which some 

service is received remotely.  

4.4 Local State vs. Global State 

Dynamic replica selection policies use information about the current system 

state.  A key part of this information concerns what requests are waiting for service (in 

the case of batched service) or receiving service (in the case of fountain service).  Here, 

“local state” policies are defined as those that make replica selection decisions for client 

group i requests, and service scheduling decisions for replica i, based on the currently 

outstanding group i requests.  “Global state” policies, in contrast, are defined as those 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5:  Best Potential Performance with At-arrival Policies 
Relative to that with General Dynamic Policies, for Fountain Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  

Ω = )/1(/ 1∑ =
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α  and α ∈  {0, 0.5, 1, 2, 4} 
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that use information concerning the current requests from other client groups, in 

addition to the local group.  Note that both types of policies may also use other types of 

state information, in particular concerning the times at which replicas are scheduled to 

serve batches (in the case of batched service) or which replicas are currently dispensing 

service (in the case of fountain service). 

Section 4.4.1 describes candidate local state replica selection policies for batched 

and fountain service.  Section 4.4.2 presents a candidate on-line global state policy for 

batched service.  Section 4.4.3 compares performance with these policies to the limits 

on achievable performance from Section 4.2.3. 

4.4.1 Candidate Local State Policies 

4.4.1.1 Batched Service 

In the candidate local state policy for batched service, replica selection uses the 

following two rules.  First, when a replica i initiates service of a batch, all currently 

waiting client group i requests receive this service.  Second, when a remote replica 

initiates service of a batch at a time t, a waiting client group i request that arrived at a 

time ta receives this service if: (a) for the earliest waiting group i request with arrival 

time ta� ��ta, there are fewer than 1/c –��i(ta�+D–t) waiting group i requests with arrival 

time no earlier than ta�; and (b) there is no batch service initiation that has been 

scheduled (by time t) at any replica within the time interval (t, ta+D].26 

A batch service initiation is scheduled (for a time possibly in the future) at a 

replica i whenever one of the following events occurs:  (a) the waiting time of a request 

from client group i reaches the maximum duration D; (b) a request arrives from group i, 

and the number of group i requests that are waiting for service reaches at least 1/c; or (c) 

a request arrives from group i when there is no future batch service initiation that has 

been scheduled at any replica, and the number of requests from group i that are waiting 

for service reaches at least max[(2/3)(1/c), 2].  The motivation for scheduling a batch at 

the last of these events is to increase the likelihood that when batches are served that 

                                                 
26 No significant advantage have been observed by policies that treat each requests individually, allowing 
some subset of outstanding requests, local to a particular replica, to retrieve service, while others defer 
their decision.  For example, this local state policy gives essentially the same results as if the above rule is 
modified such that rule (a) require there to be fewer than 1/c –� �i(ta�+D–t) waiting group i requests for 
each waiting group i request with arrival time ta� ��ta, rather than only for the first such request. 
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have less than 1/c requests from any one client group, the replica that serves the batch is 

one with a relatively large number of requests from its local client group. 

When a replica i schedules a batch service initiation, the time of this service 

initiation is chosen as ta+D, where ta denotes the arrival time of the earliest request 

among the client group i requests that are waiting for service, if:  (a) there is a future 

batch service initiation that has been scheduled by some other replica; (b) the most 

recent batch service initiation was by replica i; or (c) the most recent batch service 

initiation occurred later than time ta.  Otherwise, the time of the batch service initiation 

is chosen as the maximum of the current time, and tlast + D, where tlast denotes the time of 

the last batch service initiation at any replica. 

4.4.1.2 Fountain Service 

In the candidate local state policy for fountain service, a request receives service 

from the local replica whenever that replica is dispensing service during the service 

period of the request, and otherwise receives service from a remote replica.  So as to 

provide a tunable upper bound on the number of replicas from which a request receives 

service, and on the frequency with which a replica initiates/terminates service, whenever 

a replica i initiates service it is constrained to continue this service for at least L�/r, 
where L� (L� ��L) is a protocol parameter, or until there are no requests from client group 

i that are receiving this service. 

Replica i initiates service whenever one of the following events occurs while the 

replica is not already dispensing service: (a) a request arrives from client group i, and no 

replica is currently dispensing service; (b) the only replica dispensing service is 

terminating its service, there is at least one group i request for which further service is 

required, and no other replica initiates service upon this service termination;27 (c) a 

request arrives from group i, and the new number of outstanding group i requests is at 

least 1/c, as is the expected average number of group i requests that will be receiving 

service over the next L�/r;28 or (d) a request arrives from group i while there is only one 

                                                 
27 If there are requests from multiple client groups for which further service is required, multiple replicas 
may be eligible to initiate service in this scenario, only one of which should actually do so (selection of 
which may be random, or according to some deterministic rule). 
28 This latter quantity can be efficiently calculated by keeping track of the sum, over all outstanding client 
group i requests, of the service that each will receive over the next L�/r; denoting this sum by SΣ, the 
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replica that is dispensing service, this replica has been dispensing service for at least 

L�/r, it has been at least L�/r since replica i was last dispensing service, and the new 

number of outstanding group i requests, as well as the expected average number of 

group i requests that will be receiving service over the next L�/r, is at least 

max[(2/3)(1/c), 2]. 

A replica i terminates its service whenever one of the following events occurs 

while it is dispensing service: (a) a group i client stops receiving service, and there are 

no remaining group i clients receiving service; (b) a group i client stops receiving 

service, there are less than 1/c remaining group i clients receiving service, and the 

replica has been dispensing service for at least L�/r; or (c) some other replica initiates 

service, there are less than 1/c group i clients receiving service, and the replica has been 

dispensing service for at least L�/r. 
4.4.2 Candidate On-line Global State Policies 

To give additional intuition for the potential performance differences between at-

arrival policies and dynamic policies, as well as between global state and local state 

policies, this section considers the performance achieved by on-line global state policies.  

Note that the optimal dynamic policy for fountain service, defined in Section 4.2.3.2, is 

in fact an optimal on-line global state policy.  Therefore, this sub-section only defines a 

policy for the batched service model. 

Unlike local state policies, global state policies have knowledge of the 

outstanding requests of all replicas.  Taking advantage of this knowledge allows these 

policies to better determine which replica should serve a batch at times when a deadline 

is reached.  As for the local state policy (defined in Section 4.4.1.1), no significant 

differences have been observed for policies that treat requests on an individual basis, 

versus policies which treat requests on a per replica basis.  The policy presented here 

assumes that either all or no outstanding requests local to a particular replica is served 

by a batch.  Further, a batch is only served when some outstanding request reaches its 

deadline. 

                                                                                                                                                
expected average number of client group i requests that will be receiving service over the next L�/r, 
assuming Poisson request arrivals, is given by ((SΣ/r) + λ i(L�/r)2/2)/(L�/r). 
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Assuming replica i initiates service of the batch at time t and the longest 

outstanding client request waiting from some other client group j arrived at a time tj, 

then (i) all currently waiting client group i requests receive this service, and (ii) so does 

all of replica j’s requests if for each client group k with tk ≤ tj (including j) there are 

fewer than 1/c –��k(tk+D–t) waiting group k requests, where tk is the arrival time of that 

client groups’ most outstanding request.  While these rules ensure that replicas with 

more local requests are more likely to have requests reaching deadlines, these rules do 

not eliminate the chance of a replica with less than 1/c local request reaching a deadline. 

When a deadline is reached, the local replica serves the batch if it has at least 1/c 

local requests; otherwise, there are two natural candidates to serve the batch: (i) the 

replica that has the next deadline among the set of replicas with at least 1/c local 

requests, or (ii) the replica with the most local request among the set of all replicas with 

requests that will obtain service at this deadline.  Since the replica with the current 

deadline is always included in at least the second of these two sets, at least one natural 

candidate always exists. 

In an attempt to select the better of these two candidates, the policy used here 

weighs the expected cost of these two candidates.  To do this, note that the benefit of 

initiating service at the first replica associated with group (i) is a reduction in the amount 

of batches served.  While only one of the two batches are used (allowing a reduction in 

cost with equal to L), it is important to note that there is an indirect cost associated with 

having a replica with at least 1/c local requests serve the batch before its next deadline.  

This cost is assumed to grow linearly with time, and (as a first order approximation) the 

cost per time unit (that the batch is moved earlier) is approximated with the average 

service delivery cost per replica (C/N).29  The benefit of initiating service at this replica 

can hence be approximated by L – δ(i)C/N, where δ(i) is the time until this replica’s next 

deadline.  This benefit must be compared against the additional cost associated with all 

n(ii) of the request local to the replica with the most local request of the replicas in group 

(ii) retrieving service remotely.  Comparing the benefits of fewer batches (i.e., L – 

                                                 
29 In a real system the total delivery cost (per time unit) C can be obtained using some form of on-line 
estimation technique (e.g., an exponentially weighted moving average).  For the results presented here, 
binary search over long-duration simulations was used to find a correct value for C. 
 



 

105 

δ(i)C/N) against the remote access cost associated with these w(ii) requests retrieving 

service remotely (i.e., cw(ii)L), the policy initiates service at the first replica in group (i) 

if the benefit is greater than the costs, otherwise the policy initiates service at the replica 

with the most local request in group (ii). 

4.4.3 Performance Comparison 

Figures 4.6 and 4.7 compare the performance of the candidate local state policies 

described in Section 4.4.1, as evaluated using simulation, to the best potential 

performance with general dynamic policies, determined as described in Section 4.2.3, 

for batched and fountain service, respectively.  The results for fountain service, as 

shown in Figure 4.7, are the easiest to interpret.  Here the local state policy (with L� = 

L/2) achieves within 25% of the lowest potentially achievable maximum client delay in 

all cases considered.  Thus, in the context of fountain service, although there are 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6:  Performance with Local State Policy Relative to the 
Best Potential Performance with General Dynamic Policies, for 
Batched Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  
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substantial potential performance benefits in using dynamic rather than static replica 

selection policies (as shown in Section 4.2), and deferred rather than at-arrival policies 

(as shown in Section 4.3), within the class of deferred, dynamic policies, simpler local 

(vs. global) state policies appear able to achieve close to optimal performance.  

The results for batched service, as shown in Figure 4.6, are complicated by the 

fact that the best potential performance is delimited using the optimal off-line 

performance.  It is uncertain as to what portion of the performance gaps shown in Figure 

4.6 are owing to use of local state vs. global state, and what portion are owing to use of 

on-line vs. off-line policies.  Figure 4.8 illustrates the performance difference between 

the above local state policy and the candidate (on-line) global state policy, defined in 

Section 4.4.2.  Note that these results are much more similar to the fountain service 

results, presented in Figure 4.6.  Based on these results, it is conjectured that the 

performance gaps between the candidate local state policy and the optimal on-line 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7:  Performance with Local State Policy Relative to the 
Best Potential Performance with General Dynamic Policies, for 
Fountain Service (L� = L/2). 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  
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performance are intermediate in size to those for fountain service (Figure 4.6) and those 

shown in Figure 4.7, and are closer in size to the former than to the latter.  

Performance comparisons among all of the considered policy classes are 

presented in Figure 4.9, which show various examples of parameter settings, for the 

batched service model. 

4.5 Average Delay Batching Policy Comparison 

While previous sections of this chapter have compared policy classes with 

regards to the maximum delay metric D, this section compares policy classes with 

regards to the average delay metric A.  Note that for the case of fountain service A = D; 

thus, for the fountain service model, all results are the same as for the maximum delay 

metric.  For the batched service model, comparing policy classes with regards to the 

average delay metric (rather than with regards to the maximum delay metric) is a much 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8:  Performance with Local State Policy Relative to the 
Performance with the Candidate Global State Policy, for Batched 
Service. 

(a) N = 16, L = 1, λ i = 1, c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (b) L = 1, λ i = 1, c = 0.5, N ∈ {2, 4, 8, 16, 64} 

(c) N = 16, L = 1, c = 0.5, λ i = Ω/iα with  
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more complex task, especially in environments with multiple client groups and replica 

sites.  For example, some policy may achieve a low average delay by giving preferential 

treatment to some group of clients; however, such policy can not be fairly compared 

with policies that provide each client group with the same average delay.  To compare 

policies under relatively fair circumstances, this section requires some form of fairness 

to be taken into consideration; specifically, policies are compared that provide each 

client group with equal (or roughly equal) average delays. 

As it appears much more complex to delimiter the performance of each policy 

class, Section 4.5.1 defines an optimal static policy (delimiting the performance using 

static policies), Section 4.5.2 defines a candidate dynamic policy using global state 

information (providing an idea of achievable performances of dynamic on-line global 

state policies), and Section 4.5.3 defines a candidate at-arrival policy (providing an idea 

of achievable performances of at-arrival on-line policies).  With the exception of the 

dynamic global state policy (which achieves fairness for the homogenous case, as well 

as the special cases when all requests always are served locally, or by the replica with 

the most local requests, respectively), all policies provide all client groups with the same 

average delays.  Section 4.5.4 compares the relative performance of these policies, and 

relates these results to the maximum delay results, obtained in previous sections of this 

chapter.  

4.5.1 Delimiting the Achievable Performance with Static Policies 

Using the same arguments as used in Section 4.2.2, in an optimal static policy 

there is an index k (1 ��k ��N), such that all requests from group i clients, for i ��k, are 

served by the local replica, while all requests from group j clients, for j > k, are served 

by replica 1.  Ensuring that each client (or group of clients) has the same expected time 

until service (i.e., the same average delay A), independent of its geographic location or 

which replica serves a group of client requests, the static optimal cost can be calculated 

as, 
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where ni and fi are selected such that the average delay A, for clients receiving service 

from replica i, is equal to some target delay A*, calculated as 
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where ∂i=1 = 1 if i = 1 and 0 otherwise. 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9:  Best Potential Performance with Static Policies and 
with At-arrival Policies, and Actual Performance with a Local 
State Policy, Relative to the Best Potential Performance for 
General Dynamic Policies, for Batched Service. 

(a) c = 0.3, N = 16, equal request rates (b) c = 0.7, N = 16, equal request rates 

(c) c = 0.5, N = 4, equal request rates (d) c = 0.5, N = 64, equal request rates  

(e) c = 0.5, N = 16, equal request rates  (f) c = 0.5, N = 16, λ i = Ω/i 
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4.5.2 A Candidate Dynamic Global State Policy 

Consider first the case in which all client groups have the same request rate.  

With the candidate policy presented here, each request associated with a replica receives 

service with the current batch if the local replica is the replica initiating service, or the 

local replica has less than n� outstanding requests, where n� is chosen to be equal to an 

integer parameter n with probability 1–f, and n+1 with probability f.  (Using the protocol 

parameters n and f (0 ≤ f <1) the threshold n� can be probabilistically determined at 

times when there less than n outstanding local requests.)  Note that n� greater than 1/c is 

sub-optimal, as the cost associated with serving these n� requests would be smaller if 

served locally. 

Using the above rule to determine which clients should be served by a (potential) 

batch, the policy initiates service (of a new batch), at the replica with the most local 

requests, as soon as there are a total of m� requests that would retrieve service with the 

batch, where m� is equal to an integer parameter m with probability 1–g, and m+1 with 

probability g.  Using the protocol parameters m and g (0 ≤ g <1) the threshold m� can be 

probabilistically determined at times when there are less than m requests that would 

retrieve service with the batch.  Note that n� = 1 corresponds to the extreme cases where 

all service is retrieved locally, which is optimal when the service cost is much smaller 

than the remote access cost.  Similarly, n� → ∞ corresponds to the extreme cases where 

all outstanding requests in the system are served simultaneously by the replica with the 

most local requests, which is optimal when the remote access cost is much smaller than 

the service cost. 

To extend the above policy to the general case, the two parameters A* and y are 

used.  A* can be considered as a target delay, while y is a weighing factor used to ensure 

that replica sites with higher arrival rates are less likely to listen remotely, given the 

same number of accumulated local requests.  For each replica i, mi and gi are chosen 

such that A* = 
( )

( )iii

iii

gm

gmm

+
−+

�2

12
, and ni and fi are chosen such that ni+fi = max[1,  c/1 –

yλ i]. 

Selecting ni� as above, the same rule can be used to determine which requests 

should receive service with a batch.  However, in contrast to the homogenous case a 
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somewhat more general rule is used to determine when a batch should be initiated.  

With batches only being scheduled immediately following a request, a new service 

period is scheduled if (i) there would be a total of 
Ni ..1

max
=

mi� requests that would receive 

service with the batch, or (ii) a replica reaches max[mi�, ni�] local requests.  For the first 

case, the replica with the most local requests initiates service (with ties giving 

preference to the replica with the lowest arrival rate).  For the second case, service is 

initiated at the replica reaching its threshold.  Note that the above policy achieves the 

same average delays for all client groups whenever (i) all groups have the same request 

arrival rate, (ii) all service is retrieved locally, or (iii) requests always are served by the 

first initiated service batch, independent of replica.30 

4.5.3 A Candidate At-arrival Policy 

This section defines a policy that is similar in nature to the at-arrival maximum 

delay batching policy, presented in Section 4.3.1.1.  The policy uses two thresholds k1 

and k2 (0 ≤ k1 ≤ k2 ≤ N) to split the replicas into three categories.  The k1 replicas with the 

highest arrival rates are in category one, the following k2–k1 replicas are in category two, 

and the remaining N–k2 replicas (with the lowest arrival rates) are in category three.  

Based on this classification, (i) requests associated with replicas in the first category are 

always served locally, (ii) requests associated with replicas in the second category are 

always served by the replica within this category, which first receives a local request, 

following the previous service initiation at some replica in this category, and (iii) 

requests associated with a replica of the third category are always served by replica 1.  

Note that k1 = k2 = N captures the case when all requests are served locally, and k1 = 0, k2 

= N captures the case when requests are always served by the first replica receiving a 

request, after the previous service initiation.  Further, under the best parameter settings 

(i.e., the best choice of k1 and k2), replicas with sufficiently large arrival rates will 

always serve (at least) its local requests, and client requests associated with replicas with 

                                                 
30 While the policy does not guarantee fairness among heterogeneous replicas and client groups, similar 
performance improvements can be obtained using a fair deferred policy that split the replicas in three 
classes, based on their arrival rates, much like the at arrival policy defined in Section 4.5.3.  However, this 
policy is more restrictive and does not achieve quite as good performance for the homogenous case, as the 
policy presented here. 
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sufficiently low arrival rates will be served by a replica that is likely to have the most 

local requests. 

As with the static optimal policy, the parameters of this policy are chosen such 

that all groups of clients experience the same average delay, independent of their 

location (or which request they are served).  Using the above classification and a target 

delay A*, a replica in category one (i.e., 1 ��i ��k1) initiates service if this batch would 

serve ni (with a probability 1–fi) or ni+1 (with a probability fi), where ni and fi are chosen 

such that the target delay A* is equal to the expected average delay 

( )
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where ∂i=1 = 1 if i = 1, and 0 otherwise.  Similarly, in category two (i.e., replicas such 

that k1 < i ��k2) the first replica to receive a request (after the previous service initiation 

in this category) initiates service as soon as it would serve ng (with a probability 1–fg) or 

ng+1 (with a probability fg), where ng and fg are chosen such that the target delay A* is 

equal to the expected average delay 
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where ∂k1=0 = 1 if k1 = 0, and 0 otherwise.  Using the above threshold values the total 

service delivery cost C can be calculated for any given configuration.   

The best performance of the policy is obtained using the best possible system 

configuration.  Assuming that all arrival rates are known and a target delay A* is 

selected, the total service delivery cost C, under optimal parameters, can therefore be 

calculated by taking the minimum over all possible configurations (i.e., possible choices 

of k1 and k2),  
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4.5.4 Performance Comparisons 

Figure 4.10 compares the performance of optimal static policy and the candidate 

at-arrival policy, both evaluated analytically, to the performance of the dynamic on-line 

policy, evaluated using simulations.  As shown, the performance differences using an 

average delay metric is similar to the corresponding differences using maximum delay 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10:  Best Potential Performance with Static Policies and 
Actual Performance with an At-arrival Policy, Relative to the 
Actual Performance for a Global Dynamic Policy, for Batched 
Service (each policy is evaluated based on average delay). 

(a) c = 0.3, N = 16, equal request rates (b) c = 0.7, N = 16, equal request rates 

(c) c = 0.5, N = 4, equal request rates (d) c = 0.5, N = 64, equal request rates  

(e) c = 0.5, N = 16, equal request rates  (f) c = 0.5, N = 16, λ i = Ω/i 
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as the metric (Figure 4.9).  However, while it is clear that there is a large benefit from 

using dynamic policies, due to higher complexity and no delimiting at-arrival policy, the 

results using average delay as a metric is less clear.  Based on the results obtained, it 

appears beneficial to defer replica selection decisions as late as possible.  With the 

higher complexity of these policies, no local state policies have been considered.  The 

design and evaluation of such policies remain an open problem. 

4.6 Summary 

To summarize, this chapter considers the fundamental conflict between 

replication and service aggregation.  Specifically, to determine an appropriate level of 

complexity, this section compares policy classes of varying complexity.  Policy classes 

are defined and evaluated with respect to both maximum and average client delay, under 

both a batched and a fountain service model.  It is concluded that (i) using dynamic state 

information (rather than only proximities and average loads) can yield large 

improvements in performance, (ii) when it is possible to defer selection decisions (e.g., 

when requests are delayed and served in batches), deferring decisions as late as possible, 

rather than using at-arrival selection, can yield significant improvements, although only 

for a fairly narrow range of the model parameter space, and (iii) relatively simple 

maximum delay policies using “local state” information appear able to achieve most of 

the potential performance gains (achieved by “global state” policies). 
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Chapter 5 

5 On-demand Streaming using Scalable Download 

Existing peer-assisted systems and algorithms proposed for on-demand 

streaming of stored media files [24, 53, 161] establish relatively long-duration streams 

from the content source and between peers as organized into some form of overlay 

topology.  Rather than requiring peers to organize themselves into such structures, this 

chapter proposes using adaptations of already proposed peer-assisted scalable 

downloading techniques, such as BitTorrent [48], to achieve a form of “streaming” 

delivery, in the sense that playback can begin well before the entire media file is 

received.  With BitTorrent-like protocols, the file is split into smaller pieces that each 

peer can download in parallel, from multiple peers.  A peer can download pieces from 

any other peer (that has at least one piece that the peer does not have itself).  To 

encourage peers to contribute with upload bandwidth, each peer prefers to upload to 

peers that upload to it, at a relatively high rate.  This approach is very flexible and its 

simplicity allows the system to easily handle dynamic environments where peers may 

join and/or leave the system frequently. 

In the context of file download, where the file is not considered usable until fully 

downloaded, it has been found beneficial to download pieces in an order that maintains 

high piece diversity [110, 111].  For example, BitTorrent uses a rarest-first policy when 

deciding which pieces to download.  With this policy, strict preference is given to pieces 

that are the rarest among the set of pieces owned by all the peers from whom it is 

downloading.  This ensures that peers are more likely to have pieces to share.  On the 

other hand, in the context of streaming, where clients may start playback before the 

content is fully retrieved, it is most natural to download pieces in-order.  When 

designing piece selection techniques for this context it is therefore important to achieve 

a good compromise between the goal of piece diversity and in-order retrieval of pieces.  

Furthermore, an on-line policy is needed for deciding when playback can safely 
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commence.  This chapter presents and evaluates both piece selection policies and simple 

startup rules. 

Various policies are evaluated using event-based simulations, in which each peer 

is assumed to be bottlenecked by either its maximum sustainable client transmission or 

reception rate (called the peers upload and download bandwidth capacity, respectively).  

It is further (very conservatively) assumed that no peer, except the original content 

source, shares pieces once the whole file has been received.  In a real system peers are 

likely to continue serving other peers as long as they are still playing out the media file, 

while other peers may (graciously) choose to upload to other peers beyond that time.  

With the higher availability of rare pieces and additional seed bandwidth in such 

systems, the benefits of more aggressive piece selection techniques (giving priority to 

earlier pieces rather than rare pieces) are likely to be even greater than presented here. 

Simple probabilistic piece selection techniques are proposed that achieve a good 

tradeoff between selecting pieces that give priority to pieces needed sooner, while 

maintaining enough piece diversity that peers can easily exchange pieces among each 

other.  These techniques are shown to enable startup delays significantly smaller than 

the download time.  Secondly, a number of simple policies to determine when to safely 

begin playback are evaluated.  A simple rule is found promising, which requires the 

number of pieces retrieved to exceed some (small) threshold, and the rate at which in-

order pieces are retrieved to exceed a threshold that would allow playback without 

interruptions, should that rate be maintained. 

The remainder of the chapter is organized as follows.  The simulation model is 

described in Section 5.1.  Section 5.2 defines a number of candidate piece selection 

policies and evaluates their potential performance advantages.  Section 5.3 addresses the 

problem of dynamically determining the startup delay.  Conclusions are presented in 

Section 5.4. 
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5.1 Simulation Model 

In contrast to previous simulation studies [25, 78] that only allow peers to be 

connected to a few peers, this study assumes that peers are connected to all other peers 

in the system.  In real systems peers are often connected to many peers; for example, the 

default parameters in recent versions of the mainline client allow peers to be connected 

to up to 80 other peers, which is often achieved in practice [111].  It is further assumed 

that pieces are split into infinitesimal sub-pieces, such that any portion of a piece can be 

uploaded to, or downloaded from, a peer.31 

The model assumes that a peer i can at most have vi concurrent upload 

connections and no connections are choked in the middle of an upload.  The set of peers 

that it is uploading to changes when (i) it completes the upload of a piece, or (ii) some 

other peer becomes interested and peer i does not utilize all its upload connections.  The 

new set of upload connections consists of (i) any peer currently in the middle of an 

upload, and (ii) additional peers up to the maximum limit vi.  These additional peers are 

determined according to a rate-based unchoking algorithm.  To model rate-based tit-for-

tat with optimistic unchoking, a probabilistic approach is used.  With a probability 1/ni 

the next peer to get unchoked is selected using an optimistic unchoking policy, and with 

a probability of (vi–1)/vi using a rate-based policy.  The optimistic unchoking policy 

selects a random peer from the set of peers that are interested.  The rate-based policy 

selects the peer, from within the set of interested peers, which is uploading to peer i at 

the highest rate.  Random selection is used to break ties.  Note that this ensures that the 

seeders only use random peer selection. 

To simulate the exchange of pieces among peers it is important to determine the 

rate at which data is exchanged.  Connection bottlenecks are assumed to be located at 

the end points; i.e., connections are either bottlenecked by the upload bandwidth 

capacity (i.e., the maximum sustainable client transmission rate) at the sender or by the 

download bandwidth capacity (i.e., the maximum sustainable client reception rate) at the 

receiver.  It is further assumed that the network operates using max-min fair bandwidth 

                                                 
31 The size of the sub-pieces used in BitTorrent is typically 1/16 of the size of a piece (16 kB versus 256 
kB). 
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sharing (using TCP, for example) [23, 99, 136, 183].  In max-min fair networks each 

flow operates at the highest possible rate that ensures that (i) no bottleneck operates 

above its capacity, and (ii) the rate of no flow can be increased without decreasing the 

rate of some other flow operating at a the same or lower rate (without exceeding some 

bottleneck’s maximum sustainable bandwidth capacity). 

A bottleneck is constrained whenever the total flow through the bottleneck is 

equal to its capacity and a flow is considered constrained whenever one of its 

bottlenecks is constrained.  Existing algorithms [23] to determine the max-min fair 

bandwidth allocation, iteratively identify the next bottleneck that would become 

constrained if the rate of all unconstrained flows in the network was increased by the 

same amount.  At the point a bottleneck becomes constrained, all flows passing through 

the bottleneck (that are not yet constrained) become constrained and their rates can no 

longer be increased.  With more constrained flows the rates of the remaining 

unconstrained flows can again be increased uniformly, until another bottleneck becomes 

constrained. This procedure is repeated until all flows are constrained.  To reduce the 

computation cost, the algorithm is modified to take into consideration that each end-to-

end connection (or flow) is either constrained by its upload or download connection.  

Rather than identifying one bottleneck at a time this symmetry is used to determine 

(potentially) multiple bottlenecks (with different allowable rates) in the same iteration. 

Using the notation defined in Table 5.1, Figure 5.1 presents the algorithm used 

to find the max-min fair solution.  Given a set of unchoked connections (defined through 

   Table 5.1:  Notation used in Chapter 5. 
 

Symbol Definition 
N Number of peers 
ui Upload bandwidth capacity of peer i 
bj Download bandwidth capacity of peer j 
ui

m Maximum sustainable upload rate for any of i’s upload connections  
bj

m Maximum sustainable download rate for any of j’s download 
connections 

δij 1 if i is transmitting to j (i.e., j is interested in i and has been 
unchoked by i); 0 otherwise  

r ij Connection rate from peer i to peer j 
λ File request rate 
ϕ Peer defection rate 
η Exponential decay factor 
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δij), as well as the total uplink capacity ui and downlink capacity bj for each peer (1 ≤ i,j  

≤ N) the algorithm determines the maximum upload rate ui
m among all upload 

connections from peer i and the maximum download rate bj
m among all download 

connections for peer j.  The algorithm starts with the set of maximum upload and 

download rates (ui
m and bj

m) undetermined (within the set S).  As long as at least one of 

these values is undetermined, the algorithm calculates a lower bound estimate of the 

undetermined values by providing equal share of the remaining bottleneck capacity, 

with the rate of the already constrained flows subtracted.  Since these values can only 

increase in later iterations, u* and b* provide lower bound estimates of the smallest 

upload and download constraints of future iterations, which itself implies that (i) all 

flows with lower upload rate ui
m than the most constrained downlink b* will be upload 

constrained by ui
m, and (ii) all flows with lower download rate bj

m than the most 

constrained uplink u* will be download constrained by bj
m.  This observation allows 

(potentially) multiple ui
m or bj

m values to be determined (and removed from the set of 

still unconstrained variables S) in each iteration.  With each flow only having two 

bottlenecks, each characterized by ui
m or bj

m, the rate of the flow between peer i and j, 

denoted r ij, can easily be calculated as δij min{ui
m, bj

m}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1:  Max-min Fair Bandwidth Allocation Algorithm used 
to Calculate the Rates of the Unchoked Peer Connections.   
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Assuming a total of N fully connected peers, each iteration requires O(N2) 

operations, one for each (possible) connection.  In the worst case, this algorithm requires 

2N iterations, resulting in a total of O(N3) operations.  However, typically this algorithm 

requires many fewer iterations.  For example, if all connections are upload constrained, 

the algorithm allows the rates of all flows to be determined using only two iterations, 

while the standard algorithms would require N iterations (one for each uplink 

bottleneck, until the rates of all flows are determined).  Also, in systems where peers are 

not connected to all other peers the number of calculations per iteration can easily be 

reduced (e.g., using sparse matrices). 

Using event-based simulations, rates must be recalculated each time the set of 

unchoked peers changes for some peer (i.e., with a large number of peers, roughly each 

instance at which a piece becomes fully downloaded).  Therefore, with a large number 

of pieces, and given the cost of the above algorithm, the computational cost of these 

simulations is restricting simulations to only smaller peer populations.  Table 5.2 

illustrates some example execution times on an AMD Opteron 850 processor running at 

2.4GHz, for a scenario with a flash crowd of N peers, each downloading all 512 pieces 

of a file using a rarest-first policy. 

5.2 Piece Selection 

This section considers the order in which pieces should be retrieved to allow 

streaming.  A peer requests a new piece each time it gets unchoked by a peer in which it 

is interested, or when the download of one piece is completed and the peer is still 

interested in additional pieces.  Section 5.2.1 describes candidate piece selection 

policies, and Section 5.2.2 evaluates these policies with regards to the best possible 

Table 5.2:  Example Simulation Execution Times for a Flash Crowd of Size N 
 

N Execution Times (in seconds) 

16 1.6 
32 5.6 
64 24.8 
128 179 
256 1,560 
512 8,290 
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startup delay (i.e., the startup delay peers would be able to achieve if knowing when 

each piece would be fully retrieved).  In practice this exact time instance can not be 

determined using an on-line algorithm.  Section 5.3 evaluates simple on-line policies to 

determine when to start playback. 

5.2.1 Candidate Policies 

To begin playback well before the entire media file is retrieved, pieces must be 

selected in a way that effectively mediates the conflict between the goals of high piece 

diversity (achieved in BitTorrent using a rarest-first policy) and the in-order 

requirements of media file playback.  Assuming that peer j is about to request a piece 

from peer i, two baseline policies are defined as follows: 

Rarest:  Among the set of pieces that peer i has and j does not have, client j 

requests the rarest piece among the set of all pieces that peers that j is connected to have.  

Ties are broken using random selection. 

In-order:   Among the set of pieces that peer i has, client j requests the first piece 

that it does not have itself. 

Rather than considering advanced piece selection techniques, simple 

probabilistic policies are proposed.  Perhaps the simplest such technique is to request an 

in order piece with some probability and the rarest piece otherwise.  Other techniques 

may use some probability distribution to bias towards earlier pieces.  The Zipf 

distribution has been found to work well for this purpose.  Below, one of each of these 

two types of probabilistic policies are defined: 

Portion (p):  For each new piece request, client j uses the in-order policy with a 

probability p and the rarest policy with a probability (1–p). 

Zipf ( αααα):  For each new piece request, client j probabilistically selects a piece 

from the set of pieces that i has, but that j does not have.  The probability of selecting 

each of these pieces is chosen to be proportional to 1/(k+1–k0)
α, where k is the index of 

the piece, k0 the index of its first missing piece, and α is a parameter of the protocol. 

The policies choices considered in this section are: rarest, in-order, 

portion(50%), portion(90%), and Zipf(1.25).  With the portion policy, the most natural 

choice is to use a probability p of 50%.  However, in some scenarios this parameter 

choice is very conservative.  To illustrate the performance of a more aggressive 
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parameter choice, simulations are also presented in which in-order pieces are selected 

with a probability of 90%.  For the Zipf policy, a Zipf parameter α of 1 may be the most 

natural choice; however, a slightly more aggressive parameter choice (in this case 1.25) 

is generally beneficial.  Results using other parameter choices for the Zipf policy are not 

presented as Zipf(1.25) performs well in all scenarios considered.  However, note that 

the Zipf parameter can be tuned so that the policy is more or less aggressive.  For 

example, with a larger Zipf parameter the policy becomes more aggressive, giving more 

bias to earlier pieces, while with a smaller Zipf parameter it becomes less aggressive.  

5.2.2 Performance Comparisons 

Throughout this chapter, it is assumed that there is one single persistent seed and 

all other peers leave the system as soon as they have retrieved the entire file (i.e., only 

acts as leechers).  As noted previously, this is a very conservative assumption, as in real 

systems peers are likely to continue serving other peers as long as they are still playing 

out the stream, while other peers may (graciously) choose to serve as seeds beyond that. 

Without loss of generality, the file’s size L and play rate rp are both set at 1.  

This corresponds to measuring the volume of data transferred in units of the file size and 

time in units of the file play duration.  Hence, all rates are expressed relative to the play 

rate, and all startup delays are expressed relative to the time it takes to play the entire 

file.  For example, an achieved download rate of 2 means that the file can be 

downloaded approximately twice as fast as it can be played out.  Similarly, a startup 

delay of 0.1 means that the client could start playback after a duration equal to 0.1 times 

the play duration.  The file is split into 512 pieces, and unless stated otherwise, peers are 

assumed to have three times higher download capacity than upload capacity and each 

peer uploads to at most four peers simultaneously. 

To compare the performance of the above piece selection policies, this section 

initially considers a simple scenario in which peers (i) do not leave the system until 

having fully downloaded the file (i.e., the peer defection rate ϕ is equal to zero), (ii) 

arrive according to a Poisson process, and (iii) are homogenous (i.e., all peers have the 

same upload bandwidth capacity u and download bandwidth capacity b).  Alternative 

scenarios and workload assumptions are subsequently considered. 
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 To capture the steady state behavior of the system, the system is simulated for at 

least 4000 requests.  Further, measurements are only done for requests which do not 

occur in the beginning or the end of each simulation.  Typically, the first 1000 and the 

last 200 requests are not analyzed; however, to better capture the steady state behavior 

of the inorder policy warmup period longer than 1000 requests is sometimes required.32  

Each data point represents the average of 10 simulations.  Unless stated otherwise, this 

methodology is used throughout Chapter 5.  It should be noted that the accuracy in these 

values are high.  To illustrate this, Figure 5.2 shows confidence intervals capturing the 

true average with a confidence of 95%.  Note that the confidence intervals are only 

visible for the inorder policy.  For the other policies the average values presented in this 

chapter are very accurate and confidence intervals are therefore omitted. 

Figure 5.2 characterizes the system (under this scenario) by varying the total 

client bandwidth capacity (i.e., u + b).  The peer arrival rate λ is assumed to be 64 and 

the seed has an upload bandwidth capacity equal to that of regular peers.  The most 

significant observation is that Zipf(1.25) consistently outperforms the other candidate 

policies.  In systems with an upload bandwidth capacity at least twice the play rate (i.e., 

u ��*�� �����	���	����
��	��������
	�
� ����	"��
#�������������	)��
������	�����
�	��
���
time it takes to play the file and much faster than it would take to download the file 

using the rarest policy. 

                                                 
32 The inorder policy was typically simulated using at least 20,000 requests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2:  Average Achievable Startup Delay under a Steady 
State Poisson Arrival Process without Early Departures: The 
Impact of Client Bandwidth Capacity (b/u = 3, λ = 64, and ϕ = 0). 
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Figure 5.3 presents the cumulative distribution of achievable startup delays 

under this initial scenario.  Note that Zipf(1.25) achieves low and relatively uniform 

startup delays for the set of clients.  The high variability in startup delays, using the in-

order policy, are due to peers becoming synchronized.  Peers using the in-order policy 

never upload pieces to peers they currently are downloading from (as those peers have 

all pieces that the peer has).  Therefore, all active upload connections are determined 

using random unchoking.  With larger download capacity and many peers to download 

from, peers with fewer pieces will quickly catch up with peers who have fewer peers to 

download pieces from.  This causes peers to become synchronized, all requiring the 

same piece.  Being limited by the upload rate of the seed these peers will, at this point, 

see poor download rates.  In general, some peers will be stuck in such “queue build-up” 

for a long time, while others will be stuck for a much shorter time (possibly still 

allowing them low startup delays).  With lots of peers completing their downloads at 

roughly the same time, the system will become close to empty, before a new set of peers 

repeat this process (in which they all become synchronized).  This service behavior 

causes the number of peers in the system using the in-order policy to follow a saw-tooth 

pattern.  In contrast, the number of concurrent leechers, using the other policies, is 

relatively stable.  

 
 
 
 
 
 
 
 
 
 
Figure 5.3:  Cumulative Distribution Function of the Best 
Achievable Startup Delay under a Steady State Poisson Arrival 
Process without Early Departures (u = 2, b = 6, λ = 64, and ϕ = 0). 
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Figure 5.4 considers the impact of (i) the peer arrival rate, (ii) the ratio between 

peers’ download and upload bandwidth capacity, and (iii) the bandwidth capacity of the 

persistent seed.  Again, the simple Poisson model without early departures and 

homogenous clients is considered.  As expected, in-order and portion(90%) do very well 

in systems with very low arrival rates.  However, already at an arrival rate of one 

Zipf(1.25) outperforms these policies.  In fact, Zipf(1.25) is relatively insensitive to the 

peer arrival rate.  At this point it should be noted that the decrease in average delay, 

observed by the in-order policy, may be somewhat misleading as the achievable startup 

delays in this region is highly variable (see Fig 5.3).  Figure 5.4(b) illustrates that the 

results are relatively insensitive to the download/upload bandwidth-capacity ratio for 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4:  Average Achievable Startup Delay under Steady 
State Poisson Arrival Process: Example Scenarios. 

(a)  The Impact of the Peer Arrival 
Rate λ (u = 2, b = 6, η = 0, ϕ = 0) 

(b)  The Impact of the Ratio Between the 
Clients Download and Upload Bandwidth 

Capacity b/u (u = 2, λ = 64, ϕ = 0) 

(c)  The Impact of the Bandwidth Capacity of the 
Persistent Seed (u = 2, b = 6, λ = 64, ϕ = 0) 
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ratios larger than 2.  In this experiment the upload bandwidth capacity u is fixed at 2 and 

the download bandwidth capacity b varied.  Typical Internet connections generally have 

ratios between 2 and 8 (e.g., [156]).  While the in-order policy achieves improved 

performance when the ratio is constrained between 1 and 2, after that its performance 

decreases.  The reason for these increasing startup delays is that recently arrived peers, 

that have many peers from which they can download, will get a larger share of the seeds 

total upload bandwidth capacity, than in systems where these peers are (more) download 

constrained.  As pieces uploaded to such peers are of no benefit to peers waiting for later 

pieces, and the retrieved piece could have been retrieved from any of these peers, the 

seed bandwidth used to deliver such a piece is essentially wasted. 

Finally, this chapter considers a scenario in which the persistent seed may be 

more powerful than regular peers.  For simplicity it is assumed that the seed (or server) 

is behind a single bottleneck and that it allows for the maximum number of upload 

connections to be proportional to the capacity of the seed.  A server with twice the 

upload bandwidth capacity of a regular peer can therefore upload to twice as many peers 

in parallel as a regular peer (assuming enough peers are interested), or upload to a single 

peer at twice the maximum sustainable upload rate of a peer (assuming only one peer is 

downloading).  Figure 5.4(c) illustrates that (for systems in steady state) not much 

additional server bandwidth capacity is required for peers to achieve low average startup 

delays using much more aggressive policies (such as in-order).  Similar improvements 

can be achieved using a more aggressive Zipf parameter.  

This section now considers three additional scenarios, called the second, third 

and fourth scenario.  The second scenario considers the average performance of peers in 

a system in which some peers leave before having fully downloaded the file.  It is 

assumed that peers arrive according to a Poisson process but may leave the system 

prematurely at a fixed rate of ϕ (per client).  Figure 5.5 illustrates that all policies are 

insensitive to the rate peers depart the system.  This insensitivity to peer departures is a 

characteristic of peers not relying on retrieving pieces from any particular peer.  This 

insensitivity has been verified by reproducing very similar graphs to those presented in 

Figures 5.2, 5.3 and 5.4.  
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The third scenario considers the impact of peer arrival patterns.  Here, peers are 

assumed to arrive according to a Poisson process with exponentially decaying arrival 

rate.  This type of arrival pattern is motivated by measurement studies done on real 

BitTorrent systems [82].  Given an initial arrival rate λ0 and an exponential decay factor 

η the rate at a time instance t can be calculated as λ(t) = λ0e
–ηt.  Using this arrival 

pattern, 100 × (1 – e–ηt) percent of the total number of arrivals occurs within time t.  By 

varying the decay factor between 0 and ∞ both a pure Poisson arrival process (in steady 

state) and a flash crowd in which all peers arrive instantaneously (before and after which 

no other arrivals occur) can be captured.  To compare arrival patterns with different 

decay factors the expected number of arrivals within some time period is fixed at some 

value.  In Figure 5.6 the expected number of arrivals within the first 2 time units (i.e., 

the time it takes to play the file twice) is set to 128, and the exponential decay factor γ is 

varied between 0.01 and 100.  To put this range of decay factors into perspective, with a 

decay factor η = 1, 63.2% of all peer arrivals occur within the first time unit and 86.5% 

within the first two time units.  With a decay factor η = 6.9, on average 99.9% of the 

peer arrivals occur within the first time unit.  For these experiments no warmup period 

were used and simulations were run until the system were empty.  Again, note that the 

performance of in-order and portion(90%) quickly becomes very poor, as the initial 

arrival rate λ0 increases.  These policies do a poor job ensuring that peers have pieces to 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.5:  Average Achievable Startup Delay under a Steady 
State Poisson Arrival Process with Early Departures (u = 2, b = 6, 
λ = 64). 
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share among each other, and are therefore limited by the upload bandwidth capacity of 

the seed. 

The fourth scenario considers a system in steady state, but with two classes of 

peers: low and high-bandwidth peers.  The low-bandwidth peers have a total client 

bandwidth capacity of 1.6 (uL = 0.4 and bL = 1.2) and high-bandwidth clients have a 

total client bandwidth capacity of 8 (uH = 2 and bH = 6).  Figure 5.5 illustrates the 

average startup delay for the high-bandwidth peers as a function of the percentage of 

low-bandwidth peers arriving to the system.  As expected, a large portion of low-rate 

peers causes significant performance degradation to high-rate peers.  The figure for low-

bandwidth peers looks very similar, but with the exception that the minimum startup 

delay for the policies is higher (e.g., the minimum startup delay using Zipf(1.25) is 

roughly 0.08).   

Similar results have also been observed in a scenario where all peers are 

assumed to have a total upload bandwidth capacity of 8 (u = 2 and b = 6); however, one 

group only makes 20% of its upload bandwidth capacity available (i.e., uL = 0.4 and uH 

= 2).  For this modified scenario the startup delays of Zipf(1.25) improve slightly as the 

low sharing peers provide additional download capacity to the system.  With the in-

order policy, on the other hand, the startup delays become much worse (as the number 

of low-rate peers increase).  With these peers downloading more data from the seed 

(allowed by its higher download bandwidth capacity) more seed bandwidth is used 

uploading to weaker peers, which do not do a good job relaying these pieces to other 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.6:  Average Achievable Startup Delay under 
Exponentially Decaying Arrival Rates (u = 2, b = 6, λ(t) = λ0e

–ηt, 
λ0 = 128η / (1 – e–2η)). 
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peers.  It should also be noted that, in systems using Zipf(1.25), low sharing clients may, 

on average, see startup delays of more than twice those of regular clients.  This 

discrimination is especially pronounced in the region where the clients start to see 

degrading performance.  

5.3 Using a Dynamic Startup Rule   

In highly unpredictable environments, with large and changing sets of peers, it is 

difficult to predict future download conditions.  Therefore, it is not expected that any 

on-line strategy for selecting a startup delay would give close to optimal startup delays 

(without significant chance of playback interruption).  To deal with (potentially) missing 

pieces, it is likely that existing techniques used by existing media players (such as error 

concealment, layered media, etc.) may be applied.  This section present a simple 

protocol that uses the Zipf(1.25) policy, presented in the previous section, together with 

a simple policy to predict when playback can safely commence.  Maintaining the 

simplicity of the piece selection policy, it should be noted that only the startup policy 

requires future rates to be predicted.  Section 5.3.1 defines a number of candidate 

policies, while their performance is compared in Section 5.3.2. 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.7:  Average Achievable Startup Delay under a Steady State 
Poisson Arrival Process with both High and Low Bandwidth Clients 
(λ = 64, ϕ = 0, uL = 0.4, bL = 1.2, uH = 2, bH = 6). 
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5.3.1 Simple Startup Policies 

This section defines three simple startup policies.  The simplest policy is to 

always ensure that at least some minimum number of pieces is retrieved before allowing 

playout to begin.  Here, such a policy is defined as follows: 

At-least (kreq):  Start playback when at least kreq pieces have been retrieved, and 

one of those pieces is the first piece of the file. 

While this policy does not require the download rates to be predicted, 

determining the best possible value of kreq is non-trivial (in highly dynamic 

environments). 

The other two policies considered here attempt to measure the rate at which a 

file marker, before which all the file data has been retrieved, advances through the file.  

An “in-order buffer” is defined that contains all pieces up to the first missing piece, and 

the rate at which the size of this buffer increases is denoted by rseq.  Note that rseq will 

initially be smaller than the download rate (as some pieces are retrieved out-of-order), 

but can exceed the download rate as holes (of missing pieces) are filled.  Assuming a 

constant valued download rate, rseq can be expected to increase over time, as holes are 

filled more and more frequently.  Assuming a constant download rate, therefore, it is 

safe to start playback as soon as rseq allows the in-order buffer to be filled within the 

time it takes to play the entire file.  With k pieces in the in-order buffer rseq must 

therefore be at least (K–k) / K times as large as the play rate, where K is the total number 

of pieces in the file.  Using this rate condition two rate-based policies are defined: 

LTA ( kreq):  Start playback when the start condition of at-least(kreq) is satisfied 

and the rate condition is satisfied by rseq = (Lk/K)/T, where T is the time since the peer 

arrived to the system and k is the index of the piece immediately before the first missing 

piece. 

EWMA ( kreq, αααα):  Start playback when the start condition of at-least(kreq) is 

satisfied and the rate condition is satisfied by rseq = (L/K) / τseq, where τseq is calculated 

using an exponentially weighted moving average (EWMA). 

For all results presented here, the EMWA uses an exponential weight factor 

equal to 0.1 (i.e., the old estimation of τseq is given a weight 0.9 and the observed inter-

arrival time is given a weight 0.1).  τseq is initialized at the time the first piece is 
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retrieved (using its inter-arrival time).  When multiple pieces are inserted into the in-

order buffer at the same piece arrival, equal weight is given to each piece.  For example, 

if piece 3 was retrieved t before piece 4.  Assuming piece 5 and 6 have already been 

retrieved at the time piece 4 is retrieved, each of the three requests are considered as if 

retrieved in-order with inter-arrival time t/3. 

5.3.2 Performance Comparisons 

Making the same workload assumptions and using the same simulation 

methodology as in Section 5.2.2, the above startup policies are evaluated together with 

the Zipf(1.25) piece selection policy.  Whereas startup policies may be tuned for the 

conditions under which they are expected to operate, in highly dynamic peer 

environments with changing network conditions, it is important for such policies to be 

responsive, allowing the startup delays used to adapt as the network condition changes. 

To evaluate the above policies over a wide range of network conditions, scenario 

three and four from the previous section is used, together with their corresponding 

simulation setup.  In the scenario three the burstiness with which peers arrive is varied.  

Here, the exponential decay factor is varied four orders of magnitude, covering arrival 

patterns from close to steady state to a flash crowd (in which case all peers arrive close 

to instantaneously).  In scenario four arriving peers belongs to one of two classes, high- 

and low-bandwidth clients.  For this scenario the portion of peers is varied such that the 

network conditions is varied from good (where most peers are high-bandwidth clients) 

to a case with poor network conditions (where the majority of peers are low-bandwidth 

clients).  For both these scenarios, the following policies are compared: at-least(20), at-

least(60), at-least(160), LTA(20), and EWMA(20, 0.1). 

Figures 5.8 and 5.9 presents the average used startup delay and the percentage of 

pieces not retrieved in time of playback of that part of the file.  Again, note that missing 

pieces could be handled using various existing techniques, designed to handle missing 

data (such as error concealment, layered media, etc.).  Figure 5.8 presents the results for 

varying arrival patters.  These results suggests that both LTA(20) and EWMA(20,0.1) 

adjust well to the changing network conditions.  For close to steady arrival rate they 

both achieve low startup delays and as conditions become burstier, adjust their startup 

delays to maintain a low percentage of late pieces.  Of these two policies, LTA is 
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somewhat more conservative and is therefore able to achieve lower loss rates.  While the 

b-parameter can be tuned for certain network condition (e.g., in the upper part of the 

parameter space at-least(60) achieves both lower delays and lower percentage of late 

pieces than EWMA and  LTA), it is not necessarily good in practice, as network 

conditions may quickly change. 

Figure 5.9 illustrates similar graphs for high- and low-bandwidth clients as a 

function of the percentage of arriving clients that are low-bandwidth clients; the 

differences in responsiveness are even greater for this scenario.  By increasing the 

startup delays LTA(20) effectively adapts its startup delays such that the percentage of 

late pieces is consistently low and the delays used are comparable with all other policies 

achieving low loss rates for a particular peer mix.  EWMA(20) on the other hand is 

somewhat more aggressive, resulting in larger percentages of late pieces, whereas the at-

least(b) policies are non-responsive.  This is best illustrated by the straight lines and/or 

high loss rates observed by this policy.  Designed for highly dynamic environments, the 

characteristics observed by the LTA(b) policy is found promising.  This policy is 

relatively simple and uses a single parameter, in contrast to EWMA(b,α) which requires 

two parameters.  Using a long term average (LTA) of the rate at which the size of the in-

order buffer have changed, rather than an exponentially weighted moving average 

(EWMA), giving more bias towards more recently retrieved pieces, this policy is 

somewhat more conservative allowing the policy to avoid being fooled by temporary 

increases in the rate at which this buffer changes.  

    
 
 
 
 
 
 
 
 
 
 
Figure 5.8:  Exponentially Decaying Arrival Rates (u = 2, b = 6, 
λ(t) = λ0e

–ηt, λ0 = 128η / (1 – e–2η)). 
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5.4 Summary 

This chapter proposes a new approach to achieve peer-assisted streaming, in 

which adaptations of already existing peer-assisted download protocols, such as 

BitTorrent, are used to download pieces of a file in an order that allows streaming.  

Simple probabilistic piece selection policies are shown to allow peers to begin playback 

well before the entire file is downloaded.  While giving preference to earlier pieces, 

these policies effectively mediate the conflict between the goals of achieving high piece 

diversity (required for peers to effectively share pieces) and the in-order requirements of 

media file playback.  Further, promising results are obtained using a simple rule for 

when to start playback, which requires the number of pieces to exceed some (small) 

threshold, and the rate at which in-order pieces are retrieved to allow playback to begin 

(if that rate was to be maintained). 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9:  Heterogeneous Scenario with Poisson Arrivals with 
both High and Low Bandwidth Clients (λ = 64, ϕ = 0, uL = 0.4, 
bL = 1.2, uH = 2, bH = 6). 

(a, b) The Average Startup Delay used by High and Low Bandwidth Clients, Respectively. 

(c, d) The Percent Pieces that are not Retrieved in Time of Playback, for High and Low 
Bandwidth Clients, Respectively. 
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Chapter 6 

6 Conclusions 

This thesis is concluded with a short summary, a list of the main contributions, 

as well as a brief outline of potential future directions. 

6.1 Thesis Summary 

Chapters 1 and 2 describe and outline the research question, the goals of this 

thesis, and survey related work.  

Chapter 3 considers the problem of using scalable multicast protocols to support 

on-demand download of large files from a single server to potentially large numbers of 

clients.  Lower bounds were developed that indicate the best achievable performance.  

An optimized cyclic multicast protocol and two batching protocols, optimized for 

average and maximum client delay, were found to have significantly suboptimal 

performance over particular regions of the system design space, motivating the 

development of new hybrid protocols. 

In the case of homogeneous clients, the best of the new practical protocols that 

focus on improving maximum client delay (cyclic/cd,bot) yielded results within 15% of 

optimal, in all scenarios considered.  Similarly, the best of the new protocols designed to 

improve average client delay (cyclic/rbd,cot) yielded results within 20% of optimal.  

Both these protocols allow clients to begin listening to an on-going multicast if one is in 

progress at the times of their requests.  Both protocols also achieve efficient batching of 

clients through use of a batching delay prior to the start of each multicast transmission 

and by limiting the transmission duration.   

With the objective of minimizing the maximum client delay, cyclic/cd,bot uses a 

batching delay of fixed duration, and terminates each multicast transmission after 

delivering the full file or when a client completes reception of the file and there are no 

remaining listeners.  In contrast, with the objective of minimizing the average client 
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delay, cyclic/rbd,cot initiates each new multicast transmission only when the number of 

waiting clients reaches some minimum value.  The multicast is terminated when the 

clients that were waiting at the beginning of the multicast have completed reception, and 

the number of newly arrived clients still listening to the multicast drops below some 

minimum value. 

For heterogeneous clients, in all scenarios considered, the proposed optimized 

sharing protocol achieved within 25% of the optimal maximum client delay.  This 

protocol uses multiple channels to deliver the file data, and an analytic model to 

estimate the optimal amount of data that each class of clients should retrieve from each 

channel.  An interesting observation is that optimized sharing can substantially 

outperform send as late as possible, which is optimal in the homogenous environment. 

Chapter 4 considers the replica selection problem for systems exploiting both 

replication and request aggregation.  Two types of service aggregation are considered, 

batched service and fountain service.  For each type of service aggregation, policy 

classes of differing complexities were compared within the context of a simple system 

model. 

Results obtained by comparing optimal representatives under a simple cost 

model suggest that replica selection using dynamic system state information (rather than 

only proximities and average loads) can potentially yield large improvements in 

performance.  Within the class of dynamic policies, use of deferred rather than at-arrival 

replica selection has the potential to yield further substantial performance 

improvements, although only for fairly narrow ranges of model parameter values.  

Finally, within the class of deferred, dynamic replica selection policies, “local state” 

policies appear able to achieve reasonably close to the best possible performance. 

Chapter 5 considers systems in which clients are willing (or encouraged) to 

contribute with server capacity while downloading a file.  A new approach is proposed 

in which adaptations of already existing peer-assisted download protocols, such as 

BitTorrent, are used to download pieces of a file in an order that allows streaming.  Such 

protocols must include both (i) a piece selection strategy that effectively mediates the 

conflict between the goals of high piece diversity (achieved in BitTorrent using a rarest-
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first policy), and the in-order requirements of media file playback, and (ii) an on-line 

rule for deciding when playback can safely commence. 

Using event based simulations it is shown that simple probabilistic piece 

selection policies, giving preference to earlier pieces, allow peers to begin playback well 

before the entire file is downloaded.  These policies appear to effectively mediate the 

conflict between the goals of achieving high piece diversity (required for peers to 

effectively share pieces) and the in-order requirements of media file playback.  While no 

on-line strategy for selecting startup delays is expected to give close to optimal startup 

delays (without significant chance of playback interruption), promising results are 

obtained using a simple rule, which requires the number of pieces to exceed some 

(small) threshold, and the rate at which in-order pieces are retrieved to allow playback to 

begin (if that rate was to be maintained). 

6.2 Thesis Contributions 

The following summarizes the main contributions of this work. 

•  New single server bounds for the delivery of a single file.  Tight lower bounds on 

the average and maximum client delay for completely downloading a file, as a 

function of average server bandwidth used to serve requests for that file, for 

systems with homogenous clients.  A lower bound algorithm on the average 

server bandwidth used to serve requests from heterogeneous clients with 

different client bandwidth and maximum delay constraints, given a sequence of 

such requests. 

•  New near optimal single server download protocols for the delivery of a single 

file.  Relatively simple, near optimal (with regards to either average or maximum 

delay, given some average bandwidth usage), single server protocols for systems 

with homogenous clients.  A protocol that achieves close to optimal for systems 

in which clients are heterogeneous, with classes of clients with different client 

bandwidth and delay constraints.  

•  A classification and thorough performance comparison of policy classes in 

delivery (or service) systems using both service aggregation and replication 

techniques.  In particular, a simple cost model is developed in which (in many 
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cases optimal) representatives of classes of policies are compared, using both a 

batched and a fountain service model. 

•  A new approach to achieve peer-assisted streaming is advocated.  Building upon 

already existing scalable download protocols, such as BitTorrent, the proposed 

protocol splits the file into multiple pieces, uses a probabilistic piece selection 

policy with bias towards pieces needed sooner, and a simple startup rule to 

determine when playback can safely commence. 

6.3 Future Work 

The following outlines some open research problems that may provide 

interesting future work. 

•  While the above work focuses on the delivery of a single file, an interesting 

problem is presented when considering the dynamics of systems in which more 

files are delivered concurrently.  For example, a server with hundreds of files 

and a fixed server bandwidth (defining the maximum rate at which file data can 

be disseminated) may be required to, at each time instance, determine how much 

bandwidth (possibly none) to use for delivery of each file.  An additional aspect 

that would be interesting to consider in such systems is the rate at which clients 

may leave the system (balk) before being fully served. 

•  Determining true optimal “on-line” performance for batched service policies, in 

systems utilizing both service aggregation and replication, remains an open 

problem.  In fact, for the case of average delays, determining the optimal “off-

line” performance (or some other good bound) on the achievable performance 

remains an open problem.  Although the complexity of optimal “on-line” 

algorithms may be significant, it is believed that such algorithms may provide 

further insight into the desirable characteristics (and complexity) of real systems.  

•  To provide further insight into systems, utilizing both service aggregation and 

replication, more complex proximity and cost models could also be considered.  

For example, the distances to different replicas may be relatively different; 

causing the rate at which data is transferred (with TCP, for example) to depend 

on the client’s distance from the replica at which it is being served.   
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•  With heterogeneous client rates another interesting aspect is the affect of parallel 

downloading from multiple replica sites (each implementing service 

aggregation).  In such systems, clients with greater client bandwidth may be 

served by more replicas than clients with lower bandwidth.  With highly variable 

service times the impact of coordination among replicas may become important.  

For example, what is the cost of each replica acting independently, versus if all 

replicas are coordinated to achieve some common service goal?  

•  Developing a prototype implementation of BitTorrent-like streaming protocols 

on PlanetLab1, could allow for wide area experiments giving further insight into 

the feasibility of using on-line rules to determine when to start playback, in 

heterogeneous wide area environments with clients operating under varying 

network conditions.  A preliminary prototype is currently under development. 

•  To allow BitTorrent-like streaming protocols to better deal with time-varying 

reception rates, protocols could be implemented using layered media encoding 

techniques (e.g., [122, 142]).  More advanced protocols could also take more 

system information into consideration.  For example, to allow some minimum 

media quality an enterprise seeder may use information about the specific pieces 

possessed by individual peers, as well as their current play point, when 

determining which peers to serve, and which pieces to upload to each of these 

peers.  

                                                 
1 PlanetLab, http://www.planet-lab.org/, August 2006. 
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Appendix A 

7 Proof of Single Server Heterogeneous Lower Bound 

This appendix provides a proof of the heterogonous lower bound computed using the 
algorithm in Figure 3.10; i.e., that j

hlb
j BB ≤  for any realizable protocol.  In fact, this 

proof actually prove a stronger result, by considering a more general algorithm in which 
the expression giving hlb

jx  in Figure 3.10 is replaced by j
hlb

jjyL ε−− − ,1 , where the jε , 1 ��j 
��K, can be chosen to be any values such that .0,1 ≥≥− − j

hlb
jjyL ε  

The proof that this more general algorithm yields a lower bound on jB  uses strong 

induction on j.  As each client receives an amount of data equal to the file size L, in the 
case of just a single request 111 BLLBhlb =≤−= ε , thus establishing the induction basis.  

Now, assume that j
hlb
j BB ≤ , 11 −− ≤ j

hlb
j BB , …, 11 BBhlb ≤ , for some 1≥j .  The proof shows 

that 11 ++ ≤ j
hlb
j BB  by establishing that 

1,1, ++ −+≤−+ jkk
hlb

jk
hlb
k yLByLB ,                                                               (A.1) 

for k = 1, 2, …, j.  Note that for k = j, relation (A.1) implies that 
( )11,11 ++++ −−+=+= j

hlb
jj

hlb
j

hlb
j

hlb
j

hlb
j yLBxBB ε  

111,1, ++++ =+=−+≤−+≤ jjjjjj
hlb

jj
hlb
j BxByLByLB .    (A.2) 

Relation (A.1) is proven by strong induction on k.  For k = 1, since 11 ε−= LBhlb , 11 LB = , 
hlb

j
hlb

j xy 1,11,1 ++ = , and 1,11,1 ++ = jj xy , relation (A.1) is equivalent to 11,11,1 ε+≤ ++
hlb

jj xx .  If  
DA

j TT 11 ≥+ , 01,11,1 == ++
hlb

jj xx  and the relation holds.  Otherwise, using the expression giving 
hlb

ijx ,  in Figure 3.10, 11,11,1 ε+≤ ++
hlb

jj xx  is equivalent to 

11,1)1(1,1)1(11,1 },,,min{ εε +−≤ ++++ TbTbLLx jcjjcj .     (A.3) 

Since the amount of data received by the request 1 client from transmissions also 
received by the request j+1 client can be at most L, and at most bc(j+1) times the period 
over which such transmissions can occur, this establishes the induction basis. 

Suppose now that relation (A.1) holds for k, k-1, …, 1, for some k such that 1≥> kj , 

and consider the relation for k+1.  If D
k

A
j TT 11 ++ ≥ , then 01,11,1 == ++++ jk

hlb
jk yy , and the relation 

holds since from the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB  for k < j.  There 

are four cases to consider when D
k

A
j TT 11 ++ < , based on which term in the expression giving 

hlb
ijx ,  in Figure 3.10 yields the minimum (i.e., whether hlb

jkx 1,1 ++  is equal to hlb
kx 1+ , hlb

jkyL 1, +− , 
hlb

jkjkjc yTb 1,1,1)1( ++++ − , or 1,1)1( +++ kkjc Tb ). 

 
Case 1:  hlb

k
hlb

jk xx 11,1 +++ =  

Since relation (A.1) holds for k from the inductive hypothesis, 
( ) ( ) hlb

jk
hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
k

hlb
jk

hlb
k yLBxyLxByLB 1,1,11,11,11 ++++++++ −+=+−++=−+  

( ) 1,111,111,1, ++++++++ −+=−+−+≤−+≤ jkkjkkjkkjkk yLBxxyLByLB ,  (A.4) 

which establishes relation (A.1) for k+1 for this case. 
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Case 2:  hlb
jk

hlb
jk yLx 1,1,1 +++ −=  

Since from the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB  for k < j,  

( )hlb
jk

hlb
jk

hlb
k

hlb
jk

hlb
k xyLByLB 1,11,11,11 +++++++ +−+=−+  

( )( ) 1,11111,1,1 ++++++++ −+≤≤=−+−+= jkkk
hlb
k

hlb
jk

hlb
jk

hlb
k yLBBByLyLB ,  (A.5) 

establishing relation (A.1) for k+1 for this case. 
 

Case 3:  hlb
jkjkjc

hlb
jk yTbx 1,1,1)1(1,1 ++++++ −=  

From the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB  for k < j.  Also, since 

Tk+1,j+1 is the time from the arrival of request j+1 until the deadline of request k+1, and 
yk+1,j+1 is the total amount of data received by the request j+1 client from transmissions 
also received by at least one other client, with request indexed at most k+1, it must be 
that 1,1)1(1,1 +++++ ≤ jkjcjk Tby .  Therefore, 

( )hlb
jk

hlb
jk

hlb
k

hlb
jk

hlb
k xyLByLB 1,11,11,11 +++++++ +−+=−+  

( )( ) 1,1)1(11,1,1)1(1,1 ++++++++++ −+=−+−+= jkjc
hlb
k

hlb
jkjkjc

hlb
jk

hlb
k TbLByTbyLB  

1,111,1)1(1 +++++++ −+≤−+≤ jkkjkjck yLBTbLB ,     (A.6) 

establishing relation (A.1) for k+1 for this case. 
 

Case 4:  1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx  

This case is divided into sub-cases depending on the other requests, if any, whose 
deadlines fall between the arrival time and the deadline of request k+1. 

 
Case 4.1:  1,1)1(1,1 +++++ = kkjc

hlb
jk Tbx , and there is no request i ( ki ≤ ) such that 

D
k

D
i

A
k TTT 11 ++ ≤< . 
Since there are no clients with earlier request deadlines that are able to share the 

transmissions required for request k+1, LBB kk +=+1 .  From this fact together with 

Lxhlb
k ≤+1 , 1,1)1(1,11,1,1 ++++++++ ≤=− kkjcjkjkjk Tbxyy , and since relation (A.1) holds for k from 

the inductive hypothesis, it follows that  
( ) ( )hlb

jk
hlb

jk
hlb
k

hlb
k

hlb
jk

hlb
k xyLxByLB 1,11,11,11 +++++++ +−++=−+  

( ) ( )1,1)1(11, +++++ −+−+= kkjc
hlb
k

hlb
jk

hlb
k TbxyLB  

( ) ( )1,1)1(1, ++++ −+−+≤ kkjcjkk TbLyLB  

( ) ( ) 1,111,1)1(1, +++++++ −+≤+−++= jkkkkjcjkk yLBTbyLLB ,   (A.7) 

which establishes relation (A.1) for k+1 for this case. 
 

Case 4.2:  1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and there is at least one request i ( ki ≤ ) such that 
D

k
D

i
A

k TTT 11 ++ ≤<  and such that hlb
ji

hlb
ji yLx 1,11, +−+ −= . 

This case cannot occur since hlb
ji

hlb
ji yLx 1,11, +−+ −=  would imply that 01,1 =++

hlb
jkx , in 

contradiction to the assumption that 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx . 
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Case 4.3:  1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and there is at least one request i ( ki ≤ ) such that 
D

k
D

i
A

k TTT 11 ++ ≤<  and such that hlb
jijijc

hlb
ji yTbx 1,11,)1(1, +−+++ −= . 

Relationship 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx  and hlb
ji

hlb
jk yy 1,1, ++ ≥  implies that 

1,1)1(1,1,11,1,1 +++++++++ +≥+= kkjc
hlb

ji
hlb

jk
hlb

jk
hlb

jk Tbyxyy .  Since hlb
jijijc

hlb
ji yTbx 1,11,)1(1, +−+++ −= , and 

therefore 1,)1(1,1,11, ++++−+ =+= jijc
hlb

ji
hlb

ji
hlb

ji Tbxyy , this yields 1,1)1(1,)1(1,1 +++++++ +≥ kkjcjijc
hlb

jk TbTby .  

Using 1,1,11,1 +++++ −> jijkkk TTT , and the fact that 1,11,1)1( +++++ ≥ jkjkjc yTb , this implies that 

1,11,1 ++++ > jk
hlb

jk yy .  Together with the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB  

for k < j, this yields 

1,111,111,11 +++++++++ −+<−+≤−+ jkk
hlb

ikk
hlb

jk
hlb
k yLByLByLB ,    (A.8) 

which establishes relation (A.1) for k+1 for this case. 
 

Case 4.4:  1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and all requests i ( ki ≤ ) such that D
k

D
i

A
k TTT 11 ++ ≤<  (of 

which there is at least one), are such that  hlb
i

hlb
ji xx =+1, . 

Let n > 0 denote the number of such requests, indexed k+1-n through k.  Given that 
hlb
i

hlb
ji xx =+1,  for each such request i, 
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( )hlb
jk

hlb
k

hlb
jnk

hlb
nk xxyLB 1,111, ++++−− −+−+= .     (A.9) 

Since relation (A.1) holds for k-n from the inductive hypothesis, this implies 
( )hlb

jk
hlb
kjnknk

hlb
jk

hlb
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Consider now the total amount of data that the request j+1 client receives from 
transmissions also received by at least one of the clients with requests indexed k+1-n 
through k+1, but not received by any client with an earlier request deadline, i.e., 
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any client with an earlier request deadline, and at least L of this data must be transmitted 
after the arrival of request k+1 so as to serve this request.  (Note that all of the data 
received by the request k+1 client, must be from transmissions not received by any 
client with a request deadline earlier than that of request k+1-n, since such deadlines 
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and establishing relation (A.1) for k+1 for this case. 
 

Case 4.5:  1,1)1(1,1 +++++ = kkjc
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D
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relation.  Let U denote the set of requests that are (in)directly overlapping with request 
j+ 1 when considering only request j+1 and those requests i such that 1+≤ ki and 

iijc
hlb

ji Tbx ,)1(1, ++ = .   Note that 2|| ≥U , since by the assumptions of this case, request k+1 is 

in U as is at least one other request.  Let the index of the request in U with the earliest 
arrival time be denoted by e.  Note that if A

j
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hlb
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the inductive hypothesis on the main claim, 

1,1)1(11,11 +++++++ −+≤−+ jkjc
hlb
k

hlb
jk

hlb
k TbLByLB  

1,111,1)1(1 +++++++ −+≤−+≤ jkkikjck yLBTbLB , (A.13) 

which would establish relation (A.1) for k+1 for this case.  Assume in the following that 
A
j

A
e TT 1+> . 

Let V denote the set of requests i ( ki ≤ ) such that D
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Let UB  denote the total amount of data in the transmissions received by one or more 

of the set U clients.  Note that these transmissions would be sufficient for serving a 
shorter request stream including only the requests in the set U.   Therefore, from the 
inductive hypothesis on the main claim, UB  is lower bounded by the total amount of 
transmitted data that would be computed by the (more general, with the jε ) 
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which implies, since relation (A.1) holds for k+1-m from the inductive hypothesis, 
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Consider now the total amount of data that the request j+1 client receives from 
transmissions also received by at least one of the clients with requests indexed k+2-m 

through k+1, but not received by a client with an earlier request deadline, i.e., ∑
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with requests indexed k+2-m through k+1, from transmissions not received by a client 
with an earlier request deadline, and at least BU of this data is transmitted after the 
arrival of request e, as it is received by one or more set U clients.  (Note that all of the 
data received by set U clients, must be from transmissions not received by any client 
with a request deadline earlier than that of request k+2-m, since such deadlines occur 
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which establishes relation (A.1) for k+1 for this case. 
As the above cases are mutually exhaustive, relation (A.1) is established, and thus 

also the main claim. 
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Appendix B 

8 Asymptotic Analysis of Dynamic vs. Static Replica 
Selection 

Assuming that the probability that a request could receive service with more than one 
other request is negligibly small, the optimal static policy is for each request to be 
served by the local replica.  Under this assumption, for the batched service model, a 
request arrival occurring at time t only causes a service initiation (at time t + D) if no 
other request arrival has occurred within (t – D, t].  Using this observation, the total 
service delivery cost in a system with identical client group request rates (i.e., λ i = λ/N) 
can be calculated as 

( ) 




 −≈− D

N
LLe DN �

1�� /� ,        (B.1) 

where Taylor expansions have been used for the final expression.  For the fountain 
service model, on average a request is able to share half its service with a local request 
that arrives within D of itself.  Using this observation, the corresponding cost under the 
fountain service model can be approximated as 

( ) ( )( ) 
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As described in Section 4.2.4, the optimal dynamic policy is for each request to be 
served by the local replica if no previous request is waiting for service (in the case of 
batched service) or receiving service (in the case of fountain service) at the time of 
arrival of the request.  In the rare event that there is such a previous request, the cost is 
minimized if the new request shares its service (all in the case of batched service, or 
whatever service remains for the previous request in the case of fountain service) with 
this previous request (and, in the case of fountain service, receives the remaining portion 
of its service locally).   

Similar to the above analysis, the total service delivery cost using the batched and 
fountain service model can be calculated as 
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and 
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respectively.  With equation B.1 to B.4 being linear equations, D can easily be solved 
for.  With the batched service model the maximum client delay, using the optimal static 
and the optimal dynamic policy, respectively, can be calculated as 
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The corresponding delays, using the fountain service model, can be calculated as 
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For both service models, using these asymptotic limits and simple algebra, the 
asymptotic delay differences reduce to (N–1)(1–c) × 100%. 
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Appendix C 

9 Analysis of Heterogeneous Batched At-arrival Policy 

This appendix outlines an analysis of the optimal at-arrival replica selection policy for 
the fountain service model, with policy and the threshold parameters Ti, Ti�, and Ti�� 
defined in Section 4.3.1.2. 

As in the case of homogenous client groups, the analysis proceeds by considering the 
state of the system at an arbitrary time t under the operation of an optimal at-arrival 
policy.   Consider first a replica and client group i other than replica/group 1.  If there 
has been at least one request arrival from client group i in the time interval [t–L/r, t–Ti], 
replica i will be dispensing service at time t.  If there have been no requests from client 
group i but at least one request from some other client group j in the time interval [t – 
L/r, t–Ti] (and thus replica j is dispensing service at time t), all requests that arrive from 
client group i in the time interval [t–Ti, t] will be receiving service from a remote replica 
at time t.  If there have been no requests from any client group in the time interval [t–
L/r, t–Ti] but at least one request in the interval [t–Ti, t], and the first such request was 
from a client group other than group i, all requests that arrive from client group i in the 
time interval [t–Ti, t] will be receiving service from a remote replica at time t (note that 
the expected number of such requests must be conditioned on there being at least one 
request arrival, with the first such being from other than group i).  If there have been no 
requests from any client group in the time interval [t–L/r, t–Ti] but at least one request in 
the interval [t–Ti, t–Ti�], or no requests from any client group in the time interval [t–L/r, 
t–Ti��] but at least one request in the interval [t–Ti��, t], and the first such request was 
from client group i, then replica i will be dispensing service at time t.  (The above 
corresponds to the first four terms within the first set of curly brackets of equation 
(C.1).) 

The remaining case that has non-zero expected cost is where there have been no 
requests from any client group in the time interval [t–L/r, t–Ti�] but at least one request 
in the interval [t–Ti�, t–Ti��], and the first such request was from client group i.  In this 
case, all requests that arrive from client group i in the time intervals [t–Ti�, t–Ti��] and [t–
Ti��, t] will be receiving service from replica 1 at time t.  Referring to equation (C.1), 
terms six and seven in the first set of curly brackets correspond to the remote access cost 
of these requests, while terms eight and nine refer to the service cost of replica 1, 
initiated by these replica i requests (while compensating for the fact that the analysis for 
replica 1 does not take these request into consideration), at the times during the intervals 
[t–Ti�, t–max[T1, Ti��]] and [t–max[T1, Ti��], t–Ti��], respectively. 

The analysis for replica and client group 1 follows a similar approach.  In the 
resulting analytic expression for the total service delivery cost, as shown below, the 
terms for replica and client group 1 (within the second set of curly braces), neglect the 
fact that requests from other than client group 1 can cause replica 1 to be scheduled; this 
is compensated for with the last two terms for each replica/client group i (within the first 
set of curly braces): 
 



 

161 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) i
T

ii
TrL

N

i
ii

TrLTrLTrL feTcfeTceeer iiiiiii �/�

2

/�/�/� 1�1�1{ −−−

=

−−−−−− −−−+−+−∑  

 ( ) ( )( ) ( )( )( ) i
rLTrLTrLTrL feeee iii /�/�/�/� −′′−−′−−−− −+−+  

 ( ) ( ) ( )( )( )( ) ( ) ( )( ) iii
TrLTrL

i
TT

iiii
TrL TcfeefeTTcfe iiiii ′′−+−−+′′−′+ ′′−−′−−′′−′−′−− �11� /�/��/�  

( ) ( ) ( ) [ ]( )( ) ( )( )( )111
,max���/� �1��/�1 1111 Tceee i
TTTTTTrL iiii −−−+ ′′−′−−−′−′−−  

   [ ]( ) ( )( ) [ ] [ ] [ ]( )( )( )( )}1
0,����

111
/�,max/� 11/0,��	&,max�1 11 feTTTTcfee iii TT

iii
TrLTTrL −−′′−+′′−−+ ′′−−′′−−′′−−  

( )( ) ( ) ( )( ) ( )( ) 1
/�/�

11
/�/�/� 111111 �1{ feeTceeer rLTrLTrLTrLTrL −−−−−−−−− −+−+−+  

        ( ) ( ) ( )( ) }1�
11

/� 11 1�1 feTcfe TTrL −−− −−−+ ,     (C.1) 

where fi corresponds to the fraction of requests that are from client group i.  The 

correctness of this analysis has been checked using simulation. 

 


