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Abstract. This paper describes the approach of RescueRobots Freiburg team,

which is a team of students from the University of Freiburat thriginates from
the former CS Freiburg team (RoboCupSoccer) and the ResiQuFgeteam

(RoboCupRescue Simulation). Furthermore we introdiurg®1AV, a micro aerial
vehicle platform.

Our approach covers RFID-based SLAM and exploration, autmus detection
of relevant 3D structures, visual odometry, and autonomaisn identification.

Furthermore, we introduce a custom made 3D Laser Range iHibR&) and a
novel mechanism for the active distribution of RFID tags.

1 Introduction

RescueRobots Freiburg is a team of students from the Uiitivefd-reiburg. The team
originates from the former CS Freiburg team [12], which wbe RoboCup world
championship in the RoboCupSoccer F2000 league three,tandghe ResQ Freiburg
team [5], which won the RoboCup world championship in the &@lpRescue Simula-
tion league in 2004. The team’s approach proposed in thismpapased on experiences
gathered at RoboCup during the last six years. Our reseactisés on the implemen-
tation of a cheap and fully autonomous team of robots thatkiyiexplores a large
terrain while mapping its environment.

In this paper we introduce our approach to Rescue Robotitghwve have been
developing for the last two years. Our main focus concernbbRfased SLAM and
exploration, autonomous detection of relevant 3D strestuvisual odometry, and au-
tonomous victim identification. Furthermore, we introd@ceustom made 3D Laser
Range Finder (LRF) and a novel mechanism for the activeiliigion of RFID tags.
The Autonomous Unmanned Aerial Vehicle Technologies LABTAECH) at the De-
partment of Computer and Information Sciences, Linkpimiversity, Sweden, devel-
oped the micro aerial vehicle platforimkMAV which will also be introduced in this
paper.

The motivation behind RFID-based SLAM and exploration & s$implification of
the 2D mapping problem by RFID tags, which our robots distelwith a tag-deploy-
device. RFID tags provide a world-wide unique number thatmmread from distances



up to one meter. The detection of these tags and thus theauitqguatification of loca-
tions is significantly computationally cheaper and leseregpus than identifying loca-
tions with camera images and range data

RFID-based SLAM and exploration has advantages for UrbamcBeand Rescue
(USAR): We belief that the distribution of RFID tags in thevebnment can also be
very valuable to human task forces equipped with a RFID ned&tem recognized
RFID tags the system is able to generate a topological maphaddn be passed to a
human operator. The map can be augmented with structuraliatith-specific infor-
mation. Travel paths to victims can directly be passed todrutask forces as complete
plans that consist of RFID tag locations and walking di@tti In fact, tags can be
considered as signposts since the topological map profedesch tag the appropriate
direction. Given a plan of tags, task forces can find victiocations directly by follow-
ing the tags, rather than locating themselves on a 2D or 3Diermaap beforehand.
The idea of labeling locations with information that is innf@mt to the rescue task has
already be applied in practice. During the disaster refidflew Orleans in 2005, res-
cue task forces marked buildings with information conaggnfor example, hazardous
materials or victims inside the buildings. Our autonomo&$Rbased marking of lo-
cations is a straight forward extension of this concept.

RoboCupRescue confronts the robots with a real 3D problerarder to find vic-
tims, robots have to overcome difficult terrain includingngss, stairs and stepfields.
The managing of these tasks autonomously without humamalagtone goal of our
research. Therefore, we started to investigate approdochesual odometry and 3D
structure recognition, which we will present in this paper.

2 Team Members and Contributions

— Team Leader: Alexander Kleiner

— Selflocalization: Christian Dornhege

— Mapping: Rainer Kimmerle

— Controller Design and Behaviors: Bastian Steder
— Victim Identification: Michael Ruhnke

— Advisor: Bernhard Nebel

3 Operator Station Set-up and Break-Down (10 minutes)

Our robots are controlled by a lightweight laptop vid @gitech Rumblepad, which
all can be transported together in a backpack. It is possiloléhe operator to select
between different robots as well as between different vieareeras from a single robot
on the fly.

Our Zerg and Lurker robots can either be transported by a moveable case with
wheels or backpacked. The whole setup and breakdown proeedn be accomplished
within less thanl0 minutes, including booting the computers, checking thevoskt
connection, and checking whether all sensors work properly

! Note that even for humans the unique identification of a locais hard, when for example
exploring a large office building.



4 Communications

Autonomous as well as teleoperated vehicles are commimgoza wireless LAN. We
use a D-Link DI-774 access point, which is capable of opegdti the5G H z as well as
in the2.4G H z band. All communication is based on the Inter Process Conuation
(IPC) framework, which has been developed by Reid Simmohdf& simultaneous
transmission of multiple digital video streams is carrietiwy an error-tolerant protocol
which we developed based on the IPC framework.

5 Control Method and Human-Robot Interface

5.1 Teleoperation

We have developed a Graphical User Interface (GUI), whichbeaused to control mul-
tiple robots at the same time (see Figure 1(a)). The GUI iizezhby a similar approach

(b)
Fig. 1. (a) A graphical user interface for controlling and monitgrirobots. (b) Joypad for oper-
ator control.

as proposed by the RoBrno team at RoboCup 2003[13]. ImagesVideo cameras are
shown in full size on the screen, and additional sensor métion is overlayed via a
Head Up Display (HUD). The operator might change the kindhédrimation and the

transparency (alpha value) of the displayed informati@ntkie joypad. Our system is
capable of generating a 2D map of the environment autonoyndusng the teleoper-

ation of the operator. Within this map, victim locations ater points of interest can
be marked.

Operator control is carried out with a joypad, which is carted to a portable
Laptop (see figure 1(b)). Besides images from the thermo ared video camera
mounted on the robot, the operator receives readings frber gensors, such as range
readings from the LRF, compass measurements, and theybstdéez of the robot. Data
from the LRF is used to simplify the operator’s task of avoglobstacles.



5.2 Autonomous Control

During RoboCup 2005, our robots were capable of reliablersaarnous control, even
within the harsh conditions of the finals (we are actuallynitfal for them). However,
this control was limited to operation within “yellow areniéid” structure. Complex
obstacles such as stairs, ramps, and stepfields were natigpecognized and also
not overcome by the robots.

Our currentwork focuses on th development of autonomousiiiral. We are con-
fident that our currentresearch on methods for detectingi@iotsires, visual odometry,
and behavior learning will help us to get closer towards gloial.

6 Map generation/printing

6.1 Simultaneous Localization And Mapping (SLAM)

Our team performed SLAM successfully during the final of Best in Class auton-
omy competition at RoboCup005 in Osaka. The map shown in figure 2 (b) was au-
tonomously generated by the system, i.e. directly printgcafter the mission without
any manual adjustment of the operator. Our overall systenSfcAM is based on

Fig. 2. Zerg robot during the final of th8est in Class autonomy competition at RoboCupRescue
2005 in Osaka: (a) slipping on newspapers and (b) the autonsigngenerated map. Red crosses
mark locations of victims which have been found by the robot.

three levels, which areSippage-sensitive odometry, Scanmatching, and RFID-based
localization.

When the robot operates on varying ground, for example, ret@or steel, spo-
radically covered with newspapers and cardboard (see &@(a)), or when it is very
likely that the robot gets stuck within obstacles, odometrgrs are not normally dis-
tributed, as required by localization methods. In order ¢tedt wheel slippage, we
over-constrained the odometry by measuring from four sgpdrshaft encoders, one



for each wheel. It turned out that a significant differenceMeen two wheels on the
same side (either left or right) indicates slippage of theelb. We utilize this informa-
tion for improving the robot’s localization.

Additionally, the robot’s pose is estimated by an increrakatan matching tech-
nigue [4]. The technique determines from a sequence of drsereation®;, 0;—1, ..., 0t+ At
subsequently for each time poirdn estimate of the robot’s poge This is carried out
by incrementally building a local grid map from tk&® most recent scans and by esti-
mating the new posk, of the robot by maximizing the likelihood of the scan alignme
of the scar; at poset;. We fuse this estimate with the odometry estimate by a Kalman
filter.

We tackle the “Closing The Loop” problem by actively distrilng unique RFID
tags in the environment, i.e. placing them automaticallytenground, and by utilizing
the tag correspondences found on the robot’s trajectorgdtiulating globally con-
sistent maps after the method introduced by Lu and Milios $6ppose that the robot
distributedn RFID tags at unknown locatioris, l1, ..., ., with I; = (z,y) and keeps
track of all measured distancé;g = (Ax,;, Ay;;) with corresponding covariance ma-
trix X;;, whered,;; = I; — l;, in databaseR. Our goal is now to estimate locations
l; of the tags that best explain the measured distadgeand covariances;;. This
can be achieved after the maximum likelihood concept by miiring the following
Mahalanobis-distance:

w=>" (li — 1 - Jij)Tgigl (zi - d}j) (1)

ijER

Note that since we assume the robot’s orientation to be meddy the IMU (whose
error does not accumulate), we do not consider the robagstation in Equation 1,
hence the optimization problem can be solved linearly. iit easily be shown that the
optimization problem in Equation 1 can be solved as long astvariances;; are
invertible [6]. For distributing the tags in the environnhewe constructed a special
aperture which is further described in Section 10.

The motivation for the introduced method is not restriciethie RoboCupRescue
competition. We belief that the distribution of RFID tagstire environment can also
be very valuable to human task forces equipped with a RFIDae#&rom recognized
RFID tags, the system is able to generate a metric or topzabgiap, which can be
passed to a human operator. The topological map consistBI&f Rgs as vertices and
navigation directions and lengths as edges. The map cangmeesated with structural
and victim specific information. Human task forces that dse aquipped with a RFID
tag reader might find the locations of victims more effici¢vatrt directly from a 2D/3D
map, since RFID tags can be used as signposts.

6.2 Detection of 3D Structure

To extract information about objects from our 3D scans, wearsapproach which is
based on Markov Random Fields (MRFs). In the context of RalpoRescue, these
objects may be stepfields, stairs, and ramps. Informationtahe objects surrounding



the robot is important for autonomous operation and miga &le useful for teleop-
eration, e.g. adding this information to a map to simplifg teleoperation of a res-
cue robot. To achieve this, we extract various features btiteoraw point cloud, e.g.
planes and their normals. Our framework uses a pairwise MR¥F discrete variables

(a) “ (b)

(c) (d)
Fig. 3. Detection of relevant 3D structures. (a) Robot takes 3D stéont of a stepfield. (b) The
generated 3D point cloud. (c) Planes extracted from the. fdarutomatic classification into
walls (blue), floor (red), and stepfield (yellow).

Y ={Yi,...,Yn}, whereY; € {1,..., K} represents the class label of a 3D scan ele-
ment.y denotes an assignment of the value¥td he underlying structure to represent
the joint distribution is an undirected graph, £) in which each node stands for one
variable and has an associated potentidlY;). Furthermore, each edge is associated
with the potentiaky;j (Y;,Y;),ij € £. The potentials specify a non-negative number
for each possible value of the variateand for each possible pair of values¥af Y
respectively.

The random field specifies the following joint distribution

NI

N
Py(y) = . H@(%) H Gij (Yi, Y;) 2)
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whereZ is given byZ = Zy, Hi]il i (yh) Hij€$ Gij (Y5, vj)-

Classifying the objects in the 3D scan is done by solving tagimum a-posteriori
(MAP) inference problem in a MRF, which is to find argx, Py(y). A preliminary
result of the successful segmentation of a 3D scan is showiginme 3.

7 Sensors for Navigation and Localization

7.1 Visual Odometry for Mapping with Autonomous Tracked Vehicles

Arobotthat traverses three-dimensional terrain has te eath the difficulty of gaining
a meaningful odometric measurement for self-localizatlassical approaches such
as using wheel (or track) encoders can be misleading bedasseery likely that the
robot will get in a situation, e.g. stairs or a steep ramp,n@hbe tracks are moving
forward but the robot is not moving at all. Thus we chose tovisgal odometry to get
a movement estimation that relates to the robot’s movenedative to the environment.
The system works in two steps: First, features between tvagés are selected and
tracked; as a second step, these trackings are classifieckasia type of movement.
For tracking we use a KLT tracker [7,9], which has been im@atad by Stan
Birchfeld [2]. Tracked features between two images areasanted as a vector, y, [, a)”
wherezx, y describe the position in the image and describe the length and angle of the
tracked feature. Based on these features, the probaBility:ss| feature) is learned by
labeled data. As a representation for the learning, we useChiding with the weights
representing the probabilities, using the update formula, = w; + %(piﬂ — w;)
wherew; is the weight after théth update stem; 1 is the probability that the feature
was labeled with in step+ 1, andm is the number of updates that already occurred on
this feature.

Rotate Left

Turn Right Rotate Right Go Backward
Fig. 4. Visual Odometry: Features detected in images indicate theement of the robot.



7.2 Small and Light-Weight 3D Sensor

In Rescue Robotics, the environment that is relevant toakk is three-dimensional

and thus requires highly developed sensors for navigatlence our team developed a
light-weight 3D Laser Range Finder (LRF) device for struetdetection and mapping
in the rescue arena. A picture of the sensor can be seen ineFigiThe LRF sensor is

rotated by a strong servo that allows fast and accuratecaépositioning of the device.

As can be seen from Figure 5, the device can be rotated by rhare80 degrees,

which suffices to generate 3D scans from objects, such as,s@nps, and stepfields.
Our design differs from the design of other 3D scanners initlean be implemented

by a simple “U-shaped” piece of metal and a servo, which altogr can be produced
for approximatelyl00 USD.

(@) )

(©
Fig. 5. A hand-crafted light-weight 3D Laser Range Finder (LRF)idev(a) A model of the 3D
LRF. (b) Mounted on the robot. (c) 3D scan taken in front opfiedd and baby doll.

8 Sensors for Victim Identification

8.1 Victim Detection from Audio

We perform audio-based victim detection by positioning tnicrophones with known
distance. Given an audio source left, right or between bathaphones, we are mea-
suring the time difference, i.e. phase shift, between bigtheds. This is carried out by
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Fig. 6. Sound source detection by the Crosspower Spectrum Pha&y &pproach of different
sound sources, which all are located at bearirg) degree. (a) Sporadic noise from a baby
doll, e.g. scream or saying “Mama”. (b) Sporadic noise fromadkie-talkie, e.g. alert noise. (c)
Continuous white noise.
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the Crosspower Spectrum Phase (CSP) approach, which dtogadculate the phase
shift of both signals based on the Fourier transformatirA8 shown in Figure 6, the
bearing of the sound sorce can be successfully determiued fer different kinds of
noise.

8.2 Victim Detection from Video

Besides color thresholding (or heat thresholding on theimages), we implemented
methods for motion and face detection, respectively. Wézetl a fast approach for
detecting motion within video streams which is based on thayais of differences
between subsequent images. After filtering out the diffeeanformation, a clustering
that is used for estimating the probability of human mot®oalculated. Furthermore,
we utilize face detection by the approach introduced bya/aid colleagues [10].

9 Robot Locomotion

Locomotion is carried out based on two different groundellasbot platforms and one
aerial vehicle. In figure 7 robots of our team are shown. Fgi(e) shows th&urker
robot, which is based on thrantula R/C toy. Although based on a toy, this robot is
capable of climbing obstacles, such as stairs, ramps, apfiedts. Figure 7(b) shows a
fast and agile robot that is used for the autonomous teanoratjin of a large area, and
Figure 7(c) shows thinkMAV, a micro aerial vehicle platform that has been developed
by the Autonomous Unmanned Aerial Vehicle Technologies (ABTTECH) at the
Department of Computer and Information Sciences, Linkgpiniversity, Sweden.
The LinkMAV is a dual coaxial rotor platform. This configui@ increases energy
efficiency as compared to a traditional helicopter desigis.dowered by two brushless
electrical motors. The LinkMAV weighs 495 grams and has aimar dimension of
49 cm (rotors diameter). The endurance ranges between 13Gndnutes, depend-
ing on the battery / payload configuration. As standard pEldt is equipped with a
high-resolution micro board color CCD camera which is canteé to an analog video
transmitter. The LinkMAV can be operated in 3 modes: Backngue, Manual Ordi-
nary (MO) mode and Autonomous mode. The operator can swateimd from any of
the modes during flight. The Autonomous mode is used forfiofig waypoints based
on a GPS signal. Current activities include extending restidg capabilities for indoor



Fig. 7. Robots built by our team. (a) Thaurker robot and (b) th&erg robot during the RoboCup
competition in Osaka. (c) The team of robots waiting for thiesion start and (d) the linkMAV,
a micro aerial vehicle from AUTTECH. Pictures (a) and (c) ventaken by Adam Jacoff.

environments using vision. The LinkMAV has been awardedt #ieBest Rotary Wing
MAV prize at the 1st US- European MAV Competition, held in GaohiBartenkirchen,
Germany, Sept, 2005. Have a look to our homepage for a vidgaldmonstrates the
safe flight behavior of the robot [1].

10 Other Mechanisms

Figure 8(b) shows the prototype of a novel mechanism for ttiweadistribution of
RFID tags. The mechanism can easily be mounted on a robot &€ ad® and is auto-
matically triggered when the robot navigates through napassages.

The mechanism consists of a magazine containing 8p BFID tags which can be
released by a servo. Due to a special construction it is gteed that for each trigger
signal, only one tag will be released. Furthermore, the trdletects if a tag has been
released successfully by the antenna mounted around tHeamiem. Since the tags are
transported out of the range of the antenna, they are ondgtidle after being released.
Figure 8 (c) shows the complete construction mounted onatyahd Figure 8(a) shows
the1.3cma1.3cm small RFID chips, which we utilized for our application. Bagnce
deployed by robots can easily be collected with a vacuunmelea



(a) (b)
Fig. 8. A novel mechanism for the active distribution of RFID tag®). The utilized RFID tags.
(b) The mechanism with servo. (c) The mechanism, togethéravi antenna, mounted orZerg
robot.

11 Team Training for Operation (Human Factors)

For the development of autonomous robots a sufficiently @telphysics simulation
is absolutely necessary. Therefore, we utilized the USARSmulation system [11],
which is based on thenreal2004 game engine (see figure 9) for simulating and devel-
oping the autonomous behavior of our robots. The simulatifothe robots is crucial
in order to speed-up the development of multi-agent belhagowell as to provide
data for learning approaches. Figure 9 shows the two moélelsr@obots simulated in
USARSIm.

Fig. 9. Robot simulation with USARSIim, based on the Unreal2003 ganggne. (a) Simulating
the Zerg unit. (b) Simulating thé_urker unit.

12 Possibilities for Practical Application to Real Disaste Site

Our team had no direct experience with any practical aptidinan the context of real
disaster response. However, we are confident that some ¢é¢haiques utilized by
our team are very useful in the context of USAR.

Our approach of autonomous exploration with RFID tags mixghtery helpful in
case the disaster site is large and partially blocked withle such as the yellow arena.
The idea of labeling locations with information that is inn@mt to the rescue task has



already be applied in practice. During the disaster refidflew Orleans in 2005, res-
cue task forces marked buildings with information conaggnfor example, hazardous
materials or victims inside the buildings. Our autonomo&$Rbased marking of lo-
cations is a straight forward extension of this concept.

Another advantage of our approach, i.e. an increase ofkbkhood that it might
be deployed, is that our robots are comparably cheap, dutelzased or homemade
platform. We belief that Rescue Robotics can only win redtgmif the equipment is
cheap and can also be afforded by institutions with low btidge

13 System Cost

Generally, our philosophy is to provide solutions that anéhbgood and cheap at the
same time. Hence some of our robots are based on toys, i.edRéGhat can be bought
for less than 100 USD. The following tables list the approadiencosts of each robot

type.

[Name; [Part [Price in USOY Number Price Total in USH}
Robot Base Handmade 500 1 500
Micro Controller [ MC9S12DG256 120 1 120
IR Sensor GP2D12 12 9 108
Sonic Sensor SRF08 53 3 159
Compass Sensor [CMPS03 50 1 50
Flex Sensor FLEXS 18 2 36
Pyroelectric SensofR3-PYRO01 60 1 60
Odometry Sensor | R238-WWO1-KIT 60 1 60
Acceleration Sens¢ADXL202 100 1 100
WLAN Adapter ADL-AG650 70 1 70
USB Camera Logitech Quickcam 4000 50 1 50
IMU InertiaCube 1500 1 1500
RFID Reader Medio S002 370 1 370
Laser Range Findgokuyu URG-04LX 1600 1 1600
Thermo Camera |Thermal Eye 5000 1 5000
Laptop JVC MP-XP731DE 1500 1 1500
Sum Total: 11283

Table 1. Costs for theZerg robot.

[Name [Part [Price in USH Number] Price Total in USD)
Robot Base Tarantula 100 1 100

USB Camera Logitech Quickcam 4 50 2 100
Laptop Sony Vaio PCG-C1VI 1000 1 1000

IMU InertiaCube 1500 1 1500

Micro Controller |MC9S12DG256 120 1 120

WLAN Adapter ADL-AG650 70 1 70

Laser Range Findg¢Hokuyu URG-04LX 1600 1 1600

Sum Total: 3 4490

Table 2.Costs for the_urker robot.
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