
A Formal Approach to Autonomous Vehicle
Coordination

Mikael Asplund, Atif Manzoor, Mélanie Bouroche,
Siobhàn Clarke, Vinny Cahill

{asplunda, atif.manzoor, melanie.bouroche,

siobhan.clarke, vinny.cahill}@scss.tcd.ie

Lero - The Irish Software Engineering Research Centre
Distributed Systems Group

School of Computer Science and Statistics
Trinity College Dublin

Abstract. Increasing demands on safety and energy efficiency will re-
quire higher levels of automation in transportation systems. This in-
volves dealing with safety-critical distributed coordination. In this paper
we demonstrate how a Satisfiability Modulo Theories (SMT) solver can
be used to prove correctness of a vehicular coordination problem. We
formalise a recent distributed coordination protocol and validate our ap-
proach using an intersection collision avoidance (ICA) case study. The
system model captures continuous time and space, and an unbounded
number of vehicles and messages. The safety of the case study is auto-
matically verified using the Z3 theorem prover.

1 Introduction

As the number of cars in the world crosses the 1 billion mark and the future travel
needs of the world population keep increasing, we are paying an increasingly
heavy price. Every year nearly 1.2 million people get killed in traffic [25], and as
many die from urban pollution. Moreover, transportation stands for 23% of the
total emissions of carbon dioxide in the European Union [11].

Better software allows us to make cars smarter, safer, and more efficient,
thereby ameliorating some of the adverse effects of car-based transport. Modern
cars are equipped with a wide range of sensors and driver assistance systems
and there are already a number of self-driving cars that are being tested by
the major automotive companies as well as Google. The fact that the state of
Nevada passed legislation allowing driver-less vehicles to operate on public roads
can be seen as a sign of the momentum in the industry at the moment. Previously
unsolved problems such as accurate positioning and reliable object detection now
have credible solutions. The next big challenge is to enable efficient coordination
among smart vehicles to further increase the safety and efficiency of the traffic.

Collisions in intersections constitute 45% of all traffic personal car injury
accidents [27], so there is a clear need for collision avoidance systems. Having a
centralised authority for each intersection that directs the traffic can be a good

alternative to having traffic lights. However, the large majority intersections do
not even have traffic lights today. It would not be cost effective to put a central
manager to all these unmanaged crossings, a fully distributed solution will be
needed. On the other hand, distributed coordination is a non-trivial problem. A
dynamic environment where cars move at high speed and where communication
is unreliable and subject to interference creates many challenges. Yet any solution
to such a distributed coordination problem must be able to guarantee safety.

In this paper we propose to utilise the strengths of automated reasoning tools
to tackle the problem of safe distributed coordination. We show how a coordi-
nation problem can be formalised in a constraint specification language called
SMT-lib [3] and verified with the Z3 theorem prover [9]. The novelty of our
approach lies in employing a fully automated theorem prover to a distributed
coordination problem involving explicit message passing, continuous time and
space as well as an unbounded number of cars. Our focus is not on new verifica-
tion methods for hybrid systems, but rather on the application of formal methods
to a coordination approach and how to verify safety of a collaborative vehicular
application. Our longer term objective is to incorporate the basic building blocks
introduced in this paper in a general tool for modelling and verifying vehicular
applications. To evaluate the feasibility of our approach we model an intersection
collision avoidance scenario, which is an instance of a distributed coordination
problem. In summary, there are three main contributions of this paper.

– A formalisation of a distributed coordination protocol.
– A constraint-based modelling approach for collaborative vehicular applica-

tions.
– A simple but realistic case study demonstrating the usefulness of our ap-

proach.

The rest of this paper is organised as follows. Section 2 provides a formal de-
scription of the coordination problem and the CwoRIS protocol. The intersection
collision avoidance case study is presented in Section 3 followed by Section 4,
outlining the verification and proof strategies. Section 5 contains related work
and finally, Section 6 concludes the paper.

2 Distributed Coordination as Constraint Verification

We now proceed to formalise the distributed coordination problem. We begin
by giving an overview of our approach, then go on to describe how we model
the communication channel before describing our formalisation of the CwoRIS
coordination protocol.

2.1 Overview

Consider the problem of designing a software subsystem for a car (we use the
more general notion of entity, or sometimes vehicle) that can affect the steering
and speed of the entity and that takes its decision based on communication with
surrounding vehicles. Examples of such systems are collaborative adaptive cruise

Environment

Control &
Dynamics
Automaton

Other
Cars

Coordination
Protocol

Network

Entity A

Time-dependent
Constraints

Fig. 1. System Model Overview

control, advanced collision avoidance
systems, and lane merging applica-
tions. Our aim is to prove such a sys-
tem safe by proving that a specific en-
tity A will not collide with another
object.

Figure 1 shows an overview of how
our system model is constructed. It is
composed of a “core” automaton and
a set of time-dependent constraints.
With core automaton, we refer to the state transitions involving variables spe-
cific to entity A. We now proceed to provide a more formal description of the
system model and how we represent it as a SMT problem. We model the system
as a tuple M as described below.

M = (E,M,S, I, T,F , C)

E - a set of entities (i.e., the vehicles in the system)
M - a set of messages
S - a set of states
I ⊂ S - set of initial states
T : S × S → Bool - A transition function
F - a finite set of uninterpreted functions
C - a finite set of constraints

Note that the sets E,M,S, I can all be infinite, thereby allowing us to model
an unbounded number of cars and messages. The set of uninterpreted functions
(or predicates), F , provides the semantics for the states. The allowed domains
and ranges of the functions are real numbers (time), integers, and any of the
sets in our model. An example of an uninterpreted function that we use in our
model is x : E×R→ R which denotes the x position of an entity at some given
time point.

The constraints in C provide us with a way to describe the properties of
the environment and other assumptions that we need to make. The constraints
apply over the same domains as the uninterpreted functions, F , and may also
contain quantifiers. An example of a constraint (which we do not use) could be
∀e ∈ E, t ∈ R : x(e, t) ≤ 3.0, which would require the x position of all entities to
be less than 3.0 at all times.

We let the states in S and the transition function T denote the state and
behaviour of the specific entity A. The behaviour of other entities in the system
is modelled using constraints in C. This allows us to provide a more detailed
internal model of a single entity, and model other entities using assumptions on
their observable behaviour (including communication).

Finally, consider the transition function T (i, j), where i and j are states,
which is used to characterise the behaviour of entity A. We encode the hybrid
automaton of A as a transition function that alternates between timed and non-
timed transitions. Let δ : S → Bool (we write δi) be an uninterpreted function,

Table 1. Communication Predicates

Predicate Type Description

sent(m) Bool message m was sent
received(m, e) Bool m was received by entity e at some point in time
source(m) E the sender of m
sendtime(m) R the send time of m
receivetime(m, e) R when m was received by entity e (if m is never received by

e, this can have any value)
isAck(m) Bool True if message is an acknowledgement
getReq(m) M if m is an acknowledgement message, this denotes the

message that m acknowledges

denoting whether the next transition should be a timed transition or not. Then
we can define T as:

T (i, j) ≡ (TD(i, j) ∧ ¬δi ∧ δj) ∨ (TC(i, j) ∧ δi ∧ ¬δj)
Where TD is the transition function for non-timed (discrete) transitions and TC
for timed transitions (continuous).

2.2 Communication

We now proceed to introduce a subset of F relating to message passing. These
are the basic concepts that we use to formally reason about communication in the
system. Table 1 lists the predicates, the resulting type and a description of each.
It might be worth pointing out a couple of things. First, the sent and received
predicates do not have a time parameter. Thus, the semantics is that if a message
m is sent at any time, then sent(m) is true. To check whether a message had been
sent at some given time t, this can be expressed as: sent(m)∧(t ≥ sendtime(m)).
Finally, messages can be either request messages or acknowledgements to re-
quests. Thus the last two predicates are used to determine the message type and
to identify the request associated with a given acknowledgement message.

We now describe the constraints relating to the basic communication prop-
erties. There are three constraints that have to be satisfied. First, any message
that has been received by some entity must have been sent.

∀m ∈M, e ∈ E : received(m, e)⇒ sent(m)

Second, the reception time of a message m at entity e must be strictly greater
than the send time of the message.

∀m ∈M, e ∈ E : receivetime(m, e) > sendtime(m)

Finally, we need some consistency checks for when an acknowledgement can
be sent. The following constraints states that for all acknowledgement that have
been sent three conditions must be met, (1) it must correspond to a received
message, (2), the received message cannot be an acknowledgement, and (3) the

acknowledgement must have been sent after receiving the request.

∀m ∈M :(sent(m) ∧ isAck(m))⇒
(received(getReq(m), source(m))

∧ ¬isAck(getReq(m))

∧ receivetime(getReq(m), source(m)) ≤ sendtime(m))

The above set of predicates and constraints provides some very basic elements
of communication, which can easily be provided by any communication interface
in a real application. However, in order to solve the coordination problem, we
need to make an additional assumption on membership information. For this
purpose we assume the existence of an active area in which entity A operates and
that all entities within the active area are known to each other (i.e., essentially
a perfect membership protocol). The membership information allows an entity
to decide whether a message it has sent has reached all other entities in the
area. While solving the membership problem using purely communication is
recognised as a difficult problem [6], it can be solved in the vehicular domain
with the aid of ranging sensors as shown by Slot and Cahill [23].

2.3 Distributed Coordination

We base our formalisation of distributed coordination on previous work by
Bourouche [5] and Sin et al. [22]. The basic idea behind this model is that
vehicles do not need to fully agree on a shared state in order to achieve safe co-
ordination. Instead, the basic concept is that of responsibility. Each entity have
a responsibility to ensure that certain safety criteria are met. If an entity is not
able to ensure that its planned actions are compatible with those of other entities
in the environment, it must adapt its behaviour accordingly (e.g. by stopping).
The key aspect of this approach is that an entity does not need to agree on the
behaviour of other entities in the system. While this might sound trivial, it is
actually a step away from approaches where first all entities reach a distributed
agreement on the course of actions to take, allowing greater flexibility.

In the CwoRIS protocol by Sin et al. [22], the responsibility requirement is
implemented with the means of resources. A resource corresponds to a physical
area of the road. An entity should not enter a resource without having made sure
that it has exclusive access to the resource. While space does not allow a full
description and explanation of the rationale of the CwoRIS protocol, we provide a
brief intuition of how it works. Note that for the purpose of this formalisation we
have made some simplifying assumptions compared to the original protocol. We
allow only a single resource, requests are not allowed to be updated, and a sent
request is assumed to be immediately received by the sender of the message, and
no new entities enter the active area during the negotiation. These simplifications
do not have a big impact on the core logic of the protocol, and we expect that
removing these restrictions from the formalisation is a straightforward process.
Table 2 describes the predicates that we use in the coordination mechanism.

Table 2. CwoRIS predicates

Predicate Type Description

hasRequest(e, t) Bool Entity e has an active request at time t
c(e, t) M Current request of entity e at time t
start(m) R Resource request start time
end(m) R Resource request end time
prio(e) Z Priority of an entity
valid(m) Bool Message m is a valid request
vtime(m) R Time when m was validated
conflict(m,m′) Bool Requests m and m′ are in conflict
accepted(m, e) Bool Message m is accepted by entity e
hasResource(e, t) Bool Entity e has the resource at time t

In essence the CwoRIS protocol works by entities sending out requests to
access a shared resource, after which hasRequest becomes true for the sender
entity, and the current request is referred to as c(e, t). Each request has a start
and end time and each entity has a unique priority1. If an entity has received
an acknowledgement from all other entities in the area and not received any
conflicting request from an entity with a higher priority, the request is considered
to be valid. A conflict is said to occur between two requests if their request times
overlap.

When sending out a new request, a node must make sure that the request it
sends does not conflict with any previously received request that it has accepted.
A message m is accepted by entity e if it is received by e, and one of three
conditions hold

– e does not have a request when receiving m
– m does not conflict with the current request of e
– e has a strictly lower priority than the sender of m

Thus a message from a lower priority entity can be ignored by an entity with
a higher priority. Note that two entities cannot ignore each others requests since
both cannot have a higher priority than the other. Finally, node hasResource at
time t if and only if it has a valid request for that resource and the time interval
of the request covers t. We state this last constraint formally as it is the main
interface to the other components in the system.

hasResource(e, t) ≡ hasRequest(e, t) ∧ valid(c(e, t)) ∧ vtime(c(e, t)) < t

∧ start(c(e, t)) ≤ t ≤ end(c(e, t))

This concludes our description of the coordination protocol. Naturally, most of
the above description is rather textual rather than formal. We refer to the full
model2 for the exact constraints.
1 Uniqueness can be achieved through e.g. globally unique IPv6 addresses that are

part of the future communication standard for vehicular applications, and should
also take into account relative proximity to the intersection.

2 Available at http://code.google.com/p/smtica/

3 Case study

To demonstrate the applicability of our approach we have chosen a basic inter-
section scenario to model and validate. We first outline the general scenario and
our assumptions, and then describe how the states and transition functions for
the vehicle automaton are defined.

3.1 Scenario

a

Y

X

b c

far away close passed

in intersection

Entity A
Other
entities

Fig. 2. Intersection Scenario

We consider a four way intersection as
depicted in Figure 2. The intersection
is not equipped with a central traf-
fic control mechanism such as a traf-
fic light, so vehicles need to coordi-
nate their actions to avoid collisions.
The figure shows entity A approach-
ing the intersection. For simplicity we
have aligned the roads with the x and
y axes respectively, and assumed that
entity A will not turn. Thus, it will
only need to travel in the x direction
to cross the intersection. To tackle a wider range of road geometries one needs to
transform coordinate system of the vehicle along the road (i.e., using longitudinal
and lateral directions). Allowing the vehicle to turn can be easily incorporated
in the model. There are four conceptual regions for this entity in relation to the
intersection, “far away” when the x position is less than some specified value a,
“close” when a ≤ x ≤ b, “in intersection”, when b ≤ x ≤ c, and passed when
x ≥ c.

In our model, we have chosen to put as few restrictions on the allowed be-
haviour of the system as possible. However, some restrictions are necessary to
prove the desired safety properties. Since the actual behaviour of a car is more
restricted than our model of it, by proving that the wider envelope is safe, it
follows that a restricted subset of the behaviour will also be safe.

We further assume that all entities use the CwoRIS resource reservation
protocol to negotiate access to the intersection, and that if another entity is in
the intersection then it must be in the active area given by the membership
protocol. Apart from the assumption that entities keep in lane, the positions
x(e, t) of entities e other than entity A, are only restricted in the sense that if
entity e is in the intersection, it must have the resource. For entity A this is not
assumed, but proven to hold as explained in Section 4.2.

3.2 Core automaton

We now proceed to describe the core automaton (the states S, the initial states
I, and the transition function T) that encodes the behaviour of entity A. The

Table 3. State variables

Continuous state variables Discrete state variables
Predicate Type Description Predicate Type Description

ti R time at state i li L location
xi R x position in state i vit R intended target speed
yi R y position in state i P i Bool will pass
vi R speed in state i

logic of the vehicle is quite straightforward and roughly based on the intersection
collision avoidance application described by Sin et al. [22].

Table 3 contains the continuous and discrete variables (that actually en-
code the discrete states), and Figure 3 shows a graphical representation of the
discrete state transitions. The continuous state variables are time, x and y po-
sition and speed. The discrete variables are as follows. The location l ∈ L =
{farAway, close, inInter,passed} denotes the logical location of the vehicles in
relation to the intersection. The intended target speed vt denotes the reference
value to which the vehicle tries to adapts its speed. The Boolean variable P de-
notes an internal decision corresponding to whether the vehicle intends to pass
the intersection in the near future.

Now consider Figure 3 which shows the discrete states and transitions of the
core automaton (where all states have implicit self-loops). Initially, the vehicle
is considered to be far away from the intersection, but when the x position of
the vehicle passed the proximity point a, its state will change. There are two
possibilities, either the entity has acquired the resource and will have it for a
sufficiently long time to pass the intersection (we denote this willHaveResource),
in which case it will set P (will pass) to true and prepare to cross the intersection.
Otherwise, the vehicle must break (set target speed vt = 0), and wait until a
resource is acquired.

Once the entity has secured the resource it will need to maintain a minimum
speed (vmin) while close to or in the intersection. When the entity passes x = b,

start

l = farAway
vt = ∗
P = ∗

l = close
vt = 0

P = False

l = close
vt ≥ vmin

P = True

l = inInter
vt ≥ vmin

P = True

l = passed
vt = ∗
P = ∗(x = a) ∧

willHaveResource

(x = a) ∧
¬willHaveResource

willHaveResource

x = b x = c

Fig. 3. Automaton for the behaviour of vehicle A

it is considered to be in the intersection, until it passes point x = c, after which
it sets its location to “passed”.

Having covered the logical control of the vehicle, we now turn to a simple
model of its physical characteristics. This is defined by the continuous transition
function TC(i, j) (where i and j are states), which is a conjunction of criteria on
the allowed evolution (or flow) of the continuous variables.

TC(i, j) ≡ move(i, j) ∧ speed(i, j) ∧ duration(i, j)∧
(ti < tj) ∧ consts(i, j) ∧ inv(i, j)

The allowed movement (move(i, j)) of the vehicle is defined below. This move-
ment formula assumes that the average speed during the duration of the con-
tinuous transition is equal to the mean of the start and end speeds (vi and vj).
This is true if for example the acceleration is constant during that time.

move(i, j) ≡
(
xj = xi +

vi + vj

2
(tj − ti)

)

Fig. 4. Speed

The speed change during a con-
tinuous transition is controlled by the
minimum absolute acceleration pa-
rameter a. In line with letting the be-
haviour of the car to be unrestricted
unless required to prove the safety
of the system we do not limit the
maximum acceleration. Note that this
does not mean that we assume vehi-
cles to have unbounded acceleration,
but rather that as long as the speed
change is within the envelope we are able to prove system safety. Formally, the
allowed speed change is expressed as follows.

speed(i, j) ≡
(
(vit = vi) ∧ (vj = vi)

)
∨(

(vit < vi) ∧ (vit ≤ vj ≤ vi − a(tj − ti))
)
∨(

(vit > vi) ∧ (vi + a(tj − ti) ≤ vj ≤ vit)
)

If the duration of the continuous transition is long enough, the above formula
will cause the resulting speed to pass the intended target speed. Therefore, we
add a restriction on the duration of a continuous transition when there is a speed
change:

duration(i, j) ≡ (vit = vi) ∨
(
tj ≤ ti +

|vit − vi|
a

)
The easiest way to understand the above formulae is through figure 4. It shows
the case where the target speed is higher than the increased speed. The grey
area shows the admissible values for tj and vj .

The fourth criterion (ti < tj) in TC states that a timed transition must incre-
ment the clock, since otherwise it would be possible to have an infinite amount

of transitions without any time passing. The const(i, j) criterion simply requires
all discrete variables to stay constant during the timed transition. Finally, with
the invariant criterion inv , we introduce a restriction which is merely for sake
of the reducing the search space. There is no algorithm for solving general non-
linear arithmetic constraints, and with the model description so far Z3 returns
unknown when asked for satisfiability. We were thus forced to restrict the search
space by requiring that the speed variable v to be a multiple of 0.5m/s. Each
speed step can be seen as modelling a 0.5m/s wide range of the actual vehicle
speed3. Note that this must be done with some care. Specifically, one must make
sure that it does not lead to dead ends in the automaton from which there are
no outgoing transitions, as we show in the next section.

4 Verification

Having described our model we now outline our efforts to verify safety properties
of our model. Let R ⊂ S be the set of states that are reachable from I with
a finite sequence of transitions. Our objective is to show that all states in R
fulfil some safety property safei. This predicate should exclude the possibility
of vehicle A colliding with any other entity within the area, so we let safei ≡
safeDist i, where:

safeDist i ≡ ∀e ∈ E :(e = A) ∨ ¬inArea(e)

∨
(
|x(A, ti)− x(e, ti)| > Xmin

)
∨
(
|y(A, ti)− y(e, ti)| > Ymin

) (1)

Note that we specify the minimum allowed distance individually for the x
and y dimensions simply because the constraint solver we used could not cope
with a proper euclidean distance constraint. We leave it to future work to find a
way around this limitation. Moreover, we only include the vehicles in the active
area to reduce the verification complexity. Having defined the safety predicate
we now want to prove that all reachable states are safe: M |= ∀i ∈ R : safei

Unfortunately, this formulation is not very suitable for automatic verification;
we first have to transform the problem into a more tractable one. To do this we
employ as basic variant of k-induction and manual invariant strengthening.

4.1 Safety by induction

Proving safety using induction and a SAT solver was introduced by Sheeran et
al. [21] and is naturally extended to SMT solvers. The basic idea is to prove
safety of the system by induction, using paths of length K as the base case.
By testing increasingly larger values for K, this method will eventually provide
an answer for finite system representations. In the case of our model we use
K = 2. Using only the first state as the base case is not enough since both a

3 This can be seen as a discretisation of the speed variable, but does not restrict the
possible values for the other continuous variables.

continuous and a discrete transition is needed to ensure that the next state is
one that could reasonably occur for this system. Starting with the base case that
all initial states and all successors to the initial states are safe:

M |= ∀i ∈ I, j ∈ S : safei ∧ (T (i, j)⇒ safej)

We then formulate the inductive step, that if two successive states are safe, then
the third successor must also be a safe state.

M |= ∀i, j, k ∈ S :
(
safei ∧ safej ∧ T (i, j) ∧ T (j, k)

)
⇒ safek

Recall that to prove these formulae we try to assert their negation in Z3.
When the solver concludes that the negated formula is unsatisfiable, we know
that the formula is a consequence of the model M , and that all reachable states
are safe. If, on the other hand, the solver finds a solution to the constraint
problem there are two possibilities. Either the system is not safe, in which case
the variable assignment that satisfies the negation of what we want to prove
provides us with an example of how the system can enter an unsafe state. This
provides useful information for debugging the formulation of the model.

The other case is worse. The fact that the inductive step is false does not
necessarily mean that the system is unsafe. If the solver finds a case where the
safe states i and j lead to an unsafe state k, but i and j are not reachable states,
the counterexample is of no use. In this case, the system might or might not be
safe; we have no way of knowing. Increasing K does not help in our case since
we do not enforce maximal progress of timed transitions. Moreover, the safe
safeDist predicate only considers the positions of the vehicles. Thus, to prove
safety we need to replace the safety criterion with a stronger invariant that also
ensures proper speed and resource allocation.

4.2 Safety Invariants

The problem of finding invariants is often the key of automated theorem proving.
Fortunately, in our case, the invariants are fairly straightforward to the problem
at hand. Moreover, we do not consider it to be a problem that these need to
be defined manually. When designing a system for automotive safety, there will
be a large number of criteria in the system specification and these definitely fall
within this range. Apart from the safeDist i property (equation (1)) we add two
more invariants. The first hasResInInter requiring that if the entity is in the
intersection, then it must (1) have acquired the resource (2) have this resource
for a sufficient amount of time (3) have decided to pass the intersection and (4)
have a minimum target speed vmin.

Finally, the predicate safeSpeed limits the maximum speed that the entity can
have when being close to the intersection, but not having acquired the resource.
Or, similar to the above, the entity has decided to pass, to have a minimum target
speed. Figure 5 shows a graphical representation of the maximum speed before
an intersection. When the vehicle is far away from the intersection, there is a
fixed maximum speed. However, when the vehicle approaches the intersection, if

Will not pass max speed
Will pass min target speed

Position

farAway close inInter passed

Fig. 5. SafeSpeed

it has not decided to pass, it must start to slow down. The final safety invariant
is then defined as safei ≡ safeDist i ∧ hasResInInter i ∧ safeSpeed i.

With these additions and the induction scheme outlined in the previous sub-
section we were able to prove the safety of all reachable states using the Z3
solver.

4.3 Deadlock freedom

The final step in our verification process is to ensure that the model is sound
in the sense that we have not made it overly restrictive. In particular, it should
always be possible to transition to a new state. If the model is stuck, it means
that we have made an error. One possible approach to show this is to use the
same inductive reasoning as for proving safety.

M |= ∀i, j ∈ S : T (i, j)⇒ ∃k ∈ S : T (j, k)

However, when feeding the negation of this formula to Z3 it returns “unknown”.
It turns out that one of the core reasons for this is that time must increase for
a continuous transition (tj > ti). Unfortunately we cannot not just remove this
criterion, since it is required to prove safety. Instead we found another solution
to this problem, based on constructing a successor to every state.

We introduced a successor function succ : S → S that for each state returns
a new state to which there is a valid transition. The successor function can be
derived without major effort from the definition of the transition function. Since
succ is always guaranteed to give an output for every input state, we can prove
freedom from deadlock by proving the following formula.

M |= ∀i, j : T (i, j)⇒ T (j, succ(j))

The reason for having an antecedent (T (i, j)) is that this ensures that the state
variables in state j are not in themselves contradictory.

4.4 Final remarks

In addition to the above, we asserted basic properties such as that no two entities
both believe that they had the resource and that there is a sequence of transitions
in which A can pass the intersection. We did not formally prove progress of the
model, but this would also be an important aspect for a model checking tool.
We believe that our approach can be extended to handle this aspect provided

stronger assumptions on the underlying communication system, this is currently
work in progress. The entire model is composed of 825 lines of SMT-lib code
(including comments), and the verification by Z3 took 14 seconds on a Dell
optiplex 990 with a 3.4 GHz Intel Core i7 processor. According to the statistic
outputs by Z3 109MB of memory was consumed and 965k equations were added
by the constraint solver in the process.

5 Related work

There is a rich field of research on verification of hybrid systems, see Alur [2] for
a nice historic overview. Thanks to the foundational research on basic theories
for hybrid automata and satisfiability [8, 12], there are now a number of very
powerful verification tools available. Our focus is on the application of such au-
tomatic formal verification tools on distributed coordination problems. Several
works such as [14, 24] use SMT solvers to verify real-time communication proto-
cols but do not consider mobility and spatial safety constraints. The problem of
how autonomous traffic agents (or robots) should avoid collisions has also been
treated formally with manual proof strategies. For example, Damm et al. [7]
present a proof rule for collision freedom of two vehicles. Such work is crucial for
the understanding of the basic characteristics of the coordination problem, but
can be difficult to directly translate in to a model which is machine verifiable.

Our approach to traffic management is based on a coordination scheme where
a physical resource is allocated using a distributed coordination protocol. How-
ever, the collision avoidance can also be assured with the help of other abstrac-
tions. If a central authority can be deployed as in the case of the European Train
Control System (ETCS), it is enough to verify that the agent does not go outside
the boundary given by the manager [13, 29]. Collision avoidance between two
entities has also been studied in the context of air traffic management [26, 15].

Another approach to ensuring collision freedom is to verify that the trajecto-
ries of the different entities do not intersect. Clearly, such an approach requires
very sophisticated reasoning about the differential equations relating the vehicle
movements. Althoff et al. [1] use reachability analysis to prove safety of eva-
sive manoeuvres. Strong results can be shown with deductive methods as shown
by Platzer [19]. This approach has been applied to platooning [16], air traffic
management [20], and intersection collision avoidance [17]. While this method
allows more powerful model of the vehicle dynamics than what was possible to
verify in our model, verifying properties with a deductive approach often require
manual interaction. For example, the safety of the intersection control appli-
cation [17] required in total over 800 interactive steps to complete. Moreover,
this study assumes the existence of a stop light, and does not explicitly model
communication.

Autonomous intersection management has been extensively explored in the
intelligent transportation community [10, 22, 28], though usually not with a focus
on proving correctness. Naumann et al. [18] consider a formal model of the
scenario, but it is based on a discrete set of locations for each car. The Comhordú

coordination scheme on which the coordination approach presented here is based
was formalised by Bhandal et al. [4] using a process algebraic approach.

6 Conclusions

In this paper we have presented a formalisation of the distributed coordination
problem encountered by intelligent vehicles while contending for the same physi-
cal resource. We formalised a coordination protocol and an intersection collision
avoidance case study in the SMT-lib language and proved system safety using
the Z3 theorem prover.

We can draw two conclusions from this work. First, the responsibility ap-
proach to distributed coordination is a suitable abstraction for formal reasoning
on system safety. The core of this approach is that every entity is responsible
for making sure that it does not enter an unsafe state with respect to any other
entity. This can be contrasted with the other approaches where consensus is
required between all nodes, decisions are made by a central manager, or where
each pair of nodes negotiates independently, all of which seem problematic from
a scalability point of view.

The second conclusion is that automatic verification of collaborative vehic-
ular applications with the help of SMT solvers is at least plausible. We have
encountered some cases where the model could not be verified, and increasing
the detail and scale of the model would certainly enlarge this problem. However,
there are certainly domain-specific approximations that can be made to alleviate
some of these problems. Our next step is to generalise our specific case study to
construct a tool that allows high level models of applications for smart vehicles
to be automatically verified using an underlying formal reasoning engine. This
includes dealing with more general physical environment models (e.g., multiple
intersections). Another interesting direction is to explore more detailed formal
models of the membership protocol.

7 Acknowledgement

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

References

1. M. Althoff, D. Althoff, D. Wollherr, and M. Buss. Safety verification of autonomous vehi-
cles for coordinated evasive maneuvers. In IEEE Intelligent Vehicles Symposium, IV, 2010.
doi: 10.1109/IVS.2010.5548121.

2. R. Alur. Formal verification of hybrid systems. In Proceedings of the ninth ACM international
conference on Embedded software, EMSOFT. ACM, 2011. doi: 10.1145/2038642.2038685.

3. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

4. C. Bhandal, M. Bouroche, and A. Hughes. A process algebraic description of a temporal wireless
network protocol. In Proceedings of the Fourth International Workshop on Formal Methods
for Interactive Systems, 2011.

5. M. Bouroche. Real-Time Coordination of Mobile Autonomous Entities. PhD thesis, Dept. of
Computer Science, Trinity College Dublin, 2007.

6. T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group
membership. In fifteenth annual ACM symposium on Principles of distributed computing
(PODC). ACM Press, 1996. doi: 10.1145/248052.248120.

7. W. Damm, H. Hungar, and E.-R. Olderog. Verification of cooperating traffic agents. Interna-
tional Journal of Control, 79(5), 2006. doi: 10.1080/00207170600587531.

8. L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications.
Commun. ACM, 54, 2011. doi: http://doi.acm.org/10.1145/1995376.1995394.

9. L. de Moura and N. Bjrner. Z3: An efficient SMT solver. In C. Ramakrishnan and J. Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer Berlin / Heidelberg, 2008.
doi: 10.1007/978-3-540-78800-3 24.

10. K. Dresner and P. Stone. A multiagent approach to autonomous intersection management. J.
Artif. Int. Res., 31(1):591–656, 2008.

11. European Commission. Eu energy and transport in figures, 2010. http://ec.europa.eu/energy/
publications/statistics/statistics_en.htm, accessed Jan 2012.

12. T. Henzinger. The theory of hybrid automata. In Logic in Computer Science, 1996. LICS ’96.
Proceedings., Eleventh Annual IEEE Symposium on, 1996. doi: 10.1109/LICS.1996.561342.

13. C. Herde, A. Eggers, M. Franzle, and T. Teige. Analysis of hybrid systems using hysat. In
Third International Conference on Systems (ICONS), 2008. doi: 10.1109/ICONS.2008.17.

14. J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll. Static scheduling of a time-triggered
network-on-chip based on SMT solving. In Design, Automation Test in Europe Conference
Exhibition (DATE), pages 509 –514, 2012.

15. C. Livadas, J. Lygeros, and N. Lynch. High-level modeling and analysis of the traffic alert and
collision avoidance system (tcas). Proceedings of the IEEE, 88(7), 2000. doi: 10.1109/5.871302.

16. S. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid, distributed, and now
formally verified. In M. Butler and W. Schulte, editors, FM 2011: Formal Methods, volume
6664 of Lecture Notes in Computer Science, pages 42–56. Springer Berlin / Heidelberg, 2011.
doi: 10.1007/978-3-642-21437-0 6.

17. S. M. Loos and A. Platzer. Safe intersections: At the crossing of hybrid systems and verification.
In 14th International IEEE Conference on Intelligent Transportation Systems, ITSC, 2011.
doi: 10.1109/ITSC.2011.6083138.

18. R. Naumann, R. Rasche, J. Tacken, and C. Tahedi. Validation and simulation of a decentralized
intersection collision avoidance algorithm. In IEEE Conference on Intelligent Transportation
System, ITSC, 1997. doi: 10.1109/ITSC.1997.660579.

19. A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2), 2008.
doi: 10.1007/s10817-008-9103-8.

20. A. Platzer and E. M. Clarke. Formal verification of curved flight collision avoidance maneuvers:
A case study. In A. Cavalcanti and D. Dams, editors, Proceedings of the 16th International
Symposium on Formal Methods, FM. Springer, 2009. doi: 10.1007/978-3-642-05089-3 35.

21. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction and a
sat-solver. In W. Hunt and S. Johnson, editors, Formal Methods in Computer-Aided Design,
volume 1954 of Lecture Notes in Computer Science, pages 127–144. Springer Berlin / Heidel-
berg, 2000. doi: 10.1007/3-540-40922-X 8.

22. M. L. Sin, M. Bouroche, and V. Cahill. Scheduling of dynamic participants in real-time dis-
tributed systems. In 30th IEEE Symposium on Reliable Distributed Systems, SRDS, 2011.
doi: 10.1109/SRDS.2011.37.

23. M. Slot and V. Cahill. A reliable membership service for vehicular safety applications. In IEEE
Intelligent Vehicles Symposium, IV, 2011. doi: 10.1109/IVS.2011.5940487.

24. W. Steiner and B. Dutertre. SMT-based formal verification of a TTEthernet synchronization
function. In S. Kowalewski and M. Roveri, editors, Formal Methods for Industrial Critical
Systems, volume 6371 of Lecture Notes in Computer Science, pages 148–163. Springer Berlin
/ Heidelberg, 2010. doi: 10.1007/978-3-642-15898-8 10.

25. The World Bank. Road safety. http://www.worldbank.org/transport/roads/safety.htm, 2011.
Accessed December 2011.

26. C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic management: a
study in multiagent hybrid systems. IEEE Transactions on Automatic Control, 43(4), 1998.
doi: 10.1109/9.664154.

27. Traffic Accident Causation in Europe (TRACE) FP6-2004-IST-4. Deliverable 1.3 road users
and accident causation., 2009.

28. R. Verma and D. Vecchio. Semiautonomous multivehicle safety. Robotics Automation Maga-
zine, IEEE, 18(3), 2011. doi: 10.1109/MRA.2011.942114.

29. A. Zimmermann and G. Hommel. A train control system case study in model-based real time
system design. In Parallel and Distributed Processing Symposium, 2003. Proceedings. Inter-
national, 2003. doi: 10.1109/IPDPS.2003.1213234.

