
DRAFT
An Advanced Approach for Modeling and Detecting Software VulnerabilitiesI

Nahid Shahmehria, Amel Mammarb, Edgardo Montes de Ocac, David Byersa, Ana Cavallib, Shanai Ardia, Willy
Jimenezb

aDepartment of Computer and Information Science
Linköping University, SE-58183 Linköping, Sweden

bTélécom SudParis, 9 rue Charles Fourier, 91011 Evry Cedex, France
cMontimage, 39 rue Bobillot Paris 75013, France

Abstract

Context. Passive testing is a technique in which traces collected from the execution of a system under test are examined
for evidence of flaws in the system.

Objective. In this paper we present a method for detecting the presence of security vulnerabilities by detecting evidence
of their causes in execution traces. This is a new approach to security vulnerability detection.

Method. Our method uses formal models of vulnerability causes, known as security goal models and vulnerability detection
conditions (VDCs). The former are used to identify the causes of vulnerabilities and model their dependencies, and the
latter to give a formal interpretation that is suitable for vulnerability detection using passive testing techniques. We have
implemented modeling tools for security goal models and vulnerability detection conditions, as well as TestInv-Code, a
tool that checks execution traces of compiled programs for evidence of VDCs.

Results. We present the full definitions of security goal models and vulnerability detection conditions, as well as struc-
tured methods for creating both. We describe the design and implementation of TestInv-Code. Finally we show results
obtained from running TestInv-Code to detect typical vulnerabilities in several open source projects. By testing versions
with known vulnerabilities, we can quantify the effectiveness of the approach.

Conclusion. Although the current implementation has some limitations, passive testing for vulnerability detection works
well, and using models as the basis for testing ensures that users of the testing tool can easily extend it to handle new
vulnerabilities.

1. Introduction

The presence of vulnerabilities – security-related flaws
– in software has become a major concern in the software
industry. Although efforts are being made to reduce secu-
rity vulnerabilities in software, including advances in de-
velopment processes and tools, the number of vulnerabil-
ities and the number of computer security incidents that
result from exploiting them remains very high [1].

In this paper we present a novel model-based approach
to detecting evidence of vulnerabilities in traces from run-
ning software, a technique known as passive testing. Pas-
sive testing has proven to be very effective for detecting

IThe research leading to these results has received funding
from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 215995.

Email addresses: nahid.shahmehri@liu.se (Nahid Shahmehri),
amel.mammar@it-sudparis.eu (Amel Mammar),
edgardo.montesdeoca@montimage.com (Edgardo Montes de Oca),
david.byers@liu.se (David Byers), ana.cavalli@it-sudparis.eu
(Ana Cavalli), shanai.ardi@liu.se (Shanai Ardi),
willy.jimenez@it-sudparis.eu (Willy Jimenez)

faults. An application of this approach to the WAP pro-
tocol is given by Bayse et al. [2], who show how to use
passive testing for conformance testing of WAP protocol
implementations. Our approach differs from conventional
vulnerability testing methods in that it uses vulnerabil-
ity models that developers can inspect (and create) as the
basis for detection.

Today, there are a large number of techniques and tools
used in the software industry to improve software quality,
from formal verification and validation to static and dy-
namic code analyzers and testing tools [3, 4]. These tools
are very focused on specific types of vulnerabilities, such
as looking for insecure library functions, bounds checking
errors, and various types of buffer overflows [5, 6, 7]. How-
ever, many suffer from several disadvantages, including:

• It is often difficult for users of the tools to know
which vulnerabilities any given tool actually deals
with.

• Users have no assurance that their tools will be kept

Preprint submitted to Elsevier February 10, 2012

DRAFT -- DO NOT DISTRIBUTE

DRAFT
up-to-date with changing risks and threats, and have
little ability to keep the tools up-to-date without re-
lying on the tool vendor.

Our approach addresses these issues: by using models
as the basis for detection, developers can easily see exactly
what the tool detects, and the tool can be extended simply
by adding new models, as new vulnerabilities are discov-
ered. Creating new models requires some security exper-
tise, particularly if they contain entirely new subgoals, but
the process is easy to learn for experienced developers.

The detection models are based on security goal mod-
els (SGMs) [8], that model the causes of vulnerabilities.
SGMs are an extension of vulnerability cause graphs (VCGs) [9],
developed at Linkï¿1

2ping University. VCGs were devel-
oped for software process improvement; SGMs add flexibil-
ity and expressive power that is necessary in applications
such as passive testing. An SGM can show the potential
causes of a vulnerability, as well as how the causes are re-
lated to each other. SGMs can be used to determine how to
avoid introducing vulnerabilities, and they facilitate com-
munication between the different stakeholders in software
development (this was a key idea behind the SHIELDS
project [10]). Our approach to passive testing uses SGMs
as the basis for detecting evidence of vulnerabilities in ex-
ecution traces.

Although the interpretation of the structure of an SGM
is well defined, individual causes are described using nat-
ural language. As a result, SGMs alone are not suitable
for use by automatic tools for vulnerability detection. We
have developed a formal language, called vulnerability de-
tection condition (VDC), that allows us to use SGMs for
vulnerability detection. This is accomplished by defining
each cause with a logical predicate, then composing the
individual predicates into a VDC based on the transfor-
mation of the SGM into scenarios. The result is a precise
and unambiguous definition of each cause, and by exten-
sion the entire SGM.

By basing VDCs on SGMs, we tie testing to other
security-related activities that are supported by SGMs,
such as manual inspection, static analysis and process im-
provement [11]. Furthermore, by using SGMs, the effort
spent creating one VDC is trivially reused when VDCs are
created for vulnerabilities with similar causes.

Known kinds of vulnerabilities account for nearly all
reported software security problems, so the ability to de-
tect them is a powerful tool for preventing security vul-
nerabilities during development. Since SGMs and VDCs
are abstractions of concrete vulnerabilities, the model de-
veloped for a specific vulnerability can be used to detect
similar vulnerabilities.

Finally, we introduce the TestInv-Code tool, developed
by Montimage, that uses passive testing techniques and
VDCs to detect vulnerabilities in C programs. We use the
TestInv-Code tool to evaluate the effectiveness of the ap-
proach, detecting similar vulnerabilities in several different
programs.

In summary, the main contributions in this paper are
the following:

• A complete definition of the security goal model lan-
guage, as well as a method for creating security goal
models for vulnerabilities (see sections 2 and 3).

• A formal approach to generate vulnerability detec-
tion conditions (VDCs) to express security goal mod-
els in a rigorous way without ambiguity (see sec-
tions 4 and 5).

• An automatic method, based on VDCs, and a tool
TestInv-Code, for automatically detecting vulnera-
bilities (see sections 5 and 6).

• An evaluation of the proposed approach on several
vulnerabilities and programs written in the C lan-
guage. The vulnerabilities to be detected have been
modeled by an SGM for which a VDC has been gen-
erated (see section 7).

2. Security Goal Models

A security goal model (SGM) models how a given goal
can be achieved. The language was developed as a more
expressive replacement for vulnerability cause graphs [12]
(used to model the causes of vulnerabilities), security ac-
tivity graphs [13] (used to model the alternatives for per-
forming security-related activities), security goal indica-
tor trees [14] (used to model the process of goal-driven
inspection) and attack trees [15] (used to model how to
perform attacks). SGMs provide richer relationships be-
tween model elements, a key property when being used for
automated applications such as passive testing.

In the context of an SGM, a goal is anything that af-
fects security or affects some other goal; it is not necessar-
ily something desirable. Typical examples are vulnerabil-
ities, security functionality, security-related software de-
velopment activities, and attacks. An SGM is a directed
acyclic graph. Vertices represent subgoals (specifically,
vertices refer to subgoals, and multiple vertices may refer
to the same subgoal); solid edges represent dependencies
between subgoals; and dashed edges can be thought of as
modeling information flow.

This section is intended to give a flavor of the models
and what they can express. The full syntax and semantics
of SGMs is presented in section 3.

Figure 1 shows an SGM that models a successful attack
on an on-line software distribution service. The root of the
SGM is replace software (a successful attack), and the re-
maining vertices are subgoals. Those drawn with angled
sides are themselves modeled using SGMs. A subgoal can
be achieved only if its predecessors are achieved: whether
all predecessors, or just one, are required is indicated by
and and or, respectively. The dashed edges at the top of
the graph can be thought of as representing information
flow between subgoals: in this model the person influenced

2

DRAFT -- DO NOT DISTRIBUTE

DRAFT
in influence person is either the admin from identify ad-
min or the developer from identify developer, depending
on which of these subgoals is achieved.

Get developer to
replace software

Identify
developer

Unauthorized
upload

Get access to
devel. accountUpload software

Get password
database

Steal password
database

Get passwords
from admin

Identify admin

Get credentials
from developer

Influence
person

Perform system
intrusion

Eavesdrop on
authentication

Website SQL
injection

ANDAND

AND

AND

devel

OR

OR

OR

admin

OR

Get admin to
replace software

AND

Replace software

person

Figure 1: Security goal model for the attack replace software

The model in figure 1 shows numerous ways in which
the attack replace software can be performed, such as get-
ting a developer to replace the software, after identifying
and influencing them (perhaps through threats or bribes);
or performing an unauthorized upload after successfully
getting access to a developer account by stealing the pass-
word database through an SQL injection attack.

Figure 2 shows an SGM for a buffer overflow vulnera-
bility, including an SGM for one of the subgoals. Here, the
goal is the presence of the vulnerability, and the elements
of the model are potential (possibly partial) causes of the
vulnerability. This is the type of SGM we want to use
with passive testing. A new feature in this example is the
subgoal drawn with a black fill, use adaptive buffers. This
is a counteracting subgoal, i.e. a subgoal that counteracts
the overall goal. Again, the dashed lines can be thought
of as information flow.

The model in figure 2 indicates two ways in which the
vulnerability can be caused. In both cases we have a pro-
gram that does not use adaptive buffers and accepts data
read from user. One way the vulnerability is caused is hav-
ing the data read from user used in an unchecked integer
arithmetic, the result of which is used as the size parame-
ter in an unsafe use of malloc/calloc. The other way the
vulnerability can be caused is to copy data within a loop,
without a range check, when the loop is controlled by data
read from the user.

3. The SGM language

The definition of the SGM language consists of a syn-
tactic domain and abstract syntax (elements that make up

Security goal model for the vulnerability

CVE-2009-1274

Unsafe use of malloc/calloc

Unchecked integer
arithmetic

Data read from user

Data copied within loop

OR

size

result

params

limit location

code

data

Use adaptive buffers

Code controlled by
range check

<<uses>>

<<uses>>

Security goal model for the subgoals unsafe use of malloc/calloc

Unsafe use of malloc/calloc

Failed to check input
parameters to malloc

Use of malloc/calloc/
realloc/alloca

The return value of malloc is
not checked

OR

result

value

buffer_size

param

buffer

size

<<prerequisite>> <<prerequisite>>

Figure 2: Security goal model for the vulnerability CVE-2009-1274

a model and how they can be combined), a visual represen-
tation (the symbols we use in the models), and a semantic
transformation from the syntactic domain to a semantic
domain. For a complete treatment of these terms as ap-
plied to modeling, see ‘Meaningful Modeling: What’s the
Semantics of “Semantics”’ [16].

3.1. Syntax
Figure 3 shows the abstract syntax of the SGM lan-

guage in a UML class diagram. Elements with italicized
names are abstract and cannot appear directly in mod-
els. All generalizations are disjoint (members of a general
class can be members of only one of its specializations)
and complete (no specializations other than those shown
exist) unless otherwise specified (this diagram is part of
the larger SHIELDS metamodel [17], which is why some
generalizations are incomplete and why all elements are
specializations of Resource).

The Root is a vertex that is reachable through depen-
dence edges from all subgoal elements. The root cannot
have any successors through dependence edges. Returning
to the examples in section 2, the roots are the vertices at
the bottom of each graph.

3

DRAFT -- DO NOT DISTRIBUTE

DRAFT
class SGM (Compa...

SubgoalRoot

Vertex

Operator

And Or ContributingSubgoal CounteractingSubgoal

Edge

DependenceEdge

Resource
Core::CoreElement

SGM

SGMElementResource
Core::ModelElement

Resource
Core::Model

AnnotationEdge

Annotation

InformationEdge

InformationPort

+ name: string

InputPort OutputPort

Stereotype

+ name: string

Input Output

+dependents 0..*+source 1

+graph
1

+edges

0..*

+graph

1
+vertices

1..*
+graph

1

+root 1

+modelElements

0..*

+core 1

{incomplete}

+dependsOn 0..*+target 1

+ports

0..*

+goal

1

+element 0..*+stereotype

0..*

+target
1

+dependsOn0..*

{incomplete}

+source1
+dependents0..*

+port 1

+owner 0..1

+edge

0..*

+annotation 1

+annotations 0..*

+annotatedElement

1

+port 1

+owner 0..1

Figure 3: Abstract syntax for the security goal model language

A Subgoal vertex represents a goal that contributes to
(contributing subgoal) or counteracts (counteracting sub-
goal) the overall goal that the security goal model mod-
els. Every subgoal vertex must be associated with exactly
one subgoal (subgoal vertices refer to subgoals, so multiple
vertices can refer to the same subgoal). A subgoal vertex
must have at most one predecessor (either an operator or
a subgoal) and at least one successor through dependence
edges. Apart from the roots, all vertices in figures 1 and 2
are subgoals. Those filled with black are counteracting;
the others are contributing.

A DependenceEdge is a directed edge that repre-
sents any kind of dependence between subgoals and/or
operators. An edge from A to B indicates that in order
to fulfill the overall goal, both A and B must be fulfilled
(assuming they are not counteracting). The reason for a
dependence edge can be specified using stereotypes. All
straight, solid edges in the examples in section 2 are de-
pendence edges.

Operators represent logical combinations of depen-
dencies, either And or Or. Every operator must have at
least one predecessor through a dependence edge (although
two or more is typical) and exactly one successor through
a dependence edge. Operators are visible as straight or
curved lines (together with the words and or or) across
the dependence edges of the examples in section 2.

An Annotation is an arbitrary comment. Annota-
tions may be associated with other model elements through
AnnotationEdges. None of the examples in section 2
contains annotations.

A Stereotype is an annotation on an edge, usually

a dependence edge, used to explain why the edge exists.
While the reason for including an edge does not affect
whether the overall goal is fulfilled or not, it can make the
graph easier to understand. The SGM in figure 2 demon-
strates the stereotypes uses and prerequisite. Table 1 lists
the stereotypes we have identified to date.

Table 1: Stereotypes identified in SGMs to date

Name Explanation

causes A subgoal is the direct consequence of
another.

prerequisite A subgoal cannot be fulfilled unless
another has also been fulfilled. For
example, the existence of a logging
component is a prerequisite to messages
being sent to the logging component.

uses An operation uses the result of another.
For example, a memory allocation may
use the result of an unchecked
multiplication.

Subgoals can have one or more InformationPorts.
Each port is either an InputPort, which represents some
information used in the subgoal, or anOutputPort, which
represents information produced by the subgoal. The un-
checked integer arithmetic subgoal in figure 2 shows how
information ports can be used: the subgoal has an input
port representing operands and an output port represent-
ing the result.

4

DRAFT -- DO NOT DISTRIBUTE

DRAFT
Information ports can be connected using Information-

Edges, which are used to add constraints to individual
subgoals. For example, the edge from unchecked inte-
ger arithmetic to unsafe use of malloc/calloc in figure 2
signifies that the vulnerability may occur when the re-
sult of unchecked integer arithmetic is used in an unsafe
call to malloc. The vulnerability does not occur if both
unchecked arithmetic and unsafe calls to malloc exist, but
are unrelated.

An information edge is directed and may originate at
any port, but must terminate at an input port. An edge
from A to B signifies that the information at port B is the
same as the information at port A, provided that A and
its dependencies are fulfilled.

The curved, dashed edges of the examples in section 2
are information edges; the names of the information ports
they are connected to are also shown.

Input and Output vertices link the ports of subgoals
to their models. If a subgoal E is modeled by SGM G,
then G contains one input vertex for each input port of E,
and one output vertex for each output port of E. Every
input vertex has one output port and every output vertex
has one input port. The security goal model for unsafe
use of malloc/calloc in figure 2 contains one input port at
the top, labeled size, and an output port at the bottom,
labeled buffer.

Model is the supertype of all models, and ModelEle-
ment is the supertype of all model elements. These are
abstract, and thus never instantiated directly. CoreEle-
ment represents atoms of security knowledge, such as sub-
goals. It is through this supertype that models can be
related to each other: models are representations of core
elements, and model elements such as subgoal vertices re-
fer to core elements.

Elements SGMElement, Vertex, and Edge are ab-
stract, and thus never instantiated directly. The SGM
element represents an entire SGM.

3.2. Visual representation
Elements in the syntactic domain are visually repre-

sented as shown in table 2. Subgoals and dependence edges
were chosen to be similar to corresponding elements in
attack trees, vulnerability cause graphs, security activity
graphs, and security goal indicator trees. Operations are
reminiscent of Schneier’s attack tree notation [15]. The de-
sign of the information edge was chosen to be visually dis-
tinct from dependence edges (bent, not straight, dashed,
not solid). The dashed line reflects that information edges
are less crucial to the model than dependence edges. The
design of inputs and outputs are inspired by notation used
in the Taverna workflow system [18].

3.3. Semantics
The full semantics of the SGM language is defined as

two separate transformations: the first is a syntactic trans-
formation that translates an object graph adhering to the

abstract syntax into a 6-tuple, replacing the operators, in-
put and output vertices with more general relations. The
second is the semantic transformation that translates the
6-tuple into a set of scenarios, each of which describes a
valid way to fulfill the modeled security goal. The sce-
narios can then be interpreted in a manner appropriate to
each individual application; in this paper they are used to
create VDCs; in the SHIELDS project we translated them
to Datalog [19], for use in static analysis [11].

3.4. Definitions
First we introduce some common notation: P(V) de-

notes the powerset of V ; P+(V) denotes the set of non-
empty subsets of V . M(V) is the set of sub-multisets
of multiset V and M+(V) is the set of non-empty sub-
multisets of multiset V . Multisets are written as {{ . . .}}.
The distributed product of sets of multisets is defined as
W ⊗ V = {v] w|v ∈ V,w ∈ W}. The operator

⊗
i∈I is

the generalization of ⊗.
Given a relation R ⊆ N ×M+(N ′), where N ′ ⊆ N ,

we say that n2 is reachable through R from n1 iff there
exists an element (n1, X) in R such that n2 ∈ X or n2

is reachable through R from any element in X. We say
that R is acyclic if there is no element n such that n is
reachable through R from itself.

Table 3 lists the basic domains and functions used in
the definition of the translations, as well as in the Datalog
interpretation.

Table 3: Domains used in the semantic transformation for SGMs

Name Description

SGM The universe of all
security goal models

Node The universe of all SGM
subgoals

Port The universe of all SGM
ports

Type The universe of all type
names (see figure 3).

IE = Port×Port The universe of all
information edges

Scenario =
M+(Node)× P(IE)

The universe of all
scenarios

Suite = P(Scenario) The universe of all
scenario suites

Types :
Node→ P+(Type)

The types of a node.

We use a definition of security goal models that elimi-
nates operators, input vertices and output vertices. Oper-
ators are replaced by the→d relation, which maps a vertex
n to a set whose elements are multisets of vertices that n
depends on. The ports of all input and output vertices are
associated with the SGM root instead.

5

DRAFT -- DO NOT DISTRIBUTE

DRAFT
Table 2: Visual representation of security goal model elements

Symbol Element

Vertex representing a subgoal that is not associated with a security goal model. A
is a contributing subgoal; B is a counteracting subgoal.

Vertex representing a subgoal associated with a security goal model. A is a
contributing subgoal; B is a counteracting subgoal.

Root.

<<type>> Dependence edge with stereotype. B depends on A. The edge has stereotype type.

Note annotation.

Annotation edge; A is an annotation for B.

OR AND
Operation or and operation and, with three operands each. Text labels are
optional.

src dst
Information edge. There is an information edge connecting information port src of
vertex A to information port dst of vertex B.

src > > dst
Port type indications: src is an output port and dst is an input port. These
indications are optional.

Input (named input) and output (named output).

Definition 1 (Security Goal Model, SGM). A secu-
rity goal model T is a 6-tuple (N,P,node,→i,→d, n0),
where N is a finite subset of Node such that n0 ∈ N ; P is
a finite subset of Port; node is a function node : P → N
denoting the node that a given port belongs to; →i is fi-
nite acyclic relation →i ⊆ P × P denoting the informa-
tion edges in the SGM; →d is a finite acyclic relation
→d ⊆ N×M+(N\{n0}) denoting the dependencies in the
SGM; and n0 is the root of the SGM. The set of end nodes
of the SGM T is defined as E(T) = {n ∈ N |@x : n→d x}.
All ni ∈ N\{n0} must be reachable through →d from n0.

3.5. Translation from graphical notation
Let G be an SGM in graphical notation. We define

the helper sets V,W,X and helper function D : Node →
P(M+(Node)):

V = {n ∈ G .vertices|Types(n) ∩ {Input,Output} 6= ∅}
W = {n ∈ G .vertices|Subgoal ∈ Types(n)}
X = {e ∈ G .edges|InformationEdge ∈ Types(e)}

D(n) =



{{{n}}} if n ∈W⋃
p∈n.dependsOn

D(p) if Or ∈ Types(n)

⊗
p∈n.dependsOn

D(p) if And ∈ Types(n)

The set V is the set of input and output vertices. These
are not included in the 6-tuple, but their ports will be as-

sociated with the root. The set W is the set of all subgoals
and the set X is the set of all information edges. Finally,
the function D encodes the effects of operations, which are
not included in the 6-tuple. We can now derive the SGM
T = (N,P,node,→i,→d, n0) as follows:

N = W ∪ {G .root}

P = {n.port |n ∈ V } ∪ (
⋃

n∈W
n.ports)

node = {p 7→ n|n ∈W : p ∈ n.ports}∪
∪{p 7→ n0|∃n ∈ V : p = n.port}

→i = {(s, d)|∃e ∈ X, s = e.source, d = e.target}
→d = {(n, s)|n ∈ N,n.dependsOn 6= ∅,

s ∈ D(n.dependsOn)}
n0 = G .root

The set N is the set containing all subgoals and the
root. The set P is constructed by collecting all ports from
both input and output vertices, and from subgoals. The
node function is constructed by mapping each port to the
subgoal it was associated with, and ports associated with
input and output vertices to the root. The →i relation
is essentially a copy of all information edges, with edges
moved from input and output vertices to the root. The
construction of the →d relation maps non-end nodes to
their predecessors in the graph, with the effects of opera-
tions accounted for.

6

DRAFT -- DO NOT DISTRIBUTE

DRAFT
3.6. Transformation to scenario suites

The semantics of a security goal model is defined in
terms of scenarios and scenario suites. A scenario is a
set of subgoals together with the information edges that
connect them. A scenario suite is a set of scenarios. The
semantics of an SGM is the scenario suite that contains all
scenarios that represent ways to fulfill the SGM.

Let T be an SGM (N,P,node,→i,→d, n0). The se-
mantic transformation of T , S[[_]] : SGM → Suite is
defined by:

S[[T]] = {(b, e)|b ∈ N [[n0]], e = I(b)}

N [[n]] =


{{{n}}} if n ∈ E(T)

{{{n}}} ⊗ (
⋃

n→d X

⊗
m∈X

N [[m]]) if n /∈ E(T)

I(b) = {(x, y) ∈ →i |node(x) ∈ b,node(y) ∈ b}

The semantic transformation S[[T]] is valid if, and only if,⋃
(b,e)∈S[[T]] e =→i (i.e. every information edge is included

in some scenario).

3.7. Example of the semantic transformation
Figure 4 is the SGM shown in figure 2 (causation of

vulnerability CVE-2009-1274) with shorter names. The
semantic transformation consists of two steps: translation
from the graphical notation followed by transformation to
scenario suites.

Translation from the graphical notation yields the SGM
T = (N,P,node,→i,→d, n0), where:

N = {A,B,C,D,E, F,G}
P = {p1, p2, p3, p4, p5, p6, p7}

node = {p1 7→ B, p2 7→ C, p3 7→ C, p4 7→ D,

p5 7→ E, p6 7→ E, p7 7→ F}
→i = {(p1, p2), (p3, p4), (p1, p5), (p6, p7)}
→d = {(B, {{A}}), (C, {{B}}), (D, {{C}}), (E, {{B}}),

(F, {{E}}), (G, {{D}}), (G, {{F}})}
n0 = G

In this 6-tuple N contains the subgoals and the root,
P is the set of all ports, node maps ports to the vertices
they belong to,→i is the set of information edges, and→d

the set of dependencies. Note the values of G→d n: the or
operation has resulted in two tuples involving G; had there
been an and operation instead, there would have been a
single tuple, (G, {{D,F}}).

The next step transforms the 6-tuple T into a scenario
suite. The fact that there are two tuples (G,_) in→d will
cause the scenario suite to contain two distinct scenarios:

S[[T]] = {({{A,B,C,D,G}}, {(p1, p2), (p3, p4)}),
({{A,B,E, F,G}}, {(p1, p5), (p6, p7)})}

G

D

C

B

E

OR

p4

p3

p2 p5

p6

p7

p1

A

F

Figure 4: Security goal model for the causes of CVE-2009-1274 (sim-
plified names)

In other words, the goal modeled can be achieved in
two different ways; in this case that means there are two
ways to cause the modeled vulnerability. When performing
passive testing, we will attempt to detect each scenario
expressed by the SGM.

This example (indeed, none of the examples in this pa-
per) require the use of multisets. Multisets are required
to allow a given node to appear more than once in a sce-
nario, but models where this is true are, in our experience,
atypical. Figure 5 shows a model with a single scenario,
in which node A appears twice.

G

B

A

C

AND

Figure 5: Security goal model where multisets are required in the
semantic transformation

3.8. Creating security goal models
Security goal models that model vulnerabilities are cre-

ated using a process similar to a typical root cause anal-
ysis. Starting with the root, subgoals are incrementally
identified until a complete model has been created. The
complete model is then subjected to a validation process
to assure its quality. Ideally, SGMs would be created using
a tool that allows the reuse of subgoals from other models
– in our experience similar vulnerabilities will have simi-
lar subgoals. The complete procedure for creating SGMs
is described in SHIELDS project deliverable D2.3 [17]; a

7

DRAFT -- DO NOT DISTRIBUTE

DRAFT
tool for editing security goal models that supports reuse
through the SHIELDS vulnerability repository is available
from the SHIELDS website [10].

4. Passive testing for vulnerability detection

Passive testing is a testing method that detects faults
by examining the traces of a software system without the
need for specific test inputs [20]. In other words, pas-
sive testing is meant to detect faults in a system under
test (SUT) by observing its behavior, or other observable
characteristics, ideally without interfering at all with its
normal operation. Basically, this testing technique con-
sists of collecting traces produced by the SUT and trying
to detect deviations or faults by comparing these traces to
a formal model. Trace collection typically impacts perfor-
mance, but does not require the SUT to be run with e.g.
special test vectors. The formal model can be a specifi-
cation [21, 22, 23] of the underlying system or the prop-
erties [2, 24, 25] that the SUT must fulfill. For example,
one approach to passive testing is to use a Finite State
Machine (FSM) to model the expected behavior of a sys-
tem. In this way it is possible to compare the execution
traces to the FSM in order to detect faults in the imple-
mentation. Passive testing has been used in many different
contexts, e.g. on an FSM model of a network, in network
management to detect configuration provisioning and in a
GSM-MAP protocol [26].

TestInv-Code, developed by Montimage, is a prototype
passive testing tool that accepts formal vulnerability mod-
els written using VDCs. It detects vulnerabilities in an
application by analyzing the traces of the code while it is
executing. The traces used by TestInv-Code are the as-
sembly code instructions that are being executed. These
are produced by executing the program under the control
of the TestInv-Code tool.

In order to use the TestInv-Code tool, the first step is
defining the vulnerability causes that are of interest. Start-
ing from the SGM and VDC models, a set of conditions
that lead to a vulnerability are derived. These conditions
are formally specified as regular expression-like rules.

Thus, passive testing using TestInv-Code proceeds along
the following steps:

1. Vulnerability modeling. The vulnerability to be de-
tected is modeled with an SGM.

2. Formal definition of causes. A security expert asso-
ciates a predicate with each cause. The predicates
precisely define what the testing tool will look for in
the execution traces. Note that each predicate needs
to be implemented by the tool.

3. Conversion of SGM to VDC. A VDC for the entire
vulnerability is constructed automatically from the
SGM by using the structure of the SGM and the
formal definitions of each individual cause and iden-
tifying the causality between each cause.

4. Vulnerability checking. Finally, TestInv-Code checks
for evidence of the vulnerability during the execu-
tion of the program. Using the VDCs and the cor-
responding rules, it will analyze the execution traces
to produce messages identifying the vulnerabilities
found, if any, indicating where they are located in
the code.

It must be stressed that the first two steps are done
manually, but only once per class of problem to be treated.
The other steps are automated except for some conditions
where the procedure needs input from the user. User in-
put is required when a condition cannot be automatically
determined by the tool because the condition is such that
it produces no evidence in the execution trace.

In section 6 we show a few of the rules to illustrate how
VDCs are used by TestInv-Code to detect vulnerabilities.

Executable
code

Verdict

SGMs VDCs

Execution and test engine

VDC syntax
checker

VDC storage

XML input Input

Output

States of
VDCs

States of
variables

Figure 6: Passive testing for vulnerability detection.

Figure 6 depicts the passive testing architecture for
vulnerability detection. As shown, the TestInv-Code tool
takes as input:

1. The VDCs. The file containing the vulnerability
causes formally specified using VDCs in an XML for-
mat [17, 11].

2. The executable. The Executable Linked Format (ELF)
file for the application that is to be tested. This file
contains the binary code of the application. The tool
will use this to execute the application and analyze
its execution to detect any of the VDCs provided as
input. Note that to determine the line of source code
where the vulnerability occurs, the file must include
debug information (i.e. symbolic debugging table).
If this is not available, then the tool will only indi-
cate the address of the instruction in the ELF file
where it detected the vulnerability.

8

DRAFT -- DO NOT DISTRIBUTE

DRAFT
5. Vulnerability detection conditions

An SGM can show how a software vulnerability can be
caused. The different causes in the model provide informa-
tion about possible problems in the code; such information
can be used as the requirements in order to test software
for vulnerability detection. Vulnerability Detection Con-
ditions (VDCs) are then a formal interpretation of SGMs
that model software vulnerabilities. The aim is to formally
define the causes in the SGM in order to detect their oc-
currence in a piece of software.

Since causes are expressed in natural language and can
represent anything, including conditions or events that an
automatic tool cannot interpret (e.g. training of the pro-
grammer or business issues), it is possible to formally de-
fine and automatically detect only a subset of causes given
by the SGM. Such causes are formalized using two prede-
fined templates. A template is a table with specific and
fixed fields conceived to systematically extract information
required for software testing. Once filled, the templates are
automatically processed to generate the VDCs as well as
any other information useful for testing. A more formal
definition of this concept follows.

Definition 2. (Vulnerability Detection Condition). Let
Act be a set of action names, Var be a set of variables, and
P be a set of predicates on (Var ∪ Act). A vulnerability
detection condition VDC is of the form (square brackets
denote an optional element):

VDC ::= a/P (Var ,Act) | a[/P (Var ,Act)];P ′(Var ,Act)

where a denotes an action, called a master action, that pro-
duces the vulnerability, P (Var ,Act) and P ′(Var ,Act) rep-
resent any predicates on variables Var and actions Act . A
vulnerability detection condition a/P (Var ,Act) means that
the master action a produces a vulnerability when it occurs
under specific conditions denoted by predicate P (Var ,Act).

A vulnerability may also occur due to the action that
follows the master action. That case is represented by

a[/P (Var ,Act)];P ′(Var ,Act)

This means that the master action a used under the op-
tional conditions P (Var ,Act) is followed by a statement
whose execution satisfies P ′(Var ;Act). Naturally, if ac-
tion a is not followed by an action, the predicate P ′(Var ,Act)
is assumed to be true.

Intuitively, VDCs are composed of actions and condi-
tions. An action denotes a particular point in a program
where a task or an instruction that modifies the value of
a given object is executed. Some examples of actions are
variable assignments, copying memory or opening a file. A
condition denotes a particular state of a program defined
by the value and the status of each variable. For a buffer,
for instance, we can find out if it has been allocated or not.

More complex vulnerability detection conditions can
be built inductively using the different logical operators
according to the following definition:

Definition 3. (General Vulnerability Detection Conditions).
If VDC 1 and VDC 2 are vulnerability detection conditions,
then (VDC 1 ∨VDC 2) and (VDC 1 ∧VDC 2) are also vul-
nerability detection conditions.

5.1. VDC examples
In order to clarify the concept we present some ex-

amples of VDCs. First, consider that we want to define
a vulnerability detection condition to detect if a certain
value y is assigned to a memory variable x, but the mem-
ory space for x has not yet been allocated. We can define
the VDC as follows:

VDC 1 = Assign(x, y)/IsNot_Allocated(x)

In the case of programming languages like C/C++,
there are some functions that might lead to a vulnerabil-
ity if they are applied on out-of-bounds arguments. The
use of a tainted variable as an argument to a memory al-
location function (e.g. malloc) is a well-known example
of such a vulnerability, expressed by the vulnerability de-
tection condition VDC 2 below. A variable is tainted if
its value is obtained from a non-secure source. This value
may be produced by reading from a file, getting input from
a user or the network, etc. Note that a tainted value can
be untainted during the execution of the program if it is
checked to determine if it has an acceptable value.

VDC 2 = memoryAllocation(S)/tainted(S)

A good programming practice is to verify the return
value from any allocation function. The following vulner-
ability detection condition VDC 3 detects the absence of
such verification:

VDC 3 = (u:=memoryAllocation(S));notChecked(u, null)

5.2. Creating vulnerability detection conditions from SGMs
As we have mentioned previously, the aim of VDCs

is to formally define the causes in the SGM in order to
detect their occurrence in a piece of software. Therefore
the process begins with the selection of the vulnerability
of our interest with its corresponding SGM model. Then
VDCs are created following four steps:

1. analyze the SGM that represents the vulnerability;
2. extract the testing information using templates;
3. automatically process the templates to obtain the

VDCs; and
4. define the global VDC for the vulnerability.

These steps are discussed in detail in the following sections.

5.2.1. Analyze the SGM that represents the vulnerability
For a given SGM we need to identify all the possible

scenarios that lead to the vulnerability in order to build
testing scenarios. A testing scenario indicates that if the
program under evaluation executes certain actions under
some specific conditions then it contains the considered
vulnerability.

9

DRAFT -- DO NOT DISTRIBUTE

DRAFT
params

limit

location

code

data

Use of nonadaptive buffers

Failed to check input
parameters to malloc

CVE-2009-1274

Unchecked integer
 arithmetic

Use of malloc/calloc/
realloc/alloca

The return value of malloc
is not checked

buffer_sizeresult

value param

OR

4

5 6

7

8

3

1

2

9

Data read from user

Range check is missing

Data copied within loop

result

p1

p5

p2

p3

p6p4

p7 p8

p9

p10

p11

Figure 7: SGM for a buffer overflow in xine

These testing scenarios are defined through the seman-
tic transformation of the SGM presented in section 3. How-
ever, before applying the transformation we have to ensure
that the SGM meets some specific requirements:

• If there is any subgoal modeled by a suitable SGM,
replace it with its corresponding model.

• Discard the qualitative subgoals of the SGM and
keep only the quantitative ones.

Qualitative subgoals can not be checked or evalu-
ated without human intervention. Documentation is
unclear is an example of such a cause. Since our
interest is automatic testing, we are concerned only
with quantitative subgoals. A quantitative subgoal
is directly related to the software code, so it can be
automatically checked. An example example is the
use of malloc as memory allocation function.

• Replace counteracting subgoals with equivalent con-
tributing subgoals. For testing we want to check the
“bad” actions or conditions to determine whether the
vulnerability is present or not.

The resulting graph is now adequate to obtain the
VDCs. Nevertheless, in order to facilitate the scenario
processing we use numbers to identify subgoals and infor-
mation ports and then we apply the semantic transforma-
tion to obtain the testing scenarios.

5.2.2. Extract the testing information using templates
Once the scenarios are defined we have to collect all

the possible details given by the subgoals and information

ports and edges. The idea is to identify the variables,
parameters, actions and conditions that contribute to the
vulnerability. To do so we have created two templates,
one corresponding to master actions and another to the
conditions under which the master actions are executed.
These templates are automatically processed to generate
the VDCs.

In the SGM, every possible scenario must contain a sin-
gle master action Act_Master that produces the related
vulnerability; if some scenario is missing a master action,
the SGM is not applicable to this testing method without
further revision (also, the lack of a master action may indi-
cate that the model is incomplete). All the other vertices
of this path denote conditions {C1, . . . ,Cn}.

Among these conditions, a particular condition Ck may
exist, called missing condition, which must be satisfied by
an action following Act_Master . Let {P1, . . . , Pk, . . . , Pn}
be the predicates describing conditions {C1, . . . , Ck, . . . , Cn}.
The formal vulnerability detection condition expressing
this dangerous scenario is defined by:

Act_Master/(P1 ∧ . . . ∧ Pk−1 ∧ Pk+1 . . . ∧ Pn);Pk

After the identification of master actions and condi-
tions we take the corresponding template to analyze each
subgoal. Also we have to consider information edges and
ports since they provide information that clarifies the pre-
cise relationships between elements of the model, which is
helpful from a testing perspective. For instance, informa-
tion edges and ports can provide the names of variables
and their relations with the different subgoals that cause
the vulnerability.

For example, in figure 2 the subgoal unchecked integer

10

DRAFT -- DO NOT DISTRIBUTE

DRAFT
arithmetic has an information edge to unsafe use of mal-
loc/calloc to clarify that the use of functions malloc/calloc
is unsafe if the result of an unchecked integer arithmetic
expression is used as the size parameter.

The master action and condition templates are explained
below.

Master Action Template This template is designed
to capture all the information related to the master action
of the SGM and possible input/output parameters. In
some cases the name of some parameters and their relation
with the subgoals can be given directly by the information
edges. The master action template with its corresponding
items and a brief explanation of them are shown in table 4.

Table 4: Master Action Template

Item Description Value
1. Vertex
number

Number used to identify each vertex
of the SGM

Inte-
ger

2. Previous
vertex

This field indicates the number of the
previous vertex in the SGM; it is
duplicated from the SGM to make
the VDC more self-contained

Inte-
ger

3. Next
vertex

This field indicates the number of the
next vertex/vertices in the SGM; it is
duplicated from the SGM to make
the VDC more self-contained

Inte-
ger(s)

4. Function
name

Indicate the name of the master
action function

Text
(pre-
de-
fined)

5. Input
parameter
name

Indicate the name of the input
parameter of the master action
function

Free
text

6. Input
parameter
type

Indicate the type of the input
parameter of the master action
function

Vari-
able
types

7. Variable
that receives
function
result

Indicate the name of the variable that
receives the result of the execution of
the function considered

Free
text

8. Type of
the variable
that receives
function
result

Indicate the type of the output
parameter of the master action
function

Vari-
able
types

From the template the master action expression is de-
rived by combining some of the items according to the
following general expressions:

• function_name (input parameter): the master ac-
tion is related to the execution of function name
which receives input parameter as input.

• function_name (output parameter, input parameter)
if the output parameter is given; the master action
is related to the use of function name which receives
input parameter as input to calculate the value of
output parameter.

Condition Template The condition template is in-
tended to describe the conditions under which the exe-
cution of the master action becomes dangerous, i.e., pro-

duces the modeled vulnerability. In some cases the name of
some parameters and their relation with the subgoals can
be given directly by the information edges. The condition
template is described in table 5.

Table 5: Condition Template

Item Description Value
1. Vertex
number

Number used to identify each
vertex of the SGM

Integer(s)

2. Previous
vertex

This field indicates the number
of the previous vertex of the
SGM; it is duplicated from the
SGM to make the VDC more
self-contained

Integer

3. Next
vertex

This field indicates the number
of the next vertex of the SGM;
it is duplicated from the SGM
to make the VDC more
self-contained

Integer

4. Search Indicate the element considered
in the node

Functions,
variables,
list

5. Name Indicate the name of the
element considered in the node

Free text or
predefined
(case of
functions)

6. Type Indicate the type of the element
considered in the node

Predefined

7.
Condition
follows
master
action

Indicates if the current
condition follows or not the
execution of the master action

Yes or no

8.
Condition

Condition expressed by the node Reserved
text

9.
Condition
element

Elements involved in the
condition

Text

The expression derived from condition template is writ-
ten according to the formula:

• Condition(name, condition_element). This indicates
that the condition is given by condition_element
acting on element name.

Let us remark that we specify the previous and next
vertices for both master action and condition templates in
order to be able to deduce scenarios from these templates
independently from SGMs.

5.2.3. Automatically process the templates to obtain the
VDCs for each scenario

In this step the information collected with the mas-
ter action and condition templates are automatically pro-
cessed to generate the expressions of the VDCs according
to the corresponding testing scenario.

5.2.4. Define the global VDC for the vulnerability
The semantic transformation explained in section 3

helps to find the scenario suite, a set of scenarios that show
how many ways there are to cause the modeled vulnerabil-
ity. From a testing perspective, we have to consider this

11

DRAFT -- DO NOT DISTRIBUTE

DRAFT
scenario suite, which means we have to test all the scenar-
ios in order to detect the considered vulnerability. There-
fore, we define the global VDC representing the modeled
vulnerability as the disjunction of all the vulnerability de-
tection conditions for each scenario (VDC i denotes the
VDC associated with each path i):

VDC 1 ∨ . . . ∨VDCn

5.3. Example of VDC creation
The process of creating VDCs from SGMs is illustrated

here through an example. Consider the SGM for CVE-
2009-1274 in figure 2, which shows how a buffer overflow
vulnerability is caused in the xine media player. Analyzing
this model we observe the following features:

• There are six different subgoals. Two of them are
counteracting subgoals: use adaptive buffers and code
controlled by range check ; while subgoal unsafe use
of malloc/calloc is associated with a SGM.

• There are information edges that clarify the relation-
ships between subgoals.

Thus, we have to transform this graph in order to cre-
ate the VDCs: we replace the subgoal unsafe use of mal-
loc/calloc with its associated SGM, we also replace the
counteracting subgoals with contributing ones and the re-
sulting graph is shown in figure 7.

Applying the semantic transformation to the SGM of
figure 7, the resulting scenario suite contains three scenar-
ios that cause the modeled vulnerability (CVE-2009-1274):

S[[T]] = {({{1, 2, 3, 4, 5, 9}}, {(p1, p2), (p3, p5), (p4, p7)}),
({{1, 2, 3, 4, 6, 9}}, {(p1, p2), (p3, p5), (p6, p8)}),

({{1, 2, 7, 8, 9}}, {(p1, p9), (p10, p11)})}

Now a vulnerability detection condition has to be de-
fined for each of these scenarios. The next part consists
in identifying master actions. In our case, we can identify
two different master actions that lead to the vulnerability,
given by vertices 4 and 7.

Next we proceed with the analysis of vertex 4, which
has three different information edges, two as output and
one as input. The memory allocation in vertex 4 must
use the variable buffer_size as parameter for the calcu-
lation of the size of the memory allocation. According to
the information edge coming from vertex 3, the value of
buffer_size is calculated as the result of unchecked inte-
ger arithmetic. Regarding the information edge to vertex
6, it indicates that the size parameter buffer_size is not
properly validated before allocating the memory. Finally,
the information edge to vertex 5 indicates that the result
of the memory allocation function is not checked to verify
that it is correct.

Summarizing, we have that variable buffer_size has
to be considered at least in the templates for vertices 4, 5
and 6.

Vertex 7 is processed in a similar manner and the re-
sults of the analysis for both master actions are shown in
table 6.

Table 6: Master Action Templates for CVE-2009-1274

Item Node Node
1. Vertex number 4 7
2. Previous vertex 3 2
3. Next vertex 5,6 8
4. Function name Alloc CopyData
5. Input parameter name buffer_size user_input,

loop_counter
6. Input parameter type integer string, integer
7. Variable that receives
function result

buffer buffer

8. Type of the variable that
receives function result

pointer pointer

The master action expressions are:

Alloc(buffer, buffer_size) and
CopyData(loop_counter, user_input).

The other nodes are analyzed with the condition tem-
plate, considering the variables and functions indicated by
master actions and information ports and edges. The pro-
cess is shown with one vertex, number 2, which is about
reading data from the user. Such a condition creates prob-
lems if the data is used in an integer arithmetic operation
or if the data is copied inside a loop. We define a variable
user_input in vertex 2, that holds the data provided by
the user. The same variable has to appear in vertices 3
and 7 to keep the relation. Table 7 contains the results of
the analysis for vertices 1, 2, and 3, 5, 6 and 8.

The predicates derived from the templates are listed in
table 8.

Table 8: Condition Predicates for CVE-2009-1274

Node Predicate
1 Fixed(buffer)
2 Result(buffer_size, user_input)
3 Result(buffer_size, arithmetic)
5 Unchecked(buffer, NULL)
6 Unchecked(buffer_size, buffer_bounds)
8 Unchecked(loop_counter, counter_bounds)

Finally, the vulnerability detection condition for sce-
nario ({{1, 2, 3, 4, 5, 9}},{(p1, p2), (p3, p5), (p4, p7)}) is given
by the expression:

VDC 1 = Alloc(buffer , buffer_size)/
Fixed(buffer)

∧
Result(buffer_size, user_input)

∧
Result(buffer_size, arithmetic)

 ;

Unchecked(buffer ,NULL)

12

DRAFT -- DO NOT DISTRIBUTE

DRAFT
Table 7: Condition Templates for CVE-2009-1274

Item Vertex Vertex Vertex Vertex Vertex Vertex
1. Vertex number 1 2 3 5 6 8
2. Previous vertex No 1 2 4 4 7
3. Next vertex 2, 7 3 4 10 9 10
4. Search Variable Variable Variable Variable Variable Variable
5. Name buffer buffer_size buffer_size buffer buffer_size loop_counter
6. Type pointer integer integer pointer integer integer
7. Condition follows master action No No No Yes No No
8. Condition Fixed Result Result Unchecked Unchecked Unchecked
9. Condition element user_input Null Null buffer_bounds counter_bounds

This vulnerability detection condition expresses a poten-
tial vulnerability when the memory space for a non-adaptive
buffer is allocated using the function malloc (or similar)
whose size is calculated using data that is obtained from
the user and the return value from memory allocation is
not checked with respect to NULL.

In a similar way the VDCs for scenarios 2 and 3 are
generated and the VDC for CVE-2009-1274 is given by the
expression:

VDC = VDC 1 ∨VDC 2 ∨VDC 3

6. Using VDCs in TestInv-Code

TestInv-Code accepts VDCs encoded as XML docu-
ments from a VDC editor such as the one implemented in
the SHIELDS project [17]. It is also capable of download-
ing published VDCs from the SHIELDS Security Vulner-
abilities Repository Service [27].

In order to detect the presence of a VDC in an execu-
tion trace, it needs to be interpreted by the TestInv-Code
tool. In a first version of the tool [28], conditions in the
VDCs were translated into patterns of instructions that
may appear in the execution trace. This worked correctly
in particular cases, however, to be able to detect VDCs
for executables produced from different code variations,
by different compilers, another more generic technique has
been developed, which is presented here.

In the latest version of the tool, abstract predicates
such as Alloc and CopyData are implemented directly in
the tool. TestInv-Code analyzes each instruction executed
by the program and keeps track of the state of all the
variables used by the program, including heap or stack
memory addresses and registers. The states are, for in-
stance, tainted or not, bounds checked or not, allocated
or not, etc. Essentially TestInv-Code is performing a lim-
ited form of reverse engineering to recognize the abstract
predicates. Currently the user cannot easily add new pred-
icates, but can define new VCGs using existing predicates.
A future version of TestInv-Code will support adding new
predicates through a plug-in mechanism.

To illustrate how a predicate is determined, we give
some details on how Unchecked(buffer, NULL) works. In
this case, buffer is space allocated on the heap using one
of the normal memory allocation functions (e.g. malloc

or calloc) and Unchecked means that the return value
from the memory allocation has not been checked against
e.g. NULL before using the memory location. To be able
to do this, TestInv-Code keeps track of all accumulators,
registers and the instructions applied on them. For deter-
mining if a buffer is unchecked, the tool uses a function
that will analyze each instruction and store the informa-
tion necessary to allow it to set the state of the buffer to
checked or unchecked. Table 9 shows examples of the code
that the Unchecked predicate reacts to (C code and the
corresponding assembly code, which is what TestInv-Code
actually looks at) together with the actions taken by the
tool.

The set of predicates implemented in TestInv-Code are
designed to support our experiments and includeUnchecked,
Unbounded, Tainted, Alloc (only for heap memory), Result,
CopyData, Checked, Bounded, Untainted, and Freed. New
predicates are implemented as part of the tool, although
a plug-in architecture will be available in future versions.
All these functions examine the code being executed to
determine when certain conditions hold or not, and they
store this information so that it can be used when needed
to verify the VDCs. Using these predicates, several VDC
have been be defined to test the method on different ap-
plications.

The tool is also able to detect when a system call is
made, the checks that are made on variables or return val-
ues from function calls, when buffer allocations are made,
etc., and this information can be used in the implemen-
tation of predicates. Thus it can verify all the conditions
that are used in the VDCs and generate messages if the
VDCs are satisfied.

For instance, the Tainted condition on a variable can be
determined by detecting if the variable has been assigned
values obtained by reading a file, a socket, entered by a
user, etc. Taintedness can also be transmitted from one
variable to another and a variable can become untainted
if it is bounds checked by the program. Note that the tool
detects that bounds checking is done for a variable but, in
the case of numeric variables, it does not check the values
used in the program to perform the bounds checking.

Some conditions do not lend themselves to easy detec-
tion by the tool, such as the nonAdaptiveBuffer condition.
Here, TestInv-Code asks the user to supply the informa-
tion globally as input to the tool or specifically at points

13

DRAFT -- DO NOT DISTRIBUTE

DRAFT
Table 9: Implementation of predicates in TestInv-Code

C instruction Corresponding assembly code
(what TestInv-Code analyzes)

Action performed

x = malloc (y); mov eax,DWORD PTR [esp+0x14]
mov DWORD PTR [esp],eax
call 8048388 <malloc@plt>
mov DWORD PTR [esp+0x10],eax

Memory location esp+0x10 is recognized as a dynamically allocated
buffer and marked as unckecked.

strcpy(x,z); lea eax,[esp+0x18]
mov DWORD PTR [esp+0x4],eax
mov eax,DWORD PTR [esp+0x10]
mov DWORD PTR [esp],eax
call 8048378 <strcpy@plt>

If esp+0x10 is not marked as checked, then the allocation of
esp+0x10 is Unchecked is satisfied for the allocation of esp+0x10, and
if the appropriate predicates are satisfied (this depends on the VDC)
TestInv-Code may signal a vulnerability.

if (x == NULL) ... cmp DWORD PTR [esp+0x10],0x0 The result of the malloc is being checked and the buffer at esp+0x10
will be marked as checked against NULL.

during the execution where the condition is relevant.
Finally, TestInv-Code also maintains information on

the VDCs that the user has selected. This means that for
each VDC, the tool stores which clauses are satisfied and,
if the proper set of clauses are satisfied (a master action
has been detected and the proper pre- and postconditions
for the VDC have been satisfied), the tool will report that
the vulnerability modeled by the VDC has been found, in-
dicating the address of the instruction in the executable or
the line of source code (if debugging information is avail-
able) where this has happened.

7. Case study

Here we demonstrate the application of the vulnerabil-
ity detection method to an open source application, xine
(http://www.xine-project.org), which is written in C.
We use an older version (xine-lib-1.1.15) of the application
that contains the CVE-2009-1274 vulnerability described
previously.

Starting from the SGM for this vulnerability, we have
created the VDCs and the corresponding rules to be used
for input to the TestInv-Code tool. The VDC was ex-
pressed using XML notation to facilitate their interpreta-
tion by the tool. We then executed xine under the control
of TestInv-Code.

When the following xine code is executed we obtain
the results shown in figure 8:

Code fragment from demux_qt.c
...
1907 trak->time_to_sample_table = calloc(
1908 trak->time_to_sample_count+1,

sizeof(time_to_sample_table_t));
1909 if (!trak->time_to_sample_table) {
1910 last_error = QT_NO_MEMORY;
1911 goto free_trak;
1912 }
1913
1914 /* load the time to sample table */
1915 for(j=0;j<trak->time_to_sample_count;j++)
...

The field trak->time_to_sample_table is tainted since
it is set from information taken from the external Quick-
Time file, which leads to the allocation on line 1907 pos-
sibly allocating the wrong amount of memory.

If we apply the same VDCs to other code, we should
be able to find similar vulnerabilities, if they exist. To
show this, we applied the same VDC on ppmunbox, an
intentionally vulnerability-ridden program developed by
Linkï¿ 1

2ping University1, and we detected the vulnerabili-
ties shown in figure 9.

The relevant section of the ppmunbox source code is
shown below. Here, a value read from a user-supplied file
is used to calculate a buffer size. If the computation over-
flows, the buffer, allocated on line 92, will be too small for
the data later read into it, resulting in an exploitable heap
overflow.

Code fragment from ppmunbox.c
...
76:/* Read the dimensions */
77:if(fscanf(fp_in,"%d%d%d",&cols,&rows &maxval)<3){
78: printf("unable to read dimensions from PPM file");
79: exit(1);
80:}
81:
82:/* Calculate some sizes */
83:pixBytes = (maxval > 255) ? 6 : 3;
84:rowBytes = pixBytes * cols;
85:rasterBytes=rowBytes*rows;
86:
87:/* Allocate the image */
88:img = malloc(sizeof(*img));
89:img->rows = rows;
90:img->cols = cols;
91:img->depth = (maxval > 255)?2:1;
92:p = (void*)malloc(rasterBytes);
93:img->raster = p;
94:
95:/* Read pixels into the buffer */
96:while (rows--) {

1ppmunbox processes portable pixmap (PPM) files, removing any
single-color border around an image

14

DRAFT -- DO NOT DISTRIBUTE

DRAFT
FOUND: use_of_tainted_not_bounded_value_to_alloc --> demuxers/demux_qt.c:1907

Figure 8: Output from TestInv-Code run on xine

FOUND: use_of_tainted_not_bounded_value_to_alloc --> pp/ppmunbox.c:92

Figure 9: Output from TestInv-Code run on ppmunbox

...

The use of TestInv-Code will cause the program being
tested to run more slowly. If only a few VDCs (i.e. 10)
are used, the slowdown is less than 30%, but if we have
many VDCs (i.e. more than 100) applied to software that
is data intensive (such as in the case of video decoders)
TestInv-Code will slow down the execution significantly,
to the point where the program being tested could be-
come unusable. To solve this problem TestInv-Code was
modified so that the user can indicate specific functions to
check in the program. This has two drawbacks. First, the
user needs to know what functions need to be tested; and,
second, all the input parameters for those functions need
to be marked as tainted without the possibility of check-
ing if they really are since the code that calls the func-
tion will not be analyzed by the tool. A better solution
that is being explored by the authors is the possibility of
checking only the first iteration of loops in the program,
thus avoiding repeatedly checking code that is executed
more than once. This makes the tool considerably faster
and has been tested in the cases presented in this paper.
It must be noted that at present, only applications that
have ELF executables can be analyzed. In the future the
tool will be able to analyze applications compiled using
other formats (e.g. Windows Portable Executable (PE)
format). Presently the tool can analyze programs that in-
tegrate different modules, plug-ins, pointers to functions,
variable numbers of parameters but it does not allow for
mixing different programming languages.

To illustrate the applicability and scalability of TestInv-
Code, it has been applied to six different open source pro-
grams to determine if known vulnerabilities can be de-
tected using a single model. The following paragraphs
describe the vulnerabilities and give a short explanation
of the results obtained. The results are summarized in
table 10.

CVE-2009-1274. Integer overflow in the qt_error_parse_-
trak_atom function in demuxers/demux_qt.c in xine-lib
1.1.16.2 and earlier allows remote attackers to execute ar-
bitrary code via a QuickTime movie file with a large count
value in an STTS atom, which triggers a heap-based buffer
overflow.

This vulnerability was detected as described earlier in
this paper.

CVE-2004-0548. Multiple stack-based buffer overflows in
the word-list-compress functionality in compress.c for As-

Table 10: Summary of results running TestInv-Code with VDC for
CVE-2009-1274

Vulnerability Software Detected?

CVE-2009-1274 xine Yes
Buffer overflow ppmunbox Yes
CVE-2004-0548 aspell Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411 Ghostscript Yes
CVE-2010-2067 LibTIFF No

pell allow local users to execute arbitrary code via a long
entry in the wordlist that is not properly handled when
using the (1) c compress option or (2) d decompress op-
tion.

Two vulnerabilities were detected by TestInv-Code us-
ing the VDC from the xine application:

do {
*w++ = (char)(c);

} while (c = getc(in), c != EOF && c > 32);

and

while ((c = getc(stdin)) > 32)
cur[i++] = (char)c;

The loops depend on the data in a file and w points
to a stack of size 256: char s1[256]. No check is made
to avoid overflowing the buffer. Memory check tools like
Valgrind could detect this error, but only if the input data
used actually triggered the overflow. With TestInv-Code
we are able to detect this type of error as long as the
statements containing the error are executed (in this case,
a loop that increments a pointer or an integer that is used
to fill a table without any control); a failure does not have
to occur.

CVE-2004-0557. Multiple buffer overflows in the st_wav-
startread function in wav.c for Sound eXchange (SoX)
12.17.2 through 12.17.4 allow remote attackers to execute
arbitrary code via certain WAV file header fields.

There is a vulnerability detected each time the function
st_reads is called, where a loop depends on the length of
data read from a file and sc points to a stack of size 256:
char text[256]. No check is made to avoid overflow-
ing the buffer. The only one made is with respect to the

15

DRAFT -- DO NOT DISTRIBUTE

DRAFT
tainted value.

do {
if (fread(&in, 1, 1, ft->fp) != 1) {

*sc = 0;
st_fail_errno(ft,errno,readerr);
return (ST_EOF);

}
if (in == 0 || in == ’\n’) {

break;
}
*sc = in; sc++;

} while (sc - c < len);

CVE-2004-0599. Multiple integer overflows in png_read_png
in pngread.c or png_handle_sPLT functions in pngrutil.c
or progressive display image reading capability in libpng
1.2.5 and earlier allow remote attackers to cause a denial
of service (application crash) via a malformed PNG image.

TestInv-Code was able to find the vulnerabilities even
here where the program’s reads, mallocs, etc. were re-
defined by custom functions, and the functions are called
using pointers such as:

(*(png_ptr->read_data_fn))(png_ptr, data, length);
Potential integer overflows such as:

info_ptr->row_pointers =
(png_bytepp)png_malloc(png_ptr,

info_ptr->height * sizeof(png_bytep));

were detected because height was marked as tainted. Note
that some modifications to the tool were necessary so that
it could work correctly when pointers to functions were
used. This shows that the tool needs to be tested on dif-
ferent architectures to make certain that all cases work.

CVE-2008-0411. Stack-based buffer overflow in the zset-
iccspace function in zicc.c in Ghostscript 8.61 and earlier
allows remote attackers to execute arbitrary code via a
Postscript (.ps) file containing a long Range array in a
.seticcspace operator.

As in the previous case, TestInv-Code was able to find
the vulnerabilities even though reads, mallocs, etc. were
redefined by custom functions, and an interpreted archi-
tecture is used.

CVE-2010-2067. Stack-based buffer overflow in the TIFF-
FetchSubjectDistance function in tif_dirread.c in LibTIFF
before 3.9.4 allows remote attackers to cause a denial of
service (application crash) or possibly execute arbitrary
code via a long EXIF SubjectDistance field in a TIFF file.

This vulnerability was not detected by TestInv-Code
because this type of vulnerability was not checked by the
VDCs used so far. The authors have not yet determined
how to detect this type of vulnerability using the currently
available tool’s techniques, since the program effectively
does check for overflows in the data read (as shown in the
code extract below), so it is not currently possible for the
tool to detect the existence of potential problems.

/* Check for overflow. */
if (!dir->tdir_count || !w || cc/w != dir->tdir_count)

goto bad;

We conclude that TestInv-Code can effectively find known
vulnerabilities but it needs to be improved to be able to
manage software products that mix different programming
languages, and, if we want to improve the tool’s cover-
age, it needs to be extended to include other types of
vulnerabilities, for instance, ones that involve using incor-
rect values when performing bound checks in the program.
However, the tool allows detection of vulnerabilities using
dynamic analysis of the code execution and the results
obtained from the experiments show important improve-
ment with respect to other existing tools due to its flexibil-
ity (new VDCs can be designed), extensibility (new tech-
niques can be introduced) and the precision of the VDCs
(reducing the number of false positives).

8. Comparison of TestInv-Code to other tools

In this section we present a comparison of our method
to others. No tool analyzes instruction sequences as our
tool does. Our technique is different in that it is meant
for detecting potential vulnerabilities during the execution
mainly due to vulnerable program code. In this way it is
possible to circumvent what Haugh and Bishop [29] call
“the main problem with dynamic analysis”: the need for
input data that causes overflows or errors to be able to
detect them. With TestInv-Code, it is sufficient to execute
the vulnerable code, but is not necessary to find inputs
that trigger the vulnerability.

We compared TestInv-Code to TaintCheck [30], Daikon [31],
splint [32] and Flawfinder [33]. Table 11 summarizes the
differences between between these tools, which can be con-
sidered complementary to our tool. Each targets vulner-
abilities similar to those discussed in this paper. In all
cases, the evaluation was conducted using only the model
presented in this paper. This way we are able to verify
that our tool detects this type of vulnerability, whereas
the others do not (with the same input data). We are
also able to estimate and compare the performance of the
tools with respect to time spent executing them and the
effort necessary to analyze the results (e.g. number of false
positives that need to be discarded).

TaintCheck [30] is a taint analysis tool based on Val-
grind [34], an instrumentation framework for building dy-
namic analysis tools. The authors of TaintCheck indi-
cate a slowdown in execution of 37 times when analyzing
bzip2. When compressing a 600MB file under the control
of TaintCheck, bzip2 takes 9 minutes under the control
of TaintCheck, compared to 10 seconds under the control
of TestInv-Code (same file, same computer). This result
is due to the loop iteration limiting parameter used in
TestInv-Code, discussed in section 7, which was set to 1000
iterations. Note that TaintCheck is not publicly available,

16

DRAFT -- DO NOT DISTRIBUTE

DRAFT
so the evaluation of the tool is based on the authors’ con-
clusions.

Daikon [31], also based on Valgrind, performs dynamic
detection of likely program invariants. Vulnerabilities may
be detected using the invariants that Daikon finds. Flawfinder [33]
and splint [32] are popular static analysis tools that are ca-
pable of detecting program vulnerabilities similar to those
detected using dynamic taint analysis.

We also considered evaluating TestInv-Code against
Flayer [35], Vulncheck [36], but Flayer does not perform
sufficient analysis to detect vulnerabilities, and Vulncheck
is no longer being maintained. We also omitted popular
commercial tools such as Purify and Insure++ because of
practical constraints.

Each of the tools was run against xine and ppmunbox,
and the output was analyzed to determine if the tool had
detected the vulnerability. For xine, the results are given
in table 12 and for ppmunbox, they are given in table 13.
In each case, TestInv-Code was able to detect the vul-
nerability, whereas the others were not, and TestInv-Code
produced no false positives. The other tools detected addi-
tional vulnerabilities; these were not detected by TestInv-
Code since it was run with a single model. Also note that
automated active testing approaches, such as those used
in in SAGE [37] or EXE [38] would almost certainly have
fared better in these tests, since they are designed to find
good inputs for security testing.

Tool Vulnerability Others
detected detected

TestInv-Code Yes 0
Daikon No 0
Splint No 22a

Flawfinder No 41b

aSplint detected 22 potential vulnerabilities.
bFlawfinder detected 41 potential vulnerabilities.

Table 12: Detection results for xine

Tool Vulnerability
detected

Others
detected

TestInv-Code Yes 0
Daikon No 1058981a

Splint No 120b
Flawfinder No 41c

aDaikon detected the variables involved, but no values were given.
bSplint issued 120 warnings.
cFlawfinder detected 2 potential vulnerabilities.

Table 13: Detection results for ppmunbox

Note that dynamic analysis tools like the ones tested
here are only able to detect problems if the input data
triggers the problem. In this case, the input data (the
same in each case) executed the vulnerable code but did
not trigger the vulnerability. Since TestInv-Code is based

on detecting potentially vulnerable execution patterns (as
defined by a security goal model), it is able to detect the
problem even if it is not triggered by the input data.

9. Related work

Different techniques have been proposed to perform dy-
namic detection of vulnerabilities. Fuzz testing is an ap-
proach that has been proposed to improve the security
and reliability of system implementations [39]. Fuzz test-
ing consists of changing the inputs, using random inputs
or mutation techniques, in order to detect unwanted be-
havior, such as crashing or confidentiality violation. Pen-
etration testing is another technique that consists of ex-
ecuting a predefined test scenario with the objective of
detecting design vulnerabilities or implementation vulner-
abilities [40].

Fault injection is a similar technique that injects dif-
ferent types of faults in order to test the behavior of the
system [41]. After injecting one or more faults, the system
behavior is observed. The failure to tolerate faults is an
indicator of a potential security flaw in the system. These
techniques have been applied in industry and shown to be
useful. However, most of the current detection techniques
based on these approaches are ad hoc and require a previ-
ous knowledge of the target systems or existing exploits.

In the dynamic taint approach of Chess and West [42],
tainted data are monitored during the execution of the
program to determine its proper validation before enter-
ing sensitive functions. It enables the discovery of possible
input validation problems which are reported as vulner-
abilities. The sanitization technique to detect vulnera-
bilities due to the use of user supplied data is based on
the implementation of new functions or custom routines.
The main idea is to validate or sanitize any input from the
users before using it inside a program. Balzarotti et al. [43]
present an approach using static and dynamic analysis to
identify faulty sanitization processes (santitization that an
attacker can bypass) in web applications.

The approach proposed in this paper is close to that
of dynamic taint analysis. However, it is original because
it covers all the steps of vulnerability detection, from the
modeling of vulnerabilities using SGMs, which are close to
the users’ requirements, and VDCs, which provide a formal
description facilitating their automated detection on the
traces of the program’s execution using the TestInv-Code
tool. This methodology also allows detecting vulnerabil-
ity causes other than tainted data, such as lack of bound
control of variables, bad memory allocation and use, and
so forth.

An alternate approach to software security is to prove,
in some way, the absence of vulnerabilities. Such methods
are often based on formally specifying system requirements
or design, including security aspects, then either generat-
ing the system or verifying that the system (or a model of
the system) conforms to the specification. Notable exam-
ples of this approach include Event-B [44] (in which sys-

17

DRAFT -- DO NOT DISTRIBUTE

DRAFT
Daikon[31] TestInv-Code TaintCheck [30] Splint [32] Flawfinder [33]

Functionality Dynamic detection
of properties that
are likely true at a
particular point in
a program
(invariants).

Detects rules
involving sequences
of binary
instructions being
executed. Rules
describe vulnerable
programming.

Dynamic taint
analysis for
automatic detection
of overwrite
attacks.

Static checking of C
programs for
security
vulnerabilities and
programming
mistakes. Uses code
annotations.

Pattern-matching-
based static
analysis for security
vulnerabilities.

Performance Very slow. Fast if loop
limitation is used.

Author states
slowdown of 1.5 to
40 times.

Very fast. Very fast.

Effectiveness Analysis requires
understanding of
what the correct
values for each
variable is.
Potential for many
false positives.

Adaption to each
environment and
compiler required.
Indicated where
detected
vulnerabilities are
located. Easily
extended to new
vulnerabilities.
Source code or
special
instrumentation of
executable not
required.

No false positives.
Detects and
analyzes exploits,
and improves
automatic signature
generation based on
semantic analysis.
Source code or
special compilation
not required.

Requires
annotations in
source code to be
effective. Detects
many programmer
errors apart from
security issues.
Typically produces
a large number of
results. Limited
taint propagation
capabilities [32].

Similar to splint.

Table 11: Qualitative comparison of the analysis tools that were tested

tems are generated from Event-B specifications); Secure
Tropos [45], which extends the Tropos [46] agent-oriented
software development method with security-related mod-
els and activities; UMLSec [47]; various approaches for
specifying and analyzing security protocols, access control
policies and other system properties [48, 49, 50, 51, 52, 53].

Model checking techniques have also been revisited for
vulnerability detection. Hadjidj et al. present a security
verification framework that uses a conventional push down
system model checker for reachability properties to verify
software security properties [54]. Wang et al. have devel-
oped a constraint analysis combined with model checking
in order to detect buffer overflow vulnerabilities [55]. The
memory size of buffer-related variables is traced and the
code instrumented with constraint assertions before the
potential vulnerable points. The vulnerability is then de-
tected with the reachability of the assertion using model
checking. All model checking is based on the design of a
model of the system, which can be complex and subject to
the combinatorial explosion of the number of states.

Our testing approach differs from most formal meth-
ods in several ways. The testing techniques proposed by
EXE [38] and SAGE [37] are based on active testing tech-
niques that consist in stimulating an implementation using
selected inputs. These tools are designed to find good in-
puts for security testing. Our approach, on the other hand,
is based on passive testing techniques. It doesn’t explicitly
stimulate the implementation but consists mainly of ob-
serving the implementation executing with normal inputs,
and collecting traces. Most importantly, our approach is

independent of the specification or design of the system
under test, since it primarily targets typical implementa-
tion errors; it is not aimed at requirements or design issues.
Furthermore, our approach has a very modest impact on
the development process, and can easily be used in any tra-
ditional process; many formal methods have a far greater
impact on the process.

Following the testing approach defined in this paper,
the coverage is defined with respect to VDCs that are
evaluated on a corpus of traces. Formal approaches to
software security can provide more comprehensive cover-
age of security than our approach does, but that comes at
a cost. Furthermore, formal methods that do not guaran-
tee the security of the implementation must be combined
with some assessment technique, such as passive testing.

SGMs are reminiscent of fault trees [56, 57], and at-
tack trees [15], but the inclusion of information edges and
the ability to model subgoals make SGMs more expressive
than either of the earlier languages. Furthermore, attack
trees lack a formal underpinning (although attempts have
been made to correct this [58]). Other languages for mod-
eling goals exist, such as goal diagrams in Tropos [46], but
the complexity and actor-centric approach of these make
them inappropriate for SGM applications. Other threat
modeling languages, such as data flow diagrams [59] and
misuse case diagrams [60, 61, 62] and extended use case
diagrams [63] are appropriate to address security in re-
quirements and design, but are not applicable to the kind
of testing discussed in this paper.

18

DRAFT -- DO NOT DISTRIBUTE

DRAFT
10. Conclusions and future work

Security has become a critical part of nearly every soft-
ware project, and the use of automated testing tools is
recommended by best practices and guidelines. Our in-
terest lies in extending the concept of security goal models
(SGMs) so we can detect the vulnerabilities they model us-
ing automated testing. In addition to the work presented
here, we are exploring the use of SGMs as a basis for static
analysis for vulnerability detection.

In this paper we have presented a formalization of SGMs
and their causes called vulnerability detection conditions
(VDCs) that can be used in automated testing to detect
the presence of vulnerabilities. We have also shown how
this is applied in a passive testing tool, TestInv-Code,
which analyzes execution traces to determine if they show
evidence of a vulnerability or not. VDCs can be very pre-
cise, which we believe makes it possible to detect vulnera-
bilities with a low rate of false positives.

Since the vulnerability models are separate from the
tool, it is possible for anyone, not just the tool vendor,
to keep them up-to-date and to add new models. It also
becomes possible for the tool user to add, e.g., product-
specific vulnerabilities and use the tool to detect them.
This is very different from the normal state of affairs,
where users have no choice but to rely on the tool ven-
dor to provide timely updates. As stated before, currently
the tool allows users to define new VDCs. It also allows
implementing new predicates that are linked to the tool
using the tool’s plugin architecture, but this is not yet
easily done by a user since it requires knowledge of the
tool’s implementation.

The work presented in this paper was part of the SHIELDS
EU project [10], in which we have developed a shared se-
curity repository through which security experts can share
their knowledge with developers by using security models.
Models in the SHIELDS repository are available to a va-
riety of development tools; TestInv-Code is one such tool.

Looking to the future, we plan on applying the methods
presented here to various kinds of vulnerabilities in order
to identify which predicates are required, and whether the
formalism needs to be extended in some way. We will also
further develop TestInv-Code to handle more complex ap-
plications and allow users to easily define new predicates.

References

[1] CERT Coordination Center, CERT/CC statistics, On-line:
http://www.cert.org/stats/, accessed April 2011.

[2] E. Bayse, A. R. Cavalli, M. Núñez, F. Zaïdi, A passive test-
ing approach based on invariants: application to the WAP,
Computer Networks and ISDN Systems 48 (2) (205) 247–266.
doi:10.1016/j.comnet.2004.09.009.

[3] C. Kuang, Q. Miao, H. Chen, Analysis of software vulnerability,
in: Proceedings of the 5th WSEAS International Conference on
Information Security and Privacy (ISP’06), World Scientific and
Engineering Academy and Society (WSEAS), Stevens Point,
Wisconsin, USA, 2006, pp. 218–223.

[4] S. Redwine and N. Davis, Processes to produce secure software,
Task Force on Security Across the Software Development Life-
cycle, 2004, Appendix A (2004).

[5] Coverity, Prevent, On-line: http://www.coverity.com/, ac-
cessed April 2011.

[6] Fortify Software, Fortify 360 source code analyzer, On-
line: http://www.fortifysoftware.com/products, accessed
April 2011.

[7] Klocwork, K7, On-line: http://www.klocwork.com, accessed
April 2011.

[8] D. Byers, N. Shahmehri, Unified modeling of attacks, vulner-
abilities and security activities, in: Proceedings of the 2010
ICSE Workshop on Software Engineering for Secure Systems
(SESS’10), IEEE Computer Society, Washington, DC, USA,
2010, pp. 36–42. doi:10.1145/1809100.1809106.

[9] D. Byers, S. Ardi, N. Shahmehri, C. Duma, Modeling soft-
ware vulnerabilities with vulnerability cause graphs, in: Pro-
ceedings of the International Conference on Software Mainte-
nance (ICSM06), IEEE Computer Society, Washington, DC,
USA, 2006, pp. 411–422. doi:10.1109/ICSM.2006.40.

[10] SHIELDS: Detecting known vulnerabilities from within
design and development tools, On-line: http://www.
shields-project.eu/, a project within the EU’s seventh
framework programme.

[11] Final report on inspection methods and prototype vulnerability
recognition tools, SHIELDS Deliverable D4.3 (April 2010).

[12] D. Byers, N. Shahmehri, Design of a process for software se-
curity, in: Proceedings of the Second International Confer-
ence on Availability, Reliability and Security (ARES’07), IEEE
Computer Society, Washington, DC, USA, 2007, pp. 301–309.
doi:10.1109/ARES.2007.67.

[13] D. Byers, N. Shahmehri, A cause-based approach to preventing
software vulnerabilities, in: S. T. Stefan Jakoubi, E. R. Weippl
(Eds.), Proceedings of the The Third International Confer-
ence on Availability, Reliability and Security (ARES’08), IEEE
Computer Society, Washington, DC, USA, 2008, pp. 276–283.
doi:10.1109/ARES.2008.12.

[14] H. Peine, M. Jawurek, S. Mandel, Security goal indicator trees:
A model of software features that supports efficient security
inspection, in: Proceedings of the 2008 11th IEEE High As-
surance Systems Engineering Symposium (HASE’08), IEEE
Computer Society, Washington, DC, USA, 2008, pp. 9–18.
doi:10.1109/HASE.2008.57.

[15] B. Schneier, Attack trees, Dr. Dobbs Journal.
[16] D. Harel, B. Rumpe, Meaningful modeling: What’s the se-

mantics of “semantics”?, IEEE Computer 37 (10) (2004) 64–72.
doi:10.1109/MC.2004.172.

[17] Final modelling methods, formalisms and prototype modelling
tools, SHIELDS Deliverable D2.3 (April 2010).

[18] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock,
P. Li, T. Oinn, Taverna: a tool for building and running work-
flows of services., Nucleic Acids Research 34 (Web Server issue)
(2006) 729–732.

[19] S. Ceri, G. Gottlob, L. Tanca, What you always wanted to know
about datalog (and never dared to ask), IEEE Trans. on Knowl.
and Data Eng. 1 (1) (1989) 146–166. doi:10.1109/69.43410.

[20] A. R. Cavalli, D. Vieira, An enhanced passive testing approach
for network protocols, in: Proceedings of the International Con-
ference on Networking, International Confer1ence on Systems
and International Conference on Mobile Communications and
Learning Technologies (ICNICONSMCL’06), 2006, pp. 169–
169. doi:10.1109/ICNICONSMCL.2006.50.

[21] B. Alcalde, A. R. Cavalli, D. Chen, D. Khuu, D. Lee, Net-
work protocol system passive testing for fault management: A
backward checking approach, in: Proceedings of the 24th IFIP
WG 6.1 International Conference on Formal Techniques for Net-
worked and Distributed Systems (FORTE’2004), 2004, pp. 150–
166. doi:dx.doi.org/10.1007/b100576.

[22] D. Lee, A. Netravali, K. Sabnani, B. Sugla, A. John, Passive
testing and applications to network management, in: Proceed-
ings of the 1997 International Conference on Network Protocols

19

DRAFT -- DO NOT DISTRIBUTE

DRAFT
(ICNP ’97), IEEE Computer Society, Washington, DC, USA,
1997, p. 113.

[23] R. E. Miller, K. A. Arisha, Fault identification in networks by
passive testing, in: Proceedings of the 34th Annual Simulation
Symposium (SIMSYM’01), IEEE Computer Society, 2001, pp.
277–284. doi:10.1109/SIMSYM.2001.922142.

[24] A. R. Cavalli, C. Gervy, S. Prokopenko, New approaches for
passive testing using an extended finite state machine specifi-
cation, Information & Software Technology 45 (12) (2003) 837–
852. doi:10.1016/S0950-5849(03)00063-6.

[25] W. Mallouli, F. Bessayah, A. R. Cavalli, A. Benameur, Secu-
rity rules specification and analysis based on passive testing, in:
The IEEE Global Communications Conference (GLOBECOM
2008), 2008, pp. 1–6. doi:10.1109/GLOCOM.2008.ECP.400.

[26] M. Tabourier, A. R. Cavalli, Passive testing and application
to the gsm-map protocol, Information & Software Technology
41 (11-12) (1999) 813–821. doi:10.1016/S0950-5849(99)00039-7.

[27] Final repository specification design and prototype, SHIELDS
Deliverable D3.3 (April 2010).

[28] A. R. Cavalli, E. Montes de Oca, W. Mallouli, M. Lallali, Two
complementary tools for the formal testing of distributed sys-
tems with time constraints, in: The 12th IEEE International
Symposium on Distributed Simulation and Real-Time Applica-
tions (DS-RT’08), IEEE Computer Society, Vancouver, Canada,
2008, pp. 315–318. doi:10.1109/DS-RT.2008.43.

[29] E. Haugh, M. Bishop, Testing C programs for buffer over-
flow vulnerabilities, in: Proceedings of the 2003 Network and
Distributed System Security Symposium (NDSS’03), 2003, pp.
123–130.

[30] J. Newsome, D. Song, Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on com-
modity software, in: Proceedings of the 2005 Network and Dis-
tributed System Symposium (NDSS’05), 2005.

[31] M. D. Ernst, J. H. Perkins, S. McCamant, C. Pacheco, M. S.
Tschantz, C. Xiao, The Daikon system for dynamic detection
of likely invariants, Science of Computer Programming 69 (1–3)
(2007) 35–45. doi:10.1016/j.scico.2007.01.015.

[32] D. o. C. S. University of Virginia, Splint: Annotation-assisted
lightweight static checking, On-line: http://www.splint.org/,
accessed September 2011.

[33] D. A. Wheeler, Flawfinder, On-line: http://www.dwheeler.
com/flawfinder/, accessed September 2011.

[34] Valgrind, On-line: http://valgrind.org/, accessed September
2011.

[35] W. Drewry, T. Ormandy, Flayer: Exposing application inter-
nals, in: Proceedings of the First USENIX Workshop on Offen-
sive Technologies (WOOT’07), 2007.

[36] A. I. Sotirov, Automatic vulnerability detection using static
source code analysis, Master’s thesis, The University of Al-
abama (2005).

[37] P. Godefroid, P. de Halleux, A. V. Nori, S. K. Rajamani,
W. Schulte, N. Tillmann, M. Y. Levin, Automating software
testing using program analysis, IEEE Software 25 (2008) 30–
37. doi:10.1109/MS.2008.109.

[38] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, D. R. Engler,
EXE: Automatically generating inputs of death, in: Proceedings
of the 13th ACM Conference on Computer and Communications
Security (CCS’06), 2006. doi:10.1145/1455518.1455522.

[39] M. Howard, Inside the windows security push, in: IEEE
Symposium on Security & Privacy, 2003, pp. 57–61.
doi:10.1109/MSECP.2003.1176996.

[40] H. Thompson, Application penetration testing, IEEE Security
& Privacy 3 (1) (2005) 66–69. doi:10.1109/MSP.2005.3.

[41] W. Du, A. Mathur, Vulnerability testing of software system us-
ing fault injection, in: Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN 2000), Work-
shop on Dependability Versis Malicious Faults, 2000.

[42] B. Chess, J. West, Dynamic taint propagation: Finding vul-
nerabilities without attacking, Information Security Technical
Report 13 (1) (2008) 33–39. doi:10.1016/j.istr.2008.02.003.

[43] D. Balzarotti, M. Cova, N. Jovanovic, E. Kirda, C. Kruegel,

G. Vigna, Saner: Composing static and dynamic analysis to val-
idate sanitization in web applications, in: IEEE Symposium on
Security & Privacy, 2008, pp. 387–401. doi:10.1109/SP.2008.22.

[44] J.-R. Abrial, M. Butler, S. Hallerstede, L. Voisin, An open ex-
tensible tool environment for Event-B, in: Proceedings of the
8th International Conference on Formal Engineering Methods
(ICFEM’06), Vol. 4260/2006 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 588–605.
doi:10.1007/11901433_32.

[45] P. Giorgini, H. Mouratidis, N. Zannone, Modelling security and
trust with Secure Tropos, in: Integrating security and software
engineering: advances and future visions, Idea Group Publish-
ing, 2007, pp. 160–189.

[46] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopou-
los, Tropos: An agent-oriented software development methodol-
ogy, Autonomous Agents and Multi-Agent Systems 8 (3) (2004)
203–236. doi:10.1023/B:AGNT.0000018806.20944.ef.

[47] J. Jürjens, Secure Systems Development with UML, Springer,
Berlin, Heidelberg, 2005.

[48] D. Basin, S. Mödersheim, L. Viganò, OFMC: A symbolic model
checker for security protocols, International Journal of Informa-
tion Security 2005 (4) (2005) 181–208. doi:10.1007/s10207-004-
0055-7.

[49] A. Armando, L. Compagna, SAT-based model-checking for se-
curity protocols analysis, International Journal of Information
Security 7 (1) (2008) 3–32. doi:10.1007/s10207-007-0041-y.

[50] T. Lodderstedt, D. A. Basin, J. Doser, SecureUML: A UML-
based modeling language for model-driven security, in: Pro-
ceedings of the 5th International Conference on The Unified
Modeling Language (UML’02), Springer-Verlag, London, UK,
2002, pp. 426–441. doi:10.1007/3-540-45800-X_33.

[51] L. Viganò, Automated security protocol analysis with the
AVISPA tool, Electronic Notes in Theoretical Computer Science
155 (2006) 61–86, proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics (MFPS
XXI). doi:10.1016/j.entcs.2005.11.052.

[52] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, M. C. Tschantz,
Verification and change-impact analysis of access-control poli-
cies, in: Proceedings of the 27th International Conference on
Software Engineering (ICSE’05), ACM, New York, NY, USA,
2005, pp. 196–205. doi:10.1145/1062455.1062502.

[53] N. Zhang, M. Ryan, D. P. Guelev, Evaluating access control
policies through model checking, in: Proceedings of the 8th In-
ternational Conference on Information Security (ISC 2005), Vol.
3650 of Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2005, pp. 446–460. doi:10.1007/11556992_32.

[54] R. Hadjidj, X. Yang, S. Tlili, M. Debbabi, Model-checking for
software vulnerabilities detection with multi-language support,
in: Sixth Annual Conference on Privacy, Security and Trust,
2008, pp. 133–142. doi:10.1109/PST.2008.21.

[55] L. Wang, Q. Zhang, P. Zhao, Automated detection of code
vulnerabilities based on program analysis and model check-
ing, in: Eighth IEEE International Working Conference on
Source Code Analysis and Manipulation, 2008, pp. 165–173.
doi:10.1109/SCAM.2008.24.

[56] C. A. Ericson II, Fault tree analysis – a history, in: Proceedings
of the 17th International System Safety Conference, 1999.

[57] D. Haasl, Advanced concepts in fault tree analysis, in: System
Safety Symposium, 1965.

[58] S. Mauw, M. Oostdijk, Foundations of attack trees, in: Infor-
mation Security and Cryptology (ICISC 2005), Vol. 3935/2006
of Lecture Notes in Computer Science, Springer-Verlag, 2006,
pp. 186–198. doi:10.1007/11734727_17.

[59] F. Swiderski, W. Snyder, Threat Modeling, Microsoft Press,
2004.

[60] J. McDermott, C. Fox, Using abuse case models for secu-
rity requirements analysis, in: Proceedings of the 15th An-
nual Computer Security Applications Conference (ACSAC’99),
IEEE Computer Society, Washington, DC, USA, 1999, p. 55.
doi:10.1109/CSAC.1999.816013.

[61] L. Røstad, An extended misuse case notation: Including vul-

20

DRAFT -- DO NOT DISTRIBUTE

DRAFT
nerabilities and the insider threat, in: The 12th Working Con-
ference on Requirements Engineering: Foundation for Software
Quality (REFSQ’06), Essener Informatik Beiträge, Essen, Ger-
many, 2006, pp. 33–43.

[62] G. Sindre, A. L. Opdahl, Eliciting security requirements with
misuse cases, Requirements Engineering. 10 (1) (2005) 34–44.
doi:10.1007/s00766-004-0194-4.

[63] G. Popp, J. Jürjens, G. Wimmel, R. Breu, Security-critical
system development with extended use cases, in: Tenth Asia-
Pacific Software Engineering Conference, 2003, pp. 478–487.
doi:10.1109/APSEC.2003.1254403.

21

DRAFT -- DO NOT DISTRIBUTE

