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Abstract. This paper describes the approach of theRescueRobots Freiburg team,
which is a team of students from the University of Freiburg that originates from
the former CS Freiburg team (RoboCupSoccer) and the ResQ Freiburg team
(RoboCupRescue Simulation). Furthermore we introducelinkMAV, a micro aerial
vehicle platform.
Our approach covers RFID-based SLAM and exploration, autonomous detection
of relevant 3D structures, visual odometry, and autonomousvictim identification.
Furthermore, we introduce a custom made 3D Laser Range Finder (LRF) and a
novel mechanism for the active distribution of RFID tags.

1 Introduction

RescueRobots Freiburg is a team of students from the University of Freiburg. The team
originates from the former CS Freiburg team [12], which won the RoboCup world
championship in the RoboCupSoccer F2000 league three times, and the ResQ Freiburg
team [5], which won the RoboCup world championship in the RoboCupRescue Simula-
tion league in 2004. The team’s approach proposed in this paper is based on experiences
gathered at RoboCup during the last six years. Our research focuses on the implemen-
tation of a cheap and fully autonomous team of robots that quickly explores a large
terrain while mapping its environment.

In this paper we introduce our approach to Rescue Robotics, which we have been
developing for the last two years. Our main focus concerns RFID-based SLAM and
exploration, autonomous detection of relevant 3D structures, visual odometry, and au-
tonomous victim identification. Furthermore, we introducea custom made 3D Laser
Range Finder (LRF) and a novel mechanism for the active distribution of RFID tags.
The Autonomous Unmanned Aerial Vehicle Technologies Lab (AUTTECH) at the De-
partment of Computer and Information Sciences, Linkp̈ing University, Sweden, devel-
oped the micro aerial vehicle platformlinkMAV which will also be introduced in this
paper.

The motivation behind RFID-based SLAM and exploration is the simplification of
the 2D mapping problem by RFID tags, which our robots distribute with a tag-deploy-
device. RFID tags provide a world-wide unique number that can be read from distances



up to one meter. The detection of these tags and thus the unique identification of loca-
tions is significantly computationally cheaper and less erroneous than identifying loca-
tions with camera images and range data1.

RFID-based SLAM and exploration has advantages for Urban Search and Rescue
(USAR): We belief that the distribution of RFID tags in the environment can also be
very valuable to human task forces equipped with a RFID reader. From recognized
RFID tags the system is able to generate a topological map which can be passed to a
human operator. The map can be augmented with structural andvictim-specific infor-
mation. Travel paths to victims can directly be passed to human task forces as complete
plans that consist of RFID tag locations and walking directions. In fact, tags can be
considered as signposts since the topological map providesfor each tag the appropriate
direction. Given a plan of tags, task forces can find victim locations directly by follow-
ing the tags, rather than locating themselves on a 2D or 3D metric map beforehand.
The idea of labeling locations with information that is important to the rescue task has
already be applied in practice. During the disaster relief in New Orleans in 2005, res-
cue task forces marked buildings with information concerning, for example, hazardous
materials or victims inside the buildings. Our autonomous RFID-based marking of lo-
cations is a straight forward extension of this concept.

RoboCupRescue confronts the robots with a real 3D problem. In order to find vic-
tims, robots have to overcome difficult terrain including ramps, stairs and stepfields.
The managing of these tasks autonomously without human control is one goal of our
research. Therefore, we started to investigate approachesfor visual odometry and 3D
structure recognition, which we will present in this paper.

2 Team Members and Contributions

– Team Leader: Alexander Kleiner
– Selflocalization: Christian Dornhege
– Mapping: Rainer Kümmerle
– Controller Design and Behaviors: Bastian Steder
– Victim Identification: Michael Ruhnke
– Advisor: Bernhard Nebel

3 Operator Station Set-up and Break-Down (10 minutes)

Our robots are controlled by a lightweight laptop via aLogitech Rumblepad, which
all can be transported together in a backpack. It is possiblefor the operator to select
between different robots as well as between different views/cameras from a single robot
on the fly.

Our Zerg and Lurker robots can either be transported by a moveable case with
wheels or backpacked. The whole setup and breakdown procedure can be accomplished
within less than10 minutes, including booting the computers, checking the network
connection, and checking whether all sensors work properly.

1 Note that even for humans the unique identification of a location is hard, when for example
exploring a large office building.



4 Communications

Autonomous as well as teleoperated vehicles are communicating via wireless LAN. We
use a D-Link DI-774 access point, which is capable of operating in the5GHz as well as
in the2.4GHz band. All communication is based on the Inter Process Communication
(IPC) framework, which has been developed by Reid Simmons [8]. The simultaneous
transmission of multiple digital video streams is carried out by an error-tolerant protocol
which we developed based on the IPC framework.

5 Control Method and Human-Robot Interface

5.1 Teleoperation

We have developed a Graphical User Interface (GUI), which can be used to control mul-
tiple robots at the same time (see Figure 1(a)). The GUI is realized by a similar approach

(a) (b)

Fig. 1. (a) A graphical user interface for controlling and monitoring robots. (b) Joypad for oper-
ator control.

as proposed by the RoBrno team at RoboCup 2003[13]. Images from video cameras are
shown in full size on the screen, and additional sensor information is overlayed via a
Head Up Display (HUD). The operator might change the kind of information and the
transparency (alpha value) of the displayed information via the joypad. Our system is
capable of generating a 2D map of the environment autonomously during the teleoper-
ation of the operator. Within this map, victim locations andother points of interest can
be marked.

Operator control is carried out with a joypad, which is connected to a portable
Laptop (see figure 1(b)). Besides images from the thermo camera and video camera
mounted on the robot, the operator receives readings from other sensors, such as range
readings from the LRF, compass measurements, and the battery state of the robot. Data
from the LRF is used to simplify the operator’s task of avoiding obstacles.



5.2 Autonomous Control

During RoboCup 2005, our robots were capable of reliable autonomous control, even
within the harsh conditions of the finals (we are actually thankful for them). However,
this control was limited to operation within “yellow arena like” structure. Complex
obstacles such as stairs, ramps, and stepfields were not explicitly recognized and also
not overcome by the robots.

Our current work focuses on th development of autonomous 3D control. We are con-
fident that our current research on methods for detecting 3D structures, visual odometry,
and behavior learning will help us to get closer towards thisgoal.

6 Map generation/printing

6.1 Simultaneous Localization And Mapping (SLAM)

Our team performed SLAM successfully during the final of theBest in Class auton-
omy competition at RoboCup2005 in Osaka. The map shown in figure 2 (b) was au-
tonomously generated by the system, i.e. directly printed out after the mission without
any manual adjustment of the operator. Our overall system for SLAM is based on

(a) (b)

Fig. 2. Zerg robot during the final of theBest in Class autonomy competition at RoboCupRescue
2005 in Osaka: (a) slipping on newspapers and (b) the autonomously generated map. Red crosses
mark locations of victims which have been found by the robot.

three levels, which are:Slippage-sensitive odometry, Scanmatching, andRFID-based
localization.

When the robot operates on varying ground, for example, concrete or steel, spo-
radically covered with newspapers and cardboard (see Figure 2 (a)), or when it is very
likely that the robot gets stuck within obstacles, odometryerrors are not normally dis-
tributed, as required by localization methods. In order to detect wheel slippage, we
over-constrained the odometry by measuring from four separated shaft encoders, one



for each wheel. It turned out that a significant difference between two wheels on the
same side (either left or right) indicates slippage of the wheels. We utilize this informa-
tion for improving the robot’s localization.

Additionally, the robot’s pose is estimated by an incremental scan matching tech-
nique [4]. The technique determines from a sequence of scan observationsot, ot−1, ..., ot+∆t

subsequently for each time pointt an estimate of the robot’s posekt. This is carried out
by incrementally building a local grid map from the∆t most recent scans and by esti-
mating the new posekt of the robot by maximizing the likelihood of the scan alignment
of the scanot at posekt. We fuse this estimate with the odometry estimate by a Kalman
filter.

We tackle the “Closing The Loop” problem by actively distributing unique RFID
tags in the environment, i.e. placing them automatically onthe ground, and by utilizing
the tag correspondences found on the robot’s trajectory forcalculating globally con-
sistent maps after the method introduced by Lu and Milios [6]. Suppose that the robot
distributedn RFID tags at unknown locationsl0, l1, ..., ln, with li = (x, y) and keeps
track of all measured distancesd̂ij = (∆xij , ∆yij) with corresponding covariance ma-
trix Σij , wheredij = li − lj , in databaseR. Our goal is now to estimate locations
li of the tags that best explain the measured distancesdij and covariancesΣij . This
can be achieved after the maximum likelihood concept by minimizing the following
Mahalanobis-distance:

W =
∑

ij∈R

(

li − lj − d̂ij

)T

Σ−1

ij

(

li − lj − d̂ij

)

(1)

Note that since we assume the robot’s orientation to be measured by the IMU (whose
error does not accumulate), we do not consider the robot’s orientation in Equation 1,
hence the optimization problem can be solved linearly. It can easily be shown that the
optimization problem in Equation 1 can be solved as long as the covariancesΣij are
invertible [6]. For distributing the tags in the environment, we constructed a special
aperture which is further described in Section 10.

The motivation for the introduced method is not restricted to the RoboCupRescue
competition. We belief that the distribution of RFID tags inthe environment can also
be very valuable to human task forces equipped with a RFID reader. From recognized
RFID tags, the system is able to generate a metric or topological map, which can be
passed to a human operator. The topological map consists of RFID tags as vertices and
navigation directions and lengths as edges. The map can be augmented with structural
and victim specific information. Human task forces that are also equipped with a RFID
tag reader might find the locations of victims more efficient than directly from a 2D/3D
map, since RFID tags can be used as signposts.

6.2 Detection of 3D Structure

To extract information about objects from our 3D scans, we use an approach which is
based on Markov Random Fields (MRFs). In the context of RoboCup Rescue, these
objects may be stepfields, stairs, and ramps. Information about the objects surrounding



the robot is important for autonomous operation and might also be useful for teleop-
eration, e.g. adding this information to a map to simplify the teleoperation of a res-
cue robot. To achieve this, we extract various features out of the raw point cloud, e.g.
planes and their normals. Our framework uses a pairwise MRF over discrete variables

(a) (b)

(c) (d)

Fig. 3.Detection of relevant 3D structures. (a) Robot takes 3D scanin front of a stepfield. (b) The
generated 3D point cloud. (c) Planes extracted from the scan. (d) Automatic classification into
walls (blue), floor (red), and stepfield (yellow).

Y = {Y1, . . . , YN}, whereYi ∈ {1, . . . , K} represents the class label of a 3D scan ele-
ment.y denotes an assignment of the values toY. The underlying structure to represent
the joint distribution is an undirected graph(V , E) in which each node stands for one
variable and has an associated potentialφi (Yi). Furthermore, each edge is associated
with the potentialφij (Yi, Yj) , ij ∈ E . The potentials specify a non-negative number
for each possible value of the variableYi and for each possible pair of values ofYi, Yj

respectively.
The random field specifies the following joint distribution

Pφ(y) =
1

Z

N
∏

i=1

φi(yi)
∏

ij∈E

φij(yi, yj) (2)



whereZ is given byZ =
∑

y′

∏N
i=1

φi(y
′
i)

∏

ij∈E
φij(y

′
i, y

′
j).

Classifying the objects in the 3D scan is done by solving the maximum a-posteriori
(MAP) inference problem in a MRF, which is to find argmaxy Pφ(y). A preliminary
result of the successful segmentation of a 3D scan is shown inFigure 3.

7 Sensors for Navigation and Localization

7.1 Visual Odometry for Mapping with Autonomous Tracked Vehicles

A robot that traverses three-dimensional terrain has to cope with the difficulty of gaining
a meaningful odometric measurement for self-localization. Classical approaches such
as using wheel (or track) encoders can be misleading becauseit is very likely that the
robot will get in a situation, e.g. stairs or a steep ramp, where the tracks are moving
forward but the robot is not moving at all. Thus we chose to usevisual odometry to get
a movement estimation that relates to the robot’s movement relative to the environment.
The system works in two steps: First, features between two images are selected and
tracked; as a second step, these trackings are classified as acertain type of movement.

For tracking we use a KLT tracker [7,9], which has been implemented by Stan
Birchfeld [2]. Tracked features between two images are represented as a vector(x, y, l, a)T

wherex, y describe the position in the image andl, a describe the length and angle of the
tracked feature. Based on these features, the probabilityP (class|feature) is learned by
labeled data. As a representation for the learning, we use Tile Coding with the weights
representing the probabilities, using the update formulawi+1 = wi + 1

m
(pi+1 − wi)

wherewi is the weight after theith update step,pi+1 is the probability that the feature
was labeled with in stepi + 1, andm is the number of updates that already occurred on
this feature.

Turn Left Rotate Left Go Forward

Turn Right Rotate Right Go Backward

Fig. 4. Visual Odometry: Features detected in images indicate the movement of the robot.



7.2 Small and Light-Weight 3D Sensor

In Rescue Robotics, the environment that is relevant to the task is three-dimensional
and thus requires highly developed sensors for navigation.Hence our team developed a
light-weight 3D Laser Range Finder (LRF) device for structure detection and mapping
in the rescue arena. A picture of the sensor can be seen in Figure 5. The LRF sensor is
rotated by a strong servo that allows fast and accurate vertical positioning of the device.
As can be seen from Figure 5, the device can be rotated by more than 180 degrees,
which suffices to generate 3D scans from objects, such as stairs, ramps, and stepfields.
Our design differs from the design of other 3D scanners in that it can be implemented
by a simple “U-shaped” piece of metal and a servo, which altogether can be produced
for approximately100 USD.

(a) (b)

(c)
Fig. 5. A hand-crafted light-weight 3D Laser Range Finder (LRF) device. (a) A model of the 3D
LRF. (b) Mounted on the robot. (c) 3D scan taken in front of stepfield and baby doll.

8 Sensors for Victim Identification

8.1 Victim Detection from Audio

We perform audio-based victim detection by positioning twomicrophones with known
distance. Given an audio source left, right or between both microphones, we are mea-
suring the time difference, i.e. phase shift, between both signals. This is carried out by



 0

 5

 10

 15

 20

 25

 30

-100 -80 -60 -40 -20  0  20  40  60  80  100

C
ou

nt

Bearing [Deg]

Baby doll Noise

 0

 2

 4

 6

 8

 10

-100 -80 -60 -40 -20  0  20  40  60  80  100

C
ou

nt

Bearing [Deg]

Walkie-talkie noise

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

-100 -80 -60 -40 -20  0  20  40  60  80  100

C
ou

nt

Bearing [Deg]

White Noise

(a) (b) (c)

Fig. 6. Sound source detection by the Crosspower Spectrum Phase (CSP) approach of different
sound sources, which all are located at bearing+30 degree. (a) Sporadic noise from a baby
doll, e.g. scream or saying “Mama”. (b) Sporadic noise from awalkie-talkie, e.g. alert noise. (c)
Continuous white noise.

the Crosspower Spectrum Phase (CSP) approach, which allowsto calculate the phase
shift of both signals based on the Fourier transformation [3]. As shown in Figure 6, the
bearing of the sound sorce can be successfully determined, even for different kinds of
noise.

8.2 Victim Detection from Video

Besides color thresholding (or heat thresholding on thermoimages), we implemented
methods for motion and face detection, respectively. We utilized a fast approach for
detecting motion within video streams which is based on the analysis of differences
between subsequent images. After filtering out the difference information, a clustering
that is used for estimating the probability of human motion is calculated. Furthermore,
we utilize face detection by the approach introduced by Viola and colleagues [10].

9 Robot Locomotion

Locomotion is carried out based on two different ground-based robot platforms and one
aerial vehicle. In figure 7 robots of our team are shown. Figure 7(a) shows theLurker
robot, which is based on theTarantula R/C toy. Although based on a toy, this robot is
capable of climbing obstacles, such as stairs, ramps, and stepfields. Figure 7(b) shows a
fast and agile robot that is used for the autonomous team exploration of a large area, and
Figure 7(c) shows thelinkMAV, a micro aerial vehicle platform that has been developed
by the Autonomous Unmanned Aerial Vehicle Technologies Lab(AUTTECH) at the
Department of Computer and Information Sciences, Linköping University, Sweden.

The LinkMAV is a dual coaxial rotor platform. This configuration increases energy
efficiency as compared to a traditional helicopter design. It is powered by two brushless
electrical motors. The LinkMAV weighs 495 grams and has a maximum dimension of
49 cm (rotors diameter). The endurance ranges between 14 and30 minutes, depend-
ing on the battery / payload configuration. As standard payload, it is equipped with a
high-resolution micro board color CCD camera which is connected to an analog video
transmitter. The LinkMAV can be operated in 3 modes: Back-upmode, Manual Ordi-
nary (MO) mode and Autonomous mode. The operator can switch to and from any of
the modes during flight. The Autonomous mode is used for following waypoints based
on a GPS signal. Current activities include extending navigation capabilities for indoor



(a) (b)

(c) (d)

Fig. 7.Robots built by our team. (a) TheLurker robot and (b) theZerg robot during the RoboCup
competition in Osaka. (c) The team of robots waiting for the mission start and (d) the linkMAV,
a micro aerial vehicle from AUTTECH. Pictures (a) and (c) where taken by Adam Jacoff.

environments using vision. The LinkMAV has been awarded with theBest Rotary Wing
MAV prize at the 1st US- European MAV Competition, held in Garmisch Partenkirchen,
Germany, Sept, 2005. Have a look to our homepage for a video that demonstrates the
safe flight behavior of the robot [1].

10 Other Mechanisms

Figure 8(b) shows the prototype of a novel mechanism for the active distribution of
RFID tags. The mechanism can easily be mounted on a robot or a R/C car and is auto-
matically triggered when the robot navigates through narrow passages.

The mechanism consists of a magazine containing up to80 RFID tags which can be
released by a servo. Due to a special construction it is guaranteed that for each trigger
signal, only one tag will be released. Furthermore, the robot detects if a tag has been
released successfully by the antenna mounted around the mechanism. Since the tags are
transported out of the range of the antenna, they are only detectable after being released.
Figure 8 (c) shows the complete construction mounted on a robot, and Figure 8(a) shows
the1.3cmx1.3cm small RFID chips, which we utilized for our application. Tags once
deployed by robots can easily be collected with a vacuum cleaner.



(a) (b) (c)

Fig. 8. A novel mechanism for the active distribution of RFID tags. (a) The utilized RFID tags.
(b) The mechanism with servo. (c) The mechanism, together with an antenna, mounted on aZerg
robot.

11 Team Training for Operation (Human Factors)

For the development of autonomous robots a sufficiently accurate physics simulation
is absolutely necessary. Therefore, we utilized the USARSim simulation system [11],
which is based on theUnreal2004 game engine (see figure 9) for simulating and devel-
oping the autonomous behavior of our robots. The simulationof the robots is crucial
in order to speed-up the development of multi-agent behavior as well as to provide
data for learning approaches. Figure 9 shows the two models of our robots simulated in
USARSim.

(a) (b)

Fig. 9. Robot simulation with USARSim, based on the Unreal2003 gameengine. (a) Simulating
theZerg unit. (b) Simulating theLurker unit.

12 Possibilities for Practical Application to Real Disaster Site

Our team had no direct experience with any practical application in the context of real
disaster response. However, we are confident that some of thetechniques utilized by
our team are very useful in the context of USAR.

Our approach of autonomous exploration with RFID tags mightbe very helpful in
case the disaster site is large and partially blocked with rubble, such as the yellow arena.
The idea of labeling locations with information that is important to the rescue task has



already be applied in practice. During the disaster relief in New Orleans in 2005, res-
cue task forces marked buildings with information concerning, for example, hazardous
materials or victims inside the buildings. Our autonomous RFID-based marking of lo-
cations is a straight forward extension of this concept.

Another advantage of our approach, i.e. an increase of the likelihood that it might
be deployed, is that our robots are comparably cheap, due to atoy-based or homemade
platform. We belief that Rescue Robotics can only win recognition if the equipment is
cheap and can also be afforded by institutions with low budget.

13 System Cost

Generally, our philosophy is to provide solutions that are both good and cheap at the
same time. Hence some of our robots are based on toys, i.e. R/Ccars that can be bought
for less than 100 USD. The following tables list the approximate costs of each robot
type.

Name Part Price in USD Number Price Total in USD

Robot Base Handmade 500 1 500
Micro Controller MC9S12DG256 120 1 120
IR Sensor GP2D12 12 9 108
Sonic Sensor SRF08 53 3 159
Compass Sensor CMPS03 50 1 50
Flex Sensor FLEXS 18 2 36
Pyroelectric SensorR3-PYRO01 60 1 60
Odometry Sensor R238-WW01-KIT 60 1 60
Acceleration SensorADXL202 100 1 100
WLAN Adapter ADL-AG650 70 1 70
USB Camera Logitech Quickcam 4000 50 1 50
IMU InertiaCube 1500 1 1500
RFID Reader Medio S002 370 1 370
Laser Range FinderHokuyu URG-04LX 1600 1 1600
Thermo Camera Thermal Eye 5000 1 5000
Laptop JVC MP-XP731DE 1500 1 1500
Sum Total: 11283

Table 1.Costs for theZerg robot.

Name Part Price in USD Number Price Total in USD

Robot Base Tarantula 100 1 100
USB Camera Logitech Quickcam 4k 50 2 100
Laptop Sony Vaio PCG-C1VE 1000 1 1000
IMU InertiaCube 1500 1 1500
Micro Controller MC9S12DG256 120 1 120
WLAN Adapter ADL-AG650 70 1 70
Laser Range FinderHokuyu URG-04LX 1600 1 1600
Sum Total: 3 4490

Table 2.Costs for theLurker robot.
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